
Under consideration for publication in Theory and Practice of Logic Programming 1Computing stable models: worst-caseperformance estimatesZBIGNIEW LONCFaculty of Mathematics and Information ScienceWarsaw University of Technology00-661 Warsaw, Poland(e-mail: zblonc@alpha.mini.pw.edu.pl)MIROS LAW TRUSZCZY�NSKIDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0046, USA(e-mail: mirek@cs.uky.edu)AbstractWe study algorithms for computing stable models of logic programs and derive estimateson their worst-case performance that are asymptotically better than the trivial bound ofO(m2n), where m is the size of an input program and n is the number of its atoms. Forinstance, for programs whose clauses consist of at most two literals (counting the head)we design an algorithm to compute stable models that works in time O(m � 1.44225n).We present similar results for several broader classes of programs. Finally, we study theapplicability of the techniques developed in the paper to the analysis of the performanceof smodels.KEYWORDS: logic programs, stable models, computing stable models, worst-case bounds
1 IntroductionThe stable-model semantics was introduced by Gelfond and Lifschitz (Gelfond andLifschitz 1988) to provide an interpretation for the negation operator in logic pro-gramming. In this paper, we study algorithms to compute stable models of propo-sitional logic programs. Our main goal is to design algorithms for which one canderive non-trivial worst-case performance bounds.Computing stable models is important. It allows us to use logic programming,with the negation operator interpreted by the stable model semantics, as a compu-tational knowledge representation tool and as a declarative programming system(Marek and Truszczy�nski 1999; Niemel�a 1999). In most cases, when designing al-gorithms for computing stable models we restrict the syntax to that of DATALOGwith negation (or DATALOG:, for short), by eliminating function symbols fromthe language. When function symbols are allowed, models can be in�nite and highlycomplex, and the general problem of existence of a stable model of a �nite logic

2 Z. Lonc and M. Truszczy�nskiprogram is not even semi-decidable (Marek et al. 1994)1. On the other hand, whenfunction symbols are not used, stable models are guaranteed to be �nite and canbe computed. Some recent results on the algorithmic aspects of the problem tocompute stable models of logic programs can be found in (Lonc and Truszczy�nski2001; Truszczy�nski 2001; Lonc and Truszczy�nski 2001).To compute stable models of �nite DATALOG: programs we usually proceedin two steps. In the �rst step, we ground an input program P and produce a�nite propositional program with the same stable models as P (the �niteness ofthe resulting ground program is ensured by the �niteness of P and the absenceof function symbols). In the second step, we compute stable models of the groundprogram by applying search. This general approach is used in smodels (Niemel�a andSimons 2000) and dlv (Eiter et al. 2000), two most advanced systems to processDATALOG: programs2.It is this second step of the process | computing stable models of propositionallogic programs (in particular, programs obtained by grounding DATALOG: pro-grams) | that is of central interest to us in the present paper. Stable models of apropositional logic program P can be computed by a trivial brute-force algorithmthat generates all subsets of the set of atoms of P and, for each of these subsets,checks the stability condition. This algorithm can be implemented to run in timeO(m2n), where m is the size of P and n is the number of atoms in P (we will usem and n in this meaning consistently throughout the paper). The algorithms usedin smodels and dlv re�ne this brute-force algorithm by employing e�ective search-space pruning techniques. Experiments show that their performance is signi�cantlybetter than that of the brute-force algorithm. However, at present, no non-trivialupper bound on their worst-case running time is known. In fact, no algorithms forcomputing stable models are known whose worst-case performance would be prov-ably better than that of the brute-force algorithm. Our main goal here is to designsuch algorithms.To this end, we propose a template for an algorithm to compute stable modelsof propositional programs. This template involves an auxiliary procedure whoseparticular instantiation determines the speci�c algorithm and its running time. Wepropose concrete implementations of this procedure and show that the resulting al-gorithms for computing stable models are asymptotically better than the straight-forward algorithm described above. The performance analysis of our algorithmsis closely related to the question of how many stable models logic programs mayhave. The template proposed in the paper can be instantiated to algorithms suchas smodels but also to algorithms that search for stable models over search treesthat are not, in general, binary.Our main results concern propositional logic programs, called t-programs, inwhich the number of literals in normal clauses (we give the de�nition later), in-1 We note, however, that some progress on automated reasoning with logic programs that allowfunction symbols have recently been obtained by Bonatti (Bonatti 2001; Bonatti 2002).2 In fact, dlv is designed to process programs from a broader class of disjunctive DATALOG:programs.

Computing stable models: worst-case performance estimates 3cluding the head, is bounded by a constant t . Despite their restricted syntax t-programs are of interest. Many logic programs that were proposed as encodings ofproblems in planning, model checking and combinatorics become propositional 2- or3-programs after grounding. For instance, the ground versions of the programs givenin (Marek and Truszczy�nski 1999) as encodings of the propositional satis�abilityand the Hamilton cycle problems are 3-programs. Similarly, the ground versions ofthe programs given in (Niemel�a 1999) as encodings of the pigeonhole, the n-queens,the graph k -colorability and the Schur number problems are 2-programs. In eachcase some straightforward program simpli�cations must be applied (all these sim-pli�cations are implemented in lparse, a grounding program developed for smodels(Syrj�anen 1999)). In general, programs obtained by grounding �nite DATALOG:programs are t-programs, for some �xed and usually small t that depends only onthe problem speci�cation and not on a particular problem instance.In the paper, for every t � 2, we construct an algorithm that computes allstable models of a t-program P in time O(m�nt), where �t is a constant such that�t < 2�1=2t .For 2-programs we obtain stronger results. We construct an algorithm that com-putes all stable models of a 2-program in time O(m3n=3) = O(m � 1.44225n). Wenote that 1.44225 < �2 � 1.61803. Thus, this algorithm is indeed a signi�cantimprovement over the algorithm following from general considerations discussedabove. We design an even faster algorithm for a subclass of 2-programs consist-ing of programs that are purely negative and do not contain dual clauses. Thisalgorithm runs in time O(m � 1.23651n).We obtain signi�cant improvements over the general results concerning t-programsalso in the case when t = 3. Namely, we describe an algorithm that computesall stable models of a 3-program P in time O(m � 1.70711n). In contrast, since�3 � 1.83931, the algorithm implied by the general considerations runs in timeO(m � 1.83931n).For programs in all the classes mentioned above, we obtain upper bounds onthe maximum number of stable models a program in a given class may have. Asmentioned earlier, these bounds are related to the worst-case performance estimatesfor algorithms we proposed.In the paper we also consider a general case where no bounds on the length of aclause are imposed. We describe an algorithm to compute all stable models of suchprograms. Its worst-case complexity is better by the factor of pn than that of thebrute-force algorithm.Finally, in the paper we discuss some lower bounds for the worst-case estimateof the time needed to compute all stable models. Since computing stable modelsrequires that all of them be output, the sum of the cardinalities of all stable mod-els of a program provides a lower bound on the worst-case performance estimate.Thus, to obtain a good bound, one needs to construct programs with as many aspossible \large" stable models. We present two such constructions in the paper. Insome cases, they demonstrate optimality of our algorithms in the sense that theexponential factor in the formula cannot be improved.It is well known that, by introducing new atoms, every logic program P can be

4 Z. Lonc and M. Truszczy�nskitransformed in polynomial time into a 3-program P 0 that is, essentially, equivalentto P . Speci�cally, every stable model of P with the set of atoms At is of the formM 0 \ At, for some stable model M 0 of P 0 and, for every stable model M 0 of P 0,the set M 0 \ At is a stable model of P . This observation might suggest that inorder to design fast algorithms to compute stable models, it is enough to focus onthe class of 3-programs. It is not the case. In the worst case, the number of newatoms that need to be introduced is of the order of the size of the original programP . Consequently, an algorithm to compute stable models that can be obtainedby combining the reduction described above with an algorithm to compute stablemodels of 3-programs runs in time O(m � 2m) and is asymptotically slower thanthe brute-force approach outlined earlier. Thus, it is necessary to study algorithmsfor computing stable models designed explicitly for particular classes of programs.2 PreliminariesFor a detailed account of logic programming and stable model semantics we referthe reader to (Gelfond and Lifschitz 1988; Apt 1990; Marek and Truszczy�nski 1993).In the paper, we consider only the propositional case. The language is determinedby some (in�nite) set At of atoms. A literal is an atom or any expression of theform not(a), where a is an atom. Literals b and not(b), where b is an atom, aredual to each other. For a literal �, we denote its dual by not(�).A clause is an expression c of the form p B or B , where p is an atom andB is a list of literals. The atom p (if present) is called the head of c and is denotedby h(c). The set of literals B is called the body of c. The set of all atoms appearingas non-negated literals in B is the positive body of c, b+(c), in symbols. The setof atoms appearing in negated literals of B is the negative body of c, b�(c), insymbols. We emphasize that while the body of a rule consists of literals, positiveand negative bodies are de�ned to consist of atoms. We assume that no literals inB are repeated.A clause of the form p B is called a normal clause. A clause of the form Bis called a constraint. A clause whose positive body is empty is called a purelynegative clause. A normal clause whose negative body is empty is called a Hornclause (thus, in this paper, we require that a Horn clause have a non-empty head).A logic program is a collection of clauses. If every clause of P is normal, P is anormal logic program. If every clause in P is purely negative, P is a purely negativeprogram. If every clause in a logic program P is a Horn clause, P is a Horn program.Finally, a logic program P is a t-program if every normal clause in P has no morethan t literals (counting the head). We note that the de�nition of t-programs doesnot impose any restrictions on the length of constraints.For a logic program P , by At(P) we denote the set of all atoms appearing in P .We de�neLit(P) = At(P) [fnot(a): a 2 At(P)g.A set of atoms M is a model of a clause of the form p B if: (i) p 2 M , or (ii)b =2 M , for some atom b 2 B , or (iii) b 2 M , for some atom b such that not(b) 2 B .

Computing stable models: worst-case performance estimates 5Similarly, M is a model of a clause of the form B if: (i) b =2 M , for some atomb 2 B , or (ii) b 2 M , for some atom b such that not(b) 2 B . A set of atoms M isa model of a logic program P if M is a model of every clause in P . It is well knownthat every Horn program P has a least model (with respect to set inclusion). Wewill denote this model by lm(P).Given a normal logic program P and a set of atoms M � At(P), we de�ne thereduct of P with respect to M (PM , in symbols) to be the logic program obtainedfrom P by1. removing from P each clause c such that M \ b�(c) 6= ; (we call such clausesblocked by M),2. removing all negated atoms from the bodies of all the rules that remain (thatis, those rules that are not blocked by M).Since we assumed that the program P is normal, the reduct PM is a Horn program.Thus, it has a least model. We say that M is a stable model of P if M = lm(PM).Both the notion of the reduct and that of a stable model were introduced in (Gelfondand Lifschitz 1988).The concept of a stable model can be extended to the case of arbitrary logicprograms (not necessarily normal). Let P be such a program. We de�ne a set ofatoms M to be a stable model of P if (1) M is a stable model of the programconsisting of all normal clauses in P , and if (2) M is a model of the programconsisting of all constraints of P .A clause c is a tautology if it is normal and h(c) 2 b+(c), or if b+(c)\b�(c) 6= ;.A clause c is a virtual constraint if it is normal and h(c) 2 b�(c). We have thefollowing result (Dix 1995).Proposition 1Let P be a logic program and let P 0 be the subprogram of P obtained by removingfrom P all tautologies, constraints and virtual constraints. A set of atoms M is astable model of P if and only if M is a stable model of P 0 and satis�es all constraintsand virtual constraints of P .Thanks to this proposition, when designing algorithms for computing stable mod-els we may restrict attention to normal programs without tautologies, constraintsand virtual constraints. Indeed, to compute stable models of P we simply computestable models for P 0 and, for each of them, check whether it satis�es all constraintsand virtual constraints of P . Those that \pass" the check are stable models of P .Moreover, every stable model of P can be found in this way.For a set of literals L � Lit(P), we de�ne:L+ = fa 2 At(P): a 2 Lg and L� = fa 2 At(P):not(a) 2 Lg.We also de�ne L0 = L+ [L�. A set of literals L is consistent if L+ \ L� = ;. A setof atoms M � At(P) is consistent with a set of literals L � Lit(P), if L+ � M andL� \M = ;.To characterize stable models of a program P that are consistent with a set ofliterals L � Lit(P), we denote by [P]L the program obtained from P by removing:

6 Z. Lonc and M. Truszczy�nski1. every clause c such that b+(c) \ L� 6= ;2. every clause c such that b�(c) \ L+ 6= ;3. every clause c such that h(c) 2 L04. every occurrence of a literal in L from the bodies of the remaining clauses.The program [P]L contains all information necessary to reconstruct stable modelsof P that are consistent with L. The following result was obtained in (Dix 1995)(we refer also to (Subrahmanian et al. 1995; Cholewi�nski and Truszczy�nski 1999)).Proposition 2Let P be a logic program and L be a set of literals of P . If M is a stable model ofP consistent with L, then M n L+ is a stable model of [P]L.Thus, to compute all stable models of P that are consistent with L, one can�rst check if L is consistent. If not, there are no stable models consistent with L.Otherwise, one can compute all stable models of [P]L, for each such model M 0check whether M = M 0 [L+ is a stable model of P and, if so, output M . Thisapproach is the basis of the algorithm to compute stable models that we present inthe following section.3 A high-level view of stable model computationWe will now describe an algorithm stable(P ;L) that, given a normal program Pand a set of literals L, outputs all stable models of P that are consistent with L.The key concept we need is that of a complete collection. Let P be a logic program.A non-empty collection A of non-empty subsets of Lit(P) is complete for P ifevery stable model of P is consistent with at least one set A 2 A. The collectionA = ffag; fnot(a)gg, where a is an atom of P , is a simple example of a completecollection for P .In the description given below, we assume that complete(P) is a procedure that,for a program P , computes a collection of sets of literals that is complete for P .stable(P ;L)(0) if L is consistent then(1) if [P]L = ; then(2) check whether L+ is a stable model of P and, if so, output it(3) else(4) A := complete([P]L);(5) for every A 2 A do(6) stable(P ;L [A)(7) end of stable.Proposition 3Let P be a normal �nite propositional logic program. For every L � Lit(P),stable(P ;L) returns all stable models of P consistent with L.

