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Abstract

All major semantics of normal logic programs and normal
logic programs with aggregates can be described as fixpoints
of the one-step provability operator or of operators that can
be derived from it. No such systematic operator-based ap-
proach to semantics of disjunctive logic programs has been
developed so far. This paper is the first step in this direc-
tion. We formalize the concept of one-step-provability for
disjunctive logic programs by means of non-deterministic op-
erators on the lattice of interpretations. We establish char-
acterizations of models, minimal models, supported models
and stable models of disjunctive logic programs in terms of
pre-fixpoints and fixpoints of non-deterministic immediate-
consequence operators and their extensions to the four-valued
setting. We develop our results for programs in propositional
language extended with monotone aggregate atoms. For the
most part, our concepts, results and proof techniques are alge-
braic, which opens a possibility for further generalizations to
the abstract algebraic setting of non-deterministic operators
on complete lattices.

Introduction

All major semantics of normal logic programs can be de-
scribed as fixpoints of thene-step provabilitpperator (van
Emden & Kowalski 1976) or operators that can be de-
rived from it (Fitting 2002). Generalizing these character
izations, researchers demonstrated that constructiauas le
ing to the fixpoints and the corresponding semantics are
of purely algebraic nature and can be stated in abstract
terms of operators on complete lattices (Denecker, Marek,
& Truszczyhski 2000). That algebraic approach is an effec-
tive tool in logic programming and was recently exploited
to develop and study semantics of logic programs with car-
dinality constraints (Marek, Niemi| & Truszczyiski 2004)
and aggregate atoms (Denecker, Pelov, & Bruynooghe 2001;
Pelov, Denecker, & Bruynooghe 2004).

One of the motivations for this work is to extend all these
semantics of programs with aggregatesligjunctivelogic
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mal models, supported models and stable models of disjunc-
tive logic programs in terms of pre-fixpoints and fixpoints
of non-deterministic immediate-consequence operatats an
their extensions to the setting of four-valued interpietet.

Since defining a semantics of programs with aggregates is
not the main focus of the paper we consider a language with
a limited form of aggregate atoms, namatpnotone aggre-
gate atomsSuch atoms extend the notion of monotone car-
dinality atoms (Marek, Niemél & Truszczyiski 2004) and
correspond to positive aggregate atoms of (Pelov, Dengcker
& Bruynooghe 2004). Logic programs with this form of ag-
gregation exhibit properties that do not hold for programs
without aggregates. For example a normal logic program
with monotone aggregate atoms may have models but no
minimal models, which is not the case for programs without
aggregates (Seipel, Minker, & Ruiz 1997). So, we develop
our results in a way that addresses that issue.

We point out that, as in the case of normal logic programs,
some of our concepts and results have direct generaliza-
tions to the abstract algebraic setting of non-determamist
operators on complete lattices. We believe that the re-
sults of our paper will prove useful in abstracting proper-
ties of non-deterministic operators corresponding tadisj
tive logic programs with monotone aggregates to more gen-
eral (and algebraically defined) classes of non-deteriitnis
operators on complete lattices and in constructing for non-
deterministic operators on lattices a counterpart of tiee th
ory of approximating operators from (Denecker, Marek, &
Truszczyiski 2000).

Preliminaries

For a setX we denote the set of all subsetsfwith P(X).
A collectionC C P(X) is upward closedf A € C and
A C BimpliesB € C.

In the paper, we study a class of disjunctive logic pro-
grams with monotone aggregates. We focus on the proposi-
tional case as the first-order case can be handled by lifting

programs. However, no systematic operator-based approachconcepts and results from the propositional one in a stan-

of the semantics of disjunctive logic programs has been de-
veloped so far. This paper is the first step in this direction.
Our contributions are as follows. We formalize the con-
cept of one-step-provability for disjunctive logic progra

by means ofion-deterministioperators on the lattice of in-
terpretations. We develop characterizations of modelsi-mi

dard way bygrounding We assume a fixed countable set
At of atoms. Amonotone aggregate atgrar ma-atomfor
short, is an expression of the folti X' ) whereC C P(At)

is an upward closed set add C At. We call X thescope

of C(X). In our discussion, we allow aggregate atoms with
infinite scopes. We denote witf), the set of all subsets of



At that contain at least elements. Clearly, is upward
closed, s@(X) is a monotone aggregate atom.

A propositional interpretatior{or, simply, aninterpreta-
tion) is a set of atoms. We denote the set of all interpreta-
tions withZ = P(At). An interpretatiorn/ satisfiesan atom
A e At, I = A, if A € 1. Aninterpretation! satisfies
an ma-atonC(X), denoted with/ = C(X),if INX € C.
Otherwise,l (= C(X). The concept of satisfaction, as well
as the notation, extends in the standard way to literals buil
of atoms and ma-atoms, and their conjunctions and disjunc-
tions.

