
Pbmodels — Software to Compute Stable Models by
Pseudoboolean Solvers

Lengning Liu and Mirosław Truszczyński

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA

Abstract. We describe a new software, pbmodels, that uses pseudo-boolean con-
straint solvers (PB solvers) to compute stable models of logic programs with
weight atoms. To this end, pbmodels converts ground logic programs to propo-
sitional theories with weight atoms so that stable models correspond to models.
Our approach is similar to that used by assat and cmodels. However, unlike these
two systems, pbmodels does not compile the weight atoms away. Preliminary
experimental results on the performance of pbmodels are promising.

1 Introduction
We describe a system pbmodels to compute stable models of logic programs with
weight atoms. We call such programs smodels programs, as we adopt for them the
semantics implemented in smodels [1]. The key idea behind pbmodels is to translate
programs into propositional theories and use propositional satisfiability solvers. How-
ever, unlike existing systems assat [2] and cmodels [3], which first exploited this direc-
tion, we do not replace weight atoms with propositional formulas. Instead, we translate
programs with weight atoms directly into theories in propositional logic extended with
weight atoms, which we refer to as the logic PLwa [4]. We then use existing solvers
for such theories as computational back-end engines. We refer to solvers testing satisfi-
ability of PLwa theories as PB solvers. In some cases, prior to the use of a PB solver,
additional simple transformations are needed to ensure the right input format.

Compiling away weight atoms may lead to significantly larger programs and theo-
ries. Currently most advanced translations result in the growth by a logarithmic factor
in the case of cardinality atoms, and a polynomial factor in the case of general weight
atoms. Moreover, for some solvers, especially those based on the local-search idea, the
structure of the resulting theories makes them difficult to process. The growth in size
and the additional structure, which result from compiling weight atoms away, often ren-
der solvers that require that step, such as assat [2] and cmodels [3], less effective. That
motivates our work. Pbmodels is designed to compute models of smodels programs
without replacing weight atoms by their pure propositional representations.

2 Pbmodels — the Algorithm
Our paper is based on theoretical results developed in [4] for an abstract setting of pro-
grams with monotone and convex constraints. The approach developed there specializes
to smodels programs. In particular, it yields the concepts of the program completion, a
loop, a terminating loop and a loop formula for an smodels program, with the comple-
tion and loop formulas being formulas in the logic PLwa .

Results in [4] imply that stable models of an smodels program are in one-to-one
correspondence with models (in the sense of the logic PLwa) of the completion of the
program extended with some loop formulas for the program. That result, generalizing a
result of Lin and Zhao [2], allows us to extend the design of assat to the case of smodels
programs in a way, which does not require that weight atoms be complied away. In a
nutshell, we first compute the completion of the smodels program. Then we iteratively
compute models of the completion using PB solvers. Whenever a non-stable model is
found, we add to the completion loop formulas that guarantee that the same non-stable
model will not be computed again. Our algorithm is shown in Figure 1.

Input: P — a ground logic program (possibly with weight atoms)
A — a pseudo-boolean solver

Output: M — a stable model of P if A finds one; “Failed” otherwise

BEGIN
compute the completion comp(P) of P represented in PB logic;
do

M := a model of comp(P) found by A;
if (M does not exist) output “Failed” and terminate;
if (M is stable) output M and terminate;
compute the reduct P M of P with respect to M ;
compute the greatest stable model M ′ under M in P M ;
M− := M \ M ′;
find all maximal loops in M−;
add loop formulas of the loops found in previous step to comp(P);

while (true);
END

Fig. 1. Algorithm of pbmodels

3 Pbmodels — the Package

The pbmodels package, including executable PB solvers code, can be obtained at http:
//www.cs.uky.edu/ai/pbmodels/pbmodels-0.1.tar.gz. It is also in-
stalled at the asparagus site http://asparagus.cs.uni-potsdam.de.

