
Semantics of Disjunctive Programs with Monotone Aggregates —
an Operator-based Approach

Nikolay Pelov
Department of Computer Science

K.U. Leuven
Celestijnenlaan 200A

B-3001 Heverlee, Belgium

Mirosław Truszczyński
Department of Computer Science

University of Kentucky
Lexington, KY 40506-0046, USA

Abstract

All major semantics of normal logic programs and normal
logic programs with aggregates can be described as fixpoints
of the one-step provability operator or of operators that can
be derived from it. No such systematic operator-based ap-
proach to semantics of disjunctive logic programs has been
developed so far. This paper is the first step in this direc-
tion. We formalize the concept of one-step-provability for
disjunctive logic programs by means of non-deterministic op-
erators on the lattice of interpretations. We establish char-
acterizations of models, minimal models, supported models
and stable models of disjunctive logic programs in terms of
pre-fixpoints and fixpoints of non-deterministic immediate-
consequence operators and their extensions to the four-valued
setting. We develop our results for programs in propositional
language extended with monotone aggregate atoms. For the
most part, our concepts, results and proof techniques are alge-
braic, which opens a possibility for further generalizations to
the abstract algebraic setting of non-deterministic operators
on complete lattices.

Introduction
All major semantics of normal logic programs can be de-
scribed as fixpoints of theone-step provabilityoperator (van
Emden & Kowalski 1976) or operators that can be de-
rived from it (Fitting 2002). Generalizing these character-
izations, researchers demonstrated that constructions lead-
ing to the fixpoints and the corresponding semantics are
of purely algebraic nature and can be stated in abstract
terms of operators on complete lattices (Denecker, Marek,
& Truszczýnski 2000). That algebraic approach is an effec-
tive tool in logic programming and was recently exploited
to develop and study semantics of logic programs with car-
dinality constraints (Marek, Niemelä, & Truszczýnski 2004)
and aggregate atoms (Denecker, Pelov, & Bruynooghe 2001;
Pelov, Denecker, & Bruynooghe 2004).

One of the motivations for this work is to extend all these
semantics of programs with aggregates todisjunctivelogic
programs. However, no systematic operator-based approach
of the semantics of disjunctive logic programs has been de-
veloped so far. This paper is the first step in this direction.
Our contributions are as follows. We formalize the con-
cept of one-step-provability for disjunctive logic programs
by means ofnon-deterministicoperators on the lattice of in-
terpretations. We develop characterizations of models, mini-

mal models, supported models and stable models of disjunc-
tive logic programs in terms of pre-fixpoints and fixpoints
of non-deterministic immediate-consequence operators and
their extensions to the setting of four-valued interpretations.

Since defining a semantics of programs with aggregates is
not the main focus of the paper we consider a language with
a limited form of aggregate atoms, namelymonotone aggre-
gate atoms. Such atoms extend the notion of monotone car-
dinality atoms (Marek, Niemelä, & Truszczýnski 2004) and
correspond to positive aggregate atoms of (Pelov, Denecker,
& Bruynooghe 2004). Logic programs with this form of ag-
gregation exhibit properties that do not hold for programs
without aggregates. For example a normal logic program
with monotone aggregate atoms may have models but no
minimal models, which is not the case for programs without
aggregates (Seipel, Minker, & Ruiz 1997). So, we develop
our results in a way that addresses that issue.

We point out that, as in the case of normal logic programs,
some of our concepts and results have direct generaliza-
tions to the abstract algebraic setting of non-deterministic
operators on complete lattices. We believe that the re-
sults of our paper will prove useful in abstracting proper-
ties of non-deterministic operators corresponding to disjunc-
tive logic programs with monotone aggregates to more gen-
eral (and algebraically defined) classes of non-deterministic
operators on complete lattices and in constructing for non-
deterministic operators on lattices a counterpart of the the-
ory of approximating operators from (Denecker, Marek, &
Truszczýnski 2000).

Preliminaries
For a setX we denote the set of all subsets ofX with P(X).
A collection C ⊆ P(X) is upward closedif A ∈ C and
A ⊆ B impliesB ∈ C.

In the paper, we study a class of disjunctive logic pro-
grams with monotone aggregates. We focus on the proposi-
tional case as the first-order case can be handled by lifting
concepts and results from the propositional one in a stan-
dard way bygrounding. We assume a fixed countable set
At of atoms. Amonotone aggregate atom, or ma-atomfor
short, is an expression of the formC(X) whereC ⊆ P(At)
is an upward closed set andX ⊆ At . We callX thescope
of C(X). In our discussion, we allow aggregate atoms with
infinite scopes. We denote withCk the set of all subsets of

At that contain at leastk elements. Clearly,Ck is upward
closed, soCk(X) is a monotone aggregate atom.

A propositional interpretation(or, simply, aninterpreta-
tion) is a set of atoms. We denote the set of all interpreta-
tions withI = P(At). An interpretationI satisfiesan atom
A ∈ At , I |= A, if A ∈ I. An interpretationI satisfies
an ma-atomC(X), denoted withI |= C(X), if I ∩X ∈ C.
Otherwise,I 6|= C(X). The concept of satisfaction, as well
as the notation, extends in the standard way to literals built
of atoms and ma-atoms, and their conjunctions and disjunc-
tions.

Satisfiability of aggregate atoms is monotone, which jus-
tifies their name.

Proposition 1 For every ma-atomC(X) and every two in-
terpretationsI, I ′ ⊆ At , if I ⊆ I ′ and I |= C(X) then
I ′ |= C(X).

