
Computing stable models: worst-caseperformance estimatesZbigniew Lonc1 and Miros law Truszczy�nski21 Faculty of Mathematics and Information Science, Warsaw University of Technology,00-661 Warsaw, Poland2 Department of Computer Science, University of Kentucky, Lexington,KY 40506-0046, USAAbstract. We study algorithms for computing stable models of propo-sitional logic programs and derive estimates on their worst-case perfor-mance that are asymptotically better than the trivial bound of O(m2n),where m is the size of an input program and n is the number of itsatoms. For instance, for programs, whose clauses consist of at most twoliterals (counting the head) we design an algorithm to compute stablemodels that works in time O(m� 1:44225n). We present similar resultsfor several broader classes of programs, as well.1 IntroductionThe stable-model semantics was introduced by Gelfond and Lifschitz [GL88] toprovide an interpretation for the negation operator in logic programming. Inthis paper, we study algorithms to compute stable models of propositional logicprograms. Our goal is to design algorithms for which one can derive non-trivialworst-case performance bounds.Computing stable models is important. It allows us to use logic programmingwith the stable-model semantics as a computational knowledge representationtool and as a declarative programming system. In most cases, when designingalgorithms for computing stable models we restrict the syntax to that of DAT-ALOG with negation (DATALOG:), by eliminating function symbols from thelanguage. When function symbols are allowed, models can be in�nite and highlycomplex, and the general problem of existence of a stable model of a �nite logicprogram is not even semi-decidable [MNR94]. However, when function symbolsare not used, stable models are guaranteed to be �nite and can be computed.To compute stable models of �nite DATALOG: programs we usually proceedin two steps. In the �rst step, we ground an input program P and produce a�nite propositional program with the same stable models as P (�niteness of theresulting ground program is ensured by �niteness of P and absence of functionsymbols). In the second step, we compute stable models of the ground programby applying search. This general approach is used in smodels [NS00] and dlv[EFLP00], two most advanced systems to process DATALOG: programs.It is this second step, computing stable models of propositional logic pro-grams (in particular, programs obtained by grounding DATALOG: programs),

that is of interest to us in the present paper. Stable models of a propositionallogic program P can be computed by a trivial brute-force algorithm that gener-ates all subsets of the set of atoms of P and, for each of these subsets, checks thestability condition. This algorithm can be implemented to run in time O(m2n),where m is the size of P and n is the number of atoms in P (we will use m andn in this meaning throughout the paper). The algorithms used in smodels anddlv re�ne this brute-force algorithm by employing e�ective search-space pruningtechniques. Experiments show that their performance is much better than thatof the brute-force algorithm. However, at present, no non-trivial upper boundon their worst-case running time is known. In fact, no algorithms for computingstable models are known whose worst-case performance is provably better thanthat of the brute-force algorithm. Our main goal is to design such algorithms.To this end, we propose a general template for an algorithm to compute stablemodels of propositional programs. The template involves an auxiliary procedurewhose particular instantiation determines the speci�c algorithm and its runningtime. We propose concrete implementations of this procedure and show thatthe resulting algorithms for computing stable models are asymptotically betterthan the straightforward algorithm described above. The performance analysisof our algorithms is closely related to the question of how many stable modelslogic programs may have. We derive bounds on the maximum number of stablemodels in a program with n atoms and use them to establish lower and upperestimates on the performance of algorithms for computing all stable models.Our main results concern propositional logic programs, called t-programs, inwhich the number of literals in rules, including the head, is bounded by a constantt. Despite their restricted syntax t-programs are of interest. Many logic programsthat were proposed as encodings of problems in planning, model checking andcombinatorics become propositional 2- or 3-programs after grounding. In general,programs obtained by grounding �nite DATALOG: programs are t-programs,for some �xed, and usually small, t.In the paper, for every t � 2, we construct an algorithm that computes allstable models of a t-program P in time O(m�nt), where �t is a constant suchthat �t < 2� 1=2t. For 2-programs we obtain stronger results. We construct analgorithm that computes all stable models of a 2-program in time O(m3n=3) =O(m � 1:44225n). We note that 1:44225 < �2 � 1:61803. Thus, this algorithmis indeed a signi�cant improvement over the algorithm following from generalconsiderations discussed above. We obtain similar results for a subclass of 2-programs consisting of programs that are purely negative and do not contain dualclauses. We also get signi�cant improvements in the case when t = 3. Namely,we describe an algorithm that computes all stable models of a 3-program P intime O(m � 1:70711n). In contrast, since �3 � 1:83931, the algorithm impliedby the general considerations runs in time O(m � 1:83931n).In the paper we also consider a general case where no bounds on the lengthof a clause are imposed. We describe an algorithm to compute all stable modelsof such programs. Its worst-case complexity is slightly lower than that of thebrute-force algorithm.