Satisfiability of aggregate atoms is monotone, which jus-
tifies their name.

Proposition 1 For every ma-aton€ (X ) and every two in-
terpretationsI, I’ C At,if I C I’ andI | C(X) then
I' = C(X).

Due to their monotonicity property, ma-atoms can be re-
garded as direct generalization of “regular” propositiona
atoms. With that in mind, we definedisjunctive rule with
monotone aggregatess an expression of the form

A1V"'VAk<—L1A...ALm,

wherek > 1, A, are atoms fromA¢, and L; are literals
built of atoms fromA¢ and of ma-atoms. The disjunction
AyV---VA,, istheheadof r. The conjunctiol; A...AL,

is thebodyof . We use the notatiohead(r) and body(r)
for the head and the body of respectively.

A disjunctive program with monotone aggregatesa
(possibly infinite) set of disjunctive rules with monotorge a
gregates. To simplify the notation, we wrilesjunctive pro-
gram for disjunctive programs with monotone aggregates
We explicitly emphasize departures from that convention. A
disjunctive program islefiniteif it contains only atoms and
ma-atoms in the bodies of its rules.

A positive clauseés a finite disjunction of atoms from .
The disjunctive bas®f a programP, BV (P), is the set of
all positive clauses consisting of atoms#ih For a setC
of positive clausesd¢(C') denotes the set of all atomsdh
We note that heads of disjunctive rules are positive clauses

An interpretation/ satisfiesor is amodel ofa disjunctive
rule r, written asI |= r, if I = body(r) implies thatl =
head(r). An interpretation/ satisfies or is amodel ofa
disjunctive progran®, I |= P, if I satisfies every rule aP.

A model I of a disjunctive progran is minimal if for
every modell’ of P, I’ C I implies thatl’ = I. We denote
the set of all models of a programby Mod(P) and the set
of all minimal models byMM (P).

The fact that we allow ma-atoms with infinite scope is im-
portant and makes the setting essentially different froen th
standard one. In particular, it is known (Seipel, Minker, &
Ruiz 1997) that every model of a disjunctive logic program
(without aggregates) contains a minimal model. That prop-
erty does not hold in our setting (even without disjunction i
the heads).

Example 1 Let P be the program consisting of all clauses
of the form

p — Ci(At), 2(Cry1(Al))

wherep € At, k = 1,2,... and C; is the collection of
sets we introduced earlier. Every infinite interpretatién
I C At, is a model ofP (the body of every rule is false in
I). However, no finite interpretatioh, I C At, is a model
of P (for everyp € At, there is a rule inP with the head
and with the body true if).

Non-deterministic Operators on the Lattice of
Interpretations

Our goal is to generalize supported-model and stable-model
semantics to the case of disjunctive programs with monotone
aggregates and show that they can be described and studied
by means of non-deterministic operators on the lattice-of in
terpretations. In this section, we recall some basic testnin

ogy and results.

Definition 1 A non-deterministic operat@nZ is any func-
tion N: Z — P(Z) such that for every € Z, N(I) # 0.

Informally, N(I) describes all possible outcomes of ap-
plying an operatoiV to I. There is at least one outcome to
choose from and each of them can be chosen.

An important class of (deterministic) operators that ap-
pear in the studies of normal logic programs (also in the
case of normal logic programs with aggregates) is the class
of monotoneoperators on the lattice of interpretations.
There are several ways to generalize that class in the non-
deterministic setting. The one that is relevant to us is thase
on theSmyth pre-order<°. Given subsetsA and B of Z,
we write A <° Bif

for everyB € B there isA € A such thatd C B.

The relation<* is reflexive and transitive but, in general,
not antisymmetric. It is therefore a pre-order but, in gaher
not an order on the s@(7).

Let V be a non-deterministic operator @n The operator
N is Smyth-monotonéor, simply, monotone — as we do
not consider here any other pre-ordersR(T)) if for every
interpretationd, J € Z,

I C JimpliesN(I) =x” N(J).

An interpretation/ is afixpointof N if I € N(I). We
denote the set of all fixpoints df with fp(N) and the set
of all minimal fixpoints of N with mfp(N). A pre-fixpoint
of N is an interpretationl such thatN (1) <% {I}, that
is, there exists] € N(I) such that/ C I. We denote
the set of all pre-fixpoints oV with pre(N). We have the
following basic result concerning pre-fixpoints and fixgsin
of monotone non-deterministic operators.

Lemmallet N : 7T — P(Z) be a monotone non-
deterministic operator off. If I is a minimal pre-fixpoint
of N then[ is a minimal fixpoint ofV.

