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Abstract

We study properties of programs withonotoneand convexconstraints. We
extend to these formalisms concepts and results from normal logicgonoging.
They include the notions of strong and uniform equivalence with theiracheri-
zations, tight programs and Fages Lemma, program completion antblooplas.
Our results provide an abstract account of properties of sometrextemsions of
logic programming with aggregates, especially the formalisfpafseprograms.
They imply a method to compute stable modeldpairse programs by means of
off-the-shelf solvers of pseudo-boolean constraints, which is ofterhrfaster than
thesmodelsystem.

1 Introduction

We study programs witimonotoneconstraints [MNT04, MT04, MNTO06] and intro-
duce a related class of programs withnvexconstraints. These formalisms allow con-
straints to appear in the heads of program rules, whichlsets apart from other recent
proposals for integrating constraints into logic progrd®RBBn01, PDBn04, DFt03,
Pel04, FLPO04], and makes them suitable as an abstract loadmrfnalisms such as
Iparseprograms [SNS02].

We show that several results from normal logic programmiegegalize to pro-
grams with monotone constraints. We also discuss how tleesmigues and results
can be extended further to the setting of programs with cogeastraints. We then
apply some of our general results to design and implementlagtiéo compute stable
models oflparseprograms and show that it is often much more effective 8randels
[SNSO02].

Normal logic programming with the semantics of stable medslan effective
knowledge representation formalism, mostly due to itsitghib express default as-
sumptions [Bar03, GL02]. However, modeling humeric caaists on sets in normal

*This paper combines and extends results included in cordengapers [LTO5b, LTO5a].



logic programming is cumbersome, requires auxiliary atamd leads to large pro-
grams hard to process efficiently. Since such constraiftexy calledaggregatesare
ubiquitous, researchers proposed extensions of normal fwggramming with ex-
plicit means to express aggregates, and generalized thie-stendel semantics to the
extended settings.

Aggregates imposing bounds on weights of sets of atoms tamdlB, calledveight
constraints, are especially common in practical appbecatiand are included in all
recent extensions of logic programs with aggregates. &jlgichese extensions do not
allow aggregates to appear in the heads of rules. A notallepgion is the formalism
of programs with weight constrainiatroduced in [NSS99, SNS02], which we refer
to aslparse programs (aggregates in the heads of rules are consideednalecent
papers [SE06, SPT06]).

Lparseprograms are logic programs whose rules have weight comistia their
heads and whose bodies are conjunctions of weight contstrailarmal logic programs
can be viewed as a subclasddirseprograms and the semanticslpérseprograms
generalizes the stable-model semantics of [GLBBArseprograms remain one of the
most commonly used extensions of logic programming withgiveconstraints.

Since rules inlparse programs may have weight constraints as their heads, the
concept of one-step provability is nondeterministic, vhiddes direct parallels be-
tweenlparseand normal logic programs. An explicit connection emergdgl cecently,
when [MNTO04, MT04] introducedogic programs with monotone constraintBhese
programs allow aggregates in the heads of rules and suppmateterministic computa-
tions. [MNTO04, MT04] proposed a generalization of the vandemKowalski one-step
provability operator to account for that nondeterminisifjrted supported and stable
models for programs with monotone constraints that mirh@irtnormal logic pro-
gramming counterparts, and showed encodingsyaddelprograms as programs with
monotone constraints.

In this paper, we continue investigations of programs witthotone constraints.
We show that the notions of uniform and strong equivalenceroframs [LPVO1,
Lin02, Tur03, EF03] extend to programs with monotone caists, and that their
characterizations [Tur03, EF03] generalize, too.

We adapt to programs with monotone constraints the notioa tafht program
[ELO3] and generalize Fages Lemma [Fag94].

We introduce extensions of propositional logic with mome&aonstraints. We de-
fine the completion of a monotone-constraint program witipeet to this logic, and
generalize the notion of a loop formula. We then prove th@{fmwmula characteri-
zation of stable models of programs with monotone condsaextending to the set-
ting of monotone-constraint programs results obtainechomal logic programs in
[Cla78, LZ02].

Programs with monotone constraints make explicit refezero the default nega-
tion operator. We show that by allowing a more general cldssoostraints, called
convexdefault negation can be eliminated from the language. \Waeathat all results
in our paper extend to programs with convex constraints.

