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Abstract. We study simple classes of mixed Horn formulas, in which the struc-
ture of the Horn part is drastically constrained. We show that the SAT problem for
formulas in these classes remains NP-complete, and demonstrate experimentally
that formulas randomly generated from these classes are hard for the present SAT
solvers, both complete and local-search ones.

1 Introduction

We study some simple classes of mixed Horn formulas and show that randomly gen-
erated formulas from these classes are hard for the present SAT solvers. A conjunctive
normal form (CNF) formula F is a mixed Horn formula (an MHF, for short) if each
clause in F is either a positive 2-clause (a clause of the form a ∨ b, where a and b are
propositional variables), or is Horn clause.

MHFs have received much attention recently [1, 2]. Researchers proved that many
NP-complete problems have simple encodings as MHFs [2], showed that the satisfiabil-
ity of MHFs remains NP-compete even under additional restrictions of the structure of
input MHFs [2], and developed satisfiability algorithms for MHFs with good worst-case
behavior lower bounds [1, 3].

Due to their simplicity on the one hand, and the expressive power on the other,
MHFs are attractive as possible benchmarks for SAT solvers. Our goal in this paper is
to propose some models of simple random MHFs of particularly constrained structure,
and to show that these models yield instances that are hard for SAT solvers. In the
process, we find interesting connections to a class of random logic programs that we
recently identified as consisting of instances that are hard for answer-set solvers [5].

2 Preliminaries

Let V = {v1, v2, . . .} be a fixed set of propositional variables. We define the class
MH n(k, m), where k ≥ 1 and m ≥ 0, to consist of MHFs F such that

1. the set of atoms occurring in F is {v1, . . . , vn}
2. F contains m positive 2-clauses
3. for every v ∈ V , F contains a negative clause Cv = ¬v ∨¬w1 ∨ . . .∨¬wk, where

w1, . . . wk ∈ V
4. there are no other clauses in F .
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We also define MH n(k) =
⋃

m MH n(k, m) (here m ranges from 0 to
(
n
2

)
), and

MH (k) =
⋃∞

n=0 MH n(k).
Thus, formulas in MH (k) contain only positive 2-clauses and negative (k + 1)-

clauses. The key aspect of the model is, though, that there is an additional constraint
imposed on the set of negative (k + 1)-clauses of a formula F ∈ MH (k): the set of
variables of F must be a system of distinct representatives for the family of the sets of
variables of (k + 1)-clauses of F .

Other classes of MHFs we consider in the paper impose additional connections
between the negative and positive parts. Namely, we consider the class MH 1

n(k), which
we define as follows: an MHFs F ∈ MH n(k) belongs to MH 1

n(k) if and only if its set
of positive 2-clauses is given by {v∨w | w ∈ V ar(Cv), where Cv ∈ F}. In the case of
MHFs in MH 1

n(k), there is a strong connection between the sets of positive and negative
clauses: if F ∈ MH 1

n(k), then F is entirely determined by its negative part. We note
that the number of 2-clauses in formulas in MH 1

n(k) is not fixed and ranges between
kn/2 and kn. We write MH 1(k) for

⋃∞
n=0 MH 1

n(k), and MH 1
n for

⋃
k=1 MH 1

n(k).
Despite constraints on the form of MHFs that form the classes MH (k) and MH 1(k),

for each of them the satisfiability remains NP-complete.

Proposition 1. For each of the classes MH (k) and MH 1(k), with k ≥ 2, the satisfia-
bility problem restricted to that class of formulas is NP-complete.

Thus, the classes of formulas discussed above are on the one hand extremely sim-
ple, and on the other hand, as expressive as the class of (unrestricted) CNF formulas.
Moreover, it is clear that in the case of each class C of formulas we introduced above,
there are straightforward algorithms to generate formulas from C uniformly at random.
These properties suggest that these classes be considered as possible models of random
CNF formulas for use as benchmarks for SAT solvers.