Proof: Sincel is a pre-fixpoint ofN, there exists/ € N
such that/ C I. By the monotonicity ofN, N(J

N(I) and asJ € N(I), it follows that N(J) <S {J}
Consequently,/ is a pre-fixpoint of V. Sincel is a minimal
pre-fixpoint of N andJ C I, J = I. Thus,I € N(I) and/

is a fixpoint of N. Since fixpoints ofN are pre-fixpoints of
N, I is a minimal fixpoint ofNV. O



Operators, for which also the converse holds, play a par-
ticularly important role in our considerations.

Definition 2 We call a non-deterministic operatd¥ : 7 —
P(Z) downward closedf the set of pre-fixpoints oN is
closed under greatest lower bounds of descending chains.
That is, N is downward closed if for every sequencefof
{A¢}e<q Of interpretations such that

1. for every¢ < o, A¢ is a pre-fixpoint ofV, and
2. forevery¢ < ¢ < a, Ag C A
the setd = ") A is a pre-fixpoint ofV.

The following property of downward closed operators fol-
lows directly from Zorn Lemma.

Lemma?2 Let N : 7T — P(Z) be a non-deterministic op-
erator onZ that is downward closed. Then, for every pre-
fixpoint I of IV there is a minimal pre-fixpoint’ of V such
that!’ C I.

Corollaryl Let N : Z — P(Z) be a monotone non-
deterministic operator off that is downward closed. Then,
an interpretation/ is a minimal pre-fixpoint ofV if and only

if I is a minimal fixpoint ofV.

Proof: In view of Lemma 1, only the “if” part needs a proof.
Let I be a minimal fixpoint ofN. Then! is a pre-fixpoint
of N. By Lemma 2, there i¢’ C I such thatl’ is a minimal
pre-fixpoint of N. By Lemma 1,1’ is a fixpoint of N. By
minimality of 7, I’ = I and[ is a minimal pre-fixpoint of
N. O

Immediate-consequence Operators for
Disjunctive Programs

To develop an operator-based framework for disjunctive
logic programs, the key step is to introduce for such pro-
grams the concept of the immediate-consequence operator.
Since the heads of rules are disjunctions of atoms, un-
like in the case of normal logic programs (with aggregates),
when the body of arule is satisfied by an interpretationgher
is no single atom that is forced. Instead, there are several
ways to satisfy the disjunctive constraint described by the
head of the rule. This suggests that, given an input interpre

We have the following simple property of the head reduct
of a disjunctive program.

Lemma 3 Let P be a disjunctive program. For every inter-
pretationl, I = Pifandonly if] = HRp(I).

Proof: LetC' be a positive clause. By the definitioff, €
HRp(I) if and only if there exists a clause € P such
that head(r) = C andI | body(r). Thus, ifI = P,
thenI = HRp(I). Conversely, letr € P be such that
I |= body(r). Then,head(r) € HRp(I) andl = head(r).
Consequently] = r. O

In the second step, we introduce the concepts#laction
function Let P be a disjunctive program. Given a collection
of positive clause§’ C BY(P), a selection function returns
some set of models @f. We will denote the set of models of
C with Mod(C) (since a collection of positive clauses can
be viewed as a disjunctive program whose rules have empty
baodies, this notation is consistent with the notatidod (P),
we introduced earlier for the set of models of a progi@m

Definition 4 (Selection Function) Let P be a disjunctive
program. A selection functionis a function Sel:
P(BY(P)) — P(Z) such that for every set of positive
clausesC C BY(P), Sel(C) satisfies the following con-
ditions:

Sel(C) C Mod(C) (P1)
Sel(C) =% Mod(C) (P2)
I C At(C) for everyI € Sel(C) (P3)

The first condition ensures thafel(C') contains only
models ofC'. The second condition ensures that every model
of C is coveredby some interpretation i§el(C). Finally,
the third condition guarantees that interpretationSdi{C')
consist only of relevant atoms, that is, atoms that appear in
clauses irC. This condition allows us later to properly gen-
eralize the concept of a supported model.

We note that Definition 4 implies directly that for every
selection functionSel, Sel(§) = {0}. Furthermore, it is
easy to show that for every selection functiel, Sel(C')
always includes the set of minimal models@f which we
denote withMM (C).

tation, the process of drawing immediate consequences from Proposition 2 For every selection functioflel, MM (C) C

a disjunctive program is inherenthon-deterministic Con-
sequently, to formalize it we utilizeaon-deterministicop-
erators on the lattice of interpretations. The crucial feat

of our approach is that we do not propose a single specific

immediate-consequence operator but define the concept byI € Sel(C).

imposing some general desiderata. Interestingly, it tatris
that all operators that satisfy our requirements have timesa
basic properties and properly capture key semantic proper-
ties of the program.

We proceed in three steps. In the first step we collect the

heads of all clauses whose bodies are satisfied by an inputpyqof: Letc ¢ BV

interpretation/.

Definition 3 Thehead reducof a disjunctive progranP is
afunctionHRp : T — P(BY(P)) defined as:

HRp(I) = {head(r) | r € PandI = body(r)}.