It is well known that, by introducing new atoms, every logic program P canbe transformed in polynomial time into a 3-program P 0 that is, essentially, equiv-alent to P : every stable model of P is of the form M 0\At, for some stable modelM 0 of P 0 and, for every stable model M 0 of P 0, the set M 0\At is a stable modelof P . This observation might suggest that in order to design fast algorithms tocompute stable models, it is enough to focus on the class of 3-programs. It is notthe case. In the worst case, the number of new atoms that need to be introducedis of the order of the size of the original program P . Consequently, an algorithmto compute stable models that can be obtained by combining the reduction de-scribed above with an algorithm to compute stable models of 3-programs runsin time O(m2m) and is asymptotically slower than the brute-force approachoutlined earlier. Thus, it is necessary to study algorithms for computing stablemodels designed explicitly for particular classes of programs.2 PreliminariesFor a detailed account of logic programming and stable model semantics we referthe reader to [GL88,Apt90,MT93]. In the paper, we consider only the proposi-tional case. For a logic program P , by At(P) we denote the set of all atomsappearing in P . We de�ne Lit(P) = At(P) [fnot(a): a 2 At(P)g and call ele-ments of this set literals. Literals b and not(b), where b is an atom, are dual toeach other. For a literal �, we denote its dual by not(�).A clause is an expression c of the form p B or B, where p is an atomand B is a set of literals (no literals in B are repeated). The clause of the �rsttype is called de�nite. The clause of the second type is called a constraint. Theatom p is the head of c and is denoted by h(c). The set of atoms appearing inliterals of B is called the body of c. The set of all positive literals (atoms) in B isthe positive body of c, b+(c), in symbols. The set of atoms appearing in negatedliterals of B is the negative body of c, b�(c), in symbols.A logic program is a collection of clauses. If every clause of P is de�nite, P isa de�nite logic program. If every clause in P has an empty positive body, that is,is purely negative, P is a purely negative program. Finally, a logic program P isa t-program if every clause in P has no more than t literals (counting the head).A clause c is a tautology if it is de�nite and h(c) 2 b+(c), or if b+(c)\b�(c) 6= ;.A clause c is a virtual constraint if it is de�nite and h(c) 2 b�(c). We have thefollowing result [Dix95].Proposition 1. Let P be a logic program and let P 0 be the subprogram of Pobtained by removing from P all tautologies, constraints and virtual constraints.If M is a stable model of P then it is a stable model of P 0.Thanks to this proposition, when designing algorithms for computing stablemodels we may restrict attention to de�nite programs without tautologies andvirtual constraints.For a set of literals L � Lit(P), we de�ne:L+ = fa 2 At(P): a 2 Lg and L� = fa 2 At(P):not(a) 2 Lg:

We also de�ne L0 = L+ [L�. A set of literals L is consistent if L+ \ L� = ;.A set of atoms M � At(P) is consistent with a set of literals L � Lit(P), ifL+ �M and L� \M = ;.To characterize stable models of a program P that are consistent with a setof literals L � Lit(P), we introduce a simpli�cation of P with respect to L. By[P]L we denote the program obtained by removing from P1. every clause c such that b+(c) \ L� 6= ;2. every clause c such that b�(c) \ L+ 6= ;3. every clause c such that h(c) 2 L04. every occurrence of a literal in L from the bodies of the remaining clauses.The simpli�ed program [P]L contains all information necessary to reconstructstable models of P that are consistent with L. The following result was obtainedin [Dix95] (we refer also to [SNV95,CT99]).Proposition 2. Let P be a logic program and L be a set of literals of P . If Mis a stable model of P consistent with L, then M nL+ is a stable model of [P]L.Thus, to compute all stable models of P that are consistent with L, one can�rst check if L is consistent. If not, there are no stable models consistent withL. Otherwise, one can compute all stable models of [P]L, for each such modelM 0 check whether M = M 0 [L+ is a stable model of P and, if so, output M .This approach is the basis of the algorithm to compute stable models that wepresent in the following section.3 A high-level view of stable model computationWe will now describe an algorithm stable(P;L) that, given a de�nite program Pand a set of literals L, outputs all stable models of P that are consistent withL. The key concept we need is that of a complete collection. Let P be a logicprogram. A nonempty collection A of nonempty subsets of Lit(P) is complete forP if every stable model of P is consistent with at least one set A 2 A. Clearly,the collection A = ffag; fnot(a)gg, where a is an atom of P , is an exampleof a complete collection for P . In the description given below, we assume thatcomplete(P) is a procedure that, for a program P , computes a collection of setsof literals that is complete for P .stable(P;L)(0) if L is consistent then(1) if [P]L = ; then(2) check whether L+ is a stable model of P and, if so, output it(3) else(4) A := complete([P]L);(5) for every A 2 A do(6) stable(P;L [A)(7) end of stable.