Due to their monotonicity property, ma-atoms can be re-
garded as direct generalization of “regular” propositional
atoms. With that in mind, we define adisjunctive rule with
monotone aggregatesas an expression of the form

A1 ∨ · · · ∨Ak ← L1 ∧ . . . ∧ Lm,

wherek ≥ 1, Ai are atoms fromAt , andLi are literals
built of atoms fromAt and of ma-atoms. The disjunction
A1∨· · ·∨Am is theheadof r. The conjunctionL1∧. . .∧Ln

is thebodyof r. We use the notationhead(r) andbody(r)
for the head and the body ofr, respectively.

A disjunctive program with monotone aggregatesis a
(possibly infinite) set of disjunctive rules with monotone ag-
gregates. To simplify the notation, we writedisjunctive pro-
gram for disjunctive programs with monotone aggregates.
We explicitly emphasize departures from that convention. A
disjunctive program isdefiniteif it contains only atoms and
ma-atoms in the bodies of its rules.

A positive clauseis a finite disjunction of atoms fromAt .
The disjunctive baseof a programP , B∨(P), is the set of
all positive clauses consisting of atoms inP . For a setC
of positive clauses,At(C) denotes the set of all atoms inC.
We note that heads of disjunctive rules are positive clauses.

An interpretationI satisfies, or is amodel ofa disjunctive
rule r, written asI |= r, if I |= body(r) implies thatI |=
head(r). An interpretationI satisfies, or is amodel ofa
disjunctive programP , I |= P , if I satisfies every rule ofP .

A model I of a disjunctive programP is minimal if for
every modelI ′ of P , I ′ ⊆ I implies thatI ′ = I. We denote
the set of all models of a programP by Mod(P) and the set
of all minimal models byMM (P).

The fact that we allow ma-atoms with infinite scope is im-
portant and makes the setting essentially different from the
standard one. In particular, it is known (Seipel, Minker, &
Ruiz 1997) that every model of a disjunctive logic program
(without aggregates) contains a minimal model. That prop-
erty does not hold in our setting (even without disjunction in
the heads).

Example 1 Let P be the program consisting of all clauses
of the form

p← Ck(At),¬(Ck+1(At))

wherep ∈ At , k = 1, 2, . . . and Ck is the collection of
sets we introduced earlier. Every infinite interpretationI,
I ⊆ At , is a model ofP (the body of every rule is false in
I). However, no finite interpretationI, I ⊆ At , is a model
of P (for everyp ∈ At , there is a rule inP with the headp
and with the body true inI).

Non-deterministic Operators on the Lattice of
Interpretations

Our goal is to generalize supported-model and stable-model
semantics to the case of disjunctive programs with monotone
aggregates and show that they can be described and studied
by means of non-deterministic operators on the lattice of in-
terpretations. In this section, we recall some basic terminol-
ogy and results.

Definition 1 A non-deterministic operatoronI is any func-
tion N : I → P(I) such that for everyI ∈ I, N(I) 6= ∅.

Informally, N(I) describes all possible outcomes of ap-
plying an operatorN to I. There is at least one outcome to
choose from and each of them can be chosen.

An important class of (deterministic) operators that ap-
pear in the studies of normal logic programs (also in the
case of normal logic programs with aggregates) is the class
of monotoneoperators on the lattice of interpretations.
There are several ways to generalize that class in the non-
deterministic setting. The one that is relevant to us is based
on theSmyth pre-order, �S . Given subsetsA andB of I,
we writeA �S B if

for everyB ∈ B there isA ∈ A such thatA ⊆ B.

The relation�S is reflexive and transitive but, in general,
not antisymmetric. It is therefore a pre-order but, in general,
not an order on the setP(I).

Let N be a non-deterministic operator onI. The operator
N is Smyth-monotone(or, simply, monotone — as we do
not consider here any other pre-orders onP(I)) if for every
interpretationsI, J ∈ I,

I ⊆ J impliesN(I) �S N(J).

An interpretationI is a fixpoint of N if I ∈ N(I). We
denote the set of all fixpoints ofN with fp(N) and the set
of all minimal fixpoints ofN with mfp(N). A pre-fixpoint
of N is an interpretationI such thatN(I) �S {I}, that
is, there existsJ ∈ N(I) such thatJ ⊆ I. We denote
the set of all pre-fixpoints ofN with pre(N). We have the
following basic result concerning pre-fixpoints and fixpoints
of monotone non-deterministic operators.

Lemma 1 Let N : I → P(I) be a monotone non-
deterministic operator onI. If I is a minimal pre-fixpoint
of N thenI is a minimal fixpoint ofN .

Proof: SinceI is a pre-fixpoint ofN , there existsJ ∈ N(I)
such thatJ ⊆ I. By the monotonicity ofN , N(J) �S

N(I) and asJ ∈ N(I), it follows that N(J) �S {J}.
Consequently,J is a pre-fixpoint ofN . SinceI is a minimal
pre-fixpoint ofN andJ ⊆ I, J = I. Thus,I ∈ N(I) andI
is a fixpoint ofN . Since fixpoints ofN are pre-fixpoints of
N , I is a minimal fixpoint ofN . 2

Operators, for which also the converse holds, play a par-
ticularly important role in our considerations.

Definition 2 We call a non-deterministic operatorN : I →
P(I) downward closedif the set of pre-fixpoints ofN is
closed under greatest lower bounds of descending chains.
That is,N is downward closed if for every sequence ofA =
{Aξ}ξ<α of interpretations such that

1. for everyξ < α, Aξ is a pre-fixpoint ofN , and
2. for everyξ < ξ′ < α, Aξ′ ⊆ Aξ

the setA =
⋂
A is a pre-fixpoint ofN .

