
Properties and applications of programs with
monotone and convex constraints∗

Lengning Liu
Mirosław Truszczýnski

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

lliu1@cs.uky.edu, mirek@cs.uky.edu

Abstract

We study properties of programs withmonotoneandconvexconstraints. We
extend to these formalisms concepts and results from normal logic programming.
They include the notions of strong and uniform equivalence with their characteri-
zations, tight programs and Fages Lemma, program completion and loopformulas.
Our results provide an abstract account of properties of some recent extensions of
logic programming with aggregates, especially the formalism oflparseprograms.
They imply a method to compute stable models oflparseprograms by means of
off-the-shelf solvers of pseudo-boolean constraints, which is often much faster than
thesmodelssystem.

1 Introduction

We study programs withmonotoneconstraints [MNT04, MT04, MNT06] and intro-
duce a related class of programs withconvexconstraints. These formalisms allow con-
straints to appear in the heads of program rules, which sets them apart from other recent
proposals for integrating constraints into logic programs[DPBn01, PDBn04, DFI+03,
Pel04, FLP04], and makes them suitable as an abstract basis for formalisms such as
lparseprograms [SNS02].

We show that several results from normal logic programming generalize to pro-
grams with monotone constraints. We also discuss how these techniques and results
can be extended further to the setting of programs with convex constraints. We then
apply some of our general results to design and implement a method to compute stable
models oflparseprograms and show that it is often much more effective thansmodels
[SNS02].

Normal logic programming with the semantics of stable models is an effective
knowledge representation formalism, mostly due to its ability to express default as-
sumptions [Bar03, GL02]. However, modeling numeric constraints on sets in normal

∗This paper combines and extends results included in conference papers [LT05b, LT05a].

1

logic programming is cumbersome, requires auxiliary atomsand leads to large pro-
grams hard to process efficiently. Since such constraints, often calledaggregates, are
ubiquitous, researchers proposed extensions of normal logic programming with ex-
plicit means to express aggregates, and generalized the stable-model semantics to the
extended settings.

Aggregates imposing bounds on weights of sets of atoms and literals, calledweight
constraints, are especially common in practical applications and are included in all
recent extensions of logic programs with aggregates. Typically, these extensions do not
allow aggregates to appear in the heads of rules. A notable exception is the formalism
of programs with weight constraintsintroduced in [NSS99, SNS02], which we refer
to aslparseprograms (aggregates in the heads of rules are considered also in recent
papers [SE06, SPT06]).

Lparseprograms are logic programs whose rules have weight constraints in their
heads and whose bodies are conjunctions of weight constraints. Normal logic programs
can be viewed as a subclass oflparseprograms and the semantics oflparseprograms
generalizes the stable-model semantics of [GL88].Lparseprograms remain one of the
most commonly used extensions of logic programming with weight constraints.

Since rules inlparse programs may have weight constraints as their heads, the
concept of one-step provability is nondeterministic, which hides direct parallels be-
tweenlparseand normal logic programs. An explicit connection emerged only recently,
when [MNT04, MT04] introducedlogic programs with monotone constraints. These
programs allow aggregates in the heads of rules and support nondeterministic computa-
tions. [MNT04, MT04] proposed a generalization of the van Emden-Kowalski one-step
provability operator to account for that nondeterminism, defined supported and stable
models for programs with monotone constraints that mirror their normal logic pro-
gramming counterparts, and showed encodings ofsmodelsprograms as programs with
monotone constraints.

In this paper, we continue investigations of programs with monotone constraints.
We show that the notions of uniform and strong equivalence ofprograms [LPV01,
Lin02, Tur03, EF03] extend to programs with monotone constraints, and that their
characterizations [Tur03, EF03] generalize, too.

We adapt to programs with monotone constraints the notion ofa tight program
[EL03] and generalize Fages Lemma [Fag94].

We introduce extensions of propositional logic with monotone constraints. We de-
fine the completion of a monotone-constraint program with respect to this logic, and
generalize the notion of a loop formula. We then prove the loop-formula characteri-
zation of stable models of programs with monotone constraints, extending to the set-
ting of monotone-constraint programs results obtained fornormal logic programs in
[Cla78, LZ02].

Programs with monotone constraints make explicit references to the default nega-
tion operator. We show that by allowing a more general class of constraints, called
convex, default negation can be eliminated from the language. We argue that all results
in our paper extend to programs with convex constraints.

Our paper shows that programs with monotone and convex constraints have a rich
theory that closely follows that of normal logic programming. It implies that programs
with monotone and convex constraints form an abstract generalization of extensions

2

of normal logic programs. In particular, all results we obtain in the abstract setting of
programs with monotone and convex constraints specialize to lparseprograms and, in
most cases, yield results that are new.

These results have practical implications. The propertiesof the program completion
and loop formulas, when specialized to the class oflparseprograms, yield a method to
compute stable models oflparseprograms by means of solvers ofpseudo-booleancon-
straints, developed by the propositional satisfiability and integer programming commu-
nities [ES03, ARMS02, Wal97, MR05, LT03]. We describe this method in detail and
present experimental results on its performance. The results show that our method on
problems we used for testing typically outperformssmodels.

2 Preliminaries

We consider the propositional case only. It does not lead to loss of generality, as it is
common to interpret programs with variables in terms of their propositional ground-
ings.

We assume a fixed setAt of propositional atoms. The definitions and results we
present in this section come from [MT04]. Some of them are more general as in the
present paper we allow constraints with infinite domains andprograms with inconsis-
tent constraints in the heads.
Constraints. A constraintis an expressionA = (X,C), whereX ⊆ At andC ⊆
P(X) (P(X) denotes the powerset ofX). We call the setX the domainof the con-
straintA = (X,C) and denote it byDom(A). Informally speaking, a constraint(X,C)
describes a property of subsets of its domain, withC consisting precisely of these sub-
sets ofX thatsatisfythe constraint (have property)C.

In the paper, we identify truth assignments (interpretations) with the sets of atoms
they assign the truth valuetrue. That is, given an interpretationM ⊆ At , we have
M |= a if and only if a ∈ M . We say that an interpretationM ⊆ At satisfiesa
constraintA = (X,C) (M |= A), if M ∩X ∈ C. Otherwise,M does not satisfyA,
(M 6|= A).

A constraintA = (X,C) is consistentif there isM such thatM |= A. Clearly, a
constraintA = (X,C) is consistent if and only ifC 6= ∅.

We note that propositional atoms can be regarded as constraints. Leta ∈ At and
M ⊆ At . We defineC(a) = ({a}, {{a}}). It is evident thatM |= C(a) if and only
if M |= a. Therefore, in the paper we often writea as a shorthand for the constraint
C(a).
Constraint programs. Constraints are building blocks of rules and programs. [MT04]
definedconstraint programsas sets ofconstraintrules

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (1)

whereA, A1, . . . , An are constraints andnot is thedefault negationoperator.
In the context of constraint programs, we refer to constraints and negated con-

straints asliterals. Given a ruler of the form (1), the constraint (literal)A is thehead
of r and the set{A1, . . . , Ak, . . . ,not(Ak+1), . . . ,not(Am)} of literals is thebody

3

of r1. We denote the head and the body ofr by hd(r) and bd(r), respectively. We
define the theheadsetof r, written hset(r), as the domain of the head ofr. That is,
hset(r) = Dom(hd(r)).

For a constraint programP , we denote byAt(P) the set of atoms that appear in the
domains of constraints inP . We define theheadsetof P , writtenhset(P), as the union
of the headsets of all rules inP .
Models. The concept of satisfiability extends in a standard way to literalsnot(A)
(M |= not(A) if M 6|= A), to sets (conjunctions) of literals and, finally, to constraint
programs.
M -applicable rules.Let M ⊆ At be an interpretation. A rule (1) isM -applicableif
M satisfies every literal inbd(r). We denote byP (M) the set of allM -applicable rules
in P .
Supported models.Supportedness is a property of models. Intuitively, every atoma in
a supported model must have “reasons” for being “in”. Such reasons areM -applicable
rules whose heads containa in their domains. Formally, letP be a constraint program
andM a subset ofAt(P). A modelM of P is supportedif M ⊆ hset(P (M)).
Examples.We illustrate the concept with examples. LetP be the constraint program
that consists of the following two rules:

({c, d, e}, {{c}, {d}, {e}, {c, d, e}})←
({a, b}, {{a}, {b}})← ({c, d}, {{c}, {c, d}}), not({e}, {{e}})

A setM = {a, c} is a model ofP asM satisfies the heads of the two rules. Both
rules inP areM -applicable. The first of them provides the support forc, the second
one — fora. Thus,M is a supported model.

A set M ′ = {a, c, d, e} is also a model ofP . However,a has no support inP .
Indeed,a only appears in the headset of the second rule. This rule is not M ′-applicable
and so, it does not supporta. Therefore,M ′ is not a supported model ofP . △
Nondeterministic one-step provability.Let P be a constraint program andM a set of
atoms. A setM ′ is nondeterministically one-step provablefrom M by means ofP , if
M ′ ⊆ hset(P (M)) andM ′ |= hd(r), for every ruler in P (M).

Thenondeterministic one-step provability operatorTnd
P for a programP is an op-

erator onP(At) such that for everyM ⊆ At , Tnd
P (M) consists of all sets that are

nondeterministically one-step provable fromM by means ofP .
The operatorTnd

P is nondeterministicas it assigns to eachM ⊆ At a family of
subsets ofAt , each being a possible outcome of applyingP to M . In general,Tnd

P

is partial, since there may be setsM such thatTnd
P (M) = ∅ (no set can be derived

from M by means ofP). For instance, ifP (M) contains a ruler such thathd(r) is
inconsistent, thenTnd

P (M) = ∅.
Monotone constraints.A constraint(X,C) is monotoneif C is closed under superset,
that is, for everyW,Y ⊆ X, if W ∈ C andW ⊆ Y thenY ∈ C.

Cardinality and weight constraints provide examples of monotone constraints. Let
X be afinite set and letCk(X) = {Y : Y ⊆ X, k ≤ |Y |}, wherek is a non-negative
integer. Then(X,Ck(X)) is a constraint expressing the property that a subset ofX has

1Sometimes we view the body of a rule as theconjunctionof its literals.

4

at leastk elements. We call it alower-bound cardinality constraintonX and denote it
by kX.

A more general class of constraints areweight constraints. Let X be a finite set,
sayX = {x1, . . . , xn}, and letw,w1, . . . , wn be non-negative reals. We interpret each
wi as theweightassigned toxi. A lower-bound weight constraintis a constraint of the
form (X,Cw), whereCw consists of those subsets ofX whose total weight (the sum
of weights of elements in the subset) is at leastw. We write it as

w[x1 = w1, . . . , xn = wn].

If all weights are equal to 1 andw is an integer, weight constraints become cardi-
nality constraints. We also note that the constraintC(a) is a cardinality constraint1{a}
and also a weight constraint1[a = 1]. Finally, we observe that lower-bound cardinality
and weight constraints are monotone.

Cardinality and weight constraints (in a somewhat more general form) appear in
the language oflparseprograms [SNS02], which we discuss later in the paper. The
notation we adopted for these constraints in this paper follows that of [SNS02].

We use cardinality and weight constraints in some of our examples. They are also
the focus of the last part of the paper, where we use our abstract results to design a new
algorithm to compute models oflparseprograms.
Monotone-constraint programs.We call constraint programs built of monotone con-
straints —monotone-constraint programsor programs with monotone constraints.
That is, monotone-constraint programs consist of rules of rules of the form (1), where
A, A1, . . . , Am aremonotoneconstraints.

From now on, unless explicitly stated otherwise, programs we consider are monotone-
constraint programs.

2.1 Horn programs and bottom-up computations

Since we allow constraints with infinite domains and inconsistent constraints in heads
of rules, the results given in this subsection are more general than their counterparts in
[MNT04, MT04]. Thus, for the sake of completeness, we present them with proofs.

A rule (1) isHorn if k = m (no occurrences of the negation operator in the body or,
equivalently, only monotone constraints). A constraint program isHorn if every rule in
the program is Horn.

With a Horn constraint program we associatebottom-upcomputations, generalizing
the corresponding notion of a bottom-up computation for a normal Horn program.

Definition 1. Let P be a Horn program. AP -computationis a (transfinite) sequence
〈Xα〉 such that

1. X0 = ∅,

2. for every ordinal numberα, Xα ⊆ Xα+1 andXα+1 ∈ Tnd
P (Xα),

3. for everylimit ordinal α, Xα =
⋃

β<α Xβ .

5

Let t = 〈Xα〉 be aP -computation. Since for everyβ < β′, Xβ ⊆ Xβ′ ⊆ At , there
is a least ordinal numberαt such thatXαt+1 = Xαt

, in other words, a least ordinal
when theP -computation stabilizes. We refer toαt as thelengthof theP -computation
t.
Examples. Here is a simple example showing that some programs have computa-
tions of length exceedingω and so, the transfinite induction in the definition cannot
be avoided. LetP be the program consisting of the following rules:

({a0}, {{a0}})← .
({ai}, {{ai}})← (Xi−1, {Xi−1}), for i = 1, 2, . . .
({a}, {{a}})← (X∞, {X∞}),

whereXi = {a0, . . . ai}, 0 ≤ i, andX∞ = {a0, a1, . . .}. Since the body of the last
rule contains a constraint with an infinite domainX∞, it does not become applicable
in any finite step of computation. However, it does become applicable in the stepω and
so,a ∈ Xω+1. Consequently,Xω+1 6= Xω. △

For aP -computationt = 〈Xα〉, we call
⋃

α Xα the resultof the computation and
denote it byRt. Directly from the definitions, it follows thatRt = Xαt

.