Our paper shows that programs with monotone and convexredmtsthave a rich
theory that closely follows that of normal logic programiift implies that programs
with monotone and convex constraints form an abstract géination of extensions



of normal logic programs. In particular, all results we abta the abstract setting of
programs with monotone and convex constraints speciaijgatseprograms and, in
most cases, yield results that are new.

These results have practical implications. The propeofi#fise program completion
and loop formulas, when specialized to the cladpafseprograms, yield a method to
compute stable models lfarseprograms by means of solverspgeudo-booleaoon-
straints, developed by the propositional satisfiabilitgt axteger programming commu-
nities [ES03, ARMS02, Wal97, MRO5, LT03]. We describe thisthod in detail and
present experimental results on its performance. Thetseshibw that our method on
problems we used for testing typically outperforamodels

2 Preliminaries

We consider the propositional case only. It does not leadgs bf generality, as it is
common to interpret programs with variables in terms ofrtpedpositional ground-
ings.

We assume a fixed sett of propositional atoms. The definitions and results we
present in this section come from [MT04]. Some of them areeng@meral as in the
present paper we allow constraints with infinite domains puogirams with inconsis-
tent constraints in the heads.

Constraints. A constraintis an expressiod = (X,C), whereX C At andC C
P(X) (P(X) denotes the powerset &f). We call the sefX the domainof the con-
straintA = (X, C) and denote it bypom (A). Informally speaking, a constraiiX, C')
describes a property of subsets of its domain, witbonsisting precisely of these sub-
sets ofX thatsatisfythe constraint (have property).

In the paper, we identify truth assignments (interpretegjawith the sets of atoms
they assign the truth valugue. That is, given an interpretatioh/ C A¢, we have
M E aifand only if a € M. We say that an interpretatiolf C At satisfiesa
constraintd = (X,C) (M [ A), if M N X € C. Otherwise, M does not satisfy,
(M = A).

A constraintAd = (X, C) is consistentf there isA such that\ | A. Clearly, a
constraintd = (X, C) is consistent if and only i€ # (.

We note that propositional atoms can be regarded as camstraeta € At and
M C At. We defineC'(a) = ({a}, {{a}}). Itis evident thatM = C(a) if and only
if M = a. Therefore, in the paper we often writeas a shorthand for the constraint
C(a).

Constraint programs. Constraints are building blocks of rules and programs. [FTO
definedconstraint programas sets ofonstraintrules

A— Ay, ..., Ap,not(Ag41),...,not(4,,) (1)

whereA, Ay, ..., A, are constraints andot is thedefault negatioroperator.

In the context of constraint programs, we refer to constsaamd negated con-
straints aditerals. Given a ruler of the form (1), the constraint (literal} is thehead
of r and the se{Ay,..., Ay, ..., not(Ax11),...,n0t(A,,)} of literals is thebody



of r1. We denote the head and the bodyraby hd(r) and bd(r), respectively. We
define the théheadsebf r, written hset(r), as the domain of the head of That is,
hset(r) = Dom(hd(r)).

For a constraint progratii, we denote byd¢(P) the set of atoms that appear in the
domains of constraints iR. We define thdeadsebf P, written hset(P), as the union
of the headsets of all rules iA.

Models. The concept of satisfiability extends in a standard way &rdisnot(A)
(M E not(A) if M [~ A), to sets (conjunctions) of literals and, finally, to comstt
programs.

M-applicable rules.Let M C At be an interpretation. A rule (1) i&/-applicableif
M satisfies every literal ind (). We denote byP (M) the set of allM -applicable rules
in P.

Supported models Supportedness is a property of models. Intuitively, evéoyna: in

a supported model must have “reasons” for being “in”. Suelsoes aré/-applicable
rules whose heads contairin their domains. Formally, leP be a constraint program
andM a subset ofdt(P). A model M of P is supportedf M C hset(P(M)).
Examples.We illustrate the concept with examples. Lietbe the constraint program
that consists of the following two rules:

({e.d e}, {{c}, {d}, {e}, {c, d, e}}) <
({a,b}, {{a}, {0}}) = ({e,d}, {{c}, {e.d}}), not({e}, {{e}})

AsetM = {a,c} is a model ofP as M satisfies the heads of the two rules. Both
rules in P are M-applicable. The first of them provides the supportdpthe second
one — fora. Thus,M is a supported model.

AsetM' = {a,c,d, e} is also a model of?. However,a has no support irP.
Indeeda only appears in the headset of the second rule. This rule idfepplicable
and so, it does not suppart Therefore M’ is not a supported model &f. VAN
Nondeterministic one-step provability.Let P be a constraint program ad a set of
atoms. A sefM’ is nondeterministically one-step provabftem M by means ofP, if
M’ C hset(P(M)) andM' = hd(r), for every ruler in P(M).