The following property of downward closed operators fol-
lows directly from Zorn Lemma.

Lemma 2 Let N : I → P(I) be a non-deterministic op-
erator onI that is downward closed. Then, for every pre-
fixpointI of N there is a minimal pre-fixpointI ′ of N such
that I ′ ⊆ I.

Corollary 1 Let N : I → P(I) be a monotone non-
deterministic operator onI that is downward closed. Then,
an interpretationI is a minimal pre-fixpoint ofN if and only
if I is a minimal fixpoint ofN .

Proof: In view of Lemma 1, only the “if” part needs a proof.
Let I be a minimal fixpoint ofN . ThenI is a pre-fixpoint
of N . By Lemma 2, there isI ′ ⊆ I such thatI ′ is a minimal
pre-fixpoint ofN . By Lemma 1,I ′ is a fixpoint ofN . By
minimality of I, I ′ = I andI is a minimal pre-fixpoint of
N . 2

Immediate-consequence Operators for
Disjunctive Programs

To develop an operator-based framework for disjunctive
logic programs, the key step is to introduce for such pro-
grams the concept of the immediate-consequence operator.

Since the heads of rules are disjunctions of atoms, un-
like in the case of normal logic programs (with aggregates),
when the body of a rule is satisfied by an interpretation, there
is no single atom that is forced. Instead, there are several
ways to satisfy the disjunctive constraint described by the
head of the rule. This suggests that, given an input interpre-
tation, the process of drawing immediate consequences from
a disjunctive program is inherentlynon-deterministic. Con-
sequently, to formalize it we utilizenon-deterministicop-
erators on the lattice of interpretations. The crucial feature
of our approach is that we do not propose a single specific
immediate-consequence operator but define the concept by
imposing some general desiderata. Interestingly, it turnsout
that all operators that satisfy our requirements have the same
basic properties and properly capture key semantic proper-
ties of the program.

We proceed in three steps. In the first step we collect the
heads of all clauses whose bodies are satisfied by an input
interpretationI.

Definition 3 Thehead reductof a disjunctive programP is
a functionHRP : I → P(B∨(P)) defined as:

HRP (I) = {head(r) | r ∈ P andI |= body(r)}.

We have the following simple property of the head reduct
of a disjunctive program.

Lemma 3 LetP be a disjunctive program. For every inter-
pretationI, I |= P if and only ifI |= HRP (I).

Proof: LetC be a positive clause. By the definition,C ∈
HRP (I) if and only if there exists a clauser ∈ P such
that head(r) = C and I |= body(r). Thus, if I |= P ,
then I |= HRP (I). Conversely, letr ∈ P be such that
I |= body(r). Then,head(r) ∈ HRP (I) andI |= head(r).
Consequently,I |= r. 2

In the second step, we introduce the concept of aselection
function. LetP be a disjunctive program. Given a collection
of positive clausesC ⊆ B∨(P), a selection function returns
some set of models ofC. We will denote the set of models of
C with Mod(C) (since a collection of positive clauses can
be viewed as a disjunctive program whose rules have empty
bodies, this notation is consistent with the notationMod(P),
we introduced earlier for the set of models of a programP).

Definition 4 (Selection Function) Let P be a disjunctive
program. A selection function is a function Sel :
P(B∨(P)) → P(I) such that for every set of positive
clausesC ⊆ B∨(P), Sel(C) satisfies the following con-
ditions:

Sel(C) ⊆ Mod(C) (P1)

Sel(C) �S Mod(C) (P2)

I ⊆ At(C) for everyI ∈ Sel(C) (P3)

The first condition ensures thatSel(C) contains only
models ofC. The second condition ensures that every model
of C is coveredby some interpretation inSel(C). Finally,
the third condition guarantees that interpretations inSel(C)
consist only of relevant atoms, that is, atoms that appear in
clauses inC. This condition allows us later to properly gen-
eralize the concept of a supported model.

We note that Definition 4 implies directly that for every
selection functionSel , Sel(∅) = {∅}. Furthermore, it is
easy to show that for every selection functionSel , Sel(C)
always includes the set of minimal models ofC, which we
denote withMM (C).

Proposition 2 For every selection functionSel , MM (C) ⊆
Sel(C).

Proof: LetI ∈ MM (C). ThenI is a model ofC and, by
(P2), there existsJ ∈ Sel(C) such thatJ ⊆ I. By (P1),
J ∈ Mod(C). SinceI is a minimal model ofC, J = I and
I ∈ Sel(C). 2

In fact, assigning to a collection of positive clausesC the
setMM (C) of minimal models ofC yields a selection func-
tion.

Proposition 3 The functionMM (C) is a selection function.

Proof: LetC ⊆ B∨(P). Clearly, by the definition of mini-
mal models,MM (C) ⊆ Mod(C). Thus, the condition (P1)
follows. Next,MM (C) �S Mod(C), as every model ofC
contains a minimal model ofC (this fact is well known and
follows, in particular, from the result by (Seipel, Minker,&
Ruiz 1997), which we mentioned earlier). Consequently, the

condition (P2) follows. Finally, the condition (P3) is evident.
2

Another possible selection function assigns to every setC
of positive clauses the set of all those models ofC that con-
sist only of atoms fromC. We denote this selection function
with Mods and the corresponding set of interpretations with
Mods(C) (the subscripts indicates that we focus here on
models built of atoms appearing inC andnot on all mod-
els ofC built of atoms inAt). The selection functionsMM
andMods are the two extreme cases of selection functions
in the sense thatMM (C) ⊆ Sel(C) ⊆ Mods(C) for every
selection functionSel . We now show that every selection
functionSel is�S-monotone.