Proposition 1. LetP be a Horn constraint program andt a P -computation. ThenRt

is a supported model ofP .

Proof. Let M = Rt be the result of aP -computationt = 〈Xα〉. We need to show that:
(1) M is a model ofP ; and (2)M ⊆ hset(P (M)).
(1) Let us consider a ruler ∈ P such thatM |= bd(r). SinceM = Rt = Xαt

(where
αt is the length oft), Xαt

|= bd(r). Thus,Xαt+1 |= hd(r). SinceM = Xαt+1, M is
a model ofr and, consequently, ofP , as well.
(2) We will prove by induction that, for every setXα in the computationt, Xα ⊆
hset(P (M)). The base case holds sinceX0 = ∅ ⊆ hset(P (M)).

If α = β + 1, thenXα ∈ Tnd
P (Xβ). It follows thatXα ⊆ hset(P (Xβ)). Since

P is a Horn program andXβ ⊆ M , hset(P (Xβ)) ⊆ hset(P (M)). Therefore,Xα ⊆
hset(P (M)).

If α is a limit ordinal, thenXα =
⋃

β<α Xβ . By the induction hypothesis, for
everyβ < α, Xβ ⊆ hset(P (M)). Thus,Xα ⊆ hset(P (M)). By induction,M ⊆
hset(P (M)).

Derivable models.We use computations to definederivablemodels of Horn constraint
programs. A setM of atoms is aderivable modelof a Horn constraint programP if
for someP -computationt, we haveM = Rt. By Proposition 1, derivable models ofP
are supported models ofP and so, also models ofP .

Derivable models are similar to the least model of a normal Horn program in that
both can be derived from a program by means of a bottom-up computation. However,
due to the nondeterminism of bottom-up computations of Hornconstraint programs,
derivable models are not in general unique nor minimal.
Examples.For example, letP be the following Horn constraint program:

P = {1{a, b} ←}

6

Then{a}, {b} and{a, b} are its derivable models. The derivable models{a} and{b}
are minimal models ofP . The third derivable model,{a, b}, is not a minimal model of
P . △

Since inconsistent monotone constraints may appear in the heads of Horn rules,
there are Horn programsP and setsX ⊆ At , such thatTnd

P (X) = ∅. Thus, some
Horn constraint programs have no computations and no derivable models. However,
if a Horn constraint program has models, the existence of computations and derivable
models is guaranteed.

To see this, letM be a model of a Horn constraint programP . We define acanoni-
cal computationtP,M = 〈XP,M

α 〉 by specifying the choice of the next set in the com-
putation in part (2) of Definition 1. Namely, for every ordinal β, we set

XP,M
β+1 = hset(P (XP,M

β)) ∩M.

That is, we include inXP,M
α all those atoms occurring in the heads ofXP,M

β -applicable
rules that belong toM . We denote the result oftP,M by Can(P,M). Canonical com-
putations are indeedP -computations.

Proposition 2. Let P be a Horn constraint program. IfM ⊆ At is a model ofP , the
sequencetP,M is aP -computation.

Proof. As P andM are fixed, to simplify the notation in the proof we will writeXα

instead ofXP,M
α .

To prove the assertion, it suffices to show that for every ordinalα, (1)hset(P (Xα))∩
M ∈ Tnd

P (Xα), and (2)Xα ⊆ hset(P (Xα)) ∩M
(1) Let X ⊆ M and r ∈ P (X). Since all constraints inbd(r) are monotone, and
X |= bd(r), M |= bd(r), as well. From the fact thatM is a model ofP it follows
now thatM |= hd(r). Consequently,M ∩ hset(P (X)) |= hd(r) for everyr ∈ P (X).
SinceM ∩ hset(P (X)) ⊆ hset(P (X)),

M ∩ hset(P (X)) ∈ Tnd
P (X).

Directly from the definition of the canonical computation for P andM we obtain that
for every ordinalα, Xα ⊆M . Thus, (1), follows.
(2) We proceed by induction. The basis is evident asX0 = ∅. Let us consider an ordinal
α > 0 and let us assume that (2) holds for every ordinalβ < α. If α = β + 1, then
Xα = Xβ+1 = hset(P (Xβ)) ∩M . Thus, by the induction hypothesis,Xβ ⊆ Xα.
SinceP is a Horn constraint program, it follows thatP (Xβ) ⊆ P (Xα). Thus

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M.

If α is a limit ordinal then for everyβ < α, Xβ ⊆ Xα and, as before, alsoP (Xβ) ⊆
P (Xα). Thus, by the induction hypothesis for everyβ < α,

Xβ ⊆ hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M,

which implies that
Xα =

⋃

β<α

Xβ ⊆ hset(P (Xα)) ∩M.

7

Canonical computations have the followingfixpointproperty.

Proposition 3. LetP be a Horn constraint program. For every modelM of P , we have
hset(P (Can(P,M))) ∩M = Can(P,M).

Proof. Letα be the length of the canonical computationtP,M . Then,XP,M
α+1 = XP,M

α =
Can(P,M). SinceXα+1 = hset(Xα) ∩M , the assertion follows.

We now gather properties of derivable models that extend properties of the least
model of normal Horn logic programs.

Proposition 4. LetP be a Horn constraint program. Then:

1. For every modelM of P , Can(P,M) is a greatest derivable model ofP con-
tained inM

2. A modelM of P is a derivable model if and only ifM = Can(P,M)

3. If M is a minimal model ofP thenM is a derivable model ofP .

Proof. (1) Let M ′ be a derivable model ofP such thatM ′ ⊆ M . Let T = 〈Xα〉 be a
P -derivation such thatM ′ = Rt. We will prove that for every ordinalα, Xα ⊆ XP,M

α .
We proceed by transfinite induction. SinceX0 = XP,M

0 = ∅, the basis for the induction
is evident. Let us consider an ordinalα > 0 and assume that for every ordinalβ < α,
Xβ ⊆ XP,M

β .
If α = β + 1, thenXα ∈ Tnd

P (Xβ) and so,Xα ⊆ hset(P (Xβ)). By the induction
hypothesis and by the monotonicity of the constraints in thebodies of rules inP , Xα ⊆
hset(P (XP,M

β)). Thus, sinceXα ⊆ Rt = M ′ ⊆M ,

Xα ⊆ hset(P (XP,M
β)) ∩M = XP,M

β+1 = XP,M
α .

The case whenα is a limit ordinal is straightforward asXα =
⋃

β<α Xβ andXP,M
α =

⋃
β<α XP,M

β .
(2) (⇐) If M = Can(P,M), thenM is the result of the canonicalP -derivation forP
andM . In particular,M is a derivable model ofP .
(⇒) if M is a derivable model ofP , thenM is also a model ofP . From (1) it follows
thatCan(P,M) is the greatest derivable model ofP contained inM . SinceM itself
is derivable,M = Can(P,M).
(3) From (1) it follows thatCan(P,M) is a derivable model ofP and thatCan(P,M) ⊆
M . SinceM is a minimal model,Can(P,M) = M and, by(2), M is a derivable
model ofP .

2.2 Stable models

In this section, we will recall and adapt to our setting the definition of stable models
proposed in [MNT04, MT04]. LetP be a monotone-constraint program andM a subset
of At(P). Thereductof P , denoted byPM , is a program obtained fromP by:

8

1. removing fromP all rules whose body contains a literalnot(B) such thatM |=
B;

2. removing literalsnot(B) for the bodies of the remaining rules.

The reduct of a monotone-constraint program is Horn since itcontains no occur-
rences of default negation. Therefore, the following definition is sound.

Definition 2. Let P be a monotone-constraint program. A set of atomsM is a stable
model ofP if M is a derivable model ofPM . We denote the set of stable models ofP
bySt(P).

The definitions of the reduct and stable models follow and generalize those pro-
posed for normal logic programs, since in the setting of Hornconstraint programs,
derivable models play the role of a least model.

As in normal logic programming and its standard extensions,stable models of
monotone-constraint programs are supported models and, consequently, models.

Proposition 5. Let P be a monotone-constraint program. IfM ⊆ At(P) is a stable
model ofP , thenM is a supported model ofP .

Proof. Let M be a stable model ofP . Then,M is a derivable model ofPM and, by
Proposition 1,M is a supported model ofPM . It follows thatM is a model ofPM .
Directly from the definition of the reduct it follows thatM is a model ofP .

It also follows thatM ⊆ hset(PM (M)). For every ruler in PM (M), there is a
ruler′ in P (M), which has the same head and the same non-negated literals inthe body
asr. Thus,hset(PM (M)) ⊆ hset(P (M)) and, consequently,M ⊆ hset(P (M)). It
follows thatM is a supported model ofP .

Examples.Here is an example of stable models of a monotone-constraintprogram. Let
P be a monotone-constraint program that contains the following rules:

2{a, b, c} ← 1{a, d},not(1{c})
1{b, c, d} ← 1{a},not(3{a, b, d}))
1{a} ←

Let M = {a, b}. Therefore,M 6|= 1{c} andM 6|= 3{a, b, d}. Hence the reductPM

contains the following three Horn rules:

2{a, b, c} ← 1{a, d}
1{b, c, d} ← 1{a}
1{a} ←

SinceM = {a, b} is a derivable model ofPM , M is a stable model ofP .
Let M ′ = {a, b, c}. ThenM ′ |= 1{c} andM 6|= 3{a, b, d}. Therefore, the reduct

PM ′

constains two Horn rules:

1{b, c, d} ← 1{a}
1{a} ←

9

SinceM ′ = {a, b, c} is a derivable models ofPM ′

, M ′ is also a stable model ofP .
We note that stable models of a monotone-constraint program, in general, do not form
an anti-chain. △

If a normal logic program is Horn then its least model is its (only) stable model.
Here we have an analogous situation.

Proposition 6. Let P be a Horn monotone-constraint program. ThenM ⊆ At(P) is
a derivable model ofP if and only ifM is a stable model ofP .

Proof. For every setM of atomsP = PM . Thus,M is a derivable model ofP if and
only if it is a derivable model ofPM or, equivalently, a stable model ofP .

In the next four sections of the paper we show that several fundamental results con-
cerning normal logic programs extend to the class of monotone-constraint programs.

3 Strong and uniform equivalence of monotone-cons-
traint programs

Strong equivalence and uniform equivalence concern the problem of replacing some
rules in a logic program with others without changing the overall semantics of the pro-
gram. More specifically, the strong equivalence concerns replacement of rules within
arbitrary programs, and the uniform equivalence concerns replacements of allnon-fact
rules. In each case, the stipulation is that the resulting program must have the same
stable models as the original one. Strong (and uniform) equivalence is an important
concept due to its potential uses in program rewriting and optimization.

Strong and uniform equivalence have been studied in the literature mostly for nor-
mal logic programs [LPV01, Lin02, Tur03, EF03].

[Tur03] presented an elegant characterization of strong equivalence ofsmodelspro-
grams and [EF03] described a similar characterization of uniform equivalence of nor-
mal and disjunctive logic programs. We show that both characterizations can be adapted
to the case of monotone-constraint programs.

3.1 M -maximal models

A key role in our approach is played by models of Horn constraint programs satisfying
a certain maximality condition.

Definition 3. Let P be a Horn constraint program and letM be a model ofP . A set
N ⊆ M such thatN is a model ofP andM ∩ hset(P (N)) ⊆ N is anM -maximal
model ofP , writtenN |=M P .

Intuitively, N is anM -maximal model ofP if N satisfies each ruler ∈ P (N)
“maximally” with respect toM . That is, for everyr ∈ P (N), N contains all atoms in
M that belong tohset(r) — the domain of the head ofr.

To illustrate this notion, let us consider a Horn constraintprogramP consisting of
a single rule:

1{p, q, r} ← 1{s, t}.

10

Let M = {p, q, s, t} andN = {p, q, s}. One can verify that bothM andN are models
of P . Moreover, since the only rule inP is N -applicable, andM ∩ {p, q, r} ⊆ N , N
is anM -maximal model ofP . On the other hand,N ′ = {p, s} is notM -maximal even
thoughN ′ is a model ofP and it is contained inM .

There are several similarities between properties of models of normal Horn pro-
grams andM -maximal models of Horn constraint programs. We state and prove here
one of them that turns out to be especially relevant to our study of strong and uniform
equivalence.

Proposition 7. LetP be a Horn constraint program and letM be a model ofP . Then
M is anM -maximal model ofP andCan(P,M) is the leastM -maximal model ofP .