3 Phase transition for MH n(k, m)

For every fixed k and fixed sufficiently large n, the class MH n(k) demonstrates the
classical phase-transition behavior. That is, when m (we recall that m stands for the
number of 2-clauses in a formula) is small, formulas in MH n(k) are almost certainly
satisfiable, when m is large, they are almost certainly unsatisfiable, and the transition
from satisfiability to unsatisfiability occurs rapidly (the rate of change increases with
n). Figures 1(a) and (b) show the phase transition for k = 5 and k = 10, respectively
(with n = 225 and 200 instances).

The location of the phase-transition region expressed in terms of the ratio m/n,
where m is the number of positive 2-clauses for which the phase transition occurs,
grows with k. Our experimental results for n = 200 and k = 3, . . . 25, and based on
200 instances, show that the location of the phase transition grows slightly slower than
k. Figure 2 shows the dependence.

As in the best studied case of random 3-CNF formulas, there is a strong correlation
between the phase transition region and the hardness of the instances generated from
that region. The graph given in Figure 3 is representative. It gives the average running
time in seconds for clasp on instances from the model MH n(k), for k = 5, n = 200,
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(a) (b)

Fig. 1. The phase transition k = 5 and k = 10, n = 225, 200 instances

Fig. 2. The location of the phase transition in the model MH n(k) as a function of k

as the density of 2-clauses m/n grows (for each density 100 instances were generated).
It shows that the instances requiring on average the most time come from the phase
transition region. The results for other solvers and other values of k were similar.

4 Easy-hard-easy behavior

We pointed out above that for a fixed k, as the number of 2-clauses, m, grows, instances
from MH n(k) are initially getting harder and then, after passing the area of the phase
transition, start getting easier again.

However, the framework of the classes MH n(k) we consider reveals yet another
interesting phenomenon. Being parameterized with k, it allows us to compare hardness
of instances generated from the phase transition region for different values of k. Some-
what surprisingly, it turns out that as we increase k, the easy-hard-easy pattern emerges
again. We observed an easy-hard-easy pattern using several SAT solvers that performed
well in the SAT 2009 competition [4], including precosat, glucose, clasp and march
hi (each was the winner in at least one of the categories of that competition). Initially,
as k grows, the phase-transition instances are getting harder at an increasing rate. The
hardness peaks when k ≈ 15, 16, and from that point on the instances are becoming
increasingly easier. Figure 4 illustrates that pattern observed for clasp for n = 200, and
k ranging from 1 to 50.
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Fig. 3. The correlation of the instance hardness and the phase transition regions for the model
MH n(k); k = 5, n = 200

Fig. 4. The easy-hard-easy pattern of instances generated from the phase transition region of
classes MH n(k) as a function of k.

While it is rather natural that the hardness of instances from the phase transition in
the model MH n(k) initially grows with k, it may seem surprising that at some point it
peaks and then starts to decrease. Providing a formal explanation to this phenomenon
is an interesting open problem.

5 Hard Benchmarks for SAT Solvers

Our results suggest that MHFs randomly generated from the phase transition region for
the class MH n(k) for k = 15 or 16 (located when m ≈ (k−0.5)n, where m stands for
the number of 2-clauses) can provide challenging instances for SAT solvers. It is indeed
so. We randomly generated 50 instances from MH n(k,m), with n = 350, k = 15 and
m = 14.5. Given the timeout limit of 1800 seconds, clasp and march hi solved fewer
than 20% of the satisfiable instances and none of the unsatisfiable ones.

We stress that the instances in the set MH n(15, 14.5) are small (350 atoms and 5425
clauses), and more importantly, that most of their clauses (5025) are 2-clauses. Since
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they pose a challenge for the state-of-the-art complete solvers, the class MH n(15, 14.5)
is important for the design and testing solvers performance.