Lemma 4 Let C1 andC2 be two sets of positive clauses. If
C1 ⊆ C2 thenSel(C1) �

S Sel(C2).

Proof: LetJ2 ∈ Sel(C2). By property (P1)J2 |= C2. Since
C1 ⊆ C2 then alsoJ2|At(C1) |= C1. By (P2) there exists
J1 ∈ Sel(C1) such thatJ1 ⊆ J2|At(C1) ⊆ J2. 2

We are ready to complete the definition of non-
deterministic immediate-consequence operators of a dis-
junctive logic programP . The basic intuition is to view a
disjunctive programP as a device to revise interpretations.
To revise an interpretationI, we first derive the heads of all
rules inP that are applicable with respect toI, that is, all
positive clauses inHRP (I). Given a fixed selection func-
tion, this set of clauses determines some collection of mod-
els of HRP (I). Any of these models can be viewed as a
plausible revision ofI and its immediate consequence with
respect toP (and under this fixed selection function). This
intuition is formalized below.

Definition 5 (Non-deterministic Operator) Given a se-
lection function Sel , a non-deterministic immediate-
consequence operatorNSel

P : I → P(I), based onSel is
defined as:

NSel

P (I) = Sel(HRP (I)).

We simply writeNP instead ofNSel

P , whenever the selection
functionSel is clear from the context or the choice of any
particular selection function is immaterial.

The next two results hold for every choice of the selection
function. First, we show that non-deterministic immediate-
consequence operators collapse to the van Emden-Kowalski
immediate-consequence operator (no matter what selection
function is used) if we restrict attention to the class of nor-
mal logic programs (no disjunctions in the heads of the rules
and no aggregates) or, more generally, to the van Emden-
Kowalski immediate-consequence operator for normal logic
programs with aggregates (Pelov, Denecker, & Bruynooghe
2004).

Proposition 4 If P is normal logic program with monotone
aggregates, thenNP (I) = {TP (I)} (P is regarded as a dis-
junctive program, when computingNP (I), and as a normal
logic program, when computingTP (I)).

Proof: SinceP is a normal logic program with aggregates,
HRP (I) consists of atoms andHRP (I) = TP (I). More-
over, for every selection functionSel , Sel(HRP (I)) =
{HRP (I)} and the assertion follows. 2

Next, we show that models of a disjunctive program coin-
cide with pre-fixpoints of an immediate-consequence oper-
ator (no matter what selection function is used). That result
generalizes a similar characterization of models of normal
programs (Apt, Blair, & Walker 1988).

Theorem 1 Let P be a disjunctive program. Then
Mod(P) = pre(NP).

Proof: Let I ∈ pre(NP). For every ruler ∈ P , if I 6|=
body(r) thenI |= r. Thus, let us consider a ruler ∈ P such
thatI |= body(r). By the definition ofHRP (I), head(r) ∈
HRP (I). Since,NP (I) �S {I}, there is an interpretation
J ∈ NP (I) such thatJ ⊆ I. Clearly,J |= HRP (I) and,
consequently,J |= head(r). SinceJ ⊆ I and sincehead(r)
is a positive clause,I |= r.

Conversely, letI ∈ Mod(P). By Lemma 3, I |=
HRP (I). By (P2) there existsJ ∈ Sel(HRP (I)) = NP (I)
such thatJ ⊆ I. Thus,J ∈ NP (I) and, consequently,
NP (I) �S {I}. 2

For specific selection functions we can show a correspon-
dence between fixpoints of the non-deterministic operator
NP and supported models. There are two different notions
of supported models for disjunctive logic programs: weakly
supported (Brass & Dix 1997) and supported (Brass & Dix
1997; Inoue & Sakama 1998). The difference between the
two is whether a single rule can be used as a support of more
than one atom in the head.

Definition 6 An interpretation I is a weakly supported
modelof a programP if I |= P and for every atomA ∈ I
there exists a ruler ∈ P such thatI |= body(r) and
A ∈ head(r). An interpretationI is a supported modelof
a programP if I |= P and for every atomA ∈ I there ex-
ists a ruler ∈ P such thatI |= body(r), A ∈ head(r),
and head(r) ∩ I = {A}. The sets of weakly supported
and supported models of a programP are denoted with
W-SUPP(P) and SUPP(P) respectively.

Our first result on supported models holds for any selec-
tion function.

Proposition 5 Let P be a disjunctive program andSel
a selection function. Then SUPP(P) ⊆ fp(NSel

P) ⊆
W-SUPP(P).

Proof: LetI be a supported model. BecauseI |= P then,
by Theorem 1, there existsJ ∈ NSel

P (I) such thatJ ⊆ I.
Suppose thatJ ⊂ I, i.e., there exists an atomA ∈ I − J .
BecauseI is supported andA ∈ I then there exists a rule
r ∈ P such thatI |= body(r) and I ∩ head(r) = {A}.
Consequently,head(r) ∈ HRP (I) butJ 6|= head(r), which
is a contradiction withJ ∈ NSel

P (I) and (P1).
Let I ∈ fp(NSel

P), i.e., I ∈ NSel

P (I) = Sel(HRP (I)).
Then for every atomA ∈ I there exists a clauseC ∈
HRP (I) such thatA ∈ C (by (P3)). Moreover, for this
clause there exists a ruler ∈ P such thatI |= body(r) and
C = head(r). This implies thatI is a weakly supported
model. 2

We can obtain a precise characterization of the weakly
supported and supported models as fixpoints ofNP by tak-
ing specific selection functions.