Computing stable models: worst-case performance estimates 7ProofWe proceed by induction on jAt([P]L)j. To start, let us consider a call to stable(P ;L)in the case when jAt([P]L)j = 0 and let M be a set returned by stable(P ;L). Itfollows that L is consistent and that M is a stable model of P . Moreover, sinceM = L+, M is consistent with L. Conversely, let M be a stable model of P thatis consistent with L. By Proposition 2, M n L+ is a stable model of [P]L. Since Lis consistent (as M is consistent with L) and [P]L = ;, M n L+ = ;. Since M isconsistent with L, M = L+. Thus, M is returned by stable(P ;L).For the inductive step, let us consider a call to stable(P ;L), where jAt([P]L)j > 0.Let M be a set returned by this call. Then M is returned by a call to stable(P ;L[A), for some A 2 A, where A is a complete family for [P]L. Since elements of acomplete family are non-empty and consist of literals actually occurring in [P]L,jAt([P]L[A)j < jAt([P]L)j. By the induction hypothesis it follows that M is a stablemodel of P consistent with L [A and, consequently, with L.Conversely, let us assume that M is a stable model of P consistent with L. Then,by Proposition 2, M nL+ is a stable model of [P]L. Since A (computed in line (4))is a complete collection for [P]L, there is A 2 A such that M nL+ is consistent withA. Since A \ L = ; (as A � At([P]L)), M is a stable model of P consistent withL [A. Since jAt([P]L[A)j < jAt([P]L)j, by the induction hypothesis it follows thatM is output during the recursive call to stable(P ;L [A).Let us note that typically algorithms for computing stable models of logic pro-grams and models of CNF theories search over a binary tree. That is, at everybranch point a variable, say x , is chosen and the search splits into two paths: onewhere x is assumed to be true and the other one where x is assumed to be false(not necessarily in this order). The search tree traversed by our algorithm is notnecessarily binary. At each branch point, the search splits into as many di�erentpaths as there are elements in the complete family returned by the call to proce-dure complete. While algorithms searching over binary trees can be derived from ourtemplate by specifying the procedure complete so that it always returns collectionsconsisting of at most two sets, the class of algorithms that can be derived from ourtemplate is broader. We provide additional comments on this issue in Section 7.We will now study the performance of the algorithm stable. In our discussion wefollow the notation used to describe it. Let P be a normal logic program and letL � Lit(P). Let us consider the following recurrence relation:s(P ;L) = � 1 if [P]L = ; or L is not consistentPA2A s(P ;L [A) otherwise.As a corollary to Proposition 3 we obtain the following result.Corollary 1Let P be a �nite normal logic program and let L � Lit(P). Then, P has at mosts(P ;L) stable models consistent with L. In particular, P has at most s(P ; ;) stablemodels.

8 Z. Lonc and M. Truszczy�nskiProofIt is easy to see that s(P ;L) bounds the number of sets output by the algorithmstable(P ;L). By Proposition 3, all stable models consistent with L are output by acall to stable(P ;L). Thus, the �rst part of the assertion follows. Since each stablemodel of P is consistent with the empty set of literals, the second part of theassertion follows, as well.We will use the function s(P ;L) to estimate not only the number of stable modelsin normal logic programs but also the running time of the algorithm stable. Indeed,let us observe that the total number of times we make a call to the algorithm stablewhen executing stable(P ;L) (including the "top-level" call to stable(P ;L)) is givenby s(P ;L). We associate each execution of the instruction (i), where 0 � i � 5, withthe call in which the instruction is executed. Consequently, each of these instructionsis executed no more than s(P ;L) times during the execution of stable(P ;L).There are linear-time algorithms to check whether a set of atoms is a stable modelof a program P . Thus, we obtain the following result concerning the performanceof the algorithm stable.Theorem 1If the procedure complete runs in time O(t(m)), where t is a function de�ned onthe set of positive integers and m is the size of an input program P , then executingthe call stable(P ;L), where L � Lit(P), requires O(s(P ;L)(t(m)+m)) steps in theworst case.The speci�c bound depends on the procedure complete, as it determines therecurrence for s(P ;L). It also depends on the implementation of the procedurecomplete, as the implementation determines the second factor in the running-timeformula derived above.Throughout the paper (except for Section 8, where a di�erent approach is used),we specify algorithms to compute stable models by describing particular versionsof the procedure complete. We obtain estimates on the running time of these algo-rithms by analyzing the recurrence for s(P ;L) implied by the procedure complete.As a byproduct to these considerations, we obtain bounds on the maximum numberof stable models of a logic program with n atoms.4 t-programsIn this section we will instantiate the general algorithm to compute stable models tothe case of t-programs, where t � 2. To this end, we will describe a procedure that,given a normal t-program P , returns a complete collection for P . The assumption ofnormality imposed on a t-program P implies that every clause in P has a non-emptyhead and consists of at most k literals (including the head).Let P be a normal t-program and let x �1; : : : ; �k , where �i are literals andk � t�1, be a clause in P . Let us de�ne A0 = fxg. Further, for every i = 1; : : : ; k ,let us de�neAi = fnot(x); �1; : : : ; �i�1;not(�i)g

Computing stable models: worst-case performance estimates 9(we recall that not(�) denotes the literal that is dual to the literal �). It is easy tosee that the family A = fA0;A1; : : : ;Akg is complete for P . The family A was �rstused by Monien and Speckenmeyer (Monien and Speckenmeyer 1985) in algorithmsto compute models of t-CNF propositional theories. It also appeared in the workof Bonatti and Olivetti on sequent calculus for default logic (Bonatti and Olivetti2002). We will assume that this complete collection A is computed and returned bythe procedure complete. Clearly, computing this collection A can be implementedto run in time O(m).To analyze the resulting algorithm stable, we use our general results from theprevious section. Let us de�necn = � Kt if 0 � n < tcn�1+ : : :+cn�t otherwise,where Kt is the maximum possible value of s(P ;L) for a normal t-program P anda set of literals L � Lit(P) such that jAt(P)j�jLj � t . It is easy to see that Kt is aconstant that depends neither on P nor on L. We will prove that if P is a normalt-program, L � Lit(P), and jAt(P)j�jLj � n, then s(P ;L) � cn . We proceed byinduction on n. If n < t , then the assertion follows by the de�nition of Kt . So, let usassume that n � t . If L is not consistent or [P]L = ;, s(P ;L) = 1 � cn . Otherwise,s(P ;L) = kXi=0 s(P ;L [Ai) � k+1Xi=1 cn�i � tXi=1 cn�i = cn .The �rst equality follows from the recursive de�nition of s(P ;L). The �rst inequalityfollows by the induction hypothesis. Indeed, for every i = 0; 1; : : : ; k ,jAt(P)j�jL [Ai j � jAt(P)j�jLj�i � n�i .The second inequality is straightforward and the second equality follows from thede�nition of the sequence cn . Thus, the induction step is complete.The characteristic equation of the recurrence relation cn = cn�1+ : : :+cn�t isx t = x t�1+ : : :+x+1. Let �t be the largest real root of this equation. One canshow that for t � 2, 1 < �t < 2�1=2t . In particular, �2 � 1.61803, �3 � 1.83931,�4 � 1.92757 and �5 � 1.96595. Based on the discussion in Section 3, we obtainthe following two theorems.Theorem 2Let t be an integer, t � 2. There is an algorithm to compute stable models oft-programs that runs in time O(m�nt), where n is the number of atoms and m isthe size of the input program.Theorem 3Let t be an integer, t � 2. There is a constant Ct such that every t-program P hasat most Ct�nt stable models, where n = jAt(P)j.Since for every t , �t < 2, we indeed obtain an improvement over the straightfor-ward approach. However, the scale of the improvement diminishes as t grows.To establish lower bounds on the number of stable models and on the worst-case

10 Z. Lonc and M. Truszczy�nskiperformance of algorithms to compute them, we de�ne P(n; t) to be a logic programsuch that jAt(P(n; t))j = n and P(n; t) consists of all clauses of the formx not(b1); : : : ;not(bt);where x 2 At(P(n; t)) and fb1; : : : ; btg � At(P(n; t)) n fxg are di�erent atoms. Itis easy to see that P(n; t) is a (t+1)-program with n atoms and that stable modelsof P(n; t) are precisely those subsets of At(P(n; t)) that have n�t elements. Thus,P(n; t) has exactly �nt � stable models.Clearly, the program P(2t�1; t�1) is a t-program over the set of 2t�1 atoms.Moreover, it has �2t�1t�1 �(= �2t�1t �) stable models and each of these stable models hast elements. Let kP(2t�1; t�1) be the logic program formed by the disjoint unionof k copies of P(2t�1; t�1) (sets of atoms of di�erent copies of P(2t�1; t�1) aredisjoint). Let us denote this program by Q(k ; t). It is easy to establish the followingproperties of the program Q(k ; t):1. jAt(Q(k ; t))j = k(2t�1)2. The total length of all clauses in Q(k ; t) (the size of Q(k ; t)) is given byk(t+1)(2t�1)�2t�1t �3. Q(k ; t) has �2t�1t �k stable models, each of them of cardinality kt .Let us de�ne �t = �2t�1t �1=2t�1. These properties imply the following result.Theorem 4Let t be an integer, t � 2. There are positive constants dt and Dt such that forevery n � 2t�1 there is a t-program P with n atoms and such that1. The size of P , m, satis�es m � dtn2. The sum of the cardinalities of all stable models of P is at least Dtn�nt .As a corollary to this theorem, we obtain the following result.Corollary 2Let t be an integer, t � 2.1. Every algorithm computing all stable models of t-programs requires in theworst case at least
(n�nt) steps2. Let 0 < � < �t . There is no algorithm for computing all stable models oft-programs with worst-case performance bounded by O(f (m)�n), where f isa polynomial and m is the size of the input program.ProofThe �rst part of the assertion follows by Theorem 4(2). Indeed, any algorithmcomputing all stable models of t-programs needs n�nt to output the results of thecomputation when run on the programs discussed in Theorem 4.For the second part of the assertion, let us assume that there is �, 0 < � < �t ,and an algorithm A computing all stable models of t-programs such that A runsin time O(f (m)�n), for some polynomial f . For programs discussed in Theorem 4,m = O(n). Thus, it follows from part (1) that n�nt = O(f (n)�n), a contradiction.