Thenondeterministic one-step provability operafii? for a programP is an op-
erator onP(At) such that for evenM C At, TRY(M) consists of all sets that are
nondeterministically one-step provable fravh by means ofP.

The operatofT'2¢ is nondeterministias it assigns to each/ C At a family of
subsets ofdt, each being a possible outcome of applyiigo M. In general 724
is partial, since there may be setd such that7'z¢(M) = () (no set can be derived
from M by means ofP). For instance, ifP(M) contains a rule: such thathd(r) is
inconsistent, thes?(M) = (.

Monotone constraints.A constraint( X, C') ismonotonéf C is closed under superset,
thatis, forevery,Y C X, if W € C andW C Y thenY € C.

Cardinality and weight constraints provide examples of atone constraints. Let
X be afiniteset and leC(X) = {Y: Y C X, k < |Y|}, wherek is a non-negative
integer. Then( X, C (X)) is a constraint expressing the property that a subs&tlo&s

1Sometimes we view the body of a rule as twmjunctionof its literals.



at leastk elements. We call it Iower-bound cardinality constrairdn X and denote it

by kX.
A more general class of constraints aveight constraintsLet X be a finite set,
sayX = {z1,...,z,}, and letw, wy, ..., w, be non-negative reals. We interpret each

w; as theweightassigned ta:;. A lower-bound weight constrairg a constraint of the
form (X, C,,), whereC,, consists of those subsets &fwhose total weight (the sum
of weights of elements in the subset) is at laasWWe write it as

wry = wi, ..., Ty = Wy

If all weights are equal to 1 and is an integer, weight constraints become cardi-
nality constraints. We also note that the constrélfi) is a cardinality constrairit{a}
and also a weight constraihfu = 1]. Finally, we observe that lower-bound cardinality
and weight constraints are monotone.

Cardinality and weight constraints (in a somewhat more ggrierm) appear in
the language olparse programs [SNS02], which we discuss later in the paper. The
notation we adopted for these constraints in this paperfalithat of [SNS02].

We use cardinality and weight constraints in some of our @asi They are also
the focus of the last part of the paper, where we use our absésults to design a new
algorithm to compute models {garseprograms.

Monotone-constraint programs.We call constraint programs built of monotone con-
straints —monotone-constraint program@ programs with monotone constraints
That is, monotone-constraint programs consist of rulesilefsrof the form (1), where
A, Aq,..., A, aremonotoneonstraints.

From now on, unless explicitly stated otherwise, programsensider are monotone-
constraint programs.

2.1 Horn programs and bottom-up computations

Since we allow constraints with infinite domains and incstegit constraints in heads
of rules, the results given in this subsection are more gétigan their counterparts in
[MNTO4, MT04]. Thus, for the sake of completeness, we pregem with proofs.
Arule (1) isHornif & = m (no occurrences of the negation operator in the body or,
equivalently, only monotone constraints). A constrairtgpam isHorn if every rule in
the program is Horn.
With a Horn constraint program we associatétom-upcomputations, generalizing
the corresponding notion of a bottom-up computation for rrrab Horn program.

Definition 1. Let P be a Horn program. AP-computationis a (transfinite) sequence
(X4) such that

1. Xy =0,
2. for every ordinal numbeti, X, C X411 and X, € T};d(Xa),

3. for everylimit ordinal o, X, = U[KQ X3.



Lett = (X,) be aP-computation. Since for every < 3’, Xz C Xz C At, there
is a least ordinal numbet; such thatX,,+1 = X,,, in other words, a least ordinal
when theP-computation stabilizes. We refer ¢q as thelengthof the P-computation
t.
Examples. Here is a simple example showing that some programs have wtamp
tions of length exceeding and so, the transfinite induction in the definition cannot
be avoided. Lef be the program consisting of the following rules:

({ao}, {{ao}}) — -
({ai}. {{ait}) < (Xim1, {Xioa}) fori=1,2,...
({a}, {{a}}) — (Xoo, {Xoc}),

whereX; = {ag,...a;}, 0 < 4, and X, = {ag,a1,...}. Since the body of the last
rule contains a constraint with an infinite domalin,,, it does not become applicable
in any finite step of computation. However, it does becomédiegigle in the step and
S0,a € X,+1. ConsequentlyX,, 11 # X.. AN

For a P-computationt = (X,,), we calll J,, X, theresultof the computation and
denote it byR,. Directly from the definitions, it follows thak; = X,,.