Proposition 3. Let P be a de�nite �nite propositional logic program. For everyL � Lit(P), stable(P;L) returns all stable models of P consistent with L.Proof: We proceed by induction on jAt([P]L)j. To start, let us consider a callto stable(P;L) in the case when jAt([P]L)j = 0 and let M be a set returnedby stable(P;L). It follows that L is consistent and that M is a stable model ofP . Moreover, since M = L+, M is consistent with L. Conversely, let M be astable model of P that is consistent with L. By Proposition 2, M nL+ is a stablemodel of [P]L. Since L is consistent (as M is consistent with L) and [P]L = ;,M n L+ = ;. Since M is consistent with L, M = L+. Thus, M is returned bystable(P;L).For the inductive step, let us consider a call to stable(P;L), where jAt([P]L)j >0. Let M be a set returned by this call. Then M is returned by a call tostable(P;L [A), for some A 2 A, where A is a complete family for [P]L. Sinceelements of a complete family are nonempty and consist of literals actually oc-curring in [P]L, jAt([P]L[A)j < jAt([P]L)j. By the induction hypothesis it followsthat M is a stable model of P consistent with L[A and, consequently, with L.Let us now assume that M is a stable model of P consistent with L. Then, byProposition 2, M nL+ is a stable model of [P]L. Since A (computed in line (4)) isa complete collection for [P]L, there is A 2 A such that M nL+ is consistent withA. Since A\L = ; (as A � At([P]L)), M is a stable model of P consistent withL [A. Since jAt([P]L[A)j < jAt([P]L)j, by the induction hypothesis it followsthat M is output during the recursive call to stable(P;L [A). 2We will now study the performance of the algorithm stable. In our discussionwe follow the notation used to describe it. Let P be a de�nite logic program andlet L � Lit(P). Let us consider the following recurrence relation:s(P;L) = �1 if [P]L = ; or L is not consistentPA2A s(P;L [A) otherwise.As a corollary to Proposition 3 we obtain the following result.Corollary 1. Let P be a �nite de�nite logic program and let L � Lit(P). Then,P has at most s(P;L) stable models consistent with L. In particular, P has atmost s(P; ;) stable models.We will use the function s(P;L) to estimate not only the number of stablemodels in de�nite logic programs but also the running time of the algorithmstable. Indeed, let us observe that the total number of times we make a call tothe algorithm stable when executing stable(P;L) (including the "top-level" callto stable(P;L)) is given by s(P;L). We associate each execution of the instruc-tion (i), where 0 � i � 5, with the call in which the instruction is executed.Consequently, each of these instructions is executed no more than s(P;L) timesduring the execution of stable(P;L).Let m be the size of a program P . There are linear-time algorithms to checkwhether a set of atoms is a stable model of a program P . Thus, we obtain thefollowing result concerned with the performance of the algorithm stable.

Theorem 1. If the procedure complete runs in time O(t(m)), where m is the sizeof an input program P , then executing the call stable(P;L), where L � Lit(P),requires O(s(P;L)(t(m) +m)) steps in the worst case.The speci�c bound depends on the procedure complete, as it determines therecurrence for s(P;L). It also depends on the implementation of the procedurecomplete, as the implementation determines the second factor in the running-time formula derived above.Throughout the paper (except for Section 7, where a di�erent approach isused), we specify algorithms to compute stable models by describing particularversions of the procedure complete. We obtain estimates on the running time ofthese algorithms by analyzing the recurrence for s(P;L) implied by the procedurecomplete. As a byproduct to these considerations, we obtain bounds on themaximum number of stable models of a logic program with n atoms.4 t-programsIn this section we will instantiate the general algorithm to compute stable modelsto the case of t-programs, for t � 2. To this end, we will describe a procedurethat, given a de�nite t-program P , returns a complete collection for P .Let P be a de�nite t-program and let x �1; : : : ; �k, where �i are literalsand k � t� 1, be a clause in P . For every i = 1; : : : ; k, let us de�neAi = fnot(x); �1; : : : ; �i�1;not(�i)gIt is easy to see that the family A = ffxg; A1; : : : ; Akg is complete for P . We willassume that this complete collection is computed and returned by the procedurecomplete. Clearly, computing A can be implemented to run in time O(m).To analyze the resulting algorithm stable, we use our general results from theprevious section. Let us de�necn = �Kt if 0 � n < tcn�1 + : : :+ cn�t otherwise,where Kt is the maximum possible value of s(P;L) for a t-program P and a setof literals L � Lit(P) such that jAt(P)j � jLj � t. We will prove that if P is at-program, L � Lit(P), and jAt(P)j� jLj � n, then s(P;L) � cn. We proceed byinduction on n. If n < t, then the assertion follows by the de�nition of Kt. So,let us assume that n � t. If L is not consistent or [P]L = ;, s(P;L) = 1 � cn.Otherwise,s(P;L) = XA2A s(P;L [A) � cn�1 + cn�2 + : : : + cn�t = cn:The inequality follows by the induction hypothesis, the de�nition of A, and themonotonicity of cn. The last equality follows by the de�nition of cn. Thus, theinduction step is complete.