Proof. The first claim follows directly from the definition. To provethe second one,
we simplify the notation: we will writeN for Can(P,M) andXα for XP,M

α .
We first show thatN is anM -maximal model ofP . Clearly,N ⊆ M . Moreover,

by Proposition 3,hset(P (N)) ∩M = N . Thus,N is indeed anM -maximal model of
P .

We now showN is the leastM -maximal model ofP .
Let N ′ be anyM -maximal model ofP . We will show by transfinite induction that

N ⊆ N ′. SinceX0 = ∅, the basis for the induction holds. Let us consider an ordinal
α > 0 and let us assume thatXβ ⊆ N ′, for everyβ < α. To showN ⊆ N ′, it is
sufficient to show thatXα ⊆ N ′.

Let us assume thatα = β + 1 for someβ < α. Then, sinceXβ ⊆ N ′ andP is a
Horn constraint program, we haveP (Xβ) ⊆ P (N ′). Consequently,

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (N ′)) ∩M ⊆ N ′,

the last inclusion follows from the fact thatN ′ is anM -maximal model ofP .
If α is a limit ordinal, thenXα =

⋃
β<α Xβ and the inclusionXα ⊆ N ′ follows

directly from the induction hypothesis.

3.2 Strong equivalence and SE-models

Monotone-constraint programsP andQ arestrongly equivalent, denoted byP ≡s Q,
if for every monotone-constraint programR, P ∪ R andQ ∪ R have the same set of
stable models.

To study the strong equivalence of monotone-constraint programs, we generalize
the concept of anSE-modelfrom [Tur03].

There are close connections between strong equivalence of normal logic programs
and the logic here-and-there []. The semantics of the logic here-and-there is given in
terms of Kripke models with two words which, when rephrased in terms of pairs of
interpretations (pairs of sets of propositional atoms), give rise to SE-models.

Definition 4. LetP be a monotone-constraint program and letX,Y be sets of atoms.
We say that(X,Y) is anSE-modelof P if the following conditions hold: (1)X ⊆ Y ;
(2) Y |= P ; and (3)X |=Y PY . We denote bySE(P) the set of all SE-models ofP .

Examples.To illustrate the notion of an SE-model of a monotone-constraint program,
let P consist of the following two rules:

11

2{p, q, r} ← 1{q, r},not(3{p, q, r})}
1{p, s} ← 1{p, r},not(2{p, r})

We observe thatM = {p, q} is a model ofP . Let N = ∅. ThenN ⊆ M andPM (N)
is empty. It follows thatM ∩ hset(PM (N)) = ∅ ⊆ N and so,N |=M PM . Hence,
(N,M) is an SE-models ofP .

Next, letN ′ = {p}. It is clear thatN ′ ⊆ M . Moreover,PM (N ′) = {1{p, s} ←
1{p, r}}. HenceM ∩ hset(PM (N ′)) = {p} ⊆ N ′ and so,N ′ |=M PM . That is,
(N ′,M) is another SE-model ofP . △

SE-models yield a simple characterization of strong equivalence of monotone-
constraint programs. To state and prove it, we need several auxiliary results.

Lemma 1. LetP be a monotone-constraint program and letM be a model ofP . Then
(M,M) and(Can(PM ,M),M) are both SE-models ofP .

Proof. The requirements(1) and(2) of an SE-model hold for(M,M). Furthermore,
sinceM is a model ofP , M |= PM . Finally, we also havehset(P (M)) ∩M ⊆ M .
Thus,M |=M PM .

Similarly, the definition of a canonical computation and Proposition 1, imply the
first two requirements of the definition of SE-models for(Can(PM ,M),M). The
third requirement follows from Proposition 7.

Lemma 2. Let P andQ be two monotone-constraint programs such thatSE(P) =
SE(Q). ThenSt(P) = St(Q).

Proof. If M ∈ St(P), thenM is a model ofP and, by Lemma 1,(M,M) ∈ SE(P).
Hence,(M,M) ∈ SE(Q) and, in particular,M |= Q. By Lemma 1 again,

(Can(QM ,M),M) ∈ SE(Q).

By the assumption,
(Can(QM ,M),M) ∈ SE(P)

and so,Can(QM ,M) |=M PM or, in other terms,Can(QM ,M) is anM -maximal
model ofPM . SinceM ∈ St(P), M = Can(PM ,M). By Proposition 7,M is the
leastM -maximal model ofPM . Thus,M ⊆ Can(QM ,M). On the other hand, we
haveCan(QM ,M) ⊆ M and so,M = Can(QM ,M). It follows thatM is a stable
model ofQ. The other inclusion can be proved in the same way.

Lemma 3. Let P andR be two monotone-constraint programs. ThenSE(P ∪ R) =
SE(P) ∩ SE(R).

Proof. The assertion follows from the following two simple observations. First, for
every setY of atoms,Y |= (P ∪ R) if and only if Y |= P andY |= R. Second, for
every two setsX andY of atoms,X |=Y (P ∪ R)Y if and only if X |=Y PY and
X |=Y RY .

Lemma 4. LetP , Q be two monotone-constraint programs. IfP ≡s Q, thenP andQ
have the same models.

12

Proof. Let M be a model ofP . By r we denote a constraint rule(M, {M})← . Then,
M ∈ St(P∪{r}). SinceP andQ are strongly equivalent,M ∈ St(Q∪{r}). It follows
thatM is a model ofQ ∪ {r} and so, also a model ofQ. The converse inclusion can
be proved in the same way.

Theorem 1. LetP andQ be monotone-constraint programs. ThenP ≡s Q if and only
if SE(P) = SE(Q).

Proof. (⇐) Let R be an arbitrary monotone-constraint program. Lemma 3 implies that
SE(P ∪R) = SE(P)∩SE(R) andSE(Q∪R) = SE(Q)∩SE(R). SinceSE(P) =
SE(Q), we have thatSE(P ∪ R) = SE(Q ∪ R). By Lemma 2,P ∪ R andQ ∪ R
have the same stable models. Hence,P ≡s Q holds.
(⇒) Let us assumeSE(P) \ SE(Q) 6= ∅ and let us consider(X,Y) ∈ SE(P) \
SE(Q). It follows thatX ⊆ Y andY |= P . By Lemma 4,Y |= Q. Since(X,Y) /∈
SE(Q), X 6|=Y QY . It follows thatX 6|= QY or hset(QY (X)) ∩ Y 6⊆ X. In the first
case, there is a ruler ∈ QY (X) such thatX 6|= hd(r). SinceX ⊆ Y andQY is a Horn
constraint program,r ∈ QY (Y). Let us recall thatY |= Q and so, we also haveY |=
QY . It follows thatY |= hd(r). Sincehset(r) ⊆ hset(QY (X)), Y ∩hset(QY (X)) |=
hd(r). Thus,hset(QY (X)) ∩ Y 6⊆ X (otherwise, by the monotonicity ofhd(r), we
would haveX |= hd(r)).

The same property holds in the second case. Thus, it follows that(hset(QY (X))∩
Y) \X 6= ∅. We defineX ′ = (hset(QY (X)) ∩ Y) \X.

Let R be a constraint program consisting of the following two rules:

(X, {X})←
(Y, {Y })← (X ′, {X ′}).

Let us consider a programQ0 = Q ∪ R. SinceY |= Q and X ⊆ Y , Y |= Q0.
Thus,Y |= QY

0 and, in particular,Can(QY
0 , Y) is well defined. SinceR ⊆ QY

0 ,
X ⊆ Can(QY

0 , Y). Thus, we have

hset(QY
0 (X)) ∩ Y ⊆ hset(QY

0 (Can(QY
0 , Y))) ∩ Y = Can(QY

0 , Y)

(the last equality follows from Proposition 3). We also haveQ ⊆ Q0 and so,

X ′ ⊆ hset(QY (X)) ∩ Y ⊆ hset(QY
0 (X)) ∩ Y.

Thus,X ′ ⊆ Can(QY
0 , Y). Consequently, by Proposition 3 again,Y ⊆ Can(QY

0 , Y).
SinceCan(QY

0 , Y) ⊆ Y , Y = Can(QY
0 , Y) and so,Y ∈ St(Q0).

SinceP andQ are strongly equivalent,Y ∈ St(P0), whereP0 = P ∪ R. Let us
recall that(X,Y) ∈ SE(P). By Proposition 7,Can(PY , Y) is a leastY -maximal
model ofPY . SinceX is a Y -maximal model ofP (asX |=Y PY), it follows that
Can(PY , Y) ⊆ X. SinceX ′ 6⊆ X, Can(PY

0 , Y) ⊆ X. Finally, sinceX ′ ⊆ Y ,
Y 6⊆ X. Thus,Y 6= Can(PY

0 , Y), a contradiction.
It follows thatSE(P) \ SE(Q) = ∅. By symmetry,SE(Q) \ SE(P) = ∅, too.

Thus,SE(P) = SE(Q).

13

3.3 Uniform equivalence and UE-models

Let D be a set of atoms. ByrD we denote a monotone-constraint rule

rD = (D, {D})← .

Adding a rulerD to a program forces all atoms inD to be true (independently of the
program).

Monotone-constraint programsP andQ areuniformly equivalent, denoted byP ≡u

Q, if for every set ofatomsD, P ∪ {rD} andQ ∪ {rD} have the same stable models.
An SE-model(X,Y) of a monotone-constraint programP is aUE-modelof P if

for every SE-model(X ′, Y) of P with X ⊆ X ′, eitherX = X ′ or X ′ = Y holds. We
write UE(P) to denote the set of all UE-models ofP . Our notion of a UE-model is
a generalization of the notion of a UE-model from [EF03] to the setting of monotone-
constraint programs.
Examples.Let us look again at the program we used to illustrate the concept of an SE-
model. We showed there that(∅, {p, q}) and({p}, {p, q}) are SE-models ofP . Directly
from the definition of UE-models it follows that({p}, {p, q}) is a UE-model ofP . △

We will now present a characterization of uniform equivalence of monotone-con-
straint programs under the assumption that their sets of atoms are finite. One can prove
a characterization of uniform equivalence of arbitrary monotone-constraint programs,
generalizing one of the results in [EF03]. However, both thecharacterization and its
proof are more complex and, for brevity, we restrict our attention to the finite case
only.

We start with an auxiliary result, which allows us to focus only on atoms inAt(P)
when deciding whether a pair(X,Y) of sets of atoms is an SE-model of a monotone-
constraint programP .

Lemma 5. LetP be a monotone-constraint program,X ⊆ Y two sets of atoms. Then
(X,Y) ∈ SE(P) if and only if(X ∩At(P), Y ∩At(P)) ∈ SE(P).

Proof. SinceX ⊆ Y is given, andX ⊆ Y impliesX ∩At(P) ⊆ Y ∩At(P), the first
condition of the definition of an SE-model holds on both sidesof the equivalence.

Next, we note that for every constraintC, Y |= C if and only if Y ∩Dom(C) |= C.
Therefore,Y |= P if and only if Y ∩At(P) |= P . That is, the second condition of the
definition of an SE-model holds for(X,Y) if and only if it holds for(X ∩At(P), Y ∩
At(P)).

Finally, we observe thatPY = PY ∩At(P) andP (X) = P (X∩At(P)). Therefore,

Y ∩ hset(PY (X)) = Y ∩ hset(PY ∩At(P)(X ∩At(P))).

Sincehset(PY ∩At(P)(X ∩At(P))) ⊆ At(P), it follows that

Y ∩ hset(PY (X)) ⊆ X

if and only if

Y ∩At(P) ∩ hset(PY ∩At(P)(X ∩At(P))) ⊆ X ∩At(P).

14

Thus,X |=Y PY if and only if X ∩ At(P) |=Y ∩At(P) PY ∩At(P). That is, the third
condition of the definition of an SE-model holds for(X,Y) if and only if it holds for
(X ∩At(P), Y ∩At(P)).

Lemma 6. Let P be a monotone-constraint program such thatAt(P) is finite. Then
for every(X,Y) ∈ SE(P) such thatX 6= Y , the set

{X ′ : X ⊆ X ′ ⊆ Y, X ′ 6= Y, (X ′, Y) ∈ SE(P)} (2)

has a maximal element.

Proof. If At(P) ∩ X = At(P) ∩ Y , then for every elementy ∈ Y \ X, Y \ {y}
is a maximal element of the set (2). Indeed, since(X,Y) ∈ SE(P), by Lemma 5,
(X ∩At(P), Y ∩At(P)) ∈ SE(P). SinceX ∩At(P) = Y ∩At(P) andy 6∈ At(P),
X∩At(P) = (Y \{y})∩At(P). Therefore,((Y \{y})∩At(P), Y ∩At(P)) ∈ SE(P).
Then from Lemma 5 and the factY \ {y} ⊆ Y , we have(Y \ {y}, Y) ∈ SE(P).
Therefore,Y \ {y} belongs to the set (2) and so, it is a maximal element of this set.

Thus, let us assume thatAt(P) ∩X 6= At(P) ∩ Y . Let us defineX ′ = X ∪ (Y \
At(P)). ThenX ⊆ X ′ ⊆ Y andX ′ 6= Y . Moreover, no element inX ′ \X belongs
to At(P). That is,X ′ ∩At(P) = X ∩At(P). Thus, by Lemma 5,(X ′, Y) ∈ SE(P)
and so,X ′ belongs to the set (2). SinceY \X ′ ⊆ At(P), by the finiteness ofAt(P)
it follows that the set (2) contains a maximal element containing X ′. In particular, it
contains a maximal element.