Proposition 1. Let P be a Horn constraint program antda P-computation. Them®,
is a supported model @?.

Proof. Let M = R; be the result of &-computationt = (X, ). We need to show that:
(1) M is a model ofP; and (2)M C hset(P(M)).
(1) Let us consider a rule € P such thatM = bd(r). SinceM = R; = X,, (Where
ay is the length of), X, = bd(r). Thus,X,,+1 = hd(r). SinceM = X,,4+1, M is
a model ofr and, consequently, d?, as well.
(2) We will prove by induction that, for every séf, in the computationt, X, C
hset(P(M)). The base case holds sin&g = () C hset(P(M)).

If « = B+ 1, thenX, € Tr¥(Xp). It follows that X,, C hset(P(Xg)). Since
P is a Horn program an& 3 C M, hset(P(X3)) C hset(P(M)). Therefore, X, C
hset(P(M)).

If «is a limit ordinal, thenX, = Uﬁm Xj. By the induction hypothesis, for
every$ < a, Xg C hset(P(M)). Thus,X, C hset(P(M)). By induction,M C
hset(P(M)). O

Derivable models.We use computations to defiderivablemodels of Horn constraint
programs. A sef\/ of atoms is aderivable modebf a Horn constraint prograr® if
for someP-computationt, we haveM = R;. By Proposition 1, derivable models &f
are supported models &f and so, also models df.

Derivable models are similar to the least model of a normahHwogram in that
both can be derived from a program by means of a bottom-up otatipn. However,
due to the nondeterminism of bottom-up computations of Hmmstraint programs,
derivable models are not in general unique nor minimal.

Examples.For example, leP be the following Horn constraint program:

P = {1{a,b} <—}



Then{a}, {b} and{a, b} are its derivable models. The derivable model$ and{b}
are minimal models oP. The third derivable mode{a, b}, is not a minimal model of
P. A

Since inconsistent monotone constraints may appear inehdshof Horn rules,
there are Horn programB and setsX C At, such that's?(X) = (. Thus, some
Horn constraint programs have no computations and no deeiaodels. However,
if a Horn constraint program has models, the existence ofpetations and derivable
models is guaranteed.

To see this, lef\/ be a model of a Horn constraint progrdm We define aanoni-
cal computation”M = (X M) py specifying the choice of the next set in the com-
putation in part (2) of Definition 1. Namely, for every ording we set

X5 = hset(P(XFM)) 0 M.

Thatis, we include inX 1> all those atoms occurring in the heads%f’M—applicable

rules that belong td/. We denote the result ¢f** by Can(P, M). Canonical com-
putations are indeef-computations.

Proposition 2. Let P be a Horn constraint program. l§/ C At is a model ofP, the
sequence”M is a P-computation.

Proof. As P and M are fixed, to simplify the notation in the proof we will wrif€,,
instead ofx»M

To prove the assertion, it suffices to show that for everyr@idi, (1) hset(P(X,))N
M € ThY(X,), and (2)X,, C hset(P(X,)) N M
(1) Let X C M andr € P(X). Since all constraints ithd(r) are monotone, and
X E bd(r), M = bd(r), as well. From the fact that/ is a model ofP it follows
now thatM = hd(r). Consequently) N hset(P(X)) = hd(r) for everyr € P(X).
SinceM N hset(P(X)) C hset(P(X)),

M N hset(P(X)) € To%(X).

Directly from the definition of the canonical computatiom & and M we obtain that
for every ordinaly, X, C M. Thus, (1), follows.

(2) We proceed by induction. The basis is evidenkgs= (). Let us consider an ordinal
a > 0 and let us assume that (2) holds for every ordjpiat a. If @ = 8 + 1, then
Xo = Xp41 = hset(P(Xg)) N M. Thus, by the induction hypothesi&z C X,,.
SinceP is a Horn constraint program, it follows th&(Xz) C P(X,). Thus

Xo = Xpy1 = hset(P(Xg)) N M C hset(P(Xy)) N M.

If o is a limit ordinal then for every < «, X3 C X, and, as before, alsB(Xj3) C
P(X,). Thus, by the induction hypothesis for evetyk a,

Xp C hset(P(Xg)) N M C hset(P(X4)) N M,

which implies that
Xo = | Xp C hset(P(Xa)) N M.
B<a



Canonical computations have the followifigpointproperty.