The package contains the source code of pbmodels and supported PB solvers:
satzoo [5], pbs [6], wsatoip [7], and wsatcc [8]. The first two are complete PB solvers
while the last two are incomplete PB solvers based on walksat [9] local-search algo-
rithm. In addition, the package contains also two scripts:

– esrapl: a perl script that recovers the structure of rules and weight atoms when
lparse grounds the input program and converts it to a normal form required by
smodels. We found that PB solvers are more effective when the original structure
of rules and weight atoms is restored. We designed esrapl1 to “undo” conversion
of ground programs to their normal form by lparse.

1 lparse spelled backwards.

– convert2: a perl script that takes a theory in the logic PLwa , and produces PB

theories that are accepted by different PB solvers. It is invoked by the command:
convert2 <target format> <source file>
Values for <target format> are: satzoo, pbs, wsatcc, or wsatoip. They
specify the format, to which the input PLwa theory in the file <source file>
is to be converted.
The script can be used as a stand alone format translation program.

4 Input, Output, and How to Invoke Pbmodels
Pbmodels accepts on input programs obtained by grounding smodels programs with
lparse and processing the result with esrapl. The output of pbmodels is similar
to that of smodels . The string “False” indicates that there are no stable models for the
input program2. Otherwise, the first stable model of the input will be printed on the
screen.

The main options for pbmodels are:

1. --engine <engine name>
It specifies which PB solver to use. Values for this option are: satzoo, pbs,
wsatcc, and wsatoip

2. --option <list of options to the solver>
It specifies options for a solver selected with the --engine option. Everything
after --option is passed to the solver.

In addition, there are also options that allow the user to specify the path to executable
programs if they are not installed to the default bin directory. We do not discuss them
here due to space constraints.

The following examples show how to invoke pbmodels . We assume that the file
prog.lp contains an input smodels program. We also assume that satzoo is to be used as
the back-end engine.
lparse prog.lp | esrapl | pbmodels --engine satzoo

The following command will invoke pbmodels , use satzoo, and pass specific satzoo
options to satzoo:
lparse prog.lp | esrapl | pbmodels --engine satzoo --option
-no-rand

5 Performance
We report here briefly on our experiments comparing the performance of pbmodels and
smodels . We considered several benchmark problems. Due to lack of space, we present
here only the results concerning the traveling salesperson problem, and the weighted n-
queens problem. Specifications of both problems use general weight atoms. Additional
experimental results can be found at http://www.cs.uky.edu/ai/pbmodels.

We tested pbmodels with the four PB solvers mentioned earlier and compared the
results with those obtained for smodels . All experiments were run on machines with

2 If an incomplete solver is used, “False” means that no stable models were found; the program
may actually have stable models.

3.2GHz Pentium 4 CPU, 1GB memory, running Linux with kernel version 2.6.11, gcc
version 3.3.4.

In the following tables we report the number of instances a solver solved, and the
number of times a solver won among all solvers, and among the complete solvers (that
latter metric for complete solvers only). We also report the average and the median
running times in seconds, over all instances that do not time out3.

Table 1 shows results on the traveling salesperson problem. We randomly generated
50 weighted complete graphs containing 20 vertices. For each of them, we set the upper
bound on the length of the TSP cycle to w = 62. The value of w is chosen so that about
half of the instances have solutions 4.

TSP # of Instances # of Times Won Timing
(n = 20, w = 62) Solved v.s. All v.s. Complete Mean Median

smodels 19/50 1 7 1558.37 1637.14

pbmodels-satzoo 19/50 2 16 696.42 461.25

pbmodels-pbs 1/50 0 0 1482.24 1482.24

pbmodels-wsatcc 19/50 6 − 28.39 6.59

pbmodels-wsatoip 28/50 22 − 7.20 1.43

Table 1. TSP Problem

Among complete solvers, pbmodels-satzoo performs better than the other two.
Even though pbmodels-satzoo and smodels solved the same number of instances,
pbmodels-satzoo won more times among the three complete solvers. Moreover, the av-
erage running time of pbmodels-satzoo is about half of that of smodels and the median
running time is about 1/3 of that of smodels . Over all, pbmodels-wsatoip is the winner.
It solves the largest number of instances. Furthermore, its average and median running
times are about three orders of magnitude less than the running time of smodels .