Sel(C).

Proof: Let! € MM (C). Then! is a model ofC' and, by
(P2), there existg € Sel(C) such that] C I. By (P1),
J € Mod(C). Sincel is a minimal model of”, J = I and
O

In fact, assigning to a collection of positive claugéshe
setMM (C) of minimal models of” yields a selection func-
tion.

Proposition 3 The functiomMM (C) is a selection function.

(P). Clearly, by the definition of mini-
mal models MM (C) C Mod(C). Thus, the condition (P1)
follows. Next, MM (C) =% Mod(C), as every model of’
contains a minimal model af' (this fact is well known and
follows, in particular, from the result by (Seipel, Minké,
Ruiz 1997), which we mentioned earlier). Consequently, the



condition (P2) follows. Finally, the condition (P3) is eeitt.
O

Another possible selection function assigns to everyset
of positive clauses the set of all those model§’ahat con-
sist only of atoms frond’'. We denote this selection function
with Mod® and the corresponding set of interpretations with
Mod?(C) (the subscripts indicates that we focus here on
models built of atoms appearing @ andnot on all mod-
els of C built of atoms inAt). The selection functiond/M
and Mod?® are the two extreme cases of selection functions
in the sense tha/M (C) C Sel(C) C Mod*(C') for every
selection functionSel. We now show that every selection
function Sel is <°-monotone.

Lemma 4 LetC; andC> be two sets of positive clauses. If
C1 C Oy thenSel(Cl) js SBZ(CQ)

Proof: LetJ, € Sel(Cs). By property (P1))> | Cs. Since
C1 C Oy then alsoJz| a4,y F C1. By (P2) there exists
Jp € 561(01) such that/; C J2|At(Cl) C Js. O

We are ready to complete the definition of non-
deterministic immediate-consequence operators of a dis-
junctive logic programP. The basic intuition is to view a
disjunctive programP as a device to revise interpretations.
To revise an interpretatioh, we first derive the heads of all
rules in P that are applicable with respect fo that is, all
positive clauses if{Rp(I). Given a fixed selection func-
tion, this set of clauses determines some collection of mod-
els of HRp(I). Any of these models can be viewed as a
plausible revision of and its immediate consequence with
respect taP (and under this fixed selection function). This
intuition is formalized below.

Definition 5 (Non-deterministic Operator) Given a se-
lection function Sel, a non-deterministic immediate-
consequence operatdés®: T — P(I), based onSel is
defined as:

N2e(T) = Sel(HRp(I)).

We simply writeN p instead ofV 3¢, whenever the selection
function Sel is clear from the context or the choice of any
particular selection function is immaterial.

The next two results hold for every choice of the selection
function. First, we show that non-deterministic immediate

consequence operators collapse to the van Emden-Kowalski

Next, we show that models of a disjunctive program coin-
cide with pre-fixpoints of an immediate-consequence oper-
ator (no matter what selection function is used). That tesul
generalizes a similar characterization of models of normal
programs (Apt, Blair, & Walker 1988).

Theorem 1 Let P be a disjunctive program.
Mod(P) = pre(Np).

Proof: Letl € pre(Np). For every ruler € P, if I
body(r) thenI = r. Thus, let us consider a rulec P such
that] = body(r). By the definition ofHRp(I), head(r) €
HRp(I). Since,Np(I) =% {I}, there is an interpretation
J € Np(I)suchthat/] C I. Clearly,J = HRp(I) and,
consequently/ |= head(r). SinceJ C I and sincéead(r)
is a positive clausd, = r.

Conversely, letl € Mod(P). By Lemma 3,1 =
HRp(I). By (P2) there existd € Sel(HRp(I)) = Np(I)
such that/ C I. Thus,J € Np(I) and, consequently,
Np(I) =5 {I}. O

For specific selection functions we can show a correspon-
dence between fixpoints of the non-deterministic operator
Np and supported models. There are two different notions
of supported models for disjunctive logic programs: weakly
supported (Brass & Dix 1997) and supported (Brass & Dix
1997; Inoue & Sakama 1998). The difference between the
two is whether a single rule can be used as a support of more
than one atom in the head.

Then

Definition 6 An interpretation I is a weakly supported
modelof a programP if I = P and for every atomd € I
there exists a rule € P such that! = body(r) and
A € head(r). An interpretation! is a supported modedf
a programP if I = P and for every atomi € I there ex-
ists a ruler € P such thatl = body(r), A € head(r),
and head(r) NI = {A}. The sets of weakly supported
and supported models of a program are denoted with
W-SUPRP) and SUPRP) respectively.

Ouir first result on supported models holds for any selec-
tion function.