Proposition 3. Let P be a Horn constraint program. For every modél of P, we have
hset(P(Can(P,M))) N M = Can(P, M).

Proof. Leta be the length of the canonical computatién . Then, X 2 = XM =
Can(P, M). SinceX,1 = hset(X,) N M, the assertion follows. O

We now gather properties of derivable models that extengeasties of the least
model of normal Horn logic programs.

Proposition 4. Let P be a Horn constraint program. Then:

1. For every modelM of P, Can(P, M) is a greatest derivable model éf con-
tained inM

2. AmodelM of P is a derivable model if and only ¥/ = Can(P, M)
3. If M is a minimal model of? thenM is a derivable model of.

Proof. (1) Let M’ be a derivable model aP such thatM’ C M. LetT = (X,) be a
P-derivation such that/’ = R;. We will prove that for every ordinat, X, € XM,
We proceed by transfinite induction. Sinkg = XéD’M = (), the basis for the induction
is evident. Let us consider an ordiral> 0 and assume that for every ordinak «,
X5 C XM

If « = B+ 1, thenX, € TE¢(Xs) and s0,X,, C hset(P(Xg)). By the induction
hypothesis and by the monotonicity of the constraints irbtbaies of rules irP, X, C
hset(P(X4™)). Thus, sinceX, C R, = M’ C M,

Xao C hset(P(XéD’M)) AM = Xé)_’,_ﬂf = XBM,

The case when is a limit ordinal is straightforward a&,, = U,_, Xs andX"" =
Ugen X5

(2) (&) If M = Can(P, M), thenM is the result of the canonic&!-derivation forP
andM. In particular,M is a derivable model oP.

(=) if M is a derivable model oP, thenM is also a model of. From (1) it follows
thatCan(P, M) is the greatest derivable model Bfcontained inM. SinceM itself
is derivable M = Can(P, M).

(3) From (1) it follows thaC'an (P, M) is a derivable model aP and thaCan(P, M) C
M. SinceM is a minimal modelCan(P, M) = M and, by(2), M is a derivable
model of P. |

2.2 Stable models

In this section, we will recall and adapt to our setting thérdigon of stable models
proposed in [MNTO04, MT04]. LeP be a monotone-constraint program avica subset
of At(P). Thereductof P, denoted byP | is a program obtained frorR by:



1. removing fromP all rules whose body contains a litetabt(B) such that\/ =
B;

2. removing literalmot(B) for the bodies of the remaining rules.

The reduct of a monotone-constraint program is Horn sincertains no occur-
rences of default negation. Therefore, the following d&éniis sound.

Definition 2. Let P be a monotone-constraint program. A set of ataWgs a stable
model ofP if M is a derivable model aP™ . We denote the set of stable model®of
by St(P).

The definitions of the reduct and stable models follow andegaize those pro-
posed for normal logic programs, since in the setting of Hownstraint programs,
derivable models play the role of a least model.

As in normal logic programming and its standard extensistehle models of
monotone-constraint programs are supported models andgegaently, models.

Proposition 5. Let P be a monotone-constraint program.M C At(P) is a stable
model ofP, thenM is a supported model d?f.

Proof. Let M be a stable model aP. Then, M is a derivable model oP™ and, by
Proposition 1,M is a supported model adP. It follows that M is a model ofP™M,
Directly from the definition of the reduct it follows that’ is a model ofP.

It also follows thatM C hset(PM (M)). For every ruler in PM (M), there is a
ruler’ in P(M), which has the same head and the same non-negated litettadsiady
asr. Thus,hset(PM(M)) C hset(P(M)) and, consequentiy/ C hset(P(M)). It
follows that M is a supported model d?. O

Examples.Here is an example of stable models of a monotone-conspaigtam. Let
P be a monotone-constraint program that contains the fotigwiles:

2{a,b,c} — 1{a,d}, not(1{c})
ﬁb}c, d} — 1{a},not(3{a,b,d}))

Let M = {a,b}. Therefore, M [~ 1{c} and M = 3{a,b,d}. Hence the reducP™
contains the following three Horn rules:

2{a,b,c} — 1{a,d}
1{b,¢,d} — 1{a}
Ha} —

SinceM = {a, b} is a derivable model oP*, M is a stable model of.
Let M’ = {a,b,c}. ThenM’ = 1{c} andM = 3{a,b,d}. Therefore, the reduct
PM’ constains two Horn rules:

1{b,¢,d} — 1{a}
Ha} —



SinceM’ = {a,b,c} is a derivable models aP™’, M’ is also a stable model d?.
We note that stable models of a monotone-constraint pragrageneral, do not form
an anti-chain. A

If a normal logic program is Horn then its least model is italy) stable model.
Here we have an analogous situation.