Computing stable models: worst-case performance estimates 11The lower bound given by Corollary 2 specializes to (approximately)
(n �1.44224n),
(n � 1.58489n),
(n � 1.6618n) and
(n � 1.71149n), for t = 2; 3; 4; 5,respectively. 5 2-programsStronger results than those obtained in the previous section can be derived for morerestricted classes of programs. In this section we study the case of 2-programs andprove the following two theorems.Theorem 5There is an algorithm to compute stable models of 2-programs that runs in timeO(m3n=3) = O(m � 1.44225n), where n is the number of atoms in P and m is thesize of P .Theorem 6There is a constant C such that every 2-program P with n atoms, has at mostC � 3n=3 (� C � 1.44225n) stable models.By Proposition 1, to prove these theorems it su�ces to limit attention to thecase of normal programs not containing tautologies and virtual constraints. We willadopt this assumption and derive both theorems from general results presented inSection 3.Let P be a normal 2-program. We say that an atom b 2 At(P) is a neighbor ofan atom a 2 At(P) if P contains a clause containing both a and b (one of them asthe head, the other one appearing positively or negatively in the body). By n(a)we will denote the number of neighbors of an atom a. Since we assume that ourprograms contain neither tautologies nor virtual constraints, no atom a is its ownneighbor.We will now describe the procedure complete. The complete family returned bythe call to complete(P) depends on the program P . We list below several cases thatcover all normal 2-programs without tautologies and virtual constraints. In eachof these cases, we specify a complete collection to be returned by the procedurecomplete.Case 1. There is an atom, say x , such that P contains a clause with the head xand with the empty body (in other words, x is a fact of P). We de�ne A = ffxgg.Clearly, every stable model of P contains x . Thus, A is complete.Case 2. There is an atom, say x , that does not appear in the head of any clausein P . We de�ne A = ffnot(x)gg. It is well known that x does not belong to anystable model of P . Thus, A is complete for P .Case 3. There are atoms x and y , x 6= y , such that x y and at least one ofx not(y) and y not(x) are in P . In this case, we set A = ffxgg. Let M be astable model of P . If y 2 M , then x 2 M (due to the fact that the clause x yis in P). Otherwise, y =2 M . Since M satis�es x not(y) or y not(x), it againfollows that x 2 M . Thus, A is complete.

12 Z. Lonc and M. Truszczy�nskiCase 4. There are atoms x and y such that x y and y x are both in P . Wede�neA = ffx ; yg; fnot(x);not(y)gg.If M is a stable model of P then, clearly, x 2 M if and only if y 2 M . It followsthat either fx ; yg � M or fx ; yg \M = ;. Thus, A is complete for P . Moreover,since x 6= y (P does not contain clauses of the form w w), each set in A has atleast two elements.Case 5. None of the Cases 1-4 holds and there is an atom, say x , with exactly oneneighbor, y . Since P does not contain clauses of the form w w and w not(w),we have x 6= y . Moreover, x must be the head of at least one clause (since weassume here that Case 2 does not hold).Subcase 5a. P contains the clause x y . We de�neA = ffx ; yg; fnot(x);not(y)gg.Let M be a stable model of P . If y 2 M then, clearly, x 2 M . Since we assumethat Case 3 does not hold, the clause x y is the only clause in P with x as thehead. Thus, if y =2 M , then we also have that x =2 M . Hence, A is complete.Subcase 5b. P does not contain the clause x y . We de�neA = ffx ;not(y)g; fnot(x); ygg.Let M be a stable model of P . Since x is the head of at least one clause in P , itfollows that the clause x not(y) belongs to P . Thus, if y =2 M then x 2 M . Ify 2 M then, since x not(y) is the only clause in P with x as the head, x =2 M .Hence, A is complete.Case 6. None of the Cases 1-5 holds. Let w 2 At(P) be an atom. By x1; : : : ; xp wedenote all atoms x in P such that w not(x) or x not(w) is a clause in P .Similarly, by y1; : : : ; yq we denote all atoms y in P such that y w is a clause ofP . Finally, by z1; : : : ; zr we denote all atoms z of P such that w z is a clause ofP . By our earlier discussion it follows that the sets fx1; : : : ; xpg, fy1; : : : ; yqg andfz1; : : : ; zrg, are pairwise disjoint and cover all neighbors of w . That is, the numberof neighbors of w is given by p+q+r . Since we exclude Case 5 here, p+q+r � 2.Further, since w is the head of at least one edge (Case 2 does not hold), it followsthat p+r � 1Subcase 6a. For some atom w , q � 1 or p+q+r � 3. Then, we de�neA = ffw ; y1; : : : ; yqg; fnot(w); x1; : : : ; xp ;not(z1); : : : ;not(zr)gg.It is easy to see that A is complete for P . Moreover, if q � 1 then, since p+r � 1,each of the two sets in A has at least two elements. If p+q+r � 3, then either eachset in A has at least two elements, or one of them has one element and the otherone at least four elements.Subcase 6b. Every atom w has exactly two neighbors, and does not appear in thebody of any Horn clause of P . It follows that all clauses in P are purely negative.Let w be an arbitrary atom in P . Let u and v be the two neighbors of w . The

Computing stable models: worst-case performance estimates 13atoms u and v also have two neighbors each, one of them being w . Let u 0 and v 0be the neighbors of u and v , respectively, that are di�erent from w . We de�neA = ffnot(w); u; vg; fnot(u);w ; u 0g; fnot(v);w ; v 0gg.Let M be a stable model of P . Let us assume that w =2 M . Since w and u areneighbors, there is a clause in P built of w and u. This clause is purely negativeand it is satis�ed by M . It follows that u 2 M . A similar argument shows thatv 2 M , as well. If w 2 M then, since M is a stable model of P , there is a 2-clauseC in P with the head w and with the body satis�ed by M . Since P consists of purelynegative clauses, and since u and v are the only neighbors of w , C = w not(u)or C = w not(v). Let us assume the former. It is clear that u =2 M (since Msatis�es the body of C). Let us recall that u 0 is a neighbor of u. Consequently, u andu 0 form a purely negative clause of P . This clause is satis�ed by M . Thus, u 0 2 Mand M is consistent with fnot(u);w ; u 0g. In the other case, when C = w not(v),a similar argument shows that M is consistent with fnot(v);w ; v 0g. Thus, everystable model of P is consistent with one of the three sets in A. In other words, Ais complete.Clearly, given a normal 2-program P , deciding which of the cases described aboveholds for P can be implemented to run in linear time. Once that is done, the outputcollection can be constructed and returned in linear time, too.This speci�cation of the procedure complete yields a particular algorithm tocompute stable models of normal 2-programs without tautologies and virtual con-straints. To estimate its performance and obtain the bound on the number of stablemodels, we de�necn = � K if 0 � n < 4maxfcn�1; 2cn�2; cn�1+cn�4; 3cn�3g otherwise,where K is the maximum possible value of s(P ;L), when P is a normal �nitepropositional logic program, L � Lit(P) and jAt(P)j�jLj � 3. It is easy to seethat K is a constant that depends neither on P nor on L. We will prove thats(P ;L) � cn , where n = jAt(P)j�jLj. If n � 3, then the assertion follows by thede�nition of K . So, let us assume that n � 4. If L is not consistent or [P]L = ;,s(P ;L) = 1 � cn . Otherwise,s(P ;L) = XA2A s(P ;L [A) � maxfcn�1; 2cn�2; cn�1+cn�4; 3cn�3g = cn .The inequality follows by the induction hypothesis, the properties of the completefamilies returned by complete (the cardinalities of sets forming these complete fam-ilies) and the monotonicity of cn .Using well-known properties of linear recurrence relations, it is easy to see thatcn = O(3n=3) = O(1.44225n). Thus, Theorems 5 and 6 follow.As concerns bounds on the number of stable models of a 2-program, a stronger(exact) result can be derived.Let P be a 2-program that is normal, purely negative and contains no facts.Let G(P) be a graph such that At(P) is the vertex set of G(P) and a and b are

14 Z. Lonc and M. Truszczy�nskiconnected with an edge if they appear in the same clause of P (if they are neighbors,in the terminology we used earlier). We recall that a subset X of the vertex set ofa graph G is independent if no two vertices of X are connected in G with an edge.We have the following simple property.Proposition 4Let P be a normal purely-negative 2-program not containing facts. If M is a stablemodel of P then At(P) nM is a maximal independent set of G(P).The problem of �nding the maximum number of independent sets in a graph wasinvestigated in (Moon and Moser 1965). For n � 1, let us de�negn = 8>><>>: 3n=3 if n = 0 (mod 3)4� 3(n�4)=3 if n = 1 (mod 3), and n > 12� 3(n�2)=3 if n = 2 (mod 3)1 if n = 1The following result is proved in (Moon and Moser 1965).Theorem 7Let G be a graph with n vertices. Then G has no more than gn maximal independentsets.Proposition 4 and Theorem 7 imply the following corollary concerning the numberof stable models in 2-programs.Corollary 3Let P be a 2-program with n atoms. Then P has no more than gn stable models.ProofBy Proposition 1, we may assume that P is a normal program not containing rulesof the form x x and x not(x). By Proposition 2 we may assume that P doesnot contain facts. Lastly, we may assume that P contains no Horn clauses (Hornclauses can be eliminated in the process of unfolding without introducing new atomsand without changing the number of stable models (Bonatti and Eiter 1996)). Dueto these assumptions, Proposition 4 applies. Thus, P has no more stable models asthere are maximal independent sets in the graph G(P). By Theorem 7, this numberis at most gn .The bound of Corollary 3 cannot be improved as there are logic programs thatachieve it. Let P(p1; : : : ; pk), where for every i , pi � 2, be a disjoint union ofprograms P(p1; 1); : : : ;P(pk ; 1) (we discussed these programs in Section 2). Eachprogram P(pi ; 1) has pi stable models. Thus, the number of stable models ofP(p1; : : : ; pk) is p1p2 : : : pk . Let P be a logic program with n � 2 atoms and ofthe form P(3; : : : ; 3), P(2; 3; : : : ; 3) or P(4; 3; : : : ; 3), depending on n(mod 3). It iseasy to see that P has gn stable models.It is also easy to see that our algorithm for computing all stable models of 2-programs is optimal. Indeed, Corollary 2 (for t = 2) implies the following result.

Computing stable models: worst-case performance estimates 15Corollary 4Let 0 < � < 31=3 � 1.44225. There is no algorithm for computing all stable modelsof 2-programs with worst-case performance bounded by O(f (m)�n), where f is apolynomial and m is the size of the input program.Narrowing the class of programs leads to still better bounds and faster algorithms.We will discuss one speci�c subclass of the class of 2-programs here. Namely, wewill consider normal purely negative 2-programs with no dual clauses (two clausesare called dual if they are of the form a not(b) and b not(a)). We denotethe class of these programs by Pn2 . We obtain the following two theorems for thisclass.Theorem 8There is an algorithm to compute stable models of 2-programs in the class Pn2 thatruns in time O(m � 1.23651n), where n is the number of atoms and m is the sizeof an input program.Theorem 9There is a constant C such that every 2-program P 2 Pn2 has at most C �1.23651nstable models.As before, when discussing algorithms to compute stable models of programs inthis class, we restrict our attention even further by disallowing virtual constraints(in this case, clauses of the form a not(a)). By Proposition 1, this additionalassumption does not a�ect the generality of our results.To discuss this speci�c case, we need more notation. We say that an atom a 2At(P) is an in-neighbor of an atom b 2 At(P) if P contains the clause b not(a).In such case we also say that b is an out-neighbor of a. By n�(a) and n+(a) wedenote the number of in-neighbors and out-neighbors of a, respectively. Thus, wehave n(a) = n�(a)+n+(a) (we recall that n(a) denotes the number of neighborsof a in P). We also de�neN (a) = fnot(a); b1; : : : ; bkg;where bi , 1 � i � k , are all the neighbors of a. Clearly, if M is a stable model ofP and a =2 M then M is consistent with N (a). Indeed, since P contains either theclause a not(bi) or bi not(a), and since M is a model of P , bi 2 M .Let a 2 At(P) and let ci , 1 � i � p, be the in-neighbors of a enumerated so thatn(c1) � : : : � n(cp). It is easy to see that the following collections are complete:A1(a) = fN (a); faggand A2(a) = fN (a);N (c1);N (c2) [fc1g; : : : ;N (cp) [fc1; : : : ; cp�1gg.To specify the procedure complete, we proceed along the same lines as before.That is, we describe several cases that together cover all programs in the class ofinterest and in each of them we specify a complete collection of sets to be returned