The classes MH 1
n(k) offer even harder instances. While they can also serve as

benchmarks for complete solvers, even for relatively small values of n, satisfiable in-
stances from MH 1

n(15) become very hard also for local-search solvers! The selection
of k = 15 is not accidental. Our experiments showed that when we vary k, we observe
the easy-hard-easy pattern, with the peak for k ≈ 15. We also found (a property im-
portant below) that in the maximum hardness area, the percentage of instances that are
satisfiable exceeds 90%. Figure 5 illustrates these claims.

Fig. 5. The easy-hard-easy pattern for the model MH 1
n(k), and the probability of satisfiability

(n = 100)

We generated 100 random CNF formulas from each of the sets MH 1
n(15), where

n = 450 and 550. Given our experiments, the expected number of satisfiable instances
in these two sets of formulas is at least 90. We ran TNM [4] on these formulas. TNM is
currently one of the best local-search solvers. It won in the random category (satisfiable
instances only) at the SAT 2009 competition. The solver does not require any param-
eters, as it adaptively selects them. We observed that for n = 450, TNM could still
solve 86% of the instances in less than 1800 seconds (yet, already likely missing some
satisfiable instances). The larger value of n, n = 550, resulted in many hard instances.
Indeed, for n = 550, TNM solved only 53 of the 100 instances within 1800 seconds
while we expect about 90 instances to be satisfiable in this sample.

6 Conclusions

We studied classes of simple MHF’s: MH n(k) and MH 1
n. The key finding is that de-

spite their simple form, randomly generated formulas from these classes (for the ap-
propriate selections of parameters) are challenging benchmarks for the current gener-
ation of the state-of-the-art SAT solvers. Thus, formulas in these classes are relevant
for the design of fast SAT solvers and deserve attention. We studied these classes ex-
perimentally, focusing on identifying phase transitions and hardness patterns, in order
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to facilitate generation of hard formulas. Interestingly, we found that the hardness of
the instances from the phase transition region in the classes MH n(k) shows the easy-
hard-easy pattern as a function of k, with the peak hardness for k = 15. We showed
that instances generated from the phase transition region of MH n(15) (which occurs
when the number of 2-clauses is about 14.5n) pose a challenge instances for the current
generation of SAT solvers. Similarly, the instances from MH 1

n show the easy-hard-easy
behavior (as the length k of purely negative clauses, grows), with the peak hardness
when k = 15. The instances generated from MH 1

n(15) are predominantly satisfiable
(probability of a random formula generated from that class being satisfiable is at least
0.9). Those instances that are satisfiable pose a challenge for local-search solvers.

We note that the class MH 1
n is closely related to a class R− of logic programs stud-

ied in [5] and identified as containing programs that are especially hard for the current
generation of the answer-set solvers. The class R− consists of programs whose every
clause is of the form a ← not b. The completions [6] of such programs (certain CNF
theories whose models capture, in this particular case, the semantics of logic programs
given by answer sets [7]) consist of positive 2-clauses and purely negative clauses (pos-
sibly of varying lengths). Completions of programs from R−, in which every atom
appears in the head of exactly k rules form precisely the class MH 1

n(k).
This paper contains mostly experimental results. Yet it opens several interesting

theoretical questions concerning tight bounds on the location of the phase transition in
the model MH n(k), the properties of formulas in sets MH n(k) and MH 1

n(k), when k
grows with n (for instance, when k = cn, for some positive c), and possible reasons for
the easy-hard-easy pattern demonstrated by formulas from the phase transition region
of MH n(k) as k grows (or by formulas in MH 1

n(k), as k grows).
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5. Namasivayam, G., Truszczyński, M.: Simple random logic programs. In: Proccedings of

LPNMR 2009. Volume 5753 of Lecture Notes in Cmputer Science., Springer (2009) 223–235
6. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and data bases. Plenum

Press, New York-London (1978) 293–322
7. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the 5th

International Conference on Logic Programming (ICLP 1988), MIT Press (1988) 1070–1080