Table 2 shows the results on the weighted n-queens problem. An instance to this
problem consists of n2 non-negative integer weights, one for each square of an n × n
chessboard, and of an integer bound w. A solution to an instance is a placement of n
queens on the chessboard so that they do not attack each other and the total weight of
the placement (the sum of the weights of the squares occupied by queens) is no greater
than w. We randomly generated 50 weighted “chessboards” of the size 20 × 20 and, in
each case, we set w = 50 as for w = 50 about half of the instances have solutions.

We observe that pbmodels-wsatcc and pbmodels-wsatoip outperformed smodels .
Among the complete solvers, smodels is slightly better than pbmodels-satzoo and
pbmodels-pbs (smodels managed to solve two instances in this category, other complete
solvers timed-out on all). However, the local-search solvers are the overall winners in
all metrics considered.

3 We do not include the time used by lparse and esrapl in the time reported, as we are only
interested in the effectiveness of solvers.

4 To be precise, we do not know that the remaining ones do not have solutions. We only know
that no solver was able to solve them within the 3000 seconds time limit we set.

W-NQueens # of Instances # of Times Won Timing
(n = 20, w = 50) Solved v.s. All v.s. Complete Mean Median

smodels 2/50 0 2 697.81 661.20

pbmodels-satzoo 0/50 0 0 N/A N/A
pbmodels-pbs 0/50 0 0 N/A N/A

pbmodels-wsatcc 29/50 15 − 1.01 0.33

pbmodels-wsatoip 29/50 14 − 0.44 0.35

Table 2. Weighted NQueens Problem

6 Conclusions
We have presented software package pbmodels that computes models of smodels pro-
grams. The key feature of our system is that it supports the use of off-the-shelf PB

solvers developed by the satisfiability community and capable of process weight atoms
directly.

Our experiments show that pbmodels performs better than smodels on benchmarks
we considered. The results were especially good when local-search PB solvers were
used. We observed the same phenomenon in experiments on other problems we consid-
ered: weighted Latin square problem, magic square problem, vertex-cover problem and
the tower-of-Hanoi problem. The last two problems use only cardinality atoms. Hence
we were able to include cmodels [3] in those two tests, too. The results showed that PB

solvers are generally faster than cmodels on these two benchmark families.

Acknowledgments
We acknowledge the support of NSF grants IIS-0097278 and IIS-0325063.

References

1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138 (2002) 181–234.

2. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In:
Proceedings of AAAI-2002, AAAI Press (2002) 112–117.

3. Babovich, Y., Lifschitz, V.: Cmodels package (2002) http://www.cs.utexas.edu/
users/tag/cmodels.html.

4. Liu, L., Truszczyński, M.: Properties of programs with monotone and convex constraints.
In: Proceedings of AAAI-05, AAAI Press (2005).

5. Eén, N., Sörensson, N.: An extensible SAT solver. In: Proceedings of SAT-2003. Volume
2919 of LNCS., Springer (2003) 502–518.

6. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: PBS: a backtrack-search pseudo-boolean
solver and optimizer. In: Proceedings of SAT-2003. 346 – 353.

7. Walser, J.: Solving linear pseudo-boolean constraints with local search. In: Proceedings of
AAAI-97, AAAI Press (1997) 269–274.

8. Liu, L., Truszczyński, M.: Local-search techniques in propositional logic extended with
cardinality atoms. In: Proceedings of CP-2003. Volume 2833 of LNCS, Springer (2003)
495–509.

9. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceed-
ings of AAAI-1994, AAAI Press (1994) 337–343.