16 Z. Lonc and M. Truszczy�nskiby the procedure complete. For each of these collections we will also specify itssignature. Let A = fA1; : : : ;Akg be a complete collection and let us assume thatfor every i , 1 � i � k�1, jAi j � jAi+1j. We call the sequence of cardinalities ofsets Ai , (jA1j; : : : ; jAk j), the signature of A. We denote it by sig(A). We say thata signature (a1; : : : ; ak) is bounded by a sequence (b1; : : : ; bk) if ai � bi , for everyi = 1; : : : k .Case 1 and Case 2 are as in the general case considered above. In each case, thecomplete family A returned by the procedure complete consists of exactly one setthat contains exactly one element. Thus, sig(A) = (1).Case 3. There is an atom, say x , with at least seven neighbors, say y1; : : : ; yk ,where k � 7. The procedure complete returns in this case the collection A = A1(x).Clearly, sig(A) = (8; 1).From now on we will assume that Cases 1-3 do not hold. That is, we adopt thefollowing assumption:(A1) For every atom x 2 At(P), n(x) � 6 and 1 � n�(x).Case 4. There is an atom x such that n(x) � 3 and n�(x) = 1. Let us assume thaty is the only in-neighbor of x . By (A1), n�(y) � 1 and, since x is an out-neighborof y , n+(y) � 1. Thus, n(y) � 2. The procedure complete returnsA = fN (x);N (y)g.Let M be a stable model of P . If x =2 M then M is consistent with N (x). If x 2 Mthen y =2 M (due to the fact that x not(y) is the only rule in P with the headx). Thus, M is consistent with N (y). It follows that A is complete and sig(A) isbounded by (4; 3).Case 5. There is an atom x such that n(x) = 2 and n+(x) � 1. By (A1), it followsthat n�(x) = n+(x) = 1. Let us de�ne x0 = x . Let us assume that the atomsx0; : : : ; xk , 0 � k , have been de�ned and that for every i , 0 � i � k�1, n(xi) = 2and xi+1 is the (only) in-neighbor of xi . If n(xk) = 2 and xk 6= x0, we de�ne xk+1to be the unique in-neighbor of xk . If n(xk) � 3, or n(xk) = 2 and xk = x0, theprocedure terminates. Let us assume that the procedure terminated after xk hadbeen de�ned. We have the following possibilities.Subcase 5a. n(xk) � 3. We de�neA = fN (xk);N (xk�1)g.Obviously A is complete. Since n(xk) � 3 and n(xk�1) � 2, the signature of A isbounded by (4; 3).Subcase 5b. xk = x0. In this case, the atoms x0; : : : ; xk�1 form a cycle componentof P . That is, P = Q [fxi not(xi+1): i = 0; 1; : : : ; k�1g, where no rule in Qcontains any atom xi .If k is odd, we de�neA = fAt(P)g.In this case, P has no stable models (programs forming \odd cycles" do not havestable models and atoms x0; : : : ; xk�1 do not appear in any other clauses of P but

Computing stable models: worst-case performance estimates 17those that form the cycle). Thus, A is trivially complete. Clearly, sig(A) = (jAt(P)j)and it is bounded by (1).If k is even, we de�neA = ffx0; x2; : : : ; xk�2;not(x1);not(x3); : : : ;not(xk�1)g;fnot(x0);not(x2); : : : ;not(xk�2); x1; x3; : : : ; xk�1gg�If M is a stable model of P then M is consistent with one of the sets in A. SinceP has no dual clauses, each set in A has at least 4 elements. That is, sig(A) isbounded by (4; 4).Case 6. There is an atom, say x , with in-neighbors y1; : : : ; yk and out-neighborsz1; : : : ; zm , and such that k < m. Moreover, we assume that Cases 1-5 do not hold.If k = 1 then m � 2. This possibility is excluded as it is covered by Case 4. Sincek+m � 6, k+m = 5 or 6 and k = 2. Let the two in-neighbors of x be y1 and y2.Without loss of generality we will assume that n(y1) � n(y2). By (A1), n(y2) � 2.Since n+(y2) � 1 (x is an out-neighbor of y2) and since Case 5 is excluded, it followsthat n(y2) � 3.Subcase 6a. n(y1) � 4, n(y2) � 4. In this case, the procedure complete returnsthe family A2(x). It is easy to see that its signature is bounded by (6; 5; 5).Subcase 6b. n(y1) � 4, n(y2) = 3 and y1 =2 N (y2). The procedure again returnsA2(x). Since y1 =2 N (y2), the signature of A2(x) is bounded by (6; 5; 5).Subcase 6c. n(y1) � 4, n(y2) = 3 and y1 2 N (y2). Let z denote the third neighborof y2 (the other two are x and y1). Since Case 4 is excluded and since x is an out-neighbor of y2, y1 and z are in-neighbors of y2. We de�neA = fN (x) [fnot(z)g;N (y1);N (y2)g.Let M be a stable model of P . If it is consistent with neither N (y1) nor N (y2),then it is consistent with N (x). In this case, y1; y2 2 M . Since y2 2 M , there is arule in P with the head y2 and with the body satis�ed by M . Since y2 has exactlytwo in-neighbors, y1 and z and since y1 2 M , it follows that z =2 M . Thus, A iscomplete. Moreover, it is easy to check that z 62 N (x) so the signature of A is(7; 5; 4).Subcase 6d. n(x) = 6 and n(y1) = n(y2) = 3. The procedure complete returnsA = A2(x). Since y1 and y2 are not neighbors (otherwise, there would be an atomin P with 3 neighbors, exactly one of which is an in-neighbor), its signature is,clearly, (7; 5; 4).Let us assume that none of the cases 1-6 applies. We denote by X the set of allthose atoms x in P for which n�(x) < n+(x). It follows from the considerations inCase 6 that every x 2 X has exactly 5 neighbors. Moreover, exactly two of theseneighbors, say yx1 and yx2 , are in-neighbors and n(yx1) = n(yx2) = 3 (this is the onlypossibility not covered by Case 6). We denote by Y the set of all atoms yxi , i = 1; 2,where x 2 X . Clearly, X \ Y = ; and 2jX j = jY j (indeed, let us note that since

18 Z. Lonc and M. Truszczy�nskiCase 3 is excluded, yx1i 6= yx2j , for 1 � i ; j � 2 and x1 6= x2). Finally, let us de�neZ = At(P) n (X [Y). We have the following identities:Xa2At(P)n�(a) = Xa2At(P)n+(a);Xz2Z n�(z) �Xz2Z n+(z);Xa2At(P)n�(a) = 6jX j+Xz2Z n�(z);Xa2At(P)n+(a) = 5jX j+Xz2Z n+(z).These identities imply that jX j = 0. In other words, for every atom a, n+(a) �n�(a). Since Pa2At(P) n�(a) =Pa2At(P) n+(a), it follows that for every atom a,n+(a) = n�(a).Since the case n+(a) = n�(a) = 1 is excluded (Case 5), it follows that for everyatom a in P , n(a) = 4 or 6. For i = 4; 6, we de�ne Xi = fx 2 At(P):n(x) = ig. Letp be the number of clauses in P built only of atoms from X4, let q be the numberof clauses of the form a not(b), where a 2 X6 and b 2 X4, and �nally, let r bethe number of clauses in P of the form a not(b), where a 2 X4 and b 2 X6.Then,p+r = Xa2X4 n�(a) = 2jX4j = Xa2X4 n+(a) = p+q .Thus, q = r .Case 7. r > 0. There is an atom x with four neighbors and such that one ofits in-neighbors has 6 neighbors. The procedure returns A2(x). Since the other in-neighbor of x (we observe that n�(x) = 2) has at least four neighbors, the signatureof A2(x) is bounded by (7; 5; 5).Case 8. r = 0 and there is an atom, say x , with 6 neighbors. Let the three in-neighbors of x be y1, y2 and y3. Since r = 0, q = 0. Thus, for every rule a not(b)in P either a; b 2 X4 or a; b 2 X6. Consequently, each yi , i = 1; 2; 3, has 6 neighbors.The procedure returns A2(x). It is easy to see that sig(A2(x)) = (7; 7; 7; 7).Case 9. r = 0 and there is no atom in P with six neighbors. It follows that everyatom in P has four neighbors. Moreover, exactly two of them are in-neighbors andtwo are out-neighbors. Let y1 and y2 be the two in-neighbors of x .Subcase 9a. y1 and y2 are not neighbors (do not appear in the same clause). Theprocedure returns A2(x). Clearly, its signature is (6; 5; 5).Subcase 9b. y1 and y2 are neighbors. Without loss of generality we may assumethat y1 not(y2) is a clause of P . Let z be the other in-neighbor of y1. If z is anout-neighbor of x , the procedure returnsA = ffxgg.

Computing stable models: worst-case performance estimates 19Let M be a stable model of P . If x =2 M then y2 2 M , y1 2 M and z 2 M . Sinceboth in-neighbors of y1 are in M , y1 =2 M , a contradiction. Thus, x 2 M . It followsthat every stable model of P is consistent with fxg.Otherwise, we de�neA = fN (x) [fnot(z)g;N (y1);N (y2)g.Let M be a stable model of P . If y1 or y2 are not in M , M is consistent withN (y1) or N (y2), respectively. Otherwise, y1; y2 2 M . Consequently, x =2 M . Furtherz =2 M (the other in-neighbor of y1, y2, is in M). Thus, M is consistent withN (x) [fnot(z)g. It follows that A is complete and that its signature is (6; 5; 5).It is clear that the procedure complete is correct. Indeed, the cases cover allpossible normal purely negative 2-programs without virtual constraints. Takinginto account other comments made in each case, we see that the following propertyof the procedures complete is true. Let P be a 2-program from Pn2 and let A be acomplete collection produced by the call complete(P). Then jAj � 4 and1. if A = fAg, then the signature of A is (1);2. if jAj = 2, then the signature of A is bounded by (8; 1) or (4; 3);3. if jAj = 3, then the signature of A is bounded by (6; 5; 5) or (7; 5; 4);4. if jAj = 4, then the signature of A is (7; 7; 7; 7).Let us de�necn = � K if 0 � n < 8maxfcin : i = 1; : : : ; 6g otherwise,where K is the maximum possible value of s(P ;L) for a program P in Pn2 and aset of literals L � Lit(P) such that jAt(P)j�jLj � 8, and where cin are de�ned asfollows (for n � 8):c1n = c1n�1;c2n = c2n�1+c2n�8;c3n = c3n�3+c3n�4;c4n = 2c4n�5+c4n�6;c5n = c5n�4+c5n�5+c5n�7;c6n = 4c6n�7.It is easy to see that K is a constant that does not depend on P nor L. Reasoningas before, one can show thats(P ;L) � cn ;where n = jAt(P)j�jLj.Using the properties of linear relations discussed in the appendix, it is easy tosee that cn = O(�n), where � is the only root in the interval [1; 2] of the equationx 7 = x 3+x 2+1. Since � � 1.23651, cn = O(1.23651n).

20 Z. Lonc and M. Truszczy�nskiTheorem 9 gives an upper bound on the number of stable models of a programin the class Pn2 . To establish a lower bound, we reason as before but use a di�erentcollection of programs. namely, we de�ne S6 to be a program over the set of atomsa0; : : : ; a5 and containing the rules (the arithmetic of indices is performed modulo6): ai+1 not(ai) and ai+2 not(ai), i = 0; 1; 2; 3; 4; 5. The program S6 hasthree stable models: fa0; a1; a3; a4g, fa1; a2; a4; a5g and fa2; a3; a5; a0g.Let P be the program consisting of k copies of S6, with mutually disjoint setsof atoms. Clearly, P has 3k stable models, each of them with 4k elements. Thus,there is a constant D such that for every n � 1 there is a program P with n atomsand with the total length of all its stable models at least Dn(31=6)n . Reasoning asin the proof of Corollary 4, we obtain the following result.Corollary 5Let 0 < � < 31=6 � 1.20094. There is no algorithm for computing all stable modelsof 2-programs with worst-case performance bounded by O(f (m)�n), where f is apolynomial and m is the size of the input program.6 3-programsIn this section we present our results for the class of 3-programs. Using similartechniques as those presented in the previous section, we prove the following twotheorems.Theorem 10There is an algorithm to compute stable models of 3-programs that runs in timeO(m � 1.70711n), where m is the size of the input.Theorem 11There is a constant C such that every 3-program P has at most C �1.70711n stablemodels.In order to construct a desired algorithm we will design a particular implemen-tation of the procedure complete. Due to Proposition 1, we will restrict our atten-tion to normal 3-programs without tautologies (that is, rules of the form x x ,x x ; y , x x ;not(y), and x y ;not(y)) and virtual constraints. To describethe procedure complete, we will consider several cases covering the class of all such3-programs. In each of these cases, we construct a complete collection A (one ofeighteen collections fA1;A2 : : :A18g).With each collection A we associate a sequence (cAn)n=1;2;:::. To de�ne it, weset p = maxfjAj:A 2 Ag and k(t) = jfA 2 A : jAj = tgj, for t = 1; 2; : : : ; p. Wedenote by K the maximum possible value of s(P ;L), when P is a normal 3-programwithout tautologies and virtual constraints, L � Lit(P) and jAt(P)j�jLj � 12. Itis easy to see that K is a constant that does not depend on P nor L. We de�necAn = � K if 0 � n � 12Ppt=1 k(t)cAn�t otherwise.