The characteristic equation of the recurrence cn is xt = xt�1 + : : : + x + 1.Let �t be the largest real root of this equation. One can show that for t � 2,1 < �t < 2� 1=2t. In particular, �2 � 1:61803, �3 � 1:83931, �4 � 1:92757 and�5 � 1:96595. The discussion in Section 3 implies the following two theorems.Theorem 2. Let t be an integer, t � 2. There is an algorithm to compute stablemodels of t-programs that runs in time O(m�nt), where n is the number of atomsand m is the size of the input program.Theorem 3. Let t be an integer, t � 2. There is a constant Ct such that everyt-program P has at most Ct�nt stable models, where n = jAt(P)j.Since for every t, �t < 2, we indeed obtain an improvement over the straight-forward approach. However, the scale of the improvement diminishes as t grows.To establish lower bounds on the number of stable models and on the worst-case performance of algorithms to compute them, we de�ne P (n; t) to be a logicprogram such that jAt(P)j = n and P consists of all clauses of the formx not(b1); : : : ;not(bt);where x 2 At(P) and fb1; : : : ; btg � At(P) n fxg are di�erent atoms. It is easyto see that P (n; t) is a (t + 1)-program with n atoms and that stable modelsof P (n; t) are precisely those subsets of At(P) that have n � t elements. Thus,P (n; t) has exactly �nt� stable models.Clearly, the program P (2t � 1; t � 1) is a t-program over the set of 2t � 1atoms. Moreover, it has �2t�1t � stable models. Let kP (2t� 1; t� 1) be the logicprogram formed by the disjoint union of k copies of P (2t � 1; t � 1) (sets ofatoms of di�erent copies of P (2t � 1; t � 1) are disjoint). It is easy to see thatkP (2t�1; t�1) has �2t�1t �k stable models. As an easy corollary of this observationwe obtain the following result.Theorem 4. Let t be an integer, t � 2. There is a constant Dt such that forevery n there is a t-program P with at least Dt � �2t�1t �n=2t�1 stable models.This result implies that every algorithm for computing all stable modelsof a t-program in the worst-case requires
(�2t�1t �n=2t�1) steps, as there areprograms for which at least that many stable models need to be output. Theselower bounds specialize to approximately
(1:44224n),
(1:58489n),
(1:6618n)and
(1:71149n), for t = 2; 3; 4; 5, respectively.5 2-programsStronger results can be derived for more restricted classes of programs. We willnow study the case of 2-programs and prove the following two theorems.Theorem 5. There is an algorithm to compute stable models of 2-programs thatruns in time O(m3n=3) = O(m� 1:44225n), where n is the number of atoms inP and m is the size of P .

Theorem 6. There is a constant C such that every 2-program P with n atoms,has at most C � 3n=3 (� C � 1:44225n) stable models.By Proposition 1, to prove these theorems it su�ces to limit attention tothe case of de�nite programs not containing tautologies and virtual constraints.We will adopt this assumption and derive both theorems from general resultspresented in Section 3.Let P be a de�nite 2-program. We say that an atom b 2 At(P) is a neighborof an atom a 2 At(P) if P contains a clause containing both a and b (one ofthem as the head, the other one appearing positively or negatively in the body).By n(a) we will denote the number of neighbors of an atom a. Since we assumethat our programs contain neither tautologies nor virtual constraints, no atoma is its own neighbor.We will now describe the procedure complete. The complete family returnedby the call to complete(P) depends on the program P . We list below several casesthat cover all de�nite 2-programs without tautologies and virtual constraints.In each of these cases, we specify a complete collection to be returned by theprocedure complete.Case 1. There is an atom, say x, such that P contains a clause with the head xand with the empty body (in other words, x is a fact of P). We de�ne A = ffxgg.Clearly, every stable model of P contains x. Thus, A is complete.Case 2. There is an atom, say x, that does not appear in the head of any clausein P . We de�ne A = ffnot(x)gg. It is well known that x does not belong to anystable model of P . Thus, A is complete for P .Case 3. There