Theorem 2. Let P andQ be two monotone-constraint programs such thatAt(P) ∪
At(Q) is finite. ThenP ≡u Q if and only ifUE(P) = UE(Q).

Proof. (⇐) Let D be an arbitrary set of atoms andY be a stable model ofP ∪ {rD}.
ThenY is a model ofP ∪ {rD}. In particular,Y is a model ofP and so,(Y, Y) ∈
UE(P). It follows that (Y, Y) ∈ UE(Q), too. Thus,Y is a model ofQ. SinceY is
a model ofrD, D ⊆ Y . Consequently,Y is a model ofQ ∪ {rD} and thus, also of
(Q ∪ {rD})

Y .
Let X = Can((Q ∪ {rD})

Y , Y). ThenD ⊆ X ⊆ Y and, by Proposition 7,X is
aY -maximal model of(Q∪ {rD})

Y . Consequently,X is aY -maximal model ofQY .
SinceX ⊆ Y andY |= Q, (X,Y) ∈ SE(Q).

Let us assume thatX 6= Y . Then, by Lemma 6, there is a maximal setX ′ such that
X ⊆ X ′ ⊆ Y , X ′ 6= Y and(X ′, Y) ∈ SE(Q). It follows that(X ′, Y) ∈ UE(Q).
Thus,(X ′, Y) ∈ UE(P) and so,X ′ |=Y PY . SinceD ⊆ X ′, X ′ |=Y (P ∪ {rD})

Y .
We recall thatY is a stable model ofP ∪{rD}. Thus,Y = Can((P ∪{rD})

Y , Y). By
Proposition 7,Y ⊆ X ′ and so we getX ′ = Y , a contradiction. It follows thatX = Y
and, consequently,Y is a stable model ofQ ∪ {rD}.

By symmetry, every stable model ofQ∪ {rD} is also a stable model ofP ∪ {rD}.
(⇒) First, we note that(Y, Y) ∈ UE(P) if and only if Y is a model ofP . Next, we
note thatP andQ have the same models. Indeed, the argument used in the proof of
Lemma 4 works also under the assumption thatP ≡u Q. Thus,(Y, Y) ∈ UE(P) if
and only if(Y, Y) ∈ UE(Q).

Now let us assume thatUE(P) 6= UE(Q). Let (X,Y) be an element of(UE(P)\
UE(Q))∪(UE(Q)\UE(P)). Without loss of generality, we can assume that(X,Y) ∈
UE(P) \ UE(Q). Since(X,Y) ∈ UE(P), it follows that

15

1. X ⊆ Y

2. Y |= P and, consequently,Y |= Q

3. X 6= Y (otherwise, by our earlier observations,(X,Y) would belong toUE(Q)).

Let R = (Q ∪ {rX})
Y . Clearly,R is a Horn constraint program. Moreover, since

Y |= Q andX ⊆ Y , Y |= R. Thus,Can(R, Y) is defined. We haveX ⊆ Can(R, Y) ⊆
Y . We claim thatCan(R, Y) 6= Y . Let us assume to the contrary thatCan(R, Y) =
Y . ThenY ∈ St(Q ∪ {rX}). Hence,Y ∈ St(P ∪ {rX}), that is,Y = Can((P ∪
{rX})

Y , Y). By Proposition 7,Y is the leastY -maximal model of(P ∪ {rX})
Y and

X is aY -maximal model of(P ∪ {rX})
Y (since(X,Y) ∈ SE(P), X |=Y PY and

so,X |=Y (P ∪ {rX})
Y , too). Consequently,Y ⊆ X and, asX ⊆ Y , X = Y , a

contradiction.
Thus,Can(R, Y) 6= Y . By Proposition 7,Can(R, Y) is aY -maximal model of

R. SinceQY ⊆ R, it follows thatCan(R, Y) is aY -maximal model ofQY and so,
(Can(R, Y), Y) ∈ SE(Q). SinceCan(R, Y) 6= Y , from Lemma 6 it follows that
there is a maximal setX ′ such thatCan(R, Y) ⊆ X ′ ⊆ Y , X ′ 6= Y and(X ′, Y) ∈
SE(Q). By the definition,(X ′, Y) ∈ UE(Q). Since(X,Y) /∈ UE(Q). X 6= X ′.
Consequently, sinceX ⊆ X ′, X ′ 6= Y and(X,Y) ∈ UE(P), (X ′, Y) /∈ UE(P).

Thus,(X ′, Y) ∈ UE(Q) \ UE(P). By applying now the same argument as above
to (X ′, Y) we show the existence ofX ′′ such thatX ′ ⊆ X ′′ ⊆ Y , X ′ 6= X ′′, X ′′ 6=
Y and (X ′′, Y) ∈ SE(P). Consequently, we haveX ⊆ X ′′, X 6= X ′′ andY 6=
X ′′, which contradicts the fact that(X,Y) ∈ UE(P). It follows then thatUE(P) =
UE(Q).

Examples. Let P = {1{p, q} ← not(2{p, q})}, andQ = {p ← not(q), q ←
not(p)}. ThenP and Q are strongly equivalent. We note that both programs have
{p}, {q}, and{p, q} as models. Furthermore,({p}, {p}), ({q}, {q}), ({p}, {p, q}),
({q}, {p, q}), ({p, q}, {p, q}) and(∅, {p, q}) are “all” SE-models of the two programs
2.

Thus, by Theorem 1,P andQ are strongly equivalent.
We also observe that the first five SE-models are precisely UE-models ofP andQ.

Therefore, by Theorem 2,P andQ are also uniformly equivalent.
It is possible for two monotone-constraint programs to be uniformly but not strongly

equivalent. If we add rulep ← to P , and rulep ← q to Q, then the two resulting pro-
grams, sayP ′ andQ′, are uniformly equivalent. However, they are not strongly equiv-
alent. The programsP ′ ∪ {q ← p} andQ′ ∪ {q ← p} have different stable models.
Another way to show it is by observing that(∅, {p, q}) is an SE-model ofQ′ but not an
SE-model ofP ′. △

4 Fages Lemma

In general, supported models and stable models of a logic program (both in the normal
case and the monotone-constraint case) do not coincide. Fages Lemma [Fag94] (later

2From Lemma 5 and Theorem 1, it follows that only those SE-models that contain atoms only from
At(P) ∪ At(Q) are the essential ones.

16

extended in [EL03]), establishes a sufficient condition under which a supported model
of a normal logic program is stable. In this section, we show that Fages Lemma extends
to programs with monotone constraints.

Definition 5. A monotone-constraint programP is calledtight on a setM ⊆ At(P) of
atoms, if there exists a mappingλ fromM to ordinals such that for every ruler = A←
A1, . . . , Ak,not(Ak+1), . . . ,not(Am) in P (M), if X is the domain ofA andXi the
domain ofAi, 1 ≤ i ≤ k, then for everyx ∈M ∩X and for everya ∈M ∩

⋃k
i=1 Xi,

λ(a) < λ(x).

We will now show that tightness provides a sufficient condition for a supported
model to be stable. In order to prove a general result, we firstestablish it in the Horn
case.

Lemma 7. Let P be a Horn monotone-constraint program and letM be a supported
model ofP . If P is tight onM , thenM is a stable model ofP .

Proof. Let M be an arbitrary supported model ofP such thatP is tight onM . Let λ
be a mapping showing the tightness ofP onM . We will show that for every ordinalα
and for every atomx ∈ M such thatλ(x) ≤ α, x ∈ Can(P,M). We will proceed by
induction.

For the basis of the induction, let us consider an atomx ∈ M such thatλ(x) = 0.
SinceM is a supported model forP andx ∈ M , there exists a ruler ∈ P (M) such
thatx ∈ hset(r). Moreover, sinceP is tight onM , for everyA ∈ bd(r) and for every
y ∈ Dom(A)∩M , λ(y) < λ(x) = 0. Thus, for everyA ∈ bd(r), Dom(A)∩M = ∅.
SinceM |= bd(r) and sinceP is a Horn monotone-constraint program, it follows that
∅ |= bd(r). Consequently,hset(r) ∩M ⊆ Can(P,M) and so,x ∈ Can(P,M).

Let us assume that the assertion holds for every ordinalβ < α and let us consider
x ∈M such thatλ(x) = α. As before, sinceM is a supported model ofP , there exists
a ruler ∈ P (M) such thatx ∈ hset(r). By the assumption,P is tight onM and,
consequently, for everyA ∈ bd(r) and for everyy ∈ Dom(A)∩M , λ(y) < λ(x) = α.
By the induction hypothesis, for everyA ∈ bd(r), Dom(A)∩M ⊆ Can(P,M). Since
P is a Horn monotone-constraint program,Can(P,M) |= bd(r). By Proposition 3,
hset(r) ∩M ⊆ Can(P,M) and so,x ∈ Can(P,M).

It follows that M ⊆ Can(P,M). By the definition of a canonical computation,
we haveCan(P,M) ⊆ M . Thus,M = Can(P,M). By Proposition 6,M is a stable
model ofP .

Given this lemma, the general result follows easily.

Theorem 3. LetP be a monotone-constraint program and letM be a supported model
of P . If P is tight onM , thenM is a stable model ofP .

Proof. One can check that ifM is a supported model ofP , then it is a supported model
of the reductPM . SinceP is tight onM , the reductPM is tight onM , too. Thus,M
is a stable model ofPM (by Lemma 7) and, consequently, a derivable model ofPM

(by Proposition 6). It follows thatM is a stable model ofP .

17

5 Logic PL
mc and the completion of a monotone-con-

straint program

The completionof a normal logic program [Cla78] is a propositional theory whose
models are precisely supported models of the program. Thus,supported models of
normal logic programs can be computed by means of SAT solvers. Under some con-
ditions, for instance, when the assumptions of Fages Lemma hold, supported models
are stable. Thus, computing models of the completion can yield stable models, an idea
implemented in the first version ofcmodelssoftware [BL02].

Our goal is to extend the concept of the completion to programs with monotone
constraints. The completion, as we define it, retains much ofthe structure of monotone-
constraint rules and allow us, in the restricted setting oflparseprograms, to use pseudo-
boolean constraint solvers to compute supported models of such programs. In this sec-
tion we define the completion and prove a result relating supported models of programs
to models of the completion. We discuss extensions of this result in the next section and
their practical computational applications in Section 8.

To define the completion, we first introduce an extension of propositional logic with
monotone constraints, a formalism we denote byPLmc . A formula in the logicPLmc

is an expression built from monotone constraints by means ofboolean connectives∧,
∨ (and theirinfinitary counterparts),→ and¬. The notion of a model of a constraint,
which we discussed earlier, extends in a standard way to the class of formulas in the
logic PLmc .

For a setL = {A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} of literals, we define

L∧ = A1 ∧ . . . ∧Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let P be a monotone-constraint program. We form thecompletionof P , denoted
Comp(P), as follows:

1. For every ruler ∈ P we include inComp(P) aPLmc formula

[bd(r)]∧ → hd(r)

2. For every atomx ∈ At(P), we include inComp(P) aPLmc formula

x→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(we note that when the set of rules inP is infinite, the disjunction may be infini-
tary).

The following theorem generalizes a fundamental result on the program comple-
tion from normal logic programming [Cla78] to the case of programs with monotone
constraints.

Theorem 4. Let P be a monotone-constraint program. A setM ⊆ At(P) is a sup-
ported model ofP if and only ifM is a model ofComp(P).

18

Proof. (⇒) Let us suppose thatM is a supported model ofP . ThenM is a model of
P , that is, for each ruler ∈ P , if M |= bd(r) thenM |= hd(r). SinceM |= bd(r)
if and only if M |= [bd(r)]∧, it follows that all formulas inComp(P) of the first type
are satisfied byM .

Moreover, sinceM is a supported model ofP , M ⊆ hset(P (M)). That is, for
every atomx ∈ M , there exists at least one ruler in P such thatx ∈ hset(r) and
M |= bd(r). Therefore, all formulas inComp(P) of the second type are satisfied by
M , too.
(⇐) Let us now suppose thatM is a model ofComp(P). SinceM |= bd(r) if and
only if M |= [bd(r)]∧, and sinceM satisfies formulas of the first type inComp(P),
M is a model ofP .

Let x ∈M . SinceM satisfies the formulax→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)},

it follows that M satisfies
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}. That is, there isr ∈

P such thatM satisfies[bd(r)]∧ (and so,bd(r), too) andx ∈ hset(r). Thus,x ∈
hset(P (M)). Hence,M is a supported model ofP .

Theorems 3 and 4 have the following corollary.

Corollary 5. Let P be a monotone-constraint program. A setM ⊆ At(P) is a stable
model ofP if P is tight onM andM is a model ofComp(P).

We observe that for the material in this section it is not necessary to require that
constraints appearing in the bodies of program rules be monotone. However, since we
are only interested in this case, we adopted the monotonicity assumption here, as well.