Computing stable models: worst-case performance estimates 21Finally, we de�ne cn = maxfcAn : A 2 fA1;A2 : : :A18gg. We will show thats(P ;L) � cn ;where n = jAt(P)j�jLj.We will proceed by induction on n. If n � 12, then the assertion follows by thede�nition of K . So, let us assume that n � 13. Then, by the induction hypothesis,s(P ;L) = XA2A s(P ;L [A) � maxf pXt=1 k(t)cAn�t : A 2 fA1;A2 : : :A18gg = cn .Using properties of linear recurrence relations discussed in the appendix, one canshow that cn = O(1.70711n).Thus, to complete the proofs of Theorems 10 and 11 we need to describe complete.According to our earlier statements, we restrict our discussion to normal 3-programswithout tautologies and virtual constraints. To describe complete families of setswe introduce the following notation. Let A and L be sets of literals based on twodisjoint sets of atoms (A0 \ L0 = ;). We de�neAL = fA [B :B � Lg;where B = B [fnot(�):� 2 LnBg (we recall again that not(�) denotes the literalthat is dual to �). For example, if A = fnot(a)g and L = fb;not(c)g, thenAL = ffnot(a);not(b); cg; fnot(a);not(b);not(c)g;fnot(a); b; cg; fnot(a); b;not(c)gg�When L = f�1; : : : ; �kg, to simplify this notation we write A�1;:::;�k instead ofAf�1;:::;�kg.When describing the procedure complete and arguing its correctness, we will takeadvantage of the following simple observation (its proof is evident and we omit it).Proposition 5Let A be a complete collection for P , let A 2 A and let B be a set of literals. If forevery stable model M of P that is consistent with A, M is also consistent with Bthen the collection (A n fAg) [fA [Bg is also complete for P .Speaking informally, under the assumptions of this proposition, we can replacein A its element A with A [B and the resulting family is also complete for P .Throughout this argument, we will often construct a complete collection for aprogram P in two steps. We will start with some simple complete collection A.Then, we will close each element A of A by expanding it with some additionalliterals that are consistent with all stable models consistent with A (the validityof this step is ensured by Proposition 5). We will refer to the resulting completecollection as a closure of A (A may have several closures as we do not require thatits elements are \maximally" closed).Case 1. There is an atom x in P which is not the head of any rule. Clearly, nostable model of P contains x . Thus, the familyA1 = ffnot(x)gg.

22 Z. Lonc and M. Truszczy�nskiis complete for P . It is also easy to see thatcA1n = cA1n�1;for n � 13.Case 2. There is a rule in P of the form x . We de�neA2 = ffxgg.Clearly every stable model of P contains x so A2 is complete for P . Moreover, wehave cA2n = cA2n�1;for n � 13.Case 3. There is a rule in P of the form x �, where � = y or � = not(y), forsome atom y 6= x . Clearly, the family A = ffxg; fnot(x)gg is complete for P . Weobserve that every stable model of P consistent with not(x) is also consistent withnot(�) (as it is a model of the clause x �). Hence, by Proposition 5, the familyA3 = ffxg; fnot(x);not(�)gg(the closure of A with respect to �) is complete for P . Since x and y are di�erent(P contains neither tautologies nor virtual constraints), we havecA3n = cA3n�1+cA3n�2;for n � 13.We can assume from now on that every atom is the head of some rule in P , allrules in P have exactly 2 literals in the body, and the atoms occurring in each ruleare pairwise di�erent.Case 4. There is a pair of rules of the formx y ; ;x not(y); �;where y is an atom, and and � are literals. Let u and v be the atoms occurring in and �, respectively. Since P contains neither tautologies nor virtual constraints, itfollows that fu; vg\fx ; yg = ; and x 6= y . Let us observe that every stable model Mof P that is consistent with not(x) and y is also consistent with not() (it followsfrom the fact that M is a model of the rule x y ;). Similarly, every stable modelM consistent with not(x) and not(y) is consistent with not(�). Clearly, the familyA = ffxgg [fnot(x)gy = ffxg; fnot(x); yg; fnot(x);not(y)ggis complete for P . Closing A with respect to literals and � yields the familyA4 = ffxg; fnot(x); y ;not()g; fnot(x);not(y);not(�)gg.By Proposition 5, A4 is complete for P . Since atoms appearing in literals formingeach set in A are pairwise distinct, we also havecA4n = cA4n�1+2cA4n�3;

Computing stable models: worst-case performance estimates 23for n � 13.For an atom x 2 At(P), let us denote by �(x) an undirected graph whose verticesare literals occurring in the bodies of rules with the head x . A pair of literals f�; gis an edge in �(x) if there is a rule with the head x and the body containing literals� and . We will assume no graph �(x) contains as vertices a pair of dual literals,as that possibility has been already covered by Case 4.Next, we consider a number of cases that reect di�erent possible structures ofthe graphs �(x). We use the following graph-theoretic notation. By Pk and Ck wedenote a path and a cycle with k vertices, respectively. By the disjoint union of twographs G and H , denoted G �[H , we mean the graph with two disjoint componentsthat are isomorphic to G and H , respectively. We denote by kG the disjoint unionof k copies of a graph G .Case 5. There is an atom x such that �(x) contains a vertex of degree at least 3.In this case there are three rules with the head x which contain a common literal,say �, in the body. Let ; �, and " be the remaining three literals in the bodies ofthese three rules. Let M be a stable model of P . If M is consistent with not(x)and � then, since M satis�es all clauses in P , M is consistent with not(), not(�),and not(").The family A = ffxg; fnot(x)g�g is complete3. Hence, the familyA5 = ffxg; fnot(x);not(�)g; fnot(x); �;not();not(�);not(")gg(which is the closure of A with respect to , � and �) is complete for P . Moreover,all literals in each set are pairwise distinct and are not duals of each other. Thus,cA5n = cA5n�1+cA5n�2+cA5n�5;for n � 13.Case 6. There is an atom x such that �(x) contains one of the graphs: P3 �[2P2,P4 �[P2, C3 �[P2. Let F be a subgraph of �(x) isomorphic to one of the graphslisted above. Let us denote by �1 any vertex of degree 2 in F and by �2 any vertexin P2. The graph �(x) contains a vertex di�erent from �1 and �2, and adjacent toa vertex di�erent from �1 and �2. Let us denote one such vertex by �3.The literals �2 and �3 have two di�erent neighbors in F , say 2, 3, such that2; 3 62 f�1; �2; �3g. By the de�nition of �2 and �3, 2 6= 3. It follows that Pcontains rules x �i ; i , i = 2; 3.We observe that the familyA = ffxg; fnot(x); �1g�2 ; fnot(x);not(�1)g�2;�3gis complete for P .We also observe that every stable model M of P consistent with literals not(x)and �i (where i = 2; 3) is also consistent with not(i) (as M is a model of x �i ; i).3 Throughout the paper we will be listing basic parts of A rather than formally de�ne it asthe union of these parts. Here, for instance, we write ffxg; fnot(x)g�g rather than ffxgg [ffnot(x)g�g.

24 Z. Lonc and M. Truszczy�nskiLet us denote by 1 and �1 the neighbors of �1 in F . By the de�nition of �2, wehave 1; �1 62 f�1; �2g and 2 =2 f1; �1g.Let M be a stable model consistent with not(x) and �1. Since P contains therules x �1; 1 and x �1; �1, M is consistent with not(1) and not(�1).LetA6 be the closure of A with respect to literals �1 and i , 1; 2; 3. By Proposition5, A6 is complete for P . Moreover, one can easily verify thatcA6n = cA6n�1+cA6n�4+3cA6n�5+2cA6n�6;for n � 13.Case 7. There is an atom x such that �(x) contains one of the graphs: 2P3, P5,C4, C5.Let F be a subgraph of �(x) isomorphic to one of the graphs listed above. Wewill denote by �1 and �2 some two nonadjacent vertices of degree 2 in F .Clearly, the familyA = ffxg; fnot(x); �1g; fnot(x);not(�1)g�2gis complete for P . Let i and �i be the neighbors of �i , i = 1; 2 in F . That is, Pcontains the rules x �i ; i and x �i ; �i , i = 1; 2. Thus, if a stable model M ofP is consistent with not(x) and �i , i = 1; 2, it is also consistent with not(i) andnot(�i). Let A7 be the closure of A with respect to literals i and �i , i = 1; 2. ByProposition 5, A7 is complete for P . Moreover, since �1; �2 62 f1; 2; �1; �2g andi 6= �i , i = 1; 2, it follows thatcA7n = cA7n�1+cA7n�3+cA7n�4+cA7n�5;for n � 13.Case 8. There is an atom x such that �(x) is isomorphic to one of the graphs:P3 �[P2, P4, C3. Let �1 be a vertex of degree 2 in �(x) and let �2 be any vertexwhich has a neighbor in �(x) di�erent from �1. Further, let 2 be a neighbor of �2in �(x) di�erent from �1.Let M be a stable model consistent with x and not(�1). Since x 2 M and therule x �2; 2 is the only rule with head x in P that does not contain �1 in thebody, it follows that M is consistent with �2, and 2.Next, we consider the case of a stable model M consistent with not(x) and �1.In this case, since M is a model of the two rules with the head x and �1 in thebody, say x �1; 1 and x �1; �1, M is also consistent with not(1), not(�1).Finally, if M is a stable model consistent with not(x) and �2 then, since Msatis�es the rule x �2; 2, it follows that M is also consistent with not(2).Now, we observe that the familyA = ffxg�1; fnot(x); �1g; fnot(x);not(�1)g�2gis complete for P . By closing its elements by means of observations listed earlier,we get a family A8, which is also complete for P . Moreover, one can show thatcA8n = cA8n�2+cA8n�3+3cA8n�4;for n � 13.

Computing stable models: worst-case performance estimates 25Case 9. There is an atom x such that �(x) is isomorphic to the graph 2P2. Wedenote by �1 and �2 any two nonadjacent vertices in �(x). Let i , i = 1; 2, be the(unique) neighbor of �i in �(x).Let M be a stable model of P consistent with x and not(�1). Since x �2; 2is the only rule in P with head x that does not contain �1, and since x 2 M , itfollows that M is consistent with �2 and 2.Similarly, if M is a stable model of P consistent with x and not(�2), then it isconsistent with �1 and 1.Finally, every stable model consistent with not(x) and �i , i = 1; 2, is consistentwith not(i).Clearly, the family A = ffx ;not(�1)g; fx ; �1g�2 ; fnot(x)g�1;�2g is complete forP . Let A9 be the closure of A by means of the three observations discussed in thiscase. By Proposition 5, A9 is complete for P . Moreover, one can verify thatcA9n = 2cA9n�3+4cA9n�4+cA9n�5;for n � 13.Case 10. There is an atom x such that �(x) is isomorphic to the graph P3. Let �be the vertex of degree 2 in �(x). Every stable model consistent with x is consistentwith � too because otherwise every rule with the head x is blocked. Thus, the familyA10 = ffnot(x)g; fx ; �gg is complete for P . Moreover,cA10n = cA10n�1+cA10n�2;for n � 13.Case 11. There is an atom x such that �(x) is isomorphic to the graph P2. Letx �; be the only rule with the head x . Every stable model consistent with xmust be consistent with � and , too (because x �; is the only rule that canjustify the membership of x in M). Hence, the family A12 = ffnot(x)g; fx ; �; ggis complete for P . Moreover,cA11n = cA11n�1+cA11n�3;for n � 13.It is a routine task to check that if a graph has no vertices of degree larger than2, does not contain any of the graphs P3 �[2P2;P4 �[P2;C3 �[P2; 2P3;P5;C4;C5and is not isomorphic to any of the graphs P3 �[P2;P4;C3; 2P2;P3;P2 then it is amatching of size at least 3.Therefore, we will assume from now on that for all atoms x in P , the graphs �(x)are matchings of size at least 3.Case 12. For all atoms x in P , the graphs �(x) are matchings of size at least 3 andP contains a rule with a positive occurrence of an atom in the body. Let us assumethat P contains a rule b x ; �, where x 6= b is an atom. Let b ; " be anotherrule in P with the head b. Clearly the atoms appearing in the literals x ; ; �; " arepairwise di�erent (all these literals are vertices of the graph �(b) and, by Case 4, notwo vertices of �(b) are dual to each other). Let us denote by �1; �2; �3 any threeliterals in �(x) which are pairwise nonadjacent in �(x).