Proposition 6. Let P be a Horn monotone-constraint program. Thieh C At(P) is
a derivable model oP if and only if M is a stable model oP.

Proof. For every sef\/ of atomsP = PM, Thus,M is a derivable model oP if and
only if it is a derivable model o™ or, equivalently, a stable model &f. O

In the next four sections of the paper we show that severaldonental results con-
cerning normal logic programs extend to the class of moretwmstraint programs.

3 Strong and uniform equivalence of monotone-cons-
traint programs

Strong equivalence and uniform equivalence concern thelgmoof replacing some
rules in a logic program with others without changing therailesemantics of the pro-
gram. More specifically, the strong equivalence concerpacement of rules within
arbitrary programs, and the uniform equivalence concerns repladsroéall non-fact
rules. In each case, the stipulation is that the resultimgqam must have the same
stable models as the original one. Strong (and uniform)wadgice is an important
concept due to its potential uses in program rewriting anaropation.

Strong and uniform equivalence have been studied in thatitee mostly for nor-
mal logic programs [LPVO01, Lin02, Tur03, EF03].

[Tur03] presented an elegant characterization of strongvalgnce obmodelpro-
grams and [EF03] described a similar characterization dbtm equivalence of nor-
mal and disjunctive logic programs. We show that both charamations can be adapted
to the case of monotone-constraint programs.

3.1 M-maximal models

A key role in our approach is played by models of Horn constraiograms satisfying
a certain maximality condition.

Definition 3. Let P be a Horn constraint program and lét/ be a model of°. A set
N C M such thatN is a model ofP and M N hset(P(N)) C N is an M-maximal
model ofP, written N' |=5, P.

Intuitively, N is an M-maximal model ofP if N satisfies each rule € P(N)
“maximally” with respect taM . That is, for every- € P(N), N contains all atoms in
M that belong tdiset(r) — the domain of the head of

To illustrate this notion, let us consider a Horn constraimtgramP consisting of
a single rule:

Hp,q,r} — 1{s,t}.

10



Let M = {p,q,s,t} andN = {p, ¢, s}. One can verify that both/ and N are models
of P. Moreover, since the only rule iR is N-applicable, and/ N {p,q,r} C N, N
is anM-maximal model ofP. On the other handy’ = {p, s} is not M-maximal even
thoughN’ is a model ofP and it is contained /.

There are several similarities between properties of nsodehormal Horn pro-
grams andV/-maximal models of Horn constraint programs. We state andephere
one of them that turns out to be especially relevant to owdystifi strong and uniform
equivalence.

Proposition 7. Let P be a Horn constraint program and létf be a model of”. Then
M is an M-maximal model oP andCan(P, M) is the leastV -maximal model oP.

Proof. The first claim follows directly from the definition. To provhe second one,
we simplify the notation: we will writeV for Can(P, M) and X, for X2 .

We first show thatV is an M -maximal model ofP. Clearly, N C M. Moreover,
by Proposition 3hset(P(N)) N M = N. Thus,N is indeed an\/-maximal model of
P.

We now showN is the leastV/-maximal model ofP.

Let N’ be anyM-maximal model ofP. We will show by transfinite induction that
N C N'’. SinceX, = 0, the basis for the induction holds. Let us consider an ofdina
a > 0 and let us assume thafgs C N’, for everys < a. To showN C N, itis
sufficient to show thak, C N’.

Let us assume that = 3 + 1 for somef < a. Then, sinceXg C N’ andP is a
Horn constraint program, we hav®g(X3) C P(N’). Consequently,

Xo = Xg41 = hset(P(X3)) N M C hset(P(N')) N M C N,

the last inclusion follows from the fact thiit is anA/-maximal model ofP.
If o is a limit ordinal, thenX,, = Uﬁ<o¢ X3 and the inclusionX, C N’ follows
directly from the induction hypothesis. O

3.2 Strong equivalence and SE-models

Monotone-constraint prograni3 and arestrongly equivalentdenoted byP =, Q,
if for every monotone-constraint prograR} P U R and@ U R have the same set of
stable models.

To study the strong equivalence of monotone-constraingnaras, we generalize
the concept of a®E-modefrom [Tur03].