Theorem 2 Let P be a disjunctive program. Then,
SUPP(P) = fp(NMM

P).

Proof: The inclusionSUPP(P) ⊆ fp(NMM

P) follows from
Proposition 5. LetI ∈ NMM

P (I) = MM (HRP (I)). Then
for everyA ∈ I there exists at least one clauseC ∈ HRP (I)
such thatI∩C = {A} (otherwise,I−{A}would be a model
of HRP (I)). But then there also exists a ruleC ← B ∈ P
such thatI |= B andI ∩C = {A}. Hence,I is a supported
model. 2

Theorem 3 Let P be a disjunctive program. Then,
W-SUPP(P) = fp(NMod

s

P).

Proof: LetI ∈ W-SUPP(P). SinceI |= P , it follows by
Lemma 3 thatI |= HRP (I). Moreover, sinceI is a weakly
supported model, for every atomA ∈ I there exists a rule
r ∈ P such thatI |= body(r) and A ∈ head(r). The
first condition implies thathead(r) ∈ HRP (I) and together
with the second condition we haveI ⊆ At(HRP (I)). Thus
I ∈ Mods(HRP (I)) = NMod

s

P (I).
The opposite direction follows from Proposition 5. 2

Definite Disjunctive Programs
Definite programs without disjunctions have a single min-
imal (in fact, least) model. Moreover, theTP operator is
monotone and its least fixpoint is equal to the least model of
P . On the other hand, definitedisjunctiveprograms can have
several minimal models. However, we can still establish a
correspondence between minimal models ofP and minimal
fixpoints ofNP , which is the goal of this subsection.

Proposition 6 If P is a definite disjunctive program, then
NP is monotone, that is,I ⊆ J impliesNP (I) �S NP (J).

Proof: SinceP is a definite program, ifI ⊆ J then
HRP (I) ⊆ HRP (J). Thus, by Lemma 4,

Sel(HRP (I)) �S Sel(HRP (J)),

which impliesNP (I) �S NP (J). 2

The main result of this section is that for a definite dis-
junctive program the set of minimal models is equal to the
set of minimal fixpoints ofNP . That result holds no matter
what selection function is used. We start by showing that we
can apply Corollary 1.

Lemma 5 Let P be a definite disjunctive program. Then
NP is downward closed.

Proof: LetA = {Aξ | ξ < α} be a descending chain of
pre-fixpoints models ofNP . Let B =

⋂
A. We will show

thatB is a pre-fixpoint ofP . It is so ifA is finite. So, we
will assume thatA is infinite.

Let r ∈ P andB |= body(r). For everyA ∈ A, B ⊆ A.
Sincer is a definite clause,A |= body(r). Moreover,A
is a model ofr. Thus,A |= head(r) and there is a dis-
junct of head(r) that belongs toA. The number of dis-
juncts inhead(r) is finite. Thus, at least one of them be-
longs to infinitely many interpretationsA in A. SinceA
is a descending chain, that particular disjunct belongs to all
interpretations inA and, so, toB as well. It follows that
B |= head(r), B |= r and, finally, thatB |= P . By Theo-
rem 1,B is a pre-fixpoint ofNP . 2

Theorem 4 Let P be a definite disjunctive program. Then
MM(P) = mfp(NP).

Proof: (⇒) By Theorem 1 there is a one to one correspon-
dence between models ofP and pre-fixpoints ofNP . So,
minimal models ofP are minimal pre-fixpoints ofNP and,
by Lemma 1, they are minimal fixpoints.
(⇐) LetM be a minimal fixpoint ofNP . SinceNP is down-
ward closed (Lemma 5), by Corollary 1,M is a minimal
pre-fixpoint ofNP and, consequently, a minimal model of
P (by Theorem 1). 2

The following example shows that Theorem 4 does not
hold for general disjunctive programs no matter what selec-
tion function is used.

Example 2 Consider the following disjunctive logic pro-
gramP :

a ∨ b.

c← ¬d.

The interpretationI = {a, d} is a minimal model ofP .
However,I is not a fixpoint ofNP for any selection func-
tion. Indeed, using the selection functionMods we have
NMod

s

P (I) = {{a}, {b}, {a, b}} and I /∈ NP (I). The
claim holds for every selection functionSel sinceSel(C) ⊆
Mods(C).

One result from the theory of monotone operators, which
we did not generalize is the computation of the least fixpoint
by iterating the immediate-consequence operator. There are
two issues here. First, one needs to generalize the notion
of iteration of an operator to the setting of non-deterministic
operators. Second, one needs to choose an appropriate selec-
tion function to specify a particular immediate-consequence
operator. The question is whether one can address both is-
sues so that the results of computations with respect to the
selected immediate-consequence operatorNP are precisely
the minimal models ofP (minimal pre-fixpoints ofNP).