are atoms x and y, x 6= y, such that x y and at least one ofx not(y) and y not(x) are in P . In this case, we set A = ffxgg. Let Mbe a stable model of P . If y 2 M , then x 2 M (due to the fact that the clausex y is in P). Otherwise, y =2M . Since M satis�es x not(y) or y not(x),it again follows that x 2M . Thus, A is complete.Case 4. There are atoms x and y such that x y and y x are both in P .We de�ne A = ffx; yg; fnot(x);not(y)gg:If M is a stable model of P then, clearly, x 2M if and only if y 2M . It followsthat either fx; yg �M or fx; yg\M = ;. Thus, A is complete for P . Moreover,since x 6= y (P does not contain clauses of the form w w), each set in A hasat least two elements.Case 5. None of the Cases 1-4 holds and there is an atom, say x, with exactlyone neighbor, y. Since P does not contain clauses of the form w w andw not(w), we have x 6= y. Moreover, x must be the head of at least oneclause (since we assume here that Case 2 does not hold).Subcase 5a. P contains the clause x y. We de�neA = ffx; yg; fnot(x);not(y)gg:Let M be a stable model of P . If y 2M then, clearly, x 2M . Since we assumethat Case 3 does not hold, the clause x y is the only clause in P with x as

the head. Thus, if y =2M , then we also have that x =2M . Hence, A is complete.Subcase 5b. P does not contain the clause x y. We de�neA = ffx;not(y)g; fnot(x); ygg:Let M be a stable model of P . Since x is the head of at least one clause in P , itfollows that the clause x not(y) belongs to P . Thus, if y =2 M then x 2 M .If y 2 M then, since x not(y) is the only clause in P with x as the head,x =2M . Hence, A is complete.Case 6. None of the Cases 1-5 holds. Let w 2 At(P) be an atom. By x1; : : : ; xpwe denote all atoms x in P such that w not(x) or x not(w) is a clausein P . Similarly, by y1; : : : ; yq we denote all atoms y in P such that y w is aclause of P . Finally, by z1; : : : ; zr we denote all atoms z of P such that w zis a clause of P . By our earlier discussion it follows that the sets fx1; : : : ; xpg,fy1; : : : ; yqg and fz1; : : : ; zrg, are pairwise disjoint and cover all neighbors of w.That is, the number of neighbors of w is given by p + q + r. Since we excludeCase 5 here, p+q+r � 2. Further, since w is the head of at least one edge (Case2 does not hold), it follows that p + r � 1Subcase 6a. For some atom w, q � 1 or p + q + r � 3. Then, we de�neA = ffw; y1; : : : ; yqg; fnot(w); x1; : : : ; xp;not(z1); : : : ;not(zr)gg:It is easy to see that A is complete for P . Moreover, if q � 1 then, since p+r � 1,each of the two sets in A has at least two elements. If p+ q + r � 3, then eithereach set in A has at least two elements, or one of them has one element and theother one at least four elements.Subcase 6b. Every atom w has exactly two neighbors, and does not appearin the body of any Horn clause of P . It follows that all clauses in P are purelynegative. Let w be an arbitrary atom in P . Let u and v be the two neighbors ofw. The atoms u and v also have two neighbors each, one of them being w. Letu0 and v0 be the neighbors of u and v, respectively, that are di�erent from w.We de�ne A = ffnot(w); u; vg; fnot(u); w; u0g; fnot(v); w; v0gg:Let M be a stable model of P . Let us assume that w =2 M . Since w and u areneighbors, there is a clause in P built of w and u. This clause is purely negativeand it is satis�ed by M . It follows that u 2 M . A similar argument shows thatv 2 M , as well. If w 2 M then, since M is a stable model of P , there is a2-clause C in P with the head w and with the body satis�ed by M . Since Pconsists of purely negative clauses, and since u and v are the only neighborsof w, C = w not(u) or C = w not(v). Let us assume the former. It isclear that u =2 M (since M satis�es the body of C). Let us recall that u0 is aneighbor of u. Consequently, u and u0 form a purely negative clause of P . Thisclause is satis�ed by M . Thus, u0 2M and M is consistent with fnot(u); w; u0g.In the other case, when C = w not(v), a similar argument shows that M isconsistent with fnot(v); w; v0g. Thus, every stable model of P is consistent withone of the three sets in A. In other words, A is complete.

