
An Smodels System with Limited Lookahead

Computation

Gayathri Namasivayam and Miros law Truszczyński

Department of Computer Science, University of Kentucky, Lexington, KY
40506-0046, USA

Abstract. We describe an answer-set programming solver smodels−,
derived from smodels by eliminating some lookahead computations. We
show that for some classes of programs smodels− outperforms smodels

and demonstrate the computational potential of our approach.

1 Introduction

In this paper we describe an answer-set programming solver smodels−. It is a
modification of the smodels solver [8]. The main difference is that smodels−

attempts to identify and eliminate unnecessary lookaheads.
A common step in many answer-set programming and satisfiability solvers

consists of expanding partial truth assignments. That is, given a partial truth
assignment P , the solver applies some efficient inference rules to derive additional
truth assignments that are forced by P . In the case of satisfiability solvers this
process is called unit-propagation or boolean constraint propagation (cf. [3] for a
recent overview).

These rules generalize to logic programs. Together with some other infer-
ence rules, specific to logic programming (cf. [5] for examples), they imply an
expansion method for logic programs that can be viewed as a computation of
the Kripke-Kleene fixpoint [4]. This method can be implemented to run in lin-
ear time. A stronger expansion technique, giving in general more inferences, is
obtained when we replace the Kripke-Kleene fixpoint computation with a com-
putation of the well-founded fixpoint [9]. The greater inference power comes at
a cost. The well-founded fixpoint computation can be implemented to run in
polynomial time, but no linear-time implementation is known.

Any polynomial-time expansion technique can be strengthened to another
polynomial-time expansion method by applying the lookahead. Given a partial
assignment, we assume a truth value for an unassigned atom and apply the
expansion method at hand to the resulting partial assignment. If a contradiction
is derived, the opposite truth value can be inferred and the expansion procedure
is invoked again. The full lookahead consists of applying this technique to every
unassigned atom and to both ways atoms can be assigned truth values until no
more truth values for atoms (no more literals) can be derived. The full lookahead
and the well-founded fixpoint computation form the basis for the expansion
method used by smodels.

When expansion terminates, a typical answer-set programming solver selects
an atom for branching. This step has a major effect on the performance of the
overall search. Smodels uses the results obtained by the lookahead computation
to decide which atom to choose.

Thus, in at least two important ways the performance of smodels depends on
the full lookahead: it strengthens the expansion method, and it provides a good
method to select atoms for branching. However, the full lookahead is costly. Our
goal in this paper is to propose and implement a method that aims to improve
the performance of smodels by limiting its use of lookahead so that few essential
lookaheads (possibly even none at all) are missed. We call smodels− the resulting
modification of smodels.

2 Algorithm for Identification of Propagating Literals

An unassigned literal is propagating (with respect to a program, a partial as-
signment and a particular expansion method) if assuming it is true and running
the expansion method infers another literal that has been unassigned so far.

We will now present a method to identify propagating literals. The programs
we consider consist of rules of the following types (in particular, such programs
are output by lparse[2]; a and ai stands for atoms, li stands for literals, m, w

and wi are non-negative integers):

Basic rule: a :- l1, . . . , lk
Choice rule: {a1, . . . , an} :- l1, . . . , lk
Cardinality rule: a :- m{l1, . . . , lk}
Weight rule: a :- w{l1 = w1, . . . , lk = wk}.

A rule is active with respect to the current partial assignment if its body is
neither implied to be true nor false by the assignment. Our algorithm identifies
a literal l as propagating, if there is an active rule r which, if we assume l to be
true, allows us to make an inference. To this end, we consider all active rules
in which l or its dual, l̄, appear. Let us assume that r is a rule currently under
consideration. Let hd(r) and bd(r) denote the set of literals that appear in the
head and body of the rule r, respectively. There are four main cases (the cases
not listed below either cannot occur or do not allow additional derivations based
just on r).
Case 1. The literal l appears in the bd(r).
Case 1a: The rule r is basic. If l is the only unassigned literal in the bd(r) and
the hd(r) is unassigned then, we identify l as propagating (assuming l is true

allows us to derive the hd(r)).
If l and exactly one other literal, say l′, in the bd(r) are unassigned and, in

addition, the hd(r) is assigned false, then assuming l allows us to infer that l′

must be false. Thus, we identify l as propagating.
Case 1b: The rule r is a weight rule (the case of the cardinality rule is a special
case). If the hd(r) is unassigned and the sum of the weights of literals in the
weight atom of r that are assigned true in the current partial assignment plus

the weight of the literal l exceeds the lower bound w, then we identify l as
propagating (assuming l is true allows us to derive the hd(r)).