A possible way to approach the first issue is to generalize
the concept of an iteration of an operator by means ofcom-
putations(Marek, Niemel̈a, & Truszczýnski 2004). Given a
non-deterministic operatorNP onP(At), we define a com-
putation ofNP as a sequence{Xn}n=0,1,..., whereX0 = ∅,
Xn+1 ∈ NP (Xn), andXn ⊆ Xn+1, for everyn ≥ 0. We
call

⋃
∞

n=0 Xn theresultof the computation{Xn}n=0,1,....
As concerns the second issue, the most natural candidate

seems to be the selection functionMM . Indeed, other selec-
tion function would allow for a possibility of selecting non-
minimal models of the set of rule heads computed in inter-
mediate steps, and would not guarantee minimality of the re-
sults of computations. However, the selection functionMM
does not work. There are programs for which some minimal
models cannot be obtained as a result of any computation of
the operatorNMM

P , and there are programs for which the
results of some computations are not minimal models. The
following two examples illustrate these cases.

Example 3 LetP consists of the clauses
a ∨ b ∨ c
a← b
b← c
c← a.

Applying the operatorNMM

P to the empty interpreta-
tion we obtain NMM

P (∅) = {{a}, {b}, {c}}. How-
ever, NMM

P ({a}) = {{c}}, NMM

P ({c}) = {{b}}, and
NMM

P ({b}) = {{a}}. Thus the only model of the program
{a, b, c} (which is also minimal) cannot be reached by any
computation.

Example 4 Let At = {a1, a2, . . .} and letP consist of the
clauses

a1 ∨ a2

ai ∨ aj ← aj−2, j ≥ 3, 1 ≤ i < j.

Let Xn = {a1, . . . , an}. Clearly the sequenceX0,X1, . . .
is a computation andAt is its result. However,At is not a
minimal model of this program. For instance,{a2, a3, . . .}
is a model, ofP , too.

These examples indicate that either (1) minimal models
of definite programs do not have a characterization as re-
sults of computations for an immediate-consequence opera-
tor, or that (2) the notion of computation is not the correct
generalization of the idea of iterating an operator or, finally
(and least likely) that (3) a selection function other thanMM
needs to be used.

Approximating Operators and Stable Models
The main goal of this section is to develop a fixpoint char-
acterization of the stable semantics of disjunctive logic pro-
grams (Gelfond & Lifschitz 1991; Przymusinski 1991). We
exploit ideas from approximation theory (Denecker, Marek,
& Truszczýnski 2000) and define the notion of an approxi-
mating operatorAP of the non-deterministic operatorNP .
Unlike in (Denecker, Marek, & Truszczyński 2000), where
both the domain and the range of theTP operator are ap-
proximated, here we approximate only the domain of theNP

operator. Consequently, we define only a two-valued stable
semantics and not the entire class of three and four valued
stable models (which include the well-founded model). The
presentation is developed in the language with ma-atoms. As
a result, we obtain a novel definition of a stable semantics
for disjunctive programs with monotone aggregates. This
semantics extends the stable semantics of disjunctive logic
programs without aggregates (Gelfond & Lifschitz 1991;
Przymusinski 1991) and the stable semantics of normal logic
programs with positive aggregate atoms (Pelov, Denecker, &
Bruynooghe 2004).

The definition ofAP is similar to that ofNP but to com-
pute the head reduct we evaluate rule bodies with respect
to 4-valued interpretations. These are functions assigning
to propositional atoms, logical valuest (true), f (false),u
(unknown) andi (inconsistent). We represent 4-valued in-
terpretations as pairs(I1, I2) ∈ I × I.

Definition 7 Satisfiability of atoms, ma-atoms, literals, and
conjunctions of literals in 4-valued interpretations is defined
as follows:

(I1, I2) |= A if I1 |= A, whereA is an atom or ma-
atom
(I1, I2) |= ¬A if (I2, I1) 6|= A, whereA is an atom or
ma-atom

(I1, I2) |= L1∧L2 if (I1, I2) |= L1 and(I1, I2) |= L2,
whereL1 andL2 are literals (atoms, ma-atoms or their
negations).

Definition 8 The extended head reductfor a disjunctive
programP is a functionEP : I × I → P(B∨(P)) defined
as:

EP (I1, I2) = {head(r) | r ∈ P and(I1, I2) |= body(r)}

The second step in the definition ofAP is exactly the same
as forNP .

Definition 9 Let P be a disjunctive program,Sel a selec-
tion function andNSel

P : I → P(I) a non-deterministic op-
erator based onSel . Theapproximating operatorASel

P : I ×
I → P(I) of P is defined as:

ASel

P (I1, I2) = Sel(EP (I1, I2)).

Again, whenever the selection functionSel is clear from
the context or its choice is irrelevant, we simply writeAP

instead ofASel

P . The operatorAP has similar properties
and relationship withNP as an approximating operator on
the product lattice to the corresponding operator on the lat-
tice, according to approximation theory (Denecker, Marek,
& Truszczýnski 2000). To state the appropriate result, we
note that elements ofI × I can be ordered by theprecision
ordering≤p. Namely, we write(I1, I2) ≤p (J1, J2) if

I1 ⊆ I2 andJ2 ⊆ J1.

We refer the reader to (Denecker, Marek, & Truszczyński
2000) for a detailed discussion of this ordering and its role
in algebraic approaches to knowledge representation.

Proposition 7 LetP be a disjunctive program.

1. EP (I, I) = HRP (I)

2. AP extendsNP , i.e.,AP (I, I) = NP (I).
3. (I1, I2) ≤p (J1, J2) impliesEP (I1, I2) ⊆ EP (J1, J2)

4. AP is monotone, that is,(I1, I2) ≤p (J1, J2) implies
AP (I1, I2) �

S AP (J1, J2).

For every interpretationI ∈ I, the operatorAP induces
a non-deterministic operator onI, namely:AP (·, I). This
operator has the following properties.

Proposition 8 LetP be a disjunctive program.