Clearly, given a 2-program P , deciding which of the cases described aboveholds for P can be implemented to run in linear time. Once that is done, theoutput collection can be constructed and returned in linear time, too.This speci�cation of the procedure complete yields a particular algorithm tocompute stable models of de�nite 2-programs without tautologies and virtualconstraints. To estimate its performance and obtain the bound on the numberof stable models, we de�necn = �K if 0 � n < 4maxfcn�1; 2cn�2; cn�1 + cn�4; 3cn�3g otherwise,where K is the maximum possible value of s(P;L), when P is a de�nite �nitepropositional logic program, L � Lit(P) and jAt(P)j � jLj � 3. It is easy to seethat K is a constant that depends neither on P nor on L. We will prove thats(P;L) � cn, where n = jAt(P)j� jLj. If n � 3, then the assertion follows by thede�nition of K. So, let us assume that n � 4. If L is not consistent or [P]L = ;,s(P;L) = 1 � cn. Otherwise,s(P;L) = XA2A s(P;L [A) � maxfcn�1; 2cn�2; cn�1 + cn�4; 3cn�3g = cn:The inequality follows by the induction hypothesis, the properties of the completefamilies returned by complete (the cardinalities of sets forming these completefamilies) and the monotonicity of cn.Using well-known properties of linear recurrence relations, it is easy to seethat cn = O(3n=3) = O(1:44225n). Thus, Theorems 5 and 6 follow.As concerns bounds on the number of stable models of a 2-program, astronger (exact) result can be derived. Letgn = 8>><>>:3n=3 if n = 0 (mod 3)4� 3(n�4)=3 if n = 1 (mod 3), and n > 12� 3(n�2)=3 if n = 2 (mod 3)1 if n = 1Exploiting connections between stable models of purely negative de�nite 2-programs and maximal independent sets in graphs, and using some classic resultsfrom graph theory [MM65] one can prove the following result.Corollary 2. Let P be a 2-program with n atoms. Then P has no more thangn stable models.The bound of Corollary 2 cannot be improved as there are logic programsthat achieve it. Let P (p1; : : : ; pk), where for every i, pi � 2, be a disjoint unionof programs P (p1; 1); : : : ; P (pk; 1) (we discussed these programs in Section 2).Each program P (pi; 1) has pi stable models. Thus, the number of stable modelsof P (p1; : : : ; pk) is p1p2 : : : pk. Let P be a logic program with n � 2 atoms andof the form P (3; : : : ; 3), P (2; 3; : : : ; 3) or P (4; 3; : : : ; 3), depending on n(mod 3).It is easy to see that P has gn stable models. In particular, it follows that our

algorithm to compute all stable models of 2-programs is must execute at least
(3n=3) steps in the worst case.Narrowing the class of programs leads to still better bounds and faster al-gorithms. We will discuss one speci�c subclass of the class of 2-programs here.Namely, we will consider de�nite purely negative 2-programs with no dual clauses(two clauses are called dual if they are of the form a not(b) and b not(a)).We denote the class of these programs by Pn2 . Using the same approach as inthe case of arbitrary 2-programs, we can prove the following two theorems.Theorem 7. There is an algorithm to compute stable models of 2-programs inthe class Pn2 that runs in time O(m�1:23651n), where n is the number of atomsand m is the size of an input program.Theorem 8. There is a constant C such that every 2-program P 2 Pn2 has atmost C � 1:23651n stable models.Theorem 8 gives an upper bound on the number of stable models of a programin the class Pn2 . To establish a lower bound, we de�ne S6 to be a program overthe set of atoms a1; : : : ; a6 and containing the rules (the arithmetic of indicesis performed modulo 6): ai+1 not(ai) and ai+2 not(ai), i = 0; 1; 2; 3; 4; 5.The program S6 has three stable models: fa0; a1; a3; a4g, fa1; a2; a4; a5g andfa2; a3; a5; a0g.Let P be the program consisting of k copies of S6, with mutually disjoint setsof atoms. Clearly, P has 3k stable models. Thus, there is a constant D such thatfor every n � 1 there is a program P with n atoms and with at least D � 3n=6(� D � 1:20094n) stable models.6 3-programsWe will now present our results for the class of 3-programs. Using similar tech-niques as those presented in the previous section, we prove the following twotheorems.Theorem 9. There is an algorithm to compute stable models of 3-programs thatruns in time O(m� 1:70711n), where m is the size of the input.Theorem 10. There is a constant C such that every 3-program P has at mostC � 1:70711n stable models.The algorithm whose existence is claimed in Theorem 9 is obtained fromthe general template described in Section 3 by a proper instantiation of theprocedure complete (in a similar way to that presented in detail in the previoussection for the case of 2-programs).The lower bound in this case follows from an observation made in Section4 that there is a constant D3 such that for every n there is a 3-program Psuch that P has at least D3 � 1:58489n) stable models (cf. Theorem 4). Thus,every algorithm for computing all stable models of 3-programs must take at least
(1:58489n) steps in the worst case.