6 Loops and loop formulas in monotone-constraint pro-
grams

The completion alone is not quite satisfactory as it relatessupportednotstablemodels
of monotone-constraint programs with models ofPLmc theories. Loop formulas, pro-
posed in [LZ02], provide a way to eliminate those supported models of normal logic
programs, which are not stable. Thus, they allow us to use SATsolvers to compute sta-
ble models ofarbitrary normal logic programs and not only those, for which supported
and stable models coincide.

We will now extend this idea to monotone-constraint programs. In this section, we
will restrict our considerations to programsP that arefinitary, that is,At(P) is finite.
This restriction implies that monotone constraints that appear in finitary programs have
finite domains.

Let P be a finitary monotone-constraint program. Thepositive dependency graph
of P is the directed graphGP = (V,E), whereV = At(P) and〈u, v〉 is an edge inE
if there exists a ruler ∈ P such thatu ∈ hset(r) andv ∈ Dom(A) for some monotone
constraintA ∈ bd(r) (that is,A appears non-negated inbd(r)). We note that positive
dependency graphs of finitary programs are finite.

Let G = (V,E) be a directed graph. A setL ⊆ V is a loop in G if the subgraph
of G induced byL is strongly connected. A loop ismaximalif it is not a proper subset
of any other loop inG. Thus, maximal loops are vertex sets of strongly connected

19

components ofG. A maximal loop isterminatingif there is no edge inG from L to
any other maximal loop.

These concepts can be extended to the case of programs. By aloop (maximal loop,
terminating loop) of a monotone-constraint programP , we mean the loop (maximal
loop, terminating loop) of the positive dependency graphGP of P . We observe that
every finitary monotone-constraint programP has a terminating loop, sinceGP is
finite.

Let X ⊆ At(P). By GP [X] we denote the subgraph ofGP inducedby X. We
observe that ifX 6= ∅ then every loop ofGP [X] is a loop ofGP .

LetP be a monotone-constraint programP . For every modelM of P (in particular,
for every modelM of Comp(P)), we defineM− = M \Can(PM ,M). SinceM is a
model ofP , M is a model ofPM . Thus,Can(PM ,M) is well defined and so isM−.

For every loop in the graphGP we will now define the corresponding loop formula.
First, for a constraintA = (X,C) and a setL ⊆ At , we setA|L = (X, {Y ∈ C : Y ∩
L = ∅}) and callA|L the restrictionof A to L. Next, letr be a monotone-constraint
rule, say

r = A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am).

If L ⊆ At , then define aPLmc formulaβL(r) by setting

βL(r) = A1|L ∧ . . . ∧Ak|L ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let L be a loop of a monotone-constraint programP . Then, theloop formulafor
L, denoted byLP (L), is thePLmc formula

LP (L) =
∨

L→
∨
{βL(r) : r ∈ P andL ∩ hset(r) 6= ∅}

(we recall that we use the convention to writea for the constraintC(a) = ({a}, {{a}}).
A loop completionof a finitary monotone-constraint programP is thePLmc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop inGP }.

The following theorem exploits the concept of a loop formulato provide a neces-
sary and sufficient condition for a model being a stable model. transfinite one.

Theorem 6. LetP be a finitary monotone-constraint program. A setM ⊆ At(P) is a
stable model ofP if and only ifM is a model ofLComp(P).

Proof. (⇒) Let M be a stable model ofP . ThenM is a supported model ofP and, by
Theorem 4,M |= Comp(P).

Let L be a loop inP . If M ∩ L = ∅ thenM |= LP (L). Thus, let us assume that
M ∩ L 6= ∅. SinceM is a stable model ofP , M is a derivable model ofPM , that is,
M = Can(PM ,M). Let (Xn)n=0,1,... be the canonicalPM -derivation with respect
to M (since we assume thatP is finite and each constraint inP has a finite domain,
P -derivations reach their results in finitely many steps). SinceCan(PM ,M) ∩ L =
M ∩ L 6= ∅, there is a smallest indexn such thatXn ∩ L 6= ∅. In particular, it follows
thatn > 0 (asX0 = ∅) andL ∩Xn−1 = ∅.

20

SinceXn = hset(PM (Xn−1)∩M andXn∩L 6= ∅, there is a ruler ∈ PM (Xn−1)
such thathset(r) ∩ L 6= ∅, that is, such thatL ∩ hset(r)) 6= ∅. Let r′ be a rule
in P , which contributesr to PM . Then, for every literalnot(A) ∈ bd(r′), M |=
not(A). Let A ∈ bd(r′). ThenA ∈ bd(r) and so,Xn−1 |= A. SinceXn−1 ∩ L = ∅,
Xn−1 |= A|L, too, By the monotonicity ofA|L, M |= A|L. Thus,M |= βL(r′). Since
hset(r′) ∩ L 6= ∅, L ∩ hset(r)) 6= ∅ and so,M |= LP (L). Thus,M |= LComp(P).
(⇐) Let us consider a setM ⊆ At(P) such thatM is not a stable model ofP . If
M is not a supported model ofP thatM 6|= Comp(P) and soM is not a model of
LComp(P). Thus, let us assume thatM is a supported model ofP . It follows that
M− 6= ∅. Let L ⊆M− be a terminating loop forGP [M−].

Let r′ be an arbitrary rule inP such thatL ∩ hset(r′)) 6= ∅, and letr be the rule
obtained fromr′ by removing negated constraints from its body. Now, let us assume
thatM |= βr′(L). It follows that for every literalnot(A) ∈ bd(r′), M |= not(A).
Thus, r ∈ PM . Moreover, sinceL is a terminating loop forGP [M−], for every
constraintA ∈ bd(r′), Dom(A) ∩ M− ⊆ L. SinceM |= A|L, it follows that
Can(PM ,M) |= A. Consequently,hset(r′)∩L ⊆ hset(r′)∩M ⊆ Can(PM ,M) and
so,L ∩ Can(PM ,M) 6= ∅, a contradiction. Thus,M 6|=

∨
{βr′(L) : r′ ∈ P andL ∩

hset(r′)) 6= ∅}. SinceM |=
∨

L, it follows that M 6|= LP (L) and so,M 6|=
LComp(P).

The following result follows directly from the proof of Theorem 6 and provides us
with a way to filter out specific non-stable supported models fromComp(P).

Theorem 7. Let P be a finitary monotone-constraint program andM a model of
Comp(P). If M− is not empty, thenM violates the loop formula of every terminating
loop ofGP [M−].

Finally, we point out that, Theorem 6 does not hold when a program P contains
infinitely many rules. Here is a counterexample:
Examples.Let P be the set of following rules:

1{a0} ← 1{a1}
1{a1} ← 1{a2}
· · ·
1{an} ← 1{an+1}
· · ·

Let M = {a0, . . . , an, . . .}. ThenM is a supported model ofP . The only stable
model of P is ∅. However,M− = M \ ∅ does not contain any terminating loop.
The problem arises because there is an infinite simple path inGP [M−]. Therefore,
GP [M−] does not have a sink, yet it does not have a terminating loop either. △

The results of this section, concerning the program completion and loop formulas
— most importantly, the loop-completion theorem — form the basis of a new software
system to compute stable models oflparseprograms. We discuss this matter in Section
8.

21

7 Programs with convex constraints

We will now discuss programs with convex constraints, whichare closely related to
programs with monotone constraints. Programs with convex constraints are of interest
as they do not involve explicit occurrences of the default negation operatornot, yet are
as expressive as programs with monotone-constraints. Moreover, they directly subsume
an essential fragment of the class oflparseprograms [SNS02].

A constraint(X,C) is convex, if for everyW,Y,Z ⊆ X such thatW ⊆ Y ⊆ Z and
W,Z ∈ C, we haveY ∈ C. A constraint rule of the form (1) is aconvex-constraint rule
if A, A1, . . . , An are convex constraints andm = k. Similarly, a constraint program
built of convex-constraint rules is aconvex-constraint program.

The concept of a model discussed in Section 2 applies to convex-constraint pro-
grams. To define supported and stable models of convex-constraint programs, we view
them as special programs with monotone-constraints.

To this end, we define theupward and downward closuresof a constraintA =
(X,C) to be constraintsA+ = (X,C+) andA− = (X,C−), respectively, where

C+ = {Y ⊆ X : for someW ∈ C, W ⊆ Y }, and
C− = {Y ⊆ X : for someW ∈ C, Y ⊆W}.

We note that the constraintA+ is monotone. We call a constraint(X,C) antimonotone
if C is closed under subset, that is, for everyW,Y ⊆ X, if Y ∈ C andW ⊆ Y then
W ∈ C. It is clear that the constraintA− is antimonotone.

The upward and downward closures allow us to represent any convex constraint as
the “conjunction” of a monotone constraint and an antimonotone constraint.Namely,
we have the following property of convex constraints.

Proposition 8. A constraint(X,C) is convex if and only ifC = C+ ∩ C−.

Proof. (⇐) Let us assume thatC = C+ ∩ C−and let us consider a setM such that
M ′ ⊆M ⊆M ′′, whereM ′,M ′′ ∈ C. it follows thatM ′ ∈ C+ andM ′′ ∈ C−. Thus,
M ∈ C+ andM ∈ C−. Consequently,M ∈ C, which implies that(X,C) is convex.
(⇒) The definitions directly imply thatC ⊆ C+ andC ⊆ C−. Thus,C ⊆ C+ ∩ C−.
Let us considerM ∈ C+ ∩ C−. Then there are setsM ′,M ′′ ∈ C such thatM ′ ⊆ M
andM ⊆ M ′′. SinceC is convex,M ∈ C. Thus,C+ ∩ C− ⊆ C and so,C =
C+ ∩ C−.

This proposition suggests an encoding of convex-constraint programs as monotone-
constraint programs. To present it, we need more notation. For a constraintA =
(X,C), we call the constraint(X,C), whereC = P(X) \ C, the dual constraint
for A. We denote it byA. It is a direct consequence of the definitions that a constraint
A is monotone if and only if its dualA is antimonotone.

Let C be a convex constraint. We setmc(C) = {C} if C is monotone. We set
mc(C) = {not(C)}, if C is antimonotone. We definemc(C) = {C+,not(C−)}, if
C is neither monotone nor antimonotone. Clearly,C andmc(C) have the same models.

Let P be a convex-constraint program. Bymc(P) we denote the program with
monotone constraints obtained by replacing every ruler in P with a ruler′ such that

hd(r′) = hd(r)+ and bd(r′) =
⋃
{mc(A) : A ∈ bd(r)}

22

and, ifhd(r) is notmonotone, also with an additional ruler′′ such that

hd(r′′) = (∅, ∅) and bd(r′′) = {hd(r)−} ∪ bd(r′).

By our observation above, all constraints appearing in rules ofmc(P) are indeed mono-
tone, that is,mc(P) is a program with monotone constraints.

It follows from Proposition 8 thatM is a model ofP if and only if M is a model
of mc(P). We extend this correspondence to supported and stable models of a convex
constraint programP and the monotone-constraint programmc(P).

Definition 6. Let P be a convex constraint program. Then a set of atomsM is a
supported (or stable) model ofP if M is a supported (or stable) model ofmc(P).

With these definitions, monotone-constraint programs can be viewed (almost) di-
rectly as convex-constraint programs. Namely, we note thatmonotone and antimono-
tone constraints are convex. Next, we observe that ifA is a monotone constraint, the
expressionnot(A) has the same meaning as the antimonotone constraintA in the sense
that for every interpretationM , M |= not(A) if and only if M |= A.

Let P be a monotone-constraint program. Bycc(P) we denote the program ob-
tained fromP by replacing every ruler of the form (1) inP with r′ such that

hd(r′) = hd(r) and bd(r′) =
⋃
{Ai : i = 1, . . . , k} ∪

⋃
{Aj : j = k + 1, . . . ,m}

One can show that programsP andcc(P) have the same models, supported models
and stable models. In fact, for every monotone-constraint programP we haveP =
mc(cc(P)).
Remark. Another consequence of our discussion is that the default negation operator
can be eliminated from the syntax at the price of allowing antimonotone constraints
and using antimonotone constraints as negated literals. 2

Due to the correspondences established above, one can extend to convex-constraint
programs all concepts and results we discussed earlier in the context of monotone-
constraint programs. In many cases, they can also be stateddirectly in the language of
convex-constraints. The most important for us are the notions of the completion and
loop formulas, as they lead to new algorithms for computing stable models oflparse
programs. Therefore, we will now discuss them in some detail.

As we just mentioned, we could useComp(mc(P)) as a definition of the comple-
tion Comp(P) for a convex-constraint logic programP . Under this definition Theo-
rems 9 extends to the case of convex-constraint programs. However,Comp(mc(P))
involves monotone constraints and their negations andnot convex constraints that ap-
pear inP . Therefore, we will now propose another approach, which preserves convex
constraints ofP .

To this end, we first extend the logicPLmc with convex constraints. In this exten-
sion, which we denote byPLcc and refer to as thepropositional logic with convex-
constraints, formulas are boolean combinations of convex constraints.The semantics
of such formulas is given by the notion of a model obtained by extending over boolean
connectives the concept of a model of a convex constraint.