If the hd(r) is assigned false and the sum of the weights of literals in the
weight atom of r that are assigned true in the current partial assignment plus
the weight of l plus the largest weight of an unassigned literal other than l (say
this literal is l′) exceeds the lower bound, then we identify l as propagating
(assuming l is true would allow us to infer that l′ is false).
Case 2. The literal l̄ appears in the bd(r). To handle this case, for each atom a

we maintain a counter, ctr(a), for the number of active rules with this atom in
the head.
Case 2a: The rule r is a basic or choice rule. If the head of r is an unassigned
atom, say h, with ctr(h) = 1, or contains an unassigned atom h with ctr(h) = 1,
we identify l as propagating (assuming l to be true blocks r and allows us to
establish that h is false).

If the hd(r) is an atom h such that h is assigned true and ctr(h) = 2, or if the
hd(r) contains an atom h assigned true and such that the ctr(h) = 2, we identify
l as propagating. Assuming l is true blocks r and leaves only one active rule, say
r′, to justify h. This allows us to infer that the body of r′ is true and may allow
new inferences of literals. We do not check whether knowing that the body of r′ is
true allows new inferences. Thus, we may identify l as propagating even though
it actually is not. This may lead to some unnecessary lookaheads that smodels−

will occasionally perform. We are currently developing an implementation which
eliminates this possibility here (and in some other similar cases below).
Case 2b: The rule r is a weight rule (the cardinality rule is a special case). If
the hd(r), say h is unassigned, if ctr(h) = 1 and if setting l to true makes the
weight atom in the bd(r) false, then we identify l as propagating (setting it to
true blocks r and allows us to infer that h is false).

If h is assigned true and the ctr(h) = 1 , then we identify l as propagating
(assuming l to be true may force other literals in the weight atom to be true; in
this case we again do not actually guarantee that l will lead to new inferences).

If h is assigned true, ctr(h) = 2, and assuming l to be true forces the weight
atom in the body of r to be false (blocks r), then there is only one other rule,
say r′ that could be used to justify h. The body r′ must be true and it may lead
to new inferences of literals. Again, we identify l as propagating, even though
there is actually no guarantee that it is.
Case 3. The literal l appears in the hd(r). It follows that l is an atom. If the
ctr(l) = 1, we identify l as propagating (assuming l true forces the bd(r) to be
true and will lead to new inferences in the case of basic and choice rules, and
may lead to new inferences in the case of cardinality and weight rules).
Case 4. The literal l̄ is the hd(r) (that is, l = not h for some atom h).
Case 4a: The rule r is a basic rule. If the bd(r) contains a single unassigned
literal, say t, we identify l as propagating (assuming l true forces t to be false).
Case 4b: The rule r is a weight rule (the cardinality rule is a special case). If
the sum of the weights of all literals assigned true in the weight atom of r plus

the largest weight of an unassigned literal (say t) exceeds the lower bound, we
identify l as propagating (assuming l true allows us to infer t to be false).

3 Implementation and Usage

We implemented smodels− by modifying the source code of smodels. In smodels−,
we take each atom from the queue of atoms that smodels performs lookaheads
on and check, using the approach described above, if any of the two literals of
this atom is propagating. If so, then smodels− performs lookahead on this literal.
Otherwise, smodels− skips this lookahead.

Our program1 is used in exactly the same way as smodels. It requires that
input programs consist of rules described above. Lparse can be used to produce
programs in the appropriate input.

4 Experimental Results and Discussion

For tight logic programs our method to limit lookaheads does not miss any es-
sential lookaheads. Therefore, on tight programs smodels− and smodels traverse
the same search space. As concerns the time performance, smodels− performs
(in general) fewer lookaheads. However, it incurs an overhead related to identi-
fying atoms that do not propagate. For programs with many fewer lookaheads,
the savings outweigh the costs and we expect smodels− to perform better than
smodels. On programs where few lookaheads are saved, one might expect that
smodels− would perform worse but not drastically worse, as our algorithm to
eliminate lookaheads works in polynomial time (in the worst case).

Our experiments confirm this expected behavior. We considered three classes
of programs: (1) programs obtained by encoding as logic programs instances used
in the SAT 2006 competition of pseudo-boolean solvers [7] (154 instances); (2)
randomly generated tight logic programs (39 instances); and (3) logic programs
encoding instances of the weighted spanning-tree problem (27 instances) [1]. The
results are presented in Figure 1. The graphs show how many times smodels− is
slower or faster (whichever is the case) than smodels, based on the running times.
The instances are arranged according to ascending running time of smodels−.
The dotted lines separate the instances into those for which smodels− is slower
than, runs in the same time as, and is faster than smodels.

For the first category of programs, smodels− clearly outperforms smodels.
It is due to two factors: smodels− performs on average 71% fewer lookahead
computations; and the time needed by lookahead in smodels to discover that no
inferences can be made is non-negligible.