7 The general caseIn this section we present an algorithm that computes all stable models of arbi-trary propositional logic programs. It runs in time O(m2n=pn) and so, providesan improvement over the trivial bound O(m2n). However, our approach is quitedi�erent from that used in the preceding sections. The key component of thealgorithm is an auxiliary procedure stable aux(P; �). Let P be a logic programand let At(P) = fx1; x2; : : : ; xng. Given P and a permutation � of f1; 2; : : : ; ng,the procedure stable aux(P; �) looks for an index j, 1 � j � n, such that the setfx�(j); : : : ; x�(n)g is a stable model of P . Since no stable model of P is a propersubset of another stable model of P , for any permutation � there is at most onesuch index j. If such j exists, the procedure outputs the set fx�(j); : : : ; x�(n)g.In the description of the algorithm stable aux, we use the following notation.For every atom a, by pos(a) we denote the list of all clauses which contain a(as a non-negated atom) in their bodies, and by neg(a) a list of all clauses thatcontain not(a) in their bodies. Given a standard linked-list representation oflogic programs, all these lists can be computed in time linear in m.Further, for each clause C, we introduce counters p(C) and n(C). We initializep(C) to be the number of positive literals (atoms) in the body of C. Similarly,we initialize n(C) to be the number of negative literals in the body of C. Thesecounters are used to decide whether a clause belongs to the reduct of the programand whether it \�res" when computing the least model of the reduct.stable aux(P; �)(1) M = At(P);(2) Q := set of clauses C such that p(C) = n(C) = 0;(3) lm := ;;(4) for j = 1 to n do(5) while Q 6= ; do(6) C0 := any clause in Q;(7) mark C0 as used and remove it from Q;(8) if h(C0) =2 lm then(9) lm := lm [fh(C0)g;(10) for C 2 pos(h(C0)) do(11) p(C) := p(C)� 1;(12) if p(C) = 0 & n(C) = 0 & C not used then add C to Q;(13) if lm = M then output M and stop;(14) M := M n fx�(j)g;(15) for C 2 neg(x�(j)) do(16) n(C) := n(C)� 1;(17) if n(C) = 0 & p(C) = 0 & C not used then add C to Q.Let us de�ne Mj = fx�(j); : : : ; x�(n)g. Intuitively, the algorithm stable auxworks as follows. In the iteration j of the for loop it computes the least modelof the reduct PMj (lines (5)-(12)). Then it tests whether Mj = lm(PMj) (line(13)). If so, it outputs Mj (it is a stable model of P) and terminates. Otherwise,

it computes the reduct PMj+1 . In fact the reduct is not explicitly computed.Rather, the number of negated literals in the body of each rule is updated tore
ect the fact that we shift attention from the set Mj to the set Mj+1 (lines(14)-(17)). The key to the algorithm is the fact that it computes reducts PMjand least models lm(PMj) in an incremental way and, so, tests n candidates Mjfor stability in time O(m) (where m is the size of the program).Proposition 4. Let P be a logic program and let At(P) = fx1; : : : ; xng. Forevery permutation � of f1; : : : ; ng, if M = fx�(j); : : : ; x�(n)g then the procedurestable aux(P; �) outputs M if and only if M is a stable model of P . Moreover,the procedure stable aux runs in O(m) steps, where m is the size of P .We will now describe how to use the procedure stable aux in an algorithmto compute stable models of a logic program. A collection S of permutations off1; 2; : : : ; ng is full if every subset S of f1; 2; : : : ; ng is a �nal segment (su�x) ofa permutation in S or, more precisely, if for every subset S of f1; 2; : : : ; ng thereis a permutation � 2 S such that S = f�(n� jSj+ 1); : : : ; �(n)g.If S1 and S2 are of the same cardinality then they cannot occur as su�xesof the same permutation. Since there are � nbn=2c� subsets of f1; 2; : : : ; ng of car-dinality bn=2c, every full family of permutations must contain at least � nbn=2c�elements. An important property is that for every n � 0 there is a full familyof permutations of cardinality � nbn=2c�. An algorithm to compute such a minimalfull set of permutations, say Smin, is described in [Knu98] (Vol. 3, pages 579 and743-744). We refer to this algorithm as perm(n). The algorithm perm(n) enu-merates all permutations in Smin by generating each next permutation entirelyon the basis of the previous one. The algorithm perm(n) takes O(n) steps togenerate a permutation and each permutation is generated only once.We modify the algorithm perm(n) to obtain an algorithm to compute allstable models of a logic program P . Namely, each time a new permutation, say�, is generated, we make a call to stable aux(P; �). We call this algorithm stablep.Since � nbn=2c� = �(2n=pn) we have the following result.Proposition 5. The algorithm stablep is correct and runs in time O(m2n=pn).Since the program P (n; bn=2c) has exactly � nbn=2c� stable models, every al-gorithm to compute all stable models of a logic program must take at least
(2n=pn) steps.8 Discussion and conclusionsWe presented algorithms for computing stable models of logic programs withworst-case performance bounds asymptotically better than the trivial bound ofO(m2n). These are �rst results of that type in the literature. In the generalcase, we proposed an algorithm that runs in time O(m2n=pn) improving theperformance over the brute-force approach by the factor of pn. Most of our