Proposition 5 Let P be a disjunctive program andel
a selection function. Then SUPP) C fp(N3¢) C
W-SUPRP).

immediate-consequence operator (no matter what selection Proof: Let/ be a supported model. Becaus¢= P then,

function is used) if we restrict attention to the class of-nor
mal logic programs (no disjunctions in the heads of the rules

and no aggregates) or, more generally, to the van Emden-

Kowalski immediate-consequence operator for normal logic
programs with aggregates (Pelov, Denecker, & Bruynooghe
2004).

Proposition 4 If P is normal logic program with monotone
aggregates, theVp (1) = {T»(I)} (P is regarded as a dis-
junctive program, when computingg (1), and as a normal

logic program, when computingp (1)).

Proof: SinceP is a normal logic program with aggregates,
HRp(I) consists of atoms anffRp(I) = Tp(I). More-
over, for every selection functioWel, Sel(HRp(I)) =
{HRp(I)} and the assertion follows. ad

by Theorem 1, there exists € N3¢ (I) such that/ C 1.
Suppose thafl C I, i.e., there exists an atosh € I — J.
Becausel is supported andl € I then there exists a rule
r € P such thatl = body(r) andI N head(r) = {A}.
Consequentlyhead(r) € HRPQI) butJ (= head(r), which
is a contradiction with/ € N2¢/(I) and (P1).

LetI € fp(Ng), i.e., I € N5H(I) = Sel(HRp(I)).
Then for every atomA € [ there exists a claus€ €
HRp(I) such thatA € C (by (P3)). Moreover, for this
clause there exists a rutec P such thatl |= body(r) and
C = head(r). This implies that/ is a weakly supported
model. O

We can obtain a precise characterization of the weakly
supported and supported models as fixpoint&/pfby tak-
ing specific selection functions.



Theorem 2 Let P be a disjunctive program. Then,

SUPRP) = fp(Np"™).

Proof: The inclusiorBUPRP) C fp(NMM) follows from
Proposition 5. Letl € NMM (1) = MM (HRp(I)). Then
foreveryA € I there exists at least one clauses HRp(I)
suchthaf NC = {A} (otherwise]—{ A} would be a model
of HRp(I)). But then there also exists a rlle«— B € P
suchthatl = BandInC = {A}. Hence/[l is asupported
model.

Theorem 3 Let P be a disjunctive program.
W-SUPRP) = fp(NMed™).
Proof: Letl € W-SUPRP). Sincel = P, it follows by
Lemma 3 thatl = HRp(I). Moreover, sincd is a weakly
supported model, for every atorh € I there exists a rule
r € P such thatl = body(r) and A € head(r). The
first condition implies thakead(r) € HRp(I) and together
with the second condition we haveC At(HRp(I)). Thus
I € Mod®(HRp(I)) = NMed ().

The opposite dlrectlon follows from Proposition 5. O

Then,

Definite Disjunctive Programs

Definite programs without disjunctions have a single min-
imal (in fact, least) model. Moreover, tHE-> operator is
monotone and its least fixpoint is equal to the least model of
P. Onthe other hand, definitisjunctiveprograms can have
several minimal models. However, we can still establish a
correspondence between minimal model$’aind minimal
fixpoints of Np, which is the goal of this subsection.

Proposition 6 If P is a definite disjunctive program, then
Np is monotone, that i, C J impliesNp(I) <5 Np(J).

Proof: SinceP is a definite program, iff C J then
HRp(I) C HRp(J). Thus, by Lemma 4,

Sel(HRp(I)) =° Sel(HRp(J)),

which impliesNp (1) <% Np(J). o

The main result of this section is that for a definite dis-
junctive program the set of minimal models is equal to the
set of minimal fixpoints ofVp. That result holds no matter
what selection function is used. We start by showing that we
can apply Corollary 1.

Lemma5 Let P be a definite disjunctive program. Then
Np is downward closed.

Proof: LetA = {A; | £ < o} be a descending chain of
pre-fixpoints models ofNp. Let B = ().A. We will show
that B is a pre-fixpoint ofP. It is so if A is finite. So, we
will assume thatd is infinite.

Letr € P andB = body(r). ForeveryA € A, B C A.
Sincer is a definite clauseA = body(r). Moreover, A
is @ model ofr. Thus,A | head(r) and there is a dis-
junct of head(r) that belongs taA. The number of dis-
juncts in head(r) is finite. Thus, at least one of them be-
longs to infinitely many interpretationd in A. Since A
is a descending chain, that particular disjunct belongdlito a
interpretations in4 and, so, toB as well. It follows that
B = head(r), B = r and, finally, thatB |= P. By Theo-
rem 1,B is a pre-fixpoint ofNp. |

Theorem 4 Let P be a definite disjunctive program. Then
MM (P) = mfp(Np).
Proof: (=) By Theorem 1 there is a one to one correspon-
dence between models &f and pre-fixpoints ofNp. So
minimal models ofP are minimal pre-fixpoints oVp and,
by Lemma 1, they are minimal fixpoints.
(<) Let M be a minimal fixpoint ofVp. SinceNp is down-
ward closed (Lemma 5), by Corollary 1/ is a minimal
pre-fixpoint of Np and, consequently, a minimal model of
P (by Theorem 1). O

The following example shows that Theorem 4 does not
hold for general disjunctive programs no matter what selec-
tion function is used.