There are close connections between strong equivalenaarmfahlogic programs
and the logic here-and-there []. The semantics of the logre{and-there is given in
terms of Kripke models with two words which, when rephrasederms of pairs of
interpretations (pairs of sets of propositional atomsj)e gise to SE-models.

Definition 4. Let P be a monotone-constraint program and fétY be sets of atoms.
We say that X, Y') is an SE-modelof P if the following conditions hold: (L)X C Y;
(2 Y | P;and (3) X =y PY.We denote by E(P) the set of all SE-models &f.

Examples.To illustrate the notion of an SE-model of a monotone-castprogram,
let P consist of the following two rules:
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2{p,q,r} < Hq,r},not(3{p,q,r})}
{p, s} — {p,r},not(2{p,r})

We observe that/ = {p, q} is a model ofP. Let N = (). ThenN C M and P (N)
is empty. It follows thatM N hset(PM(N)) = 0 C N and so,N =, PM. Hence,
(N, M) is an SE-models aP.

Next, let N’ = {p}. Itis clear thatN’ C M. Moreover,PM (N’) = {1{p, s} «
1{p,r}}. HenceM N hset(PM(N’)) = {p} € N’ and so,N’ =), PM. That is,
(N', M) is another SE-model aP. A

SE-models yield a simple characterization of strong edgiee of monotone-
constraint programs. To state and prove it, we need sevexdiaay results.

Lemma 1. Let P be a monotone-constraint program and Mtbe a model oP. Then
(M, M) and (Can(P™, M), M) are both SE-models @?.

Proof. The requirement§l) and(2) of an SE-model hold fofM, M). Furthermore,
sinceM is a model ofP, M = PM. Finally, we also havéset(P(M)) N M C M.
Thus,M =, PM.

Similarly, the definition of a canonical computation and grsition 1, imply the
first two requirements of the definition of SE-models {&tan(P™, M), M). The
third requirement follows from Proposition 7. O

Lemma 2. Let P and ) be two monotone-constraint programs such te@(P) =
SE(Q). ThenSt(P) = St(Q).

Proof. If M € St(P), thenM is a model ofP and, by Lemma 1(M, M) € SE(P).
Hence,(M, M) € SE(Q) and, in particularM = Q. By Lemma 1 again,

(Can(QM, M), M) € SE(Q).

By the assumption,
(Can(Q™, M), M) € SE(P)

and so,Can(QM, M) [ PM or, in other termsCan(Q™, M) is an M-maximal
model of PM. SinceM € St(P), M = Can(PM, M). By Proposition 7,M is the
least M -maximal model ofP™. Thus,M C Can(QM, M). On the other hand, we
haveCan(QM, M) C M and so,M = Can(Q™, M). It follows that M is a stable
model of@. The other inclusion can be proved in the same way. O

Lemma 3. Let P and R be two monotone-constraint programs. TheR(P U R) =
SE(P)N SE(R).

Proof. The assertion follows from the following two simple obsdivas. First, for
every set” of atoms,Y = (P UR) ifand only ifY = P andY = R. Second, for
every two setsX andY of atoms, X =y (P U R)Y if and only if X =y PY and
X =y RY. O

Lemma 4. Let P, Q be two monotone-constraint programsHAf=, Q, thenP and @
have the same models.

12



Proof. Let M be a model ofP. By r we denote a constraint ru{@/, {M }) < . Then,
M € St(PU{r}). SinceP andQ are strongly equivalenfy/ € St(QU{r}). It follows
that M is a model of@ U {r} and so, also a model @j. The converse inclusion can
be proved in the same way. O

Theorem 1. Let P and@ be monotone-constraint programs. Ther=, @ if and only
if SE(P) = SE(Q).

Proof. (<) Let R be an arbitrary monotone-constraint program. Lemma 3 eshat
SE(PUR) = SE(P)NSE(R)andSE(QUR) = SE(Q)NSE(R). SinceSE(P) =
SE(Q), we have thaSE(PUR) = SE(Q U R). By Lemma 2,PU RandQ U R
have the same stable models. HenRes, () holds.
(=) Let us assum& E(P) \ SE(Q) # 0 and let us considefX,Y) € SE(P) \
SE(Q). It follows thatX C Y andY = P. By Lemma 4)Y |= Q. Since(X,Y) ¢
SE(Q), X Fy QY. Itfollows thatX [~ QY or hset(QY (X)) NY € X. In the first
case, there is arulee QY (X) such that\ = hd(r). SinceX C Y andQY is aHorn
constraint programy; € QY (Y). Let us recall that” = @ and so, we also havg =
QY . Itfollows thatY = hd(r). Sincehset(r) C hset(QY (X)), Y Nhset(QY (X)) =
hd(r). Thus,hset(QY (X)) NY ¢ X (otherwise, by the monotonicity dfd(r), we
would haveX = hd(r)).