work, however, was concerned with algorithms for computing stable models of t-programs. We proposed an algorithm that computes stable models of t-programsin time O(m�nt), where �t < 2� 1=2t. We strengthened these results in the caseof 2- and 3-programs. In the �rst case, we presented an algorithm that runs intime O(m3n=3) (� O(m� 1:44225n)). For the case of 3-programs, we presentedan algorithm running in the worst case in time O(m� 1:70711n).In addition to these contributions, our work leads to several interesting ques-tions. A foremost among them is whether our results can be further improved.First, we observe that in the case when the task is to compute all stable models,we already have proved optimality (up to a polynomial factor) of the algorithmsdeveloped for the class of all programs and the class of all 2-programs. However,in all other cases there is still room for improvement | our lower and upperbounds do not coincide.The situation gets even more interesting when we want to compute one stablemodel (if stable models exist) rather than all of them. Algorithms we presentedhere can, of course, be adapted to this case (by terminating them as soon asthe �rst model is found). Thus, the upper bounds derived in this paper remainvalid. But the lower bounds, which we derive on the basis of the number ofstable models input programs may have, do not. In particular, it is no longerclear whether the algorithm we developed for the case of 2-programs remainsoptimal. One cannot exclude existence of pruning techniques that, in the casewhen the input program has stable models, would on occasion eliminate fromconsiderations parts of the search space possibly containing some stable models,recognizing that the remaining portion of the search space still contains some.Such search space pruning techniques are possible in the case of satis�abilitytesting. For instance, the pure literal rule, sometimes used by implementationsof the Davis-Putnam procedure, eliminates from considerations parts of searchspace that may contain stable models [MS85,Kul99]. However, the part thatremains is guaranteed to contain a model as long as the input theory has one.No examples of analogous search space pruning methods are known in the caseof stable model computation. We feel that nonmonotonicity of the stable modelsemantics is the reason for that but a formal account of this issue remains anopen problem.Finally, we note that many algorithms to compute stable models can be castas instantiations of the general template introduced in Section 3. For instance, itis the case with the algorithm used in smodels. To view smodels in this way, wede�ne the procedure complete as (1) picking (based on full lookahead) an atom xon which the search will split; (2) computing the set of literals A(x) by assumingthat x holds and by applying the unit propagation procedure of smodels (based,we recall on the ideas behind the well-founded semantics); (3) computing in thesame way the set A(not(x)) by assuming that not(x) holds; and (4) returningthe family A = fA(x); A(not(x))g. This family is clearly complete.While di�erent in some implementation details, the algorithm obtained fromour general template by using this particular version of the procedure completeis essentially equivalent to that of smodels. By modifying our analysis in Section

5, one can show that on 2-programs smodels runs in time O(m� 1:46558n) andon purely negative programs without dual clauses in time O(m� 1:32472n). Tothe best of our knowledge these are �rst non-trivial estimates of the worst-caseperformance of smodels. These bounds are worse from those obtained from thealgorithms we proposed here, as the techniques we developed were not designedwith the analysis of smodels in mind. However, they demonstrate that the worst-case analysis of algorithms such as smodels, which is an important open problem,may be possible.AcknowledgmentsThis material is based upon work supported by the National Science Foundationunder Grant No. 0097278.References[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theo-retical computer science, pages 493{574. Elsevier, Amsterdam, 1990.[BE96] P.A. Bonatti and T. Eiter. Querying Disjunctive Databases Through Non-monotonic Logics. Theoretical Computer Science, 160:321{363, 1996.[CT99] P. Cholewi�nski and M. Truszczy�nski. Extremal problems in logic program-ming and stable model computation. Journal of Logic Programming, 38:219{242, 1999.[Dix95] J. Dix. A classi�cation theory of semantics of normal logic programs: Ii.weak properties. Fundamenta Informaticae, 22(3):257 { 288, 1995.[EFLP00] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solvingin DLV. In Jack Minker, editor, Logic-Based Arti�cial Intelligence, pages79{103. Kluwer Academic Publishers, Dordrecht, 2000.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InR. Kowalski and K. Bowen, editors, Proceedings of the 5th InternationalConference on Logic Programming, pages 1070{1080. MIT Press, 1988.[Knu98] D. E. Knuth. The Art of Computer Programming, volume 3. Addison Wesley,1998. Second edition.[Kul99] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.Theoretical Computer Science, pages 1{72, 1999.[MM65] J.W. Moon and L. Moser. On cliques in graphs. Israel J. Math, pages 23{28,1965.[MNR94] W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicatelogic programs. Journal of Logic Programming, 21(3):129{154, 1994.[MS85] B. Monien and E. Speckenmeyer. Solving satis�ability in less than 2n steps.Discrete Applied Mathematics, pages 287{295, 1985.[MT93] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependentreasoning. Springer-Verlag, Berlin, 1993.[NS00] I. Niemel�a and P. Simons. Extending the smodels system with cardinality andweight constraints. In J. Minker, editor, Logic-Based Arti�cial Intelligence,pages 491{521. Kluwer Academic Publishers, 2000.[SNV95] V.S. Subrahmanian, D. Nau, and C. Vago. WFS + branch bound = stablemodels. IEEE Transactions on Knowledge and Data Engineering, 7:362{377,1995.