Example 2 Consider the following disjunctive logic pro-
gramP:

aVb.
¢ «— —d.

The interpretation] = {a,d} is a minimal model ofP.
However,I is not a fixpoint of Np for any selection func-
tion. Indeed, using the selection functidfiod® we have
NMo'(I) = {{a},{b},{a,b}} and I ¢ Np(I). The
claim holds for every selection functigi/ sinceSel(C) C
Mod?®(C).

One result from the theory of monotone operators, which
we did not generalize is the computation of the least fixpoint
by iterating the immediate-consequence operator. There ar
two issues here. First, one needs to generalize the notion
of iteration of an operator to the setting of non-deterntiais
operators. Second, one needs to choose an appropriate selec
tion function to specify a particular immediate-conseaasn
operator. The question is whether one can address both is-
sues so that the results of computations with respect to the
selected immediate-consequence operatprare precisely
the minimal models of” (minimal pre-fixpoints ofVp).

A possible way to approach the first issue is to generalize
the concept of an iteration of an operator by meansooifi-
putations(Marek, Niemeh, & Truszczyski 2004). Given a
non-deterministic operatdvp onP(At), we define a com-
putation of Np as a sequenceX,, }n—o.1...., whereXy = 0,
Xnt+1 € Np(X,), andX,, C X, 14, for everyn > 0. We
call Ufzo X, theresultof the computatio{ X, },,=0 1,....

As concerns the second issue, the most natural candidate
seems to be the selection functidfhl/. Indeed, other selec-
tion function would allow for a possibility of selecting non
minimal models of the set of rule heads computed in inter-
mediate steps, and would not guarantee minimality of the re-
sults of computations. However, the selection functiéi/
does not work. There are programs for which some minimal
models cannot be obtained as a result of any computation of
the operatorVA'™, and there are programs for which the
results of some computations are not minimal models. The
following two examples illustrate these cases.

Example 3 Let P consists of the clauses
aVbVe
a«—b
b—c
C < Q.



Applying the operatorNA™ to the empty interpreta-
tion we obtain NAM () {{a}, {b},{c}}. How-
ever, Np™({a}) = {{c}}, Np™({c}) = {{b}}, and
NMM({p}) = {{a}}. Thus the only model of the program
{a,b,c} (which is also minimal) cannot be reached by any
computation.

Example 4 Let At = {a1, az,...} and letP consist of the
clauses

ay V a9

ai\/ajHaj_z, 712>3,1<i<.
Let X,, = {ai,...,a,}. Clearly the sequenc&,, X1, ...
is a computation andit is its result. HoweverAt is not a

minimal model of this program. For instancfs, as, ...}
is a model, ofP, too.

These examples indicate that either (1) minimal models

of definite programs do not have a characterization as re-
sults of computations for an immediate-consequence opera-

tor, or that (2) the notion of computation is not the correct
generalization of the idea of iterating an operator or, Fnal
(and least likely) that (3) a selection function other tiadm/
needs to be used.

Approximating Operators and Stable Models

The main goal of this section is to develop a fixpoint char-
acterization of the stable semantics of disjunctive logez p
grams (Gelfond & Lifschitz 1991; Przymusinski 1991). We
exploit ideas from approximation theory (Denecker, Marek,
& Truszczyhski 2000) and define the notion of an approxi-
mating operatord p of the non-deterministic operatdyp.
Unlike in (Denecker, Marek, & Truszchgki 2000), where
both the domain and the range of tiig operator are ap-
proximated, here we approximate only the domain offze

stable models (which include the well-founded model). The

presentation is developed in the language with ma-atoms. As4

a result, we obtain a novel definition of a stable semantics
for disjunctive programs with monotone aggregates. This
semantics extends the stable semantics of disjunctive logi
programs without aggregates (Gelfond & Lifschitz 1991;

Przymusinski 1991) and the stable semantics of normal logic

(Il,fg) ): LiANLyif (Il,fg) ): L4 and(Il,Ig) ): Lo,
whereL; and L, are literals (atoms, ma-atoms or their
negations).

Definition 8 The extended head redudor a disjunctive
programP is a functionEp : 7 x Z — P(BY (P)) defined
as:

Ep(I1,I3) = {head(r) | r € Pand(Iy, I2) = body(r)}

The second step in the definition 4f is exactly the same
as forNp.

Definition 9 Let P be a disjunctive program$el a selec-
tion function andV 3¢ : 7 — P(Z) a non-deterministic op-
erator based orflel. Theapproximating operatod 7 : Z x
T — P(Z) of P is defined as:

AP, 1) = Sel(Ep(I1, ).