Thus, the only difference between the logicPLmc , which we used to define the
completion and loop completion for monotone-convex programs and the logicPLcc is

23

that the former uses monotone constraints as building blocks of formulas, whereas the
latter is based on convex constraints. In fact, since monotone constraints are special
convex constraints, the logicPLmc is a fragment of the logicPLcc .

LetP be a convex-constraint program. The completion ofP , denoted byComp(P),
is the following set ofPLcc formulas:

1. For every ruler ∈ P we include inComp(P) aPLcc formula

[bd(r)]∧ → hd(r)

(as before, for a set of convex constraintsL, L∧ denotes the conjunction of the
constraints inL)

2. For every atomx ∈ At(P), we include inComp(P) aPLcc formula

x→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(again, we note that when the set of rules inP is infinite, the disjunction may be
infinitary).

One can now show the following theorem.

Theorem 8. LetP be a convex-constraint program and letM ⊆ At(P). ThenM is a
supported model ofP if and only ifM is a model ofComp(P).

Proof. (Sketch) By the definition,M is a supported model ofP if and only if M is a
supported model ofmc(P). It is a matter of routine checking thatComp(mc(P)) and
Comp(P) have the same models. Thus the assertion follows from Theorem 4.

Next, we restrict attention tofinitary convex-constraint programs, that is, programs
with finite set of atoms, and extend to this class of programs the notions of the positive
dependency graph and loops. To this end, we exploit its representation as a monotone-
constraint programmc(P). That is, we define the positive dependency graph, loops
and loop formulas forP as the positive dependency graph, loops and loop formulas of
mc(P), respectively. In particular,L is a loop ofP if and only if L is a loop ofmc(P)
and the loop formula forL, with respect to a convex-constraint programP , is defined
as the loop formulaLP (L) with respect to the programmc(P)3. We note that since
loop formulas for monotone-constraint programs only modify non-negated literals in
the bodies of rules and leave negated literals intact, thereseems to be no simple way
to extend the notion of a loop formula to the case of a convex-constraint programP
without making references tomc(P).

We now define aloop completionof a finitary convex-constraint programP as the
PLcc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop ofP}.

We have the following theorem that provides a necessary and sufficient condition
for a set of atoms to be a stable model of a convex-constraint program.

3There is one minor simplification one might employ. For a monotone constraintA, ¬A and A are
equivalent andA is antimonotone and so, convex. Thus, we can eliminate the operator¬ from loop formulas
of convex-constraint programs by writingA instead of¬A.

24

Theorem 9. Let P be a finitary convex-constraint program. A setM ⊆ At(P) is a
stable model ofP if and only ifM is a model ofLComp(P).

Proof. (Sketch) SinceM is a stable model ofP if and only ofM is a stable model of
mc(P), Theorem 6 implies thatM is a stable model ofP if and only if M is a stable
model ofLComp(mc(P)). It is a matter of routine checking thatLComp(mc(P))
andLComp(P) have the same models. Thus, the result follows.

In a similar way, Theorem 7 implies the following result for convex-constraint pro-
grams.

Theorem 10. LetP be a finitary convex-constraint program andM a model ofComp(P).
If M− is not empty, thenM violates the loop formula of every terminating loop of
GP [M−].

We emphasize that one could simply useLComp(mc(P)) as a definition of the
loop completion for a convex-constraint logic program. However, our definition of the
completion component of the loop completion retains the structure of constraints in a
programP , which is important when using loop completion for computation of stable
models, the topic we address in the next section of the paper.

8 Applications

In this section, we will use theoretical results on the program completion, loop formulas
and loop completion of programs with convex constraints to design and implement a
new method for computing stable models oflparseprograms [SNS02].

8.1 Lparse programs

[SNS02] introduced and studied an extension of normal logicprogramming with weight
atoms. Formally, aweight atomis an expression

A = l[a1 = w1, . . . , ak = wk]u,

whereai, 1 ≤ i ≤ k are propositional atoms, andl, u andwi, 1 ≤ i ≤ k are non-
negative integers. If all weightswi are equal to 1,A is a cardinality atom, written as
l{a1, . . . , ak}u.

An lparse ruleis an expression of the form

A← A1, . . . , An

whereA, A1, . . . , An are weight atoms. We refer to sets oflparserules aslparse pro-
grams. [SNS02] defined forlparseprograms the semantics of stable models.

A setM of atoms is amodelof (or satisfies) a weight atoml[a1 = w1, . . . , ak =
wk]u if

l ≤
k∑

i=1

{wi : ai ∈M} ≤ u.

25

With this semantics a weight atoml[a1 = w1, . . . , ak = wk]u can be identified
with a constraint(X,C), whereX = {a1, . . . , ak} and

C = {Y ⊆ X : l ≤
k∑

i=1

{wi : ai ∈ Y } ≤ u}.

We notice that all weights in a weight atomW are non-negative. Therefore, if
M ⊆ M ′ ⊆ M ′′ and bothM andM ′′ are models ofW , thenM ′ is also a model of
W . It follows that the constraint(X,C) we define above is convex.

Since(X,C) is convex, weight atoms represent a class of convex constraints and
lparse programs syntactically are a class of programs with convex constraints. This
relationship extends to the stable-model semantics. Namely, [MNT04, MT04] showed
thatlparseprograms can be encoded as programs with monotone constraints so that the
concept of a stable model is preserved. The transformation used there coincides with
the encodingmc described in the previous section, when we restrict the latter to lparse
programs. Thus, we have the following theorem.

Theorem 11. Let P be an lparse program. A setM ⊆ At is a stable model ofP ac-
cording to the definition from [SNS02] if and only ifM is a stable model ofP according
to the definition given in the previous section (whenP is viewed as a convex-constraint
program).

It follows that to compute stable models oflparseprograms we can use the results
obtained earlier in the paper, specifically the results on program completion and loop
formulas for convex-constraint programs.
Remark. To be precise, the syntax oflparse programs [SNS02] is more general. It
allows both atoms and negated atoms to appear within weight atoms. It also allows
weights to be negative. However, negative weights inlparseprograms are treated just
as a notational convenience. Specifically, an expression ofthe forma = w within a
weight atom (wherew < 0) represents the expressionnot(a) = −w (eliminating
negative weights in this way from a weight atom requires modifications of the bounds
associated with this weight atom). Moreover, by introducing new propositional vari-
ables one can remove occurrences of negative literals from programs. These transfor-
mations preserve stable models (modulo new atoms). We referto [SNS02, MNT06] for
a detailed discussion of this transformation.

In addition to weight atoms, the bodies oflparserules may contain propositional
literals (atoms and negated atoms) as conjuncts. We can replace these propositional
literals with weight atoms as follows: an atoma can be replaced with the cardinality
atom1{a}, and a literalnot(a) — with the cardinality atom{a}0. This transformation
preserves stable models, too. Moreover, the size of the resulting program does not
increase more than by a constant factor. Thus, through the transformations discussed
here, monotone- and convex-constraint programs capture arbitrary lparseprograms.2

8.2 Computing stable models oflparse programs

In this section we present an algorithm for computing stablemodels oflparseprograms.
Our method uses the results we obtained in Section 7 to reducethe problem to that of

26

computing models of the loop completion of anlparseprogram. The loop completion
is a formula in the logicPLcc , in which the class of convex constraints is restricted to
weight constraints, as defined in the previous subsection. We will denote the fragment
of the logicPLcc consisting of such formulas byPLwa .

To make the method practical, we need programs to compute models of theories
in the logicPLwa . We will now show a general way to adapt to this task off-the-shelf
pseudo-boolean constraint solvers[ES03, ARMS02, Wal97, MR05, LT03]

Pseudo-boolean constraints(PB for short) are integer programming constraints in
which variables have 0-1 domains. We will write them as inequalities

w1 × x1 + . . . + wk × xk comp w, (3)

where comp stands for one of the relations≤, ≥, < and>, wi’s andw are integer
coefficients (not necessarily non-negative), andxi’s are integers taking value 0 or 1. A
set of pseudo-boolean constraints is apseudo-boolean theory.

Pseudo-boolean constraints can be viewed as constraints. The basic idea is to treat
each 0-1 variablex as a propositional atom (which we will denote by the same let-
ter). Under this correspondence, a pseudo-boolean constraint (3) is equivalent to the
constraint(X,C), whereX = {x1, . . . , xk} and

C = {Y ⊆ X :
k∑

i=1

{wi : xi ∈ Y } comp w}

in the sense that solutions to (3) correspond to models of(X,C) (xi = 1 in a solution
if and only if xi is true in the corresponding model). In particular, if all coefficientswi

and the boundw in (3) are non-negative, and ifcomp = ‘≥’, then the constraint (3)
is equivalent to a monotone lower-bound weight atomw[x1 = w1, . . . , xn = wn].

It follows that an arbitrary weight atom can be represented by one or two pseudo-
boolean constraints. More generally, an arbitraryPLwa formulaF can be encoded as
a set ofPB constraints. We will describe the translation as a two-stepprocess.

The first step consists of convertingF to a clausal form τcl(F)4. To control the
size of the translation, we introduce auxiliary propositional atoms. Below, we describe
the translationF 7→→ τcl(F) under the assumption thatF is a formula of the loop
completion of anlparseprogramP . Our main motivation is to compute stable models
of logic programs and to this end algorithms for computing models of loop completions
are sufficient.

Let F be a formula in the loop completion of anlparse-programP . We define
τcl(F) as follows (in the transformation, we use a propositional atomx as a shorthand
for the cardinality atomC(x) = 1{x}).
1. If F is of the formA1 ∧ . . . ∧An → A, thenτcl(F) = F
2. If F is of the formx→ ([bd(r1)]

∧)∨. . .∨([bd(rl)]
∧), then we introduce new propo-

sitional atomsbr,1, . . . , br,l and setτcl(F) to consist of the followingPLwa clauses:

x→ br,1 ∨ . . . ∨ br,l

4A PL
wa clauseis any formulaB1∧ . . .∧Bm → H1 ∨ . . .∨Hn, whereBi andHj are weight atoms.

27

[bd(ri)]
∧ → br,i, for everybd(ri)

br,i → Aj , for everybd(ri) andAj ∈ bd(ri)

3. If F is of the form
∨

L →
∨

r{βL(r)}, whereL is a set of atoms, and everyβL(r)
is a conjunction of weight atoms, then we introduce new propositional atomsbdfL,r for
everyβL(r) in F and represent

∨
L as the weight atomWL = 1[li = 1 : li ∈ L]. We

then defineτcl(F) to consist of the following clauses:

WL →
∨

bdfL,r

βL(r)→ bdfL,r, for everyβL(r) ∈ F

bdfL,r → Aj , for everyβL(r) ∈ F andAj ∈ βL(r).

It is clear that the sizeτcl(F) is linear in the size ofF .
The second step of the translation, converts aPLwa formulaC in a clausal form

into a set ofPB constraints,τpb(C). To define the translationC → τpb(C), let us
consider aPLwa clauseC of the form

B1 ∧ . . . ∧Bm → H1 ∨ . . . ∨Hn, (4)

whereBi’s andHi’s are weight atoms.
We introduce new propositional atomsb1, . . . , bm andh1, . . . , hn to represent each

weight atom in the clause. As noted earlier in the paper, we simply writex for a weight
atoms of the form1[x = 1]. With the new atoms, the clause (4) becomes a propositional
clauseb1 ∧ . . .∧ bm → h1 ∨ . . .∨ hn. We represent it by the followingPB constraint:

−b1 − . . .− bm + h1 + . . . + hn ≥ 1−m. (5)

Here and later in the paper, we use the same symbols to denote propositional variables
and the corresponding 0-1 integer variables. The context will always imply the correct
meaning of the symbols. Under this convention, it is easy to see that a propositional
clauseb1 ∧ . . .∧ bm → h1 ∨ . . .∨ hn and itsPB constraint (5) have the same models.

We introduce nextPB constraints that enforce the equivalence of the newly intro-
duced atomsbi (or hi) and the corresponding weight atomsBi (or Hi).

Let B = l[a1 = w1, . . . , ak = wk]u be a weight atom andb a propositional
atom. We splitB to B+ andB− and introduce two more atomsb+ andb−. To model
B ≡ b, we model with pseudo-boolean constraints the following three equivalences:
b ≡ b+ ∧ b−, b+ ≡ B+, andb− ≡ B−.
1. The first equivalence can be captured with three propositional clauses. Hence the
following threePB constraints model that equivalence:

−b + b+ ≥ 0 (6)

−b + b− ≥ 0 (7)

−b+ − b− + b ≥ −1 (8)

28

2. The second equivalence,b+ ≡ B+, can be modeled by the following twoPB con-
straints

(−l)× b+ +

k∑

i=1

(ai × wi) ≥ 0 (9)

−(
k∑

i=1

wi − l + 1)× b+ +
k∑

i=1

(ai × wi) ≤ l − 1 (10)

3. Similarly, the third equivalence,b− ≡ B−, can be modeled by the following two
PB constraints

(

k∑

i=1

wi − u)× b− +

k∑

i=1

(ai × wi) ≤
k∑

i=1

wi (11)

(u + 1)× b− +

k∑

i=1

(ai × wi) ≥ u + 1 (12)

We define nowτpb(C), for aPLwa clauseC, as the set of all pseudo-boolean con-
straints (5) and (6), (7), (8), (11), (12), (9), (10) constructed for every weight atom
occurring inC. One can verify that the size ofτpb(C) is linear in the size ofC. There-
fore,τpb(τcl(F)) has size linear in the size ofF .