26 Z. Lonc and M. Truszczy�nskiIf a stable model M is consistent with not(b) and x then M is consistent withnot(�) (since M is a model of the rule b x ; �). For a similar reason every stablemodel consistent with not(b), and is consistent with not(").Let i , i = 1; 2; 3, be the neighbor of �i in �(x). It is easy to see that every stablemodel consistent with not(x) and �i (i = 1; 2; 3) is consistent with not(i) as Mis a model of the rule a �i ; i .Clearly, the familyA = ffx ; bg; fx ;not(b)g ; fnot(x)g�1;�2;�3gis complete for P . Let A12 be the result of closing elements of A by means of theobservations listed above. Then A12 is complete for P and one can show thatcA12n = cA12n�2+2cA12n�4+4cA12n�5+3cA12n�6+cA12n�7;for n � 13.Case 13. For every atom x in P , the graph �(x) is a matching of size at least 3,P is a purely negative program, and there is a pair of rules in P with exactly 2common atoms. Let us denote by fx ; y ; ug and fx ; y ; vg the sets of atoms of sometwo such rules. Since �(x) is a matching of size at least 3, P contains rules of theform x not(b1);not(c1), x not(b2);not(c2), and x not(b3);not(c3), suchthat b1; b2; b3; c1; c2; c3 are pairwise di�erent atoms.Subcase 13a. For some i , 1 � i � 3, y ; u; v 62 fbi ; cig. Without loss of generality,we may assume that y ; u; v 62 fb1; c1g. Clearly for some i = 2; 3, y 62 fbi ; cig. Againwithout loss of generality, we assume that y 62 fb2; c2g.It follows that every stable model consistent with not(x) and not(bi), i = 1; 2,is also consistent with ci . Moreover, every stable model consistent with not(x) andnot(y) is consistent with u and v . Indeed, fx ; y ; ug and fx ; y ; vg are sets of atomsof two rules in a purely negative program P . Thus, every stable model of P mustcontain at least one atom from each of the rules. Using these observations, we nowclose the familyA = ffxg; fnot(x); ygb1;b2 ; fnot(x);not(y)gb1g(which, clearly, is complete for P). In this way we obtain another family completefor P , say A13. Since y ; u; v 62 fb1; c1g and y 62 fb2; c2g, the literals in each of thesets of A13 are pairwise di�erent and so are their atoms. Thus,cA13n = cA13n�1+cA13n�4+3cA13n�5+2cA13n�6;for n � 13.Subcase 13b. For each rule x not(bi);not(ci), i = 1; 2; 3, we have fy ; u; vg \fbi ; cig 6= ;. Since the sets fb1; c1g, fb2; c2g, and fb3; c3g are pairwise disjoint,for some i = 1; 2; 3 (say, for i = 1), y 2 fbi ; cig. Let us assume, without loss ofgenerality, that y = c1. Then b1 =2 fu; vg (otherwise, for i = 2 or i = 3 we wouldhave fy ; u; vg \ fbi ; cig = ;, contrary to our assumption for this subcase).Our program P contains two rules with the sets of atoms fx ; y ; ug and fx ; y ; vg,respectively. It also contains the rule x not(y);not(b1) (as y = c1). Since all

Computing stable models: worst-case performance estimates 27these rules are purely negative, every stable model of P contains at least one (un-negated) atom from each of them. Thus, each stable model of P that is consistentwith not(x) and not(y) is also consistent with u, v , and b1. We apply this observa-tion to the family A = ffxg; fnot(x)gyg, which is complete for P . Its closure, A14is also complete for P . Moreover, since y =2 fu; vg, b1 =2 fu; vg, and y = c1 6= b1,literals appearing in all sets of A14 are pairwise distinct and so are their atoms.Thus,cA14n = cA14n�1+cA14n�2+cA14n�5;for n � 13.From now on we assume that there is no pair of rules in P with exactly 2 commonatoms. We also reiterate that at this point we are already assuming that P is purelynegative and that for every atom x , �(x) is a matching of size at least 3.Case 14. There is an atom x in P such that �(x) is a matching of size at least 4.Let f�1; 1g, f�2; 2g, f�3; 3g, and f�4; 4g be any pairwise di�erent edges in �(x).Let M be a stable model of P consistent with not(x) and �j (where j = 1; 2; 3; 4).Then, since M is a model of the rule x �j ; j , M is consistent with not(j). Wewill make use of this observation several times in the course of the proof to closecollections complete for P .Subcase 14a. There is a rule b1 not(b2);not(b3) in P such that the literalsnot(b1), not(b2), and not(b3) are all vertices of �(x).Since no two clauses in P have exactly two common atoms, the literals not(b1);not(b2); not(b3) are nonadjacent in �(x). Therefore we can assume that �j =not(bj), for j = 1; 2; 3.Let is note that the familyA0 = ffxg; fnot(x);not(�1)g�2;�3;�4 ; fnot(x); �1;not(�2)g�3;�4 ;fnot(x); �1; �2;not(�3)g�4 ; fnot(x); �1; �2; �3ggis complete for P . Let M be a stable model of P . Since M satis�es the ruleb1 not(b2);not(b3) and since �j = not(bj), for j = 1; 2; 3, it follows thatM is not consistent with all three literals �1; �2; �3. Thus, the family A = A0 nffnot(x); �1; �2; �3gg is also complete for P .Let A15 be the closure of A by means of the observation that we made earlierthat any stable model consistent with not(x) and the literal �i , i = 1; 2; 3; 4, is alsoconsistent with the corresponding literal not(i). It is easy to verify thatcA15n = cA15n�1+cA15n�5+4cA15n�6+6cA15n�7+3cA15n�8.Subcase 14b. There is a rule b1 not(b2);not(b3) in P such that exactly two ofthe literals not(b1), not(b2), and not(b3) are vertices of �(x) and x 62 fb1; b2; b3g.Since x 62 fb1; b2; b3g and no two clauses in P have exactly two common atoms,the two literals of �(x)\fnot(b1);not(b2);not(b3)g are nonadjacent in �(x). There-fore, we can assume without loss of generality that the two literals in �(x) \fnot(b1);not(b2);not(b3)g are �1 and �2. Let us denote the third literal of fnot(b1);not(b2); not(b3)g by �.

28 Z. Lonc and M. Truszczy�nskiSince b1; b2; b3 are atoms of a purely negative rule, every stable model M of Pmust contain at least one bi , i = 1; 2; 3. In other words, M must be consistent withat least one of the literals not(�1);not(�2);not(�). Moreover, as in the subcase14a, stable models consistent with not(x) and �i , i = 1; 2; 3; 4, must be consistentwith the corresponding literal not(i).The familyA = ffxg; fnot(x)g�1;�2;�3;�4gis complete for P . LetA16 be the closure ofA with respect to these two observations.Clearly, A16 is complete for P and, moreover,cA16n = cA16n�1+cA16n�5+4cA16n�6+5cA16n�7+3cA16n�8+2cA16n�9+cA16n�10;for n � 13.Subcase 14c. None of the conditions de�ning the subcases 14a and 14b holds. Let�j = not(bj), for j = 1; 2; 3; 4. Since we assume that conditions de�ning subcases14a and 14b do not hold, it follows that if b1 �; is a rule in P then eitherf�; g = fnot(x); g or �; 62 �(x) [fxg, as there are no rules in P with exactlytwo common atoms. The graph �(b1) is a matching of size at least three. Thus,there are two rules with the head b1, say b1 �5; 5 and b1 �6; 6, whose bodiesare disjoint from �(x) and do not contain the atom x . It follows from our discussionthat the literals �1; �2; �3; �4; �5; �6; 1; 2; 3; 4; 5; 6 are pairwise di�erent.Clearly, the familyA = ffxg; fnot(x);not(�1)g�2;�3;�4 ; fnot(x); �1g�2;�3;�4;�5;�6gis complete for P . We recall that every stable model consistent with not(x) and�i , i = 1; 2; 3; 4, is consistent with not(i). Similarly, every stable model consistentwith �1 = not(b1) and �i , i = 5; 6, is consistent with not(i) (because it has tosatisfy the rule b1 �i ; i). Closing A by means of these two observations yieldsanother complete collection for P , say A17. One can verify thatcA17n = cA17n�1+cA17n�5+3cA17n�6+3cA17n�7+2cA17n�8+5cA17n�9+10cA17n�10+10cA17n�11+5cA17n�12+cA17n�13;for n � 13.Case 15. For every atom x in P (which is, we recall, purely negative), the graph�(x) is a matching of size exactly three. Let x �1; 1, x �2; 2, and x �3; 3 be the rules with the head x . Let �i = not(bi), i = 1; 2; 3, for some atomsb1; b2; b3 2 At(P). Since Case 13 is excluded and x �i ; i is in P , a rule in Pwith the head bi contains either both not(x) and i in its body or none of them.Thus, for each i = 1; 2; 3, at least two rules with the head bi have bodies containingneither not(x) nor i . Let, for i = 1; 2; 3, bi �i ; "i and bi 'i ; i be these tworules.Every stable model M of P that is consistent with x is consistent with at least oneof the literals �1; �2; �3 because at least one of the rules x �1; 1, x �2; 2, andx �3; 3 has its body satis�ed in M (provides a justi�cation for x). Therefore, the

Computing stable models: worst-case performance estimates 29family A = ffnot(x)g�1;�2;�3 ; fx ; �1g�1;'1 ; fx ; �2g�2;'2 ; fx ; �3g�3;'3g is complete forP .Every stable model consistent with not(x) and �i , i = 1; 2; 3, is consistent withnot(i) (as it satis�es the rule x �i ; i). Similarly, every stable model consistentwith �i = not(bi) and �i (respectively, 'i), i = 1; 2; 3, is consistent with not("i)(respectively, not(i)). These observations allow us to close the collection A andobtain another collection complete for P , say A18. Moreover,cA18n = cA18n�4+6cA18n�5+9cA18n�6+4cA18n�7;for n � 13.Cases 1-15 exhaust all possibilities for normal 3-programs without tautologiesnor virtual constraints. Moreover, one can verify that for each i , 1 = 1; : : : ; 18, themaximum root of the characteristic equation of the recurrence de�ning cAin is lessthan or equal to 1.70711. Thus, Theorems 10 and 11 follow.The lower bound in this case follows from general observations made in Section4. Namely, Corollary 2 implies the following result.Corollary 6Let 0 < � < �3 � 1.58489. There is no algorithm for computing all stable modelsof 3-programs with worst-case performance bounded by O(f (m)�n), where f is apolynomial and m is the size of the input program.7 Performance of smodels on 2-programsIn this section, we briey discuss applicability of the approach proposed in Section3 to the analysis of the performance of the algorithm of smodels (Niemel�a andSimons 2000). To this end, we �rst describe a version of the procedure completethat yields an algorithm for computing stable models whose performance estimateprovides an upper bound on the running time of smodels. In the description, wewill refer to the procedure expand(P ;A) that is used by smodels. Given a logicprogram P and a set of literals A � Lit(P), expand(P ;A) returns a set of literals Bsuch that A � B and every stable model of P consistent with A is also consistentwith B . Informally, expand(P ;A) serves as a unit propagation engine in smodels(it propagates the literals in A to establish additional literals implied by P and A).The speci�c implementation of the procedure expand that is used by smodelsgeneralizes ideas underlying the notion of the well-founded semantics. We will notdiscuss this procedure in detail. We will only mention some of its propagation rulesthat are of importance in our arguments here. Namely, given a normal logic programP and a set of literals A, the set of literals B = expand(P ;A) is closed under thefollowing rules:1. If p is a fact in P or p 2 A, p 2 B2. If p is not in the head of any clause in P , not(p) 2 B3. If p �1; : : : ; �k is a rule in P (p 2 At(P), �i 2 Lit(P)) and �i 2 B ,1 � i � k , then p 2 B