Again, whenever the selection functidfl is clear from
the context or its choice is irrelevant, we simply write>
instead of A7°!. The operatordp has similar properties
and relationship withVy as an approximating operator on
the product lattice to the corresponding operator on the lat
tice, according to approximation theory (Denecker, Marek,
& Truszczyhski 2000). To state the appropriate result, we
note that elements &f x Z can be ordered by therecision
ordering<,. Namely, we writeg(I1, Is) <, (J1, Jo) if

I; C [2 and.]g C J;.

We refer the reader to (Denecker, Marek, & Truszcsi§i
2000) for a detailed discussion of this ordering and its role
in algebraic approaches to knowledge representation.

Proposition 7 Let P be a disjunctive program.

[ 1. Ep(I,I)= HRp(I)
operator. Consequently, we define only a two-valued stable 5 Ap extendsNp, i.e., Ap(I, ) = Np(I).
semantics and not the entire class of three and four valueds_ (1. o) <, (J1. J2) impliesEp(1,,

I) € Ep(J1,J2)
Ap is monotone, that is(1,I2) <, (J1,J2) implies
Ap(I1,I3) =5 Ap(J1, J2).
For every interpretatiod € Z, the operatod p induces
a non-deterministic operator &b namely: Ap (-, I). This

operator has the following properties.

programs with positive aggregate atoms (Pelov, Denecker, & Proposition 8 Let P be a disjunctive program.

Bruynooghe 2004).
The definition ofA p is similar to that of Np but to com-

pute the head reduct we evaluate rule bodies with respect

1. For every interpretationl € Z, the operatorAp(-,Ig

is monotone, that is,J C J' implies Ap(J,I) =
Ap(J', 1)

to 4-valued interpretations These are functions assigning 2. For every interpretation € Z, the operatorAp(-, I) is

to propositional atoms, logical valugs(true), f (false),u
(unknown) andi (inconsistent). We represent 4-valued in-
terpretations as paifdy, Is) € Z x Z.

Definition 7 Satisfiability of atoms, ma-atoms, literals, and
conjunctions of literals in 4-valued interpretations idfided
as follows:

(I;,I) E Aif I E A, whereA is an atom or ma-
atom

(I, 1) = A if (I5, 1) ~= A, whereA is an atom or
ma-atom

downward closed

3. IfJ € mfp(Ap(-, 1)), thenJ € MM(Ep(J,I)).

Proof. (Sketch) The first assertion follows directly from
Proposition 7(4). The second assertion can be proved in
exactly the same way as Lemma 5. To prove the third as-
sertion, let us assume thdat € mfp(Ap(-,I)). By the
definition, J is a model of Ep(J,I). Since Ep(J,I) is

a collection of standard propositional clauses, there is a
minimal modelJ’ of Ep(J,I) such that/’ C J. Since
Ep(J',I) C Ep(J,I) (Proposition 7(3)),J’ is a model



of Ep(J’,I). By the definition of a selection function, it  Theorem 6 Let P be a disjunctive logic program without

follows that Ap(J’, 1) <% {J'}. In other words,J’ is a aggregates. Then/ is a stable model of (according to
pre-fixpoint of Ap (-, I). SinceJ is a minimal fixpoint of (Gelfond & Lifschitz 1991)) if and only if\/ is a stable
Ap(-, 1), itis a minimal pre-fixpoint ofAp (-, I') (by Corol- model according to the definition of stable models of pro-
lary 1, asAp (-, I) is monotone and downward closed). Con- grams with aggregates outlined above.

sequently)’ = JandJ € MM (Ep(J,I)). O

Theorem 7 If P is an aggregate program without disjunc-

tion then M is a stable model o (according to Defini-

tion 10) if and only ifP is a stable model oP according to

Definition 10 Let P be a disjunctive program. An interpre-  (Pelov, Denecker, & Bruynooghe 2004).

tation I is astable modebf P if I € mfp(Ap(-,I)). We close this section by noting that our proposal for the
The notion of a stable model is well defined as it does not Stable-model semantics of disjunctive programs with aggre

d don th lection functi d to define th tor gates differs from othgr apprqaches such as (Dell’ el
J\?If.e'll?ha?r;)rogesr(tayefgIll(c))Cvsugi(r:elgtTyuf?gm gur?]gg regutl)t?era or 2003; Gelfond 2002) in that in our semantics stable models

are always minimal (general version of Theorem 5).