In the special case where allBi’s andHj ’s are weight atoms of the form1[bi = 1]
and1[hj = 1], we do not need to introduce any new atoms andPB constraints (6), (7),
(8), (11), (12), (9), (10). Thenτpb(C) consists of a singlePB constraint (5).

We have the following theorem establishing the correctnessof the transformation
τ . The proof of the theorem is straightforward.

Theorem 12. Let F be a loop completion formula in logicPLwa , and M a set of
atoms,M ⊆ At(F). ThenM is a model ofF in PLwa logic if and only ifM has a
unique extensionM ′ by some of the new atoms inAt(τpb(τcl(F))) such thatM ′ is a
model of the pseudo-boolean theoryτpb(τcl(F)).

We note that when we use solvers designed forPLwa theories, then translationτpb
is no longer needed. The benefit of using such solvers is that we do not need to split
weight atoms in thePLwa theories and do not need the auxiliary atoms introduced in
τpb .

8.2.1 The algorithm

We follow the approach proposed in [LZ02]. As in that paper, we first compute the
completion of alparseprogram. Then, we iteratively compute models of the comple-
tion using aPB solver. Whenever a model is found, we test it for stability. Ifthe model
is not a stable model of the program, we extend the completionby loop formulas iden-
tified in Theorem 10. Often, adding a single loop formula filters out several models of
Comp(P) that are not stable models ofP .

The results given in the previous section ensure that our algorithm is correct. We
present it in Figure 1. We note that it may happen that in the worst case exponentially
many loop formulas are needed before the first stable model isfound or we determine

29

Input:P — a lparseprogram;
A — a pseudo-boolean solver

BEGIN
compute the completionComp(P) of P ;
T := τpb(τcl(Comp(P)));
do

if (solverA finds no models ofT) output “no stable models found” and terminate;
M := a model ofT found byA;
if (M is stable) outputM and terminate;
compute the reductPM of P with respect toM ;
compute the greatest stable modelM ′, contained inM , of PM ;
M− := M \M ′;
find all terminating loops inM−;
compute loop formulas and convert them intoPB constraints usingτpb andτcl ;
add allPB constraints computed in the previous step toT ;

while (true);
END

Figure 1: Algorithm ofpbmodels

that no stable models exist [LZ02]. However, that problem arises only rarely in practical
situations5.

The implementation ofpbmodels supports severalPB solvers includingsatzoo
[ES03], pbs [ARMS02], wsatoip[Wal97]. It also supports a programwsatcc[LT03]
for computing models ofPLwa theories. When this last program is used, the transfor-
mation, from “clausal”PLwa theories to pseudo-boolean theories is not needed. The
first two of these four programs are completePB solvers. The latter two are local-
search solvers based onwsat[SKC94].

We output the message “no stable model found” in the first lineof the loop and not
simply “no stable models exist” since in the case whenA is a local-search algorithm,
failure to find a model of the completion (extended with loop formulas in iteration two
and the subsequent ones) does not imply that no models exist.

8.3 Performance

In this section, we present experimental results concerning the performance ofpbmodels.
The experiments comparedpbmodels, combined with severalPB solvers, tosmodels

[SNS02] andcmodels [BL02]. We focused our experiments on problems whose state-
ments explicitly involve pseudo-boolean constraints, as we designedpbmodels with
such problems in mind.

5In fact, in many cases programs turn out to be tight with respectto their supported models. Therefore,
supported models are stable and no loop formulas are necessaryat all.

30

For most benchmark problems we triedcmodels did not perform well. Only in one
case (vertex-cover benchmark) the performance ofcmodels was competitive, although
even in this case it was not the best performer. Therefore, wedo not report here results
we compiled forcmodels. For a complete set of results we obtained in the experiments
we refer tohttp://www.cs.uky.edu/ai/pbmodels .

In the experiments we used instances of the following problems: traveling sales-
person, weightedn-queens, weighted Latin square, magic square, vertex cover, and
Towers of Hanoi. The lparse programs we used for the first four problems involve
general pseudo-boolean constraints. Programs modeling the last two problems contain
cardinality constraints only.
Traveling salesperson problem (TSP). An instance consists of a weighted complete
graph withn vertices, and a boundw. All edge weights andw are non-negative integers.
A solution to an instance is a Hamiltonian cycle whose total weight (the sum of the
weights of all its edges) is less than or equal tow.

We randomly generated50 weighted complete graphs with20 vertices, To this end,
in each case we assign to every edge of a complete undirected graph an integer weight
selected uniformly at random from the range[1..19]. By settingw to 100 we obtained a
set of “easy” instances, denoted byTSP-e(the bound is high enough for every instance
in the set to have a solution). From the same collection of graphs, we also created a set
of “hard” instances, denoted byTSP-h, by settingw to 62. Since the requirement on
the total weight is stronger, the instances in this set in general take more time.
Weightedn-queens problem (WNQ). An instance to the problem consists of a weighted
n×n chessboard and a boundw. All weights and the bound are non-negative integers.
A solution to an instance is a placement ofn queens on the chessboard so that no two
queens attack each other and the weight of the placement (thesum of the weights of
the squares with queens) is not greater thanw.

We randomly generated50 weighted chessboards of the size20 × 20, where each
chessboard is represented by a set ofn × n integer weightswi,j , 1 ≤ i, j ≤ n, all
selected uniformly at random from the range[1..19]. We then created two sets of in-
stances, easy (denoted bywnq-e) and hard (denoted bywnq-h), by setting the boundw
to 70 and 50, respectively.
Weighted Latin square problem (WLSQ). An instance consists of ann × n array
of weightswi,j , and a boundw. All weights wi,j andw are non-negative integers. A
solution to an instance is ann × n arrayL with all entries from{1, . . . , n} and such
that each element in{1, . . . , n} occurs exactly once in each row and in each column of
L, and

∑n
i=1

∑n
j=1 L[i, j]× wi,j ≤ w.

We setn = 10 and we randomly generated50 sets of integer weights, selecting
them uniformly at random from the range[1..9]. Again we created two families of
instances, easy (wlsq-e) and hard (wlsq-h), by settingw to 280 and225, respectively.
Magic square problem. An instance consists of a positive integern. The goal is to
construct ann × n array using each integer1, . . . n2 as an entry in the array exactly
once in such a way that entries in each row, each column and in both main diagonals
sum up ton(n2 + 1)/2. For the experiments we used the magic square problem for
n = 4, 5 and6.
Vertex cover problem. An instance consists of graph withn vertices andm edges, and
a non-negative integerk — a bound. A solution to the instance is a subset of vertices

31

of the graph with no more thank vertices and such that at least one end vertex of every
edge in the graph is in the subset.

We randomly generated50 graphs, each with80 vertices and400 edges. For each
graph, we setk to be a smallest integer such that a vertex cover with that many elements
still exists.
Towers of Hanoi problem. This is a slight generalization of the original problem. We
considered the case with six disks and three pegs. An instance consists of an initial
configuration of disks that satisfies the constraint of the problem (larger disk must not
be on top of a smaller one) but does not necessarily requires that all disks are on one
peg. These initial configurations were selected so that theywere 31, 36, 41 and 63 steps
away from the goal configuration (all disks from the largest to the smallest on the third
peg), respectively. We also considered a standard version of the problem with seven
disks, in which the initial configuration is127 steps away from the goal.

We encoded each of these problems as a program in the general syntax of lparse,
which allows the use of relation symbols and variables [Syr99]. Each of these pro-
grams is available athttp://www.cs.uky.edu/ai/pbmodels . We then used
these programs in combination with appropriate instances as inputs tolparse[Syr99].
In this way, for each problem and each set of instances we generated a family of
ground (propositional)lparse programs so that stable models of each of these pro-
grams represent solutions to the corresponding instances of the problem (if there are
no stable models, there are no solutions). We used these families of lparseprograms
as inputs to solvers we were testing. All these ground programs are also available at
http://www.cs.uky.edu/ai/pbmodels .

In the tests, we usedpbmodels with the following fourPB solvers:satzoo [ES03],
pbs [ARMS02],wsatcc [LT03], andwsatoip [Wal97]. In particular,wsatcc deals with
PLwa theories directly.

All experiments were run on machines with 3.2GHz Pentium 4 CPU, 1GB memory,
running Linux with kernel version 2.6.11, gcc version 3.3.4. In all cases, we used 1000
seconds as the timeout limit.

We first show the results for themagic squareand towers of Hanoiproblems. In
Table 1, for each solver and each instance, we report the corresponding running time
in seconds. Local-search solvers were unable to solve any ofthe instances in the two
problems and so are not included in the table.

Benchmark smodels pbmodels-satzoo pbmodels-pbs

magic square(4 × 4) 1.36 1.70 2.41
magic square(5 × 5) > 1000 28.13 0.31
magic square(6 × 6) > 1000 75.58 > 1000

towers of Hanoi(d = 6, t = 31) 16.19 18.47 1.44
towers of Hanoi(d = 6, t = 36) 32.21 31.72 1.54
towers of Hanoi(d = 6, t = 41) 296.32 49.90 3.12
towers of Hanoi(d = 6, t = 63) > 1000 > 1000 3.67
towers of Hanoi(d = 7, t = 127) > 1000 > 1000 22.83

Table 1: Magic square and towers of Hanoi problems

Both pbmodels-satzoo and pbmodels-pbs perform better thansmodels on pro-

32

of SAT instances # of UNSAT instances # of UNKNOWN instances

TSP-e 50 0 0
TSP-h 31 1 18
wnq-e 49 0 1
wnq-h 29 0 21
wlsq-e 45 4 1
wlsq-h 8 41 1
vtxcov 50 0 0

Table 2: Summary of Instances

smodels pbmodels-satzoo pbmodels-pbs

TSP-e 45/17 50/30 18/3
TSP-h 7/3 16/14 0/0
wnq-e 11/5 26/23 0/0
wnq-h 2/2 0/0 0/0
wlsq-e 21/1 49/29 46/19
wlsq-h 0/0 47/26 47/23
vtxcov 50/40 50/1 47/3

sum over all 136/68 238/123 158/48

Table 3: Summary on all instances

grams obtained by encoding instances of both problems. We observe thatpbmodels-pbs
performs exceptionally well in the tower of Hanoi problem. It is the only solver that
can compute a plan for7 disks, which requires 127 steps. Magic square and Towers
of Hanoi problems are highly regular. Such problems are often a challenge for local-
search problems, which may explain a poor performance we observed forpbmodels-
wsatcc andpbmodels-wsatoip on these two benchmarks.

For the remaining four problems, we used 50-element families of instances, which
we generated randomly in the way discussed above. We studiedthe performance of
complete solvers (smodels, pbmodels-satzoo andpbmodels-pbs) on all instances. We
then included local-search solvers (pbmodels-wsatcc andpbmodels-wsatoip) in the
comparisons but restricted attention only to instances that were determined to be sat-
isfiable (as local-search solvers are, by their design, unable to decide unsatisfiability).
In Table 2, for each family we list how many of its instances are satisfiable, unsatisfi-
able, and for how many of the instances none of the solvers we tried was able to decide
satisfiability.

In Table 3, for each of the seven families of instances and foreachcompletesolver,
we report two valuess/w, wheres is the number of instances solved by the solver and
w is the number of times it was the fastest among the three.

The results in Table 3 show that overallpbmodels-satzoo solved more instances
thanpbmodels-pbs, followed by smodels. When we look at the number of times a
solver was the fastest one,pbmodels-satzoo was a clear winner overall, followed by
smodels and then bypbmodels-pbs. Looking at the seven families of tests individually,
we see thatpbmodels-satzoo performed better than the other two solvers on five of the

33

smodels pbmodels-satzoo pbmodels-pbs pbmodels-wsatcc pbmodels-wsatoip

TSP-e 45/3 50/5 18/2 32/7 47/34
TSP-h 7/0 16/2 0/0 19/6 28/22
wnq-e 11/0 26/0 0/0 49/45 49/4
wnq-h 2/0 0/0 0/0 29/15 29/14
wlsq-e 21/0 45/0 44/0 45/33 45/14
wlsq-h 0/0 7/0 8/0 7/1 8/7
vtxcov 50/0 50/0 47/0 50/36 50/15

sum over all 136/3 194/7 117/2 231/143 256/110

Table 4: Summary on SAT instances

families. On the other twosmodels was the best performer (although, it is a clear
winner only on the vertex-cover benchmark; all solvers wereessentially ineffective on
thewnq-h).

We also studied the performance ofpbmodels combined with local-search solvers
wsatcc [LT03] andwsatoip [Wal97]. For this study, we considered only those instances
in the seven families that we knew were satisfiable. Table 4 presents results for all
solvers we studied (including the complete ones). As before, each entry provides a pair
of numberss/w, wheres is the number of solved instances andw is the number of
times the solver performed better than its competitors.