30 Z. Lonc and M. Truszczy�nski4. If p �1; : : : ; �k is a rule in P (p 2 At(P), �i 2 Lit(P)), not(p) 2 B and�j 2 B , for j = 1; : : : ; i�1; i+1; : : : ; k , then not(�i) 2 B5. If p �1; : : : ; �k is a rule in P (p 2 At(P), �i 2 Lit(P)), no other rule in Phas head p, and if not(�i) 2 B , for some i , 1 � i � k , then not(p) 2 B .Let P be a non-empty logic program and let � 2 Lit(P). We de�ne E (�) =expand(P ; f�g). Using the properties listed above, it is easy to show that everystable model of P that is consistent with � is also consistent with E (�). In par-ticular, it follows that for every atom x 2 At(P), fE (x);E (not(x))g is a completecollection for P .We will now de�ne a procedure that, for a given non-empty normal program Preturns a collection of sets that is complete for P . The procedure looks for the�rst case whose assumption holds, returns the corresponding collection of sets andterminates. The four cases that are considered are:1. If there is x 2 At(P) such that both x 2 E (not(x)) and not(x) 2 E (x), thenreturn A = fAt(P)g2. If there is x 2 At(P) such that x 2 E (not(x)), then return A = fE (x)g3. If there is x 2 At(P) such that not(x) 2 E (x), then return A = fE (not(x))g4. Otherwise, return this collection A = fE (x);E (not(x))g for whichminfjE (x)j; jE (not(x))jgis maximized. If there are more than one with the same maximum value,choose this one among them that maximizes jE (x)j+jE (not(x))j.It follows from our earlier discussion that, given a non-empty logic program P ,this procedure returns a complete collection A for P . We denote this procedureby completesm . The procedure completesm determines a speci�c instantiation of thealgorithm stable for computing all stable models of P . We will denote this algorithmby stablesm . In the case when we restrict to 2-programs, we can analyze the worst-case performance of this algorithm using the techniques developed and used earlierin the paper. Namely, we have the following two results. The proofs closely resemblethose presented earlier. Therefore, we provide only their outlines.Theorem 12The algorithm stablesm when used on 2-programs runs in time O(m � 1.46558n),where n is the number of atoms in P and m is the size of P .Proof(Sketch) We follow the same case analysis as in the proof of Theorem 5. It is easyto see that in Cases 1 and 3, we have x 2 E (not(x)), while in Case 2 we havenot(x) 2 E (x). Thus, in each of these cases, the procedure completesm returns acomplete collection with the signature bounded by (1).So, let us assume that Case 4 of the proof of Theorem 5 holds. It is easy to seeusing the properties of the procedure expand , given above, that fx ; yg � E (x) andfnot(x);not(y)g � E (not(x)). Thus, the signature of the collection completesm is

Computing stable models: worst-case performance estimates 31bounded by (1) or (2,2). The same claim holds for the complete collection returnedin Case 5.In Case 6 we assume that none of the Cases 1-5 holds. Under the notation intro-duced in the analysis of Case 6 in the proof of Theorem 5,fw ; y1; : : : ; yqg � E (w)and fnot(w); x1; : : : ; xp ;not(z1); : : : ;not(zr)g � E (not(w)).Since p+q+r � 2 and p+r � 1, it follows that the collection fE (w);E (not(w))ghas the signature bounded by (1,3) or (2,2).Thus, in each of the cases, the complete collection returned by the procedurecompletesm has the signature bounded by (1), (2,2) or (1,3). The correspondingrecurrence relations arec1n = c1n�1; c2n = 2c2n�2; and c3n = c3n�1+c3n�3.The characteristic root of the third recurrence relation is (approximately) 1.46558and is larger then the characteristic roots of the two remaining relations. Thus, theassertion of Theorem 12 follows by the same argument as in other cases.Theorem 13The algorithm stablesm when used on purely-negative 2-programs without dualclauses runs in time O(m � 1.32472n), where n is the number of atoms and m isthe size of an input program.Proof(Sketch) We consider several cases that cover the class of all purely negative 2-programs without dual clauses. We assume in each case that all earlier ones areexcluded.Case 1. Program P contains an atom that is not the head of any clause in P . Inthis case, the procedure completesm returns a complete collection consisting of onenon-empty set. Thus, its signature is bounded by (1).Case 2. There is an atom x in P that is the head of exactly one clause, sayx not(y). Since P has no dual clauses and since y is the head of at least oneclause, there is an atom z such that z 6= x and y not(z) is a clause of P . Let usobserve that jE (y)j � 2. Indeed, y 2 E (y) (by rule 1) and, by rule 5, not(x) 2 E (y),as well. Furthermore, y has at least two neighbors, x , and another one, say z . Byrules 1, 3 and 4, not(y); x ; z 2 E (not(y)). Thus, the procedure completesm returnseither a complete collection with the signature bounded by (1) or, if it gets to case4, a two-element complete collection with the signature bounded by (2; 3).From now on, we will assume that every atom of P is the head of at least twoclauses. In particular, for every atom x of P , jE (not(x))j � 3. Moreover, it followsalso that there is an atom with at least four neighbors (otherwise, for every atomin P the number of its occurrences in the bodies of rules would be smaller than thenumber of its occurrences as the head, a contradiction).

32 Z. Lonc and M. Truszczy�nskiCase 3. There is an atom x in P such that jE (x)j � 2. Since x has at least twoneighbors, the signature of fE (x);E (not(x))g is bounded by (2; 3). It follows thatthe procedure completesm returns a complete collection with the signature boundedby (1) or (2; 3).Case 4. For every atom x , jE (x)j = 1. Let y be an atom in P such that y has atleast four neighbors (we noted that such an atom exists). It follows by rules 1, 3and 4 that jE (not(y))j � 5. Thus, the procedure completesm returns a completecollection with the signature bounded by (1) or (1; 5).Thus, in each of the cases, the complete collection returned by the procedurecompletesm has the signature bounded by (1), (2,3) or (1,5). The correspondingrecurrence relations arec1n = c1n�1; c2n = c2n�2+cn�3; and c3n = c3n�1+c3n�5.The characteristic roots of the second and third recurrence relations are the sameand are (approximately) equal 1.46558. This quantity is greater than the charac-teristic root of the �rst relation (which equals 1). Thus, we obtain the assertion.The algorithm stablesm follows closely the way in which smodels works. Thereare however, some di�erences. If, during the search, the case (1) of the procedurecompletesm applies, there are no stable models on this search path. Smodels rec-ognizes that and backtracks immediately. Our algorithm backtracks from the nextrecursive call to stablesm . This di�erence is minor and has no e�ect on the asymp-totic performance analysis.Second, smodels, when looking for the �rst case that applies during the executionof the procedure completesm , checks whether E (�) is consistent not only with � butalso with all literals whose values where set earlier in the search. In this way, smod-els increases a possibility that the procedure completesm will not enter case (4), theonly case when the search splits into two branches. It follows that the worst-caseperformance estimate of smodels is bounded from above by the worst-case per-formance of the algorithm stablesm described here. Consequently, the performancebounds of Theorems 12 and 13 apply to smodels, as well.The techniques we developed in this paper seem to have only limited applicabilityin the analysis of the performance of smodels. First, it is not clear whether it canbe applied to obtain non-trivial performance bounds for smodels on programs withlonger clauses, for instance, for 3-programs. Second, the bounds they imply in thecase of 2-programs are weaker than those we derived in Section 5. We stressed inseveral places that smodels uses stronger propagation techniques than those neededby our analysis. It is possible that the performance of bounds we obtained can beimproved. However, there is most likely no simple way to do so. The algorithmsand performance bounds we derived in Sections 5 and 6 strongly depend on theability of the search to split in each branch point into more than two search paths,a property that smodels does not have.

Computing stable models: worst-case performance estimates 338 The general caseIn this section we present an algorithm that computes all stable models of arbi-trary propositional logic programs. It runs in time O(m2n=pn) and so, providesan improvement over the trivial bound O(m2n). However, our approach is quitedi�erent from that used in the preceding sections. The key component of the al-gorithm is an auxiliary procedure stable aux(P ; �). Let P be a logic program andlet At(P) = fx1; x2; : : : ; xng. Given P and a permutation � of f1; 2; : : : ;ng, theprocedure stable aux(P ; �) looks for an index j , 1 � j � n, such that the setfx�(j); : : : ; x�(n)g is a stable model of P . Since no stable model of P is a propersubset of another stable model of P , for any permutation � there is at most onesuch index j . If such j exists, the procedure outputs the set fx�(j); : : : ; x�(n)g.In the description of the algorithm stable aux, we use the following notation. Forevery atom a, by pos(a) we denote the list of all clauses which contain a (as a non-negated atom) in their bodies, and by neg(a) a list of all clauses that contain not(a)in their bodies. Given a standard linked-list representation of logic programs, allthese lists can be computed in time linear in m.Further, for each clause C , we introduce counters p(C) and n(C). We initializep(C) to be the number of positive literals (atoms) in the body of C . Similarly,we initialize n(C) to be the number of negative literals in the body of C . Thesecounters are used to decide whether a clause belongs to the reduct of the programand whether it \�res" when computing the least model of the reduct.stable aux(P ; �)(1) M = At(P);(2) Q := set of clauses C such that p(C) = n(C) = 0;(3) lm := ;;(4) for j = 1 to n do(5) while Q 6= ; do(6) C0 := any clause in Q ;(7) mark C0 as used and remove it from Q ;(8) if h(C0) =2 lm then(9) lm := lm [fh(C0)g;(10) for C 2 pos(h(C0)) do(11) p(C) := p(C)�1;(12) if p(C) = 0 & n(C) = 0 & C not used then add C to Q ;(13) if lm = M then output M and stop;(14) M := M n fx�(j)g;(15) for C 2 neg(x�(j)) do(16) n(C) := n(C)�1;(17) if n(C) = 0 & p(C) = 0 & C not used then add C to Q .Let us de�ne Mj = fx�(j); : : : ; x�(n)g. Intuitively, the algorithm stable aux worksas follows. In the iteration j of the for loop (4) it computes the least model of thereduct PMj (lines (5)-(12)). Then it tests whether Mj = lm(PMj) (line (13)). If so,it outputs Mj (it is a stable model of P) and terminates. Otherwise, it computes thereduct PMj+1 . In fact, the reduct is not explicitly computed. Rather, the number of

34 Z. Lonc and M. Truszczy�nskinegated literals in the body of each rule is updated to reect the fact that we shiftattention from the set Mj to the set Mj+1 and one more negated literal is satis�edwith respect to Mj+1 (lines (14)-(17)). The key to the algorithm is the fact thatit computes reducts PMj and least models lm(PMj) in an incremental way and,so, tests n candidates Mj for stability in time O(m) (where m is the size of theprogram). We make these comments and claims more precise in the statement andproof of the next result.Proposition 6Let P be a logic program and let At(P) = fx1; : : : ; xng. For every permutation �of f1; : : : ;ng, if M = fx�(j); : : : ; x�(n)g then the procedure stable aux(P ; �) outputsM if and only if M is a stable model of P . Moreover, the procedure stable aux runsin O(m) steps, where m is the size of P .ProofWe �rst observe that during the execution of the algorithm, each time when thewhile loop in the lines (5)-(12) terminates we have the following property:(I1) For every clause C , p(C) is the number of atoms in b+(C) that are not in lm.Indeed, p(C) is initialized so that (I1) holds at the start of the algorithm stable.Then, each time a new atom, say a, is added to lm in line (9), the counter p(C) isdecreased by 1, in line (11), for every clause C such that a 2 b+(C).It is also easy to see that for every iteration j , 1 � j � n, at any time during theexecution of the while loop the following property holds:(I2) For every clause C , n(C) = 0 if and only if b�(C) \Mj = ;.Let us denote by lmj the value of lm when the j th iteration of the for loopterminates. To complete the proof of the correctness of the algorithm stable, wewill now argue that for every iteration j , 1 � j � n, we have the following twoproperties:(I3) After every iteration of the while loop, lm is a subset of lm(PMj), and(I4) lmj = lm(PMj).We prove (I3) and (I4) simultaneously by double induction with respect to j and,for each j , with respect to the number of iterations of the while loop within thej th iteration of the for loop. We will provide the reasoning for the inductive stepfor the outermost induction (the one with respect to j). The argument to establishthe basis of this induction is similar and we omit it.Thus, let us consider the iteration j+1, where j � 1, and let us assume that (I3)and (I4) hold just before it starts. We will prove that (I3) and (I4) hold after theiteration j+1 is completed. To this end, we proceed by induction on the number ofiterations of the while loop. We start by establishing the basis of this induction.By the induction hypothesis (for the outermost induction), lmj = lm(PMj). SinceMj+1 � Mj , lm(PMj) � lm(PMj+1). Hence, at the start of the while loop duringthe (j+1)st iteration of the for loop, the set lm (which is the same at that time aslmj) is contained in lm(PMj+1). Thus, the basis of of the inner induction holds.