We are now ready to extend the notion of stable models to
the class of disjunctive programs with monotone aggregates

Proposition 9 Let P be a disjunctive program and let _
Sel be a selection function. Themfp(A7 (-, 1)) = Conclusions and Future Work

mfp(ApM (-, 1)). In the paper we proposed an operator-based approach to se-

Proof: Let € mfp(ASe(-, T)). ThenI € MM(Ep(I, I)) mantics of disjunctive logic programs with monotone aggre-

. MM gates. We described models, supported models, weakly sup-
(Proposition 8).  Consequently, € AR (1, 1). If J & ported models and stable models of disjunctive programs in

Aj‘fM(f], I), for someJ C I, thenJ € A, T)) (as, for terms of fixpoints of appropriate non-deterministic operst
every interpretation/, AYM (J,1) € A$(J,1).). Since on the lattice of interpretations. For the most part, oupfso
I € mfp(AF(-, 1)), I = J and, consequently] e are algebraic, which opens a possibility for further gehera
mfp(AMM (. 1)). izations.

Conversely, if I € mfp(AMM (. 1)), then I ¢ We think that it is of considerable interest to extend the

AMM(T 1), Thus,I € A$¢Y(I,T). Let.J C T be such that full framework of approximation theory of operators on

J € mfp(AS(-, I)). SuchJ exists asA$¥!(-, ) is down- lattices (Denecker, Marek, & Truszazgki 2000) to non-

ward closed and Lemma 2 applies. By Proposition 8(3, deterministic operators on Igttlc_es, and to provide a pu_rel

MM (Ep(J, 1)) and, consequently] € A¥M (J, ). Since a_b;trac; algeb.ra|c characterlzatlor] of the stable senm_mh

T € mfp(AMM (.. 1)), J = I andI € mfp(ASE(J, T)). O dlsmnctlve Iog|g programs. We bellleve_ tha;the resu'ltials't'
The nexftheo’rem states that stable molaels’are models c)fsectlon are an important step in this _dlrect|on. We idemtifie

a disjunctive logic progran® (the definition does not make several concepts and properties, which may prove useful.

that licity. In fact. stabl del both minimal and First, we identified theSmyth pre-orders the basis for
at explicit). In fact, stable models are both minimal and 44y cing the class ahonotonenon-deterministic opera-
supported models af.

tors. This does not come as a surprise considering that this

Theorem 5 Let P be a disjunctive program. If is a stable order was originally introduced to model non-determieisti
model of P then  is both supported and minimal model of ~ computations (Smyth 1978). Next, we showed that models
P. of programs correspond to pre-fixpoints and supported mod-
_ o els correspond to fixpoints of non-deterministic immediate
Proof: Letl € mfp(Ap(-,1)). ThenI is a fixpoint of consequence operators, extending the corresponding prop-
AFM(-,T) (as the definition of stable models does not de- erty in normal logic programming (Apt, Blair, & Walker
pend on the choice of the selection function), thatlis 1988). Finally, we identified a crucial class of down-
APM(I,1). By Proposition 7] € N™(I). Thus,T is a ward closed operators and showed that all monotone non-
fixpoint of NA™ and, by Theorem 2, a supported model of ~ deterministic operators that arise in our consideratioss a
P. downward closed. That class of operators is important as
Let us assume thaf is a model ofP such that/ C I. every pre-fixpoint of a downward closed operator contains a
One can show thaf is a pre-fixpoint ofdp (-, I'). By Corol- minimal pre-fixpoint, a property we used several times in the
lary 1 (we recall thatdp(-, I) is monotone and downward  paper. It is an interesting question to identify other sienpl
closed),J contains a minimal pre-fixpoinf’ of Ap(-,I). conditions that imply that property.
By Lemma 1,.J’ is also a fixpoint ofAp(-,I). Since Our definition of the approximating operatdry differs
I € mfp(Ap(-,I)), J' = I and, consequently] = I. from the abstract notion of approximating operator of (De-
Thus,I is a minimal model ofP. o necker, Marek, & Truszczski 2000) in two ways. First,

When restricted to the appropriate classes of programs, we did not introduce an abstract algebraic definition of a
our semantics coincides with the stable-model semantics of non-deterministic approximating operator in the same way
disjunctive logic programs (Gelfond & Lifschitz 1991; Przy = as (Denecker, Marek, & Truszcagki 2000). Instead, we
musinski 1991) and exact stable models of aggregate pro- gave a concrete definition of an approximating operator and
grams without disjunction (Pelov, Denecker, & Bruynooghe then showed that it is monotone and extendsXheopera-
2004). Indeed, we have the following two results. tor. A more important difference with (Denecker, Marek, &



Truszczyski 2000) is that we approximate only the domain
of the Np operator and not its result. Consequently, we are
able to characterize only the set of two-valued stable nsodel
of disjunctive logic programs and not the entire set of four
and three-valued stable models (Przymusinski 1991). This
is an important direction for future research.

Although our language is restricted only to monotone ag-

gregate atoms, we believe that our results can be extended

to disjunctive programs with arbitrary aggregate atoms, fo
example using the techniques and constructions of (Pelov,
Denecker, & Bruynooghe 2004). This is another direction
for future work.
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