For the next two classes of programs, the benefits of limiting lookahead are
less obvious. Overall there is no significant difference in time in favor of any of the
methods. For programs in the second group, calling lookahead for an atom and
discovering no new inferences can be made does not take much computation due

1 Smodels− can be obtained from http://www.cs.engr.uky.edu/ai/.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100 120 140 160

Instance ID

Pseudo-Boolean instances (SAT 2006)

Times smodels- is slower than smodels
Times smodels- is faster than smodels

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 5 10 15 20 25 30 35 40

Instance ID

Random tight logic programs

Times smodels- is slower than smodels
Times smodels- is faster than smodels

Fig. 1. PB Instances and random tight logic programs

to a simple form of rules in programs (no weight or cardinality atoms, each rule
consisting of three literals). Thus, even though fewer lookaheads were made by
smodels− (16% fewer on average on programs in the second group), the savings
often did not always compensate the overhead. For the programs in the third
group, most atoms appear in 2-literal clauses and no such atom will be excluded
from lookahead by our technique. Thus, both smodels− and smodels perform
an identical number of lookahead computations and their time performance is
within a small percentage from each other (in all but one case, within 1.5% from
each other; 4% in the remaining case). As the times are essentially identical, we
do not provide the graph.

For non-tight programs, our method may eliminate lookaheads yielding new
inferences through the well-founded fixpoint computation (whether the computa-
tion yields new inferences cannot be determined by inspecting rules individually).
Therefore, the expansion method of smodels− is in general weaker than that of
smodels. Moreover, due to missing essential lookaheads, the search heuristics of
smodels− may miss atoms that will be used for branching by smodels.

Thus, for non-tight programs the benefits of using smodels− may diminish
or disappear entirely. However, in our experiments it was not so. We tested two
classes of programs: the non-tight programs encoding the traveling salesperson
problem (TSP) [6] (47 instances); and random logic programs [1] (281 instances,
all turned out to be non-tight, even though it is not a priori guaranteed). The
results are presented in Figure 2. For TSP problem, smodels− still shows an
overall better performance than smodels (although the improvement does not
exceed 7%). In the case of random programs, no program seems to have any
discernible edge.

5 Conclusion

We presented an answer-set programming solver smodels−, obtained by limiting
lookaheads in smodels. The experiments show that on tight programs smodels−

often outperforms smodels, especially on programs using many weight atoms. It

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 0 5 10 15 20 25 30 35 40 45 50

Instance ID

Travelling Salesperson Problem

Times smodels- is slower than smodels
Times smodels- is faster than smodels

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

Instance ID

Random non-tight logic program

Times smodels- is slower than smodels
Times smodels- is faster than smodels

Fig. 2. Traveling Salesperson Problem, Random Logic Program (non-tight)

is never much worse than smodels as it always searches through the same search
space and extra computation it incurs runs in polynomial time. For non-tight
programs, our experiments showed that smodels− performs comparably to smod-

els despite the fact it may miss essential lookaheads. However, we expect that
there are classes of non-tight programs on which smodels would prove superior.

In our ongoing work we study additional techniques to limit lookahead and
more efficient ways to implement them to decrease the overhead.

Acknowledgments

The authors thank Ilkka Niemelä for suggesting this research direction and
Lengning Liu for help in preparing the graphs. The authors acknowledge the
support of NSF grant IIS-0325063 and KSEF grant 1036-RDE-008.

References

1. Asparagus, http://www.asparagus.cs.uni-potsdam.de/.
2. Lparse, http://www.tcs.hut.fi/Software/smodels/.
3. H.E. Dixon, M.L. Ginsberg, and A.J. Parkes, Generalizing Boolean Satisfiability I:

Background and Survey of Existing Work, Journal of Artificial Intelligence Research
21 (2004), 193–243.

4. M. C. Fitting, A Kripke-Kleene semantics for logic programs, Journal of Logic Pro-
gramming 2 (1985), no. 4, 295–312.

5. M. Gebser and T. Schaub, Tableau calculi for answer set programming, Proceedings
of ICLP 2006 (S. Etalle and M. Truszczyński, eds.), LNCS, vol. 4079, Springer,
2006, pp. 11–25.

6. L. Liu and M. Truszczyński, http://www..cs.uky.edu/ai/pbmodels.
7. V. Manquinho and O. Roussel, Pseudo boolean evaluation 2005, 2006,

http://www.cril.univ-artois.fr/PB06/.
8. P. Simons, I. Niemelä, and T. Soininen, Extending and implementing the stable

model semantics, Artificial Intelligence 138 (2002), 181–234.
9. A. Van Gelder, K.A. Ross, and J.S. Schlipf, The well-founded semantics for general

logic programs., Journal of the ACM 38 (1991), no. 3, 620–650.