The results show superior performance ofpbmodels combined with local-search
solvers. They solve more instances than complete solvers (includingsmodels). In addi-
tion, they are significantly faster, winning much more frequently than complete solvers
do (complete solvers were faster only on 12 instances, whilelocal-search solvers were
faster on 253 instances).

Our results demonstrate thatpbmodels with solvers of pseudo-boolean constraints
outperformssmodels on several types of search problems involving pseudo-boolean
(weight) constraints).

We note that we also analyzed the run-time distributions foreach of these fami-
lies of instances. A run-time distribution is regarded as a more accurate and detailed
measure of the performance of algorithms on randomly generated instances (we re-
fer to [HS05] for a detailed discussion of this matter in the context of local-search
methods). The results are consistent with the summary results presented above and
confirm our conclusions. As the discussion of run-time distributions requires much
space, we do not include this analysis here. They are available at the websitehttp:
//www.cs.uky.edu/ai/pbmodels .

9 Related work

Extensions of logic programming with means to model properties ofsets(typically con-
sisting of ground terms) have been extensively studied. Usually, these extensions are
referred to by the common term oflogic programming with aggregates. The term comes
from the fact that most properties of sets of practical interest are defined through “ag-
gregate” operations such as sum, count, maximum, minimum and average. We chose

34

the termconstraintto stress that we speak about abstract properties that definecon-
straints on truth assignments (which we view as sets of atoms).

Some early work on logic programs with aggregates includes [MPR90, KS91].
More recently, [NSS99, SNS02] introduced the class oflparseprograms. We discussed
this formalism in detail earlier in this paper.

[Pel04, PDB06] studied a more general class of aggregates and developed a sys-
tematic theory of aggregates in logic programming based on the approximation theory
[DMT00]. The resulting theory covers not only the stable models semantics but also
the supported-model semantics and extensions of 3-valued Kripke-Kleene and well-
founded semantics. The formalism of [Pel04, PDB06] allow for arbitrary aggregates
(not only monotone ones) to appear in the bodies of rules. However, it does not allow
for aggregates to appear in the heads of program clauses. Dueto differences in the syn-
tax and the scope of semantics studied there is no simple way to relate [Pel04, PDB06]
to programs with monotone (convex) constraints. We note though that there are pro-
grams with monotone constraints that after some minor syntactic modifications can be
viewed as programs in the formalism of [Pel04, PDB06] and that have the same sta-
ble models according to the definitions from [MT04, MNT06] and [Pel04, PDB06] (in
particular, programs with abstract monotone constraints with the heads of rules of the
form C(a)).

[FLP04] developed the theory ofdisjunctivelogic programs with aggregates. As in
[Pel04, PDB06], [FLP04] does not allow for aggregates to appear in the heads of pro-
gram clauses. This is one of the differences between that approach and programs with
monotone (convex) constraints we studied here. The other major difference is related
to the postulate of the minimality of stable models (calledanswer setsin the context of
the formalism considered in [FLP04]). In keeping with the spirit of the original answer-
set semantics [GL91], answer sets of disjunctive programs with aggregates, as defined
in [FLP04], are minimal models. Stable models of programs with abstract constraints
do not have this property. However, for the class of programswith abstract monotone
constraints with the heads of rules of the formC(a) the semantics of answr sets defined
in [FLP04] coincides with the semantics of stable models from [MT04, MNT06].

Yet another approach to aggregates in logic programming waspresented in [SE06].
That approach considered programs of the syntax similar to programs with monotone
abstract constraints. It allowed arbitrary constraints (not only monotone ones) but not
under the scope ofnot operator. A general principle behind the definition of the stable-
model semantics in [SE06] is to view a program with constraints as a concise repre-
sentation of a set of its “instances”, each being a normal logic program. Stable models
of the program with constraints are defined as stable models of its instances and is
quite different from the operator-based definition of [MNT06]. However, for programs
with montoneconstraint atoms which fall in the scope of the formalism of [SE06] both
approaches coincide.

We also note that a recent paper [SPT06] presented aconservativeextension of the
syntax proposed in [MT04, MNT06], in which clauses are builtof arbitrary constraint
atoms.

Finally, we point out the work of [FL04, Fer05] which treats aggregates asnested
expressions. In particular, [Fer05] introduces a propositional logic with a certain non-
classical semantics, and shows that it extends several approaches to programs with ag-

35

gregates, including those of [SNS02] (restricted to core lparse programs) and [FLP04].
The nature of the relationship of the formalism of [Fer05] and programs with abstract
constraints remains an open problem.

10 Conclusions

Our work shows that concepts, techniques and results from normal logic programming,
concerning strong and uniform equivalence, tightness and Fages lemma, program com-
pletion and loop formulas, generalize to the abstract setting of programs with monotone
and convex constraints. These general properties specialize tonewresults aboutlparse
programs (with the exception of the characterization strong equivalence oflparsepro-
grams, which was first obtained in [Tur03]).

Given these results we implemented a new softwarepbmodelsfor computing stable
models oflparseprograms. The approach reduces the problem to that of computing
models of theories consisting of pseudo-boolean constraints, for which several fast
solvers exist [MR05]. Our experimental results show thatpbmodelswith PB solvers,
especially local searchPB solvers, performs better thansmodels on several types of
search problems we tested. Moreover, as new and more efficient solvers of pseudo-
boolean constraints become available (the problem is receiving much attention in the
satisfiability and integer programming communities), the performance ofpbmodelswill
improve accordingly.

Acknowledgments

We acknowledge the support of NSF grants IIS-0097278 and IIS-0325063.

References
[ARMS02] F.A. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: a backtrack-search

pseudo-boolean solver and optimizer. InProceedings of the 5th International Sym-
posium on Theory and Applications of Satisfiability, pages 346 – 353, 2002.

[Bar03] C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

[BL02] Y. Babovich and V. Lifschitz. Cmodels package, 2002. http://www.cs.
utexas.edu/users/tag/cmodels.html .

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
data bases, pages 293–322. Plenum Press, New York-London, 1978.

[DFI+03] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and Gerald Pfeifer. Aggregate func-
tions in disjunctive logic programming: semantics, complexity, and implementation
in DLV. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI-2003), pages 847–852. Morgan Kaufmann, 2003.

[DMT00] M. Denecker, V. Marek, and M. Truszczyński. Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In J.Minker,

36

editor,Logic-Based Artificial Intelligence, pages 127–144. Kluwer Academic Pub-
lishers, 2000.

[DPBn01] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable
semantics for logic programs with aggregates. In Ph. Codognet, editor,Logic pro-
gramming, Proceedings of the 2001 International Conference on LogicProgram-
ming, volume 2237, pages 212–226. Springer, 2001.

[EF03] T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model
semantics. InProceedings of the 2003 International Conference on Logic Program-
ming, volume 2916 ofLecture Notes in Computer Science, pages 224–238, Berlin,
2003. Springer.

[EL03] E. Erdem and V. Lifschitz. Tight logic programs.Theory and Practice of Logic
Programming, 3(4-5):499–518, 2003.

[ES03] N. Éen and N. S̈orensson. An extensible SAT solver. InTheory and Applications
of Satisfiability Testing, 6th International Conference, SAT-2003, volume 2919 of
LNCS, pages 502–518. Springer, 2003.

[Fag94] F. Fages. Consistency of Clark’s completion and existence ofstable models.Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

[Fer05] P. Ferraris. Answer sets for propositional theories. InLogic Programming and Non-
monotonic Reasoning, 8th International Conference, LPNMR 2005, volume 3662
of LNAI, pages 119–131. Springer, 2005.

[FL04] P. Ferraris and V. Lifschitz. Weight constraints ans nested expressions.Theory and
Practice of Logic Programming, 5:45–74, 2004.

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunc-
tive logic programs: Semantics and complexity. InProceedings of the 9th European
Conference on Artificial Intelligence (JELIA 2004), volume 3229 ofLNAI, pages
200 – 212. Springer, 2004.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InProceed-
ings of the 5th International Conference on Logic Programming, pages 1070–1080.
MIT Press, 1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programsand disjunctive
databases.New Generation Computing, 9:365–385, 1991.

[GL02] M. Gelfond and N. Leone. Logic programming and knowledge representation – the
A-prolog perspective.Artificial Intelligence, 138:3–38, 2002.

[HS05] H.H. Hoos and T. Stützle. Stochastic Local Search Algorithms — Foundations and
Applications. Morgan-Kaufmann, 2005.

[KS91] D.B. Kemp and P.J. Stuckey. Semantics of logic programs with aggregates. InLogic
Programming, Proceedings of the 1991 International Symposium, pages 387–401.
MIT Press, 1991.

[Lin02] F. Lin. Reducing strong equivalence of logic programs to entailment in classical
propositional logic. InPrinciples of Knowledge Representation and Reasoning,
Proceedings of the 8th International Conference (KR2002). Morgan Kaufmann Pub-
lishers, 2002.

[LPV01] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs.ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

37

[LT03] L. Liu and M. Truszczýnski. Local-search techniques in propositional logic ex-
tended with cardinality atoms. In F. Rossi, editor,Proceedings of the 9th Inter-
national Conference on Principles and Practice of Constraint Programming, CP-
2003, volume 2833 ofLNCS, pages 495–509. Springer, 2003.

[LT05a] L. Liu and M. Truszczýnski. Pbmodels - software to compute stable models by pseu-
doboolean solvers. InLogic Programming and Nonmonotonic Reasoning, Proceed-
ings of the 8th International Conference (LPNMR-05), LNAI 3662, pages 410–415.
Springer, 2005.

[LT05b] L. Liu and M. Truszczýnski. Properties of programs with monotone and convex con-
straints. InProceedings of the 20th National Conference on Artificial Intelligence
(AAAI-05), pages 701–706. AAAI Press, 2005.

[LZ02] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. InProceedings of the 18th National Conference on Artificial Intelligence
(AAAI-2002), pages 112–117. AAAI Press, 2002.

[MNT04] V.W. Marek, I. Niemel̈a, and M. Truszczýnski. Characterizing stable models of
logic programs with cardinality constraints. InProceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning, volume 2923 of
Lecture Notes in Artificial Intelligence, pages 154–166. Springer, 2004.

[MNT06] V.W. Marek, I. Niemel̈a, and M. Truszczýnski. Logic programs with monotone
abstract constraint atoms.Theory and Practice of Logic Programming, 2006. Sub-
mitted.

[MPR90] I.S. Mumick, H. Pirahesh, and R. Ramakrishnan. The magicof duplicates and ag-
gregates. InProceedings of the 16th International Conference on Very Large Data
Bases, VLDB 1990, pages 264–277. Morgan Kaufmann, 1990.

[MR05] V. Manquinho and O. Roussel. Pseudo boolean evaluation 2005, 2005. http:
//www.cril.univ-artois.fr/PB05/ .

[MT04] V.W. Marek and M. Truszczýnski. Logic programs with abstract constraint atoms.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04),
pages 86–91. AAAI Press, 2004.

[NSS99] I. Niemel̈a, P. Simons, and T. Soininen. Stable model semantics of weight constraint
rules. In Proceedings of LPNMR-1999, volume 1730 ofLNAI, pages 317–331.
Springer, 1999.

[PDB06] N. Pelov, M. Denecker, and M. Bruynooghe. Well-foundedand stable semantics
of logic programs with aggregates.Theory and Practice of Logic Programming,
2006. Accepted (available athttp://www.cs.kuleuven.ac.be/˜dtai/
projects/ALP/TPLP/).

[PDBn04] N. Pelov, M. Denecker, and M. Bruynooghe. Partial stablemodels for logic pro-
grams with aggregates. In V. Lifschitz and I. Niemelä, editors,Logic programming
and Nonmonotonic Reasoning, Proceedings of the7

th International Conference,
volume 2923, pages 207–219. Springer, 2004.

[Pel04] N. Pelov. Semantics of logic programs with aggregates.PhD Thesis. Department
of Computer Science, K.U.Leuven, Leuven, Belgium, 2004.

[SE06] T. Son and E. Pontelli. A constructive semantic characterization of aggregates in
anser set programming.Theory and Practice of Logic Programming, 2006. Ac-
cepted (available athttp://arxiv.org/abs/cs.AI/0601051).

38

[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-
1994), pages 337–343, Seattle, USA, 1994. AAAI Press.

[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics.Artificial Intelligence, 138:181–234, 2002.

[SPT06] T. Son, E. Pontelli, and P.H. Tu. Answer sets for logic programs with arbitrary ab-
stract constraint atoms. InProceedings of the 21st National Conference on Artificial
Intelligence (AAAI-06). AAAI Press, 2006.

[Syr99] T. Syrj̈anen. lparse, a procedure for grounding domain restricted logic programs.
http://www.tcs.hut.fi/Software/smodels/lparse/ , 1999.

[Tur03] H. Turner. Strong equivalence made easy: Nested expressions and weight con-
straints.Theory and Practice of Logic Programming, 3, (4&5):609–622, 2003.

[Wal97] J.P. Walser. Solving linear pseudo-boolean constraints with local search. InPro-
ceedings of the 14th National Conference on Artificial Intelligence (AAAI-97), pages
269–274. AAAI Press, 1997.

39