Computing stable models: worst-case performance estimates 35For the inductive step, let us consider a particular iteration of the while loop.In this iteration, we consider a clause C0 such that p(C0) = 0 and n(C0) = 0.By (I1) it follows that b+(C0) � lm (as computed up to that point, that is, atthe end of the previous iteration of the while loop). By the induction hypothesis,lm � lm(PMj+1). Further, by (I2), the reduced rule C0 (that is, the rule obtainedfrom C0 by removing all its negated literals) belongs to PMj+1 . Thus, it follows thath(C0) belongs to lm(PMj+1). When line (9) of this iteration of the while loop iscompleted, lm is either as it was during the previous iteration or it is expanded bythe addition of h(C0). In either case, the set lm at the end of the present iterationsatis�es lm � lm(PMj+1).In particular, it follows that lmj+1 � lm(PMj+1) (as lmj+1 is the set lm afterthe last iteration of the while loop in the (j+1)st iteration of the for loop). Wewill show that lmj+1 is a model of PMj+1 . Let C 2 PMj+1 and let C 0 be a clausein P such that C is the result of removing all negated literals from C 0. By (I2)it follows that n(C 0) = 0. If p(C 0) = 0 when the while loop (within the (j+1)stiteration of the for loop) ends, C 0 was placed on the Q during the execution ofthis while loop and then removed at some point later during the execution of thisloop. Thus, h(C 0) = h(C) 2 lmj+1. On the other hand, if p(C 0) > 0 then, by (I1),there is an atom a in the body of C such that a =2 lmj+1. In either case, lmj+1satis�es C . Since lmj+1 is a model of PMj+1 , lm(PMj+1) � lmj+1 and, consequently,lmj+1 = lm(PMj+1).It is clear that the �rst part of the assertion follows directly from (I4). To completethe proof of the proposition, we note that each clause of the program P is processedby the while loop (5) at most once. Thus, the time needed for steps (6)-(9), over alliterations of the for loop (4), is O(jP j) = O(m). Moreover, the total time neededfor all iterations of for loop (10), over all iterations of the for loop (4), is boundedby the total number of positive occurrences of atoms in the program (there is atmost one iteration for each such occurrence), that is, it is O(m). Similarly, the totaltime needed for steps (13)-(17) over all iterations of the for loop (4) is O(m).We will now describe how to use the procedure stable aux in an algorithm to com-pute stable models of a logic program. A collection S of permutations of f1; 2; : : : ;ngis full if every subset S of f1; 2; : : : ;ng is a �nal segment (su�x) of a permutationin S or, more precisely, if for every subset S of f1; 2; : : : ;ng there is a permutation� 2 S such that S = f�(n�jS j+1); : : : ; �(n)g.If S1 and S2 are of the same cardinality then they cannot occur as su�xes ofthe same permutation. Since there are � nbn=2c� subsets of f1; 2; : : : ;ng of cardinalitybn=2c, every full family of permutations must contain at least � nbn=2c� elements. Animportant property is that for every n � 0 there is a full family of permutations ofcardinality � nbn=2c�. An algorithm to compute such a minimal full set of permuta-tions, say Smin , is described in (Knuth 1998) (Vol. 3, pages 579 and 743-744). Werefer to this algorithm as perm(n). The algorithm perm(n) enumerates all permu-tations in Smin by generating each next permutation entirely on the basis of theprevious one. The algorithm perm(n) takes O(n) steps to generate a permutationand each permutation is generated only once.

36 Z. Lonc and M. Truszczy�nskiWe modify the algorithm perm(n) to obtain an algorithm to compute all stablemodels of a logic program P . Namely, each time a new permutation, say �, isgenerated, we make a call to stable aux(P ; �). We call this algorithm stablep . Since� nbn=2c� = �(2n=pn) we have the following result.Proposition 7The algorithm stablep is correct and runs in time O(m2n=pn).ProofLet M = fxi1 ; : : : ; xikg, where k = jM j, be a stable model of P . Since Smin iscomplete, there is a permutation � in Smin such that f�(n�k+1); : : : ; �(n)g =fi1; : : : ; ikg or, equivalently, fx�(n�k+1); : : : ; x�(n)g = fxi1 ; : : : ; xikg = M . Since� 2 Smin , � will be generated during the execution of perm stable(P). Thus, byProposition 6, the call to stable(P ; �), made right after � is generated, outputs Mas a stable model of P . Conversely, every set M output by perm stable is, clearly, astable model of P . Thus, sets output by perm stable are precisely the stable modelsof P (we note, however, that some sets M may be su�xes of several permutationsand, consequently, will be output more than once).As for the running time, the procedure stable(P ; �) is called � nbn=2c� times duringthe execution of perm stable(P). Since � nbn=2c� = O(2n=pn), the total time neededfor all these calls is O(m2n=pn). The running time of the algorithm perm(n) isO(n2n=pn). Thus, the algorithm perm stable(P) runs in time O(m2n=pn).Since the program P(n; bn=2c) has exactly � nbn=2c� stable models and each of thesemodels has �(n) elements, every algorithm to compute all stable models of a logicprogram must take at least
(pn2n) steps. Whether in this case, there is � < 2,a polynomial f and an algorithm computing all stable models of an arbitrary logicprogram P in time O(f (m)�n) is an open problem. Since the size of the programP(n; bn=2c) is not O(n), the methods used in the proof of Corollary 2 do not workhere. 9 Discussion and conclusionsWe presented algorithms for computing stable models of logic programs with worst-case performance bounds asymptotically better than the trivial bound of O(m2n).These are the �rst results of that type in the literature. In the general case, weproposed an algorithm that runs in time O(m2n=pn) improving the performanceover the brute-force approach by the factor of pn. Most of our work, however, wasconcerned with algorithms for computing stable models of t-programs. We proposedan algorithm that computes stable models of t-programs in time O(m�nt), where�t < 2�1=2t . We strengthened these results in the case of 2- and 3-programs. Inthe �rst case, we presented an algorithm that runs in time O(m3n=3) (� O(m �1.44225n)). For the case of 3-programs, we presented an algorithm running in theworst case in time O(m � 1.70711n).In addition to these contributions, our work leads to several interesting questions.A foremost among them is whether our results can be further improved. First, we

Computing stable models: worst-case performance estimates 37observe that in the case when the task is to compute all stable models, we alreadyhave proved optimality (up to a polynomial factor) of the algorithms developed forthe class of all programs and the class of all 2-programs. However, in all other casesthere is still room for improvement | our lower and upper bounds do not coincide.The situation gets even more interesting when we want to compute one stablemodel (if stable models exist) rather than all of them. The algorithms we presentedhere can, of course, be adapted to this case (by terminating them as soon as the�rst model is found). Thus, the upper bounds derived in this paper remain valid.But the lower bounds, which we derive on the basis of the number of stable modelsinput programs may have, do not. In particular, it is no longer clear whether thealgorithm we developed for the case of 2-programs remains optimal. One cannotexclude existence of pruning techniques that, in the case when the input programhas stable models, would on occasion eliminate from considerations parts of thesearch space possibly containing some stable models, recognizing that the remainingportion of the search space still contains some.Such search space pruning techniques are possible in the case of satis�abilitytesting. For instance, the pure literal rule, sometimes used by implementations ofthe Davis-Putnam procedure, eliminates from considerations parts of search spacethat may contain stable models (Monien and Speckenmeyer 1985; Kullmann 1999).However, the part that remains is guaranteed to contain a model as long as theinput theory has one. No examples of analogous search space pruning methods areknown in the case of stable model computation. We feel that nonmonotonicity ofthe stable model semantics is the reason for that but a formal account of this issueremains an open problem.Finally, we note that we obtained, to the best of our knowledge, �rst non-trivialworst-case performance bounds for smodels. While our bounds apply only to thecase when input programs are restricted to be 2-programs and our techniques donot seem to be best suited for the analysis of smodels, the results we presenteddemonstrate that the worst-case analysis of algorithms such as smodels may bepossible. AcknowledgmentsThis material is based upon work supported by the National Science Foundationunder Grants No. 9874764 and 0097278. The authors also wish to thank anonymousreferees for their comments and suggestions.ReferencesApt, K. 1990. Logic programming. In Handbook of theoretical computer science, J. vanLeeuven, Ed. Elsevier, Amsterdam, 493{574.Bonatti, P. A. 2001. Reasoning with in�nite stable models. In Proceedings of IJCAI-01.Morgan Kaufmann, 603{608.Bonatti, P. A. 2002. Reasoning with in�nite stable models ii: disjunctive programs. InLogic programming, Proceedings of the 2002 International Conference on Logic Pro-gramming. Lecture Notes in Computer Science, vol. 2401. Springer-Verlag, 333{346.

38 Z. Lonc and M. Truszczy�nskiBonatti, P. A. and Eiter, T. 1996. Querying Disjunctive Databases Through Non-monotonic Logics. Theoretical Computer Science 160, 321{363.Bonatti, P. A. and Olivetti, N. 2002. Sequent Calculi for Propositional NonmonotonicLogics. ACM Transactions on Computational Logic 2, 352{304.Cholewi�nski, P. and Truszczy�nski, M. 1999. Extremal problems in logic programmingand stable model computation. Journal of Logic Programming 38, 219{242.Dix, J. 1995. A classi�cation theory of semantics of normal logic programs: II. Weakproperties. Fundamenta Informaticae 22, 3, 257 { 288.Eiter, T., Faber, W., Leone, N., and Pfeifer, G. 2000. Declarative problem-solving inDLV. In Logic-Based Arti�cial Intelligence, J. Minker, Ed. Kluwer Academic Publishers,Dordrecht, 79{103.Gelfond, M. and Lifschitz, V. 1988. The stable semantics for logic programs. InProceedings of the 5th International Conference on Logic Programming, R. Kowalskiand K. Bowen, Eds. MIT Press, 1070{1080.Knuth, D. E. 1998. The Art of Computer Programming. Vol. 3. Addison Wesley. Secondedition.Kullmann, O. 1999. New methods for 3-SAT decision and worst-case analysis. Theoret-ical Computer Science 223, 1{72.Lonc, Z. and Truszczy�nski, M. 2001. On the problem of computing the well-foundedsemantics. Theory and Practice of Logic Programming 1, 591{609.Lonc, Z. and Truszczy�nski, M. 2003. Fixed-parameter complexity of semantics forlogic programs. ACM Transactions on Computational Logic, to appear.Marek, V. and Truszczy�nski, M. 1999. Stable models and an alternative logic pro-gramming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective,K. Apt, W. Marek, M. Truszczy�nski, and D. Warren, Eds. Springer Verlag, 375{398.Marek, W., Nerode, A., and Remmel, J. B. 1994. The stable models of predicate logicprograms. Journal of Logic Programming 21, 3, 129{154.Marek, W. and Truszczy�nski, M. 1993. Nonmonotonic Logic; Context-DependentReasoning. Springer-Verlag, Berlin.Monien, B. and Speckenmeyer, E. 1985. Solving satis�ability in less than 2n steps.Discrete Applied Mathematics 10, 287{295.Moon, J. and Moser, L. 1965. On cliques in graphs. Israel J. Math 3, 23{28.Niemel�a, I. 1999. Logic programming with stable model semantics as a constraint pro-gramming paradigm. Annals of Mathematics and Arti�cial Intelligence 25, 3-4, 241{273.Niemel�a, I. and Simons, P. 2000. Extending the smodels system with cardinality andweight constraints. In Logic-Based Arti�cial Intelligence, J. Minker, Ed. Kluwer Aca-demic Publishers, 491{521.Subrahmanian, V., Nau, D., and Vago, C. 1995. WFS + branch bound = stablemodels. IEEE Transactions on Knowledge and Data Engineering 7, 362{377.Syrj�anen, T. 1999. lparse, a procedure for grounding domain restricted logic programs.http://www.tcs.hut.fi/Software/smodels/lparse/.Truszczy�nski, M. 2002. Computing large and small stable models. Theory and Practiceof Logic Programming 2, 1{23.Appendix: linear recurrence relationsIn the paper we use some basic properties of linear recurrence relations of the form:an = � ka if 0 � n < p�1an�1+ : : :+�pan�p otherwise, (1)

Computing stable models: worst-case performance estimates 39where for every i , 1 � i � p, �i � 0.We denote by ra the maximum root of the characteristic equation of the recur-rence de�ningxp��1xp�1� : : :��p�1x��p = 0.If ra � 1 then it is easy to prove by induction that for every n � 0,an � karna .In addition, for every r > ra ,�1rp�1+ : : :+�p�1r+�p < rp . (2)Indeed, the inequality holds for every su�ciently large r . If it fails for some r >ra , then there is a root of the characteristic equation in the interval [r ;1), acontradiction.Let us consider another relation of the form (1):bn = � kb if 0 � n < q�1bn�1+ : : :+�qbn�q otherwise.Let us assume that rb � ra � 1, where ra and rb are the maximum roots of thecharacteristic equations of the respective recurrence relations. Let us de�necn = 8<: kc if 0 � n < maxfp; qgmaxf�1cn�1+ : : :+�pcn�p ;�1cn�1+ : : :+�qcn�qg otherwise.It is easy to show by induction and using property (2) that for every n � 0,cn � maxfka ; kb ; kcgrnb .Moreover, the property can be easily generalized to the case when cn is de�ned interms of more than two recurrence relations of type (1).