1. For every interpretationI ∈ I, the operatorAP (·, I)
is monotone, that is,J ⊆ J ′ implies AP (J, I) �S

AP (J ′, I)

2. For every interpretationI ∈ I, the operatorAP (·, I) is
downward closed

3. If J ∈ mfp(AP (·, I)), thenJ ∈ MM (EP (J, I)).

Proof: (Sketch) The first assertion follows directly from
Proposition 7(4). The second assertion can be proved in
exactly the same way as Lemma 5. To prove the third as-
sertion, let us assume thatJ ∈ mfp(AP (·, I)). By the
definition, J is a model ofEP (J, I). SinceEP (J, I) is
a collection of standard propositional clauses, there is a
minimal modelJ ′ of EP (J, I) such thatJ ′ ⊆ J . Since
EP (J ′, I) ⊆ EP (J, I) (Proposition 7(3)),J ′ is a model

of EP (J ′, I). By the definition of a selection function, it
follows thatAP (J ′, I) �S {J ′}. In other words,J ′ is a
pre-fixpoint ofAP (·, I). SinceJ is a minimal fixpoint of
AP (·, I), it is a minimal pre-fixpoint ofAP (·, I) (by Corol-
lary 1, asAP (·, I) is monotone and downward closed). Con-
sequently,J ′ = J andJ ∈ MM (EP (J, I)). 2

We are now ready to extend the notion of stable models to
the class of disjunctive programs with monotone aggregates.

Definition 10 LetP be a disjunctive program. An interpre-
tation I is astable modelof P if I ∈ mfp(AP (·, I)).

The notion of a stable model is well defined as it does not
depend on the selection function used to define the operator
NP . That property follows directly from our next result.

Proposition 9 Let P be a disjunctive program and let
Sel be a selection function. Thenmfp(ASel

P (·, I)) =
mfp(AMM

P (·, I)).

Proof: LetI ∈ mfp(ASel

P (·, I)). ThenI ∈ MM (EP (I, I))
(Proposition 8). Consequently,I ∈ AMM

P (I, I). If J ∈
AMM

P (J, I), for someJ ⊆ I, thenJ ∈ ASel

P (J, I)) (as, for
every interpretationJ , AMM

P (J, I) ⊆ ASel

P (J, I).). Since
I ∈ mfp(ASel

P (·, I)), I = J and, consequently,I ∈
mfp(AMM

P (·, I)).
Conversely, if I ∈ mfp(AMM

P (·, I)), then I ∈
AMM

P (I, I). Thus,I ∈ ASel

P (I, I). Let J ⊆ I be such that
J ∈ mfp(ASel

P (·, I)). SuchJ exists asASel

P (·, I) is down-
ward closed and Lemma 2 applies. By Proposition 8(3),J ∈
MM (EP (J, I)) and, consequently,J ∈ AMM

P (J, I). Since
I ∈ mfp(AMM

P (·, I)), J = I andI ∈ mfp(ASel

P (J, I)). 2

The next theorem states that stable models are models of
a disjunctive logic programP (the definition does not make
that explicit). In fact, stable models are both minimal and
supported models ofP .

Theorem 5 LetP be a disjunctive program. IfI is a stable
model ofP thenI is both supported and minimal model of
P .

Proof: Let I ∈ mfp(AP (·, I)). Then I is a fixpoint of
AMM

P (·, I) (as the definition of stable models does not de-
pend on the choice of the selection function), that is,I ∈
AMM

P (I, I). By Proposition 7,I ∈ NMM

P (I). Thus,I is a
fixpoint of NMM

P and, by Theorem 2, a supported model of
P .

Let us assume thatJ is a model ofP such thatJ ⊆ I.
One can show thatJ is a pre-fixpoint ofAP (·, I). By Corol-
lary 1 (we recall thatAP (·, I) is monotone and downward
closed),J contains a minimal pre-fixpointJ ′ of AP (·, I).
By Lemma 1, J ′ is also a fixpoint ofAP (·, I). Since
I ∈ mfp(AP (·, I)), J ′ = I and, consequently,J = I.
Thus,I is a minimal model ofP . 2

When restricted to the appropriate classes of programs,
our semantics coincides with the stable-model semantics of
disjunctive logic programs (Gelfond & Lifschitz 1991; Przy-
musinski 1991) and exact stable models of aggregate pro-
grams without disjunction (Pelov, Denecker, & Bruynooghe
2004). Indeed, we have the following two results.

Theorem 6 Let P be a disjunctive logic program without
aggregates. ThenM is a stable model ofP (according to
(Gelfond & Lifschitz 1991)) if and only ifM is a stable
model according to the definition of stable models of pro-
grams with aggregates outlined above.

Theorem 7 If P is an aggregate program without disjunc-
tion thenM is a stable model ofP (according to Defini-
tion 10) if and only ifP is a stable model ofP according to
(Pelov, Denecker, & Bruynooghe 2004).

We close this section by noting that our proposal for the
stable-model semantics of disjunctive programs with aggre-
gates differs from other approaches such as (Dell’Armiet al.
2003; Gelfond 2002) in that in our semantics stable models
are always minimal (general version of Theorem 5).

Conclusions and Future Work
In the paper we proposed an operator-based approach to se-
mantics of disjunctive logic programs with monotone aggre-
gates. We described models, supported models, weakly sup-
ported models and stable models of disjunctive programs in
terms of fixpoints of appropriate non-deterministic operators
on the lattice of interpretations. For the most part, our proofs
are algebraic, which opens a possibility for further general-
izations.

We think that it is of considerable interest to extend the
full framework of approximation theory of operators on
lattices (Denecker, Marek, & Truszczyński 2000) to non-
deterministic operators on lattices, and to provide a purely
abstract algebraic characterization of the stable semantics of
disjunctive logic programs. We believe that the results in this
section are an important step in this direction. We identified
several concepts and properties, which may prove useful.

First, we identified theSmyth pre-orderas the basis for
introducing the class ofmonotonenon-deterministic opera-
tors. This does not come as a surprise considering that this
order was originally introduced to model non-deterministic
computations (Smyth 1978). Next, we showed that models
of programs correspond to pre-fixpoints and supported mod-
els correspond to fixpoints of non-deterministic immediate-
consequence operators, extending the corresponding prop-
erty in normal logic programming (Apt, Blair, & Walker
1988). Finally, we identified a crucial class of down-
ward closed operators and showed that all monotone non-
deterministic operators that arise in our considerations are
downward closed. That class of operators is important as
every pre-fixpoint of a downward closed operator contains a
minimal pre-fixpoint, a property we used several times in the
paper. It is an interesting question to identify other simple
conditions that imply that property.

Our definition of the approximating operatorAP differs
from the abstract notion of approximating operator of (De-
necker, Marek, & Truszczýnski 2000) in two ways. First,
we did not introduce an abstract algebraic definition of a
non-deterministic approximating operator in the same way
as (Denecker, Marek, & Truszczyński 2000). Instead, we
gave a concrete definition of an approximating operator and
then showed that it is monotone and extends theNP opera-
tor. A more important difference with (Denecker, Marek, &

Truszczýnski 2000) is that we approximate only the domain
of theNP operator and not its result. Consequently, we are
able to characterize only the set of two-valued stable models
of disjunctive logic programs and not the entire set of four
and three-valued stable models (Przymusinski 1991). This
is an important direction for future research.

Although our language is restricted only to monotone ag-
gregate atoms, we believe that our results can be extended
to disjunctive programs with arbitrary aggregate atoms, for
example using the techniques and constructions of (Pelov,
Denecker, & Bruynooghe 2004). This is another direction
for future work.

Acknowledgment
The first author was supported by the GOA project LP+,
the FWO project “Theory of Nonmonotone Inductive Defi-
nitions and its use for building Knowledge-based systems”,
the “Inductive Knowledge Bases” project and the Working
group on Answer Set Programming. The second author was
supported by the NSF grants IIS-0097278 and IIS-0325063.

References
Apt, K.; Blair, H.; and Walker, A. 1988. Towards a the-
ory of declarative knowledge. In Minker, J., ed.,Founda-
tions of deductive databases and logic programming. Pa-
pers from the workshop held in Washington, D.C., August
18–22, 1986, 89–142. Palo Alto, CA. Morgan Kaufmann.

Brass, S., and Dix, J. 1997. Characterizations of the Dis-
junctive Stable Semantics by Partial Evaluation.Journal of
Logic Programming32(3):207–228.

Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; and Pfeifer,
G. 2003. Aggregate functions in DLV. In De Vos, M., and
Provetti, A., eds.,Answer Set Programming: Advances in
Theory and Implementation, volume 78 ofCEUR Work-
shop proceedings, 274–288. Online: CEUR-WS.org/Vol-
78/.

Denecker, M.; Marek, V.; and Truszczyński, M. 2000. Ap-
proximations, stable operators, well-founded fixpoints and
applications in nonmonotonic reasoning. In Minker, J., ed.,
Logic-Based Artificial Intelligence, 127–144. Kluwer Aca-
demic Publishers.

Denecker, M.; Pelov, N.; and Bruynooghe, M. 2001. Ulti-
mate well-founded and stable semantics for logic programs
with aggregates. In Codognet, P., ed.,Logic programming,
Proceedings of the 2001 International Conference on Logic
Programming, volume 2237, 212–226. Springer.

Fitting, M. C. 2002. Fixpoint semantics for logic program-
ming – a survey.Theoretical Computer Science278:25–51.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.

Gelfond, M. 2002. Representing knowledge in A-Prolog.
In Kakas, A. C., and Sadri, F., eds.,Computational Logic:
Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408 ofLecture Notes
in Computer Science, 413–451. Springer.

Inoue, K., and Sakama, C. 1998. Negation as failure in the
head.Journal of Logic Programming35:39–78.
Marek, V.; Niemel̈a, I.; and Truszczýnski, M. 2004. Char-
acterizing stable models of logic programs with cardinality
constraints. InProceedings of the 7th International Con-
ference on Logic Programming and Nonmonotonic Rea-
soning, volume 2923 ofLecture Notes in Artificial Intel-
ligence, 154–166. Springer.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Par-
tial stable semantics for logic programs with aggregates.
In Lifschitz, V., and Niemel̈a, I., eds.,Proceedings of the
7th International Conference on Logic Programming and
Nonmonotonic Reasoning, volume 2923 ofLecture Notes
in Artificial Intelligence, 207–219. Springer.
Przymusinski, T. 1991. Stable semantics for disjunctive
programs.New Generation Computing9:401–424.
Seipel, D.; Minker, J.; and Ruiz, C. 1997. Model gener-
ation and state generation for disjunctive logic programs.
Journal of Logic Programming32:49–69.
Smyth, M. 1978. Power domains.Journal of Computer
and System Sciences16:23–36.
van Emden, M., and Kowalski, R. 1976. The semantics of
predicate logic as a programming language.Journal of the
ACM 23(4):733–742.