The same property holds in the second case. Thus, it folloatgiset (QY (X)) N
Y)\ X # 0. We defineX’ = (hset(QY (X))NY)\ X.

Let R be a constraint program consisting of the following two sule

(X, {X}) <
YAV} — (X {X"}).

Let us consider a progra)o = Q U R. SinceY E QandX C Y,Y E Qo.
Thus,Y E QY and, in particularCan(QY,Y) is well defined. Since? C QY
X C Can(QY,Y). Thus, we have

hset(QY (X)) NY C hset(QY (Can(QY ,Y)))NY = Can(Q},Y)
(the last equality follows from Proposition 3). We also h&y& )y and so,
X' C hset(QY (X)) NY C hset(QY (X)) NY.

Thus, X’ C Can(QY,Y). Consequently, by Proposition 3 again,C Can(Qy,Y).
SinceCan(QY,Y) CY,Y = Can(Q},Y) and soY € St(Qo).

SinceP and( are strongly equivalent| € St(F,), wherePy = P U R. Let us
recall that(X,Y) € SE(P). By Proposition 7Can(PY,Y) is a leasty’-maximal
model of PY. SinceX is aY-maximal model ofP (as X =y PY), it follows that
Can(PY)Y) C X. SinceX’' ¢ X, Can(P),Y) C X. Finally, sinceX’ C Y,
Y ¢ X.Thus,Y # Can(P),Y), a contradiction.

It follows that SE(P) \ SE(Q) = 0. By symmetry,SE(Q) \ SE(P) = 0, too.
Thus,SE(P) = SE(Q). O
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3.3 Uniform equivalence and UE-models

Let D be a set of atoms. Byp we denote a monotone-constraint rule
rp= (D,{D}) <.

Adding a rulerp to a program forces all atoms i to be true (independently of the
program).

Monotone-constraint progranisand( areuniformly equivalentdenoted byP =,
Q, if for every set ofatomsD, P U {rp} andQ U {rp} have the same stable models.

An SE-model(X,Y") of a monotone-constraint prografis a UE-modelof P if
for every SE-mode{X’,Y") of P with X C X', eitherX = X’ or X’ =Y holds. We
write UE(P) to denote the set of all UE-models &f Our notion of a UE-model is
a generalization of the notion of a UE-model from [EF03] te Hetting of monotone-
constraint programs.
Examples.Let us look again at the program we used to illustrate the ejoinaf an SE-
model. We showed there thi {p, ¢}) and({p}, {p, ¢}) are SE-models aP. Directly
from the definition of UE-models it follows th&{p}, {p, ¢}) is a UE-model ofP. A

We will now present a characterization of uniform equivakeiof monotone-con-
straint programs under the assumption that their sets ofsatoe finite. One can prove
a characterization of uniform equivalence of arbitrary wtone-constraint programs,
generalizing one of the results in [EF03]. However, both ¢haracterization and its
proof are more complex and, for brevity, we restrict our raten to the finite case
only.

We start with an auxiliary result, which allows us to focusyoon atoms ind¢(P)
when deciding whether a pgiX, Y") of sets of atoms is an SE-model of a monotone-
constraint progran®.

Lemma 5. Let P be a monotone-constraint progradi, C Y two sets of atoms. Then
(X,Y) e SE(P)ifandonly if (X N At(P),Y N At(P)) € SE(P).

Proof. SinceX C Y is given, andX C Y impliesX N At(P) C Y N At(P), the first
condition of the definition of an SE-model holds on both siofthe equivalence.

Next, we note that for every constraifit Y = C ifand only if Y N Dom(C) = C.
ThereforeY = P ifand only if Y N A¢(P) = P. That is, the second condition of the
definition of an SE-model holds f¢iX, Y) if and only if it holds for(X N At(P),Y N
At(P)).

Finally, we observe tha®¥ = PY"4{P) andP(X) = P(X N At(P)). Therefore,

Y N hset(PY (X)) =Y N hset(PY AU (X 0 AL(P))).
Sincehset(PY " AUP) (X N At(P))) C At(P), it follows that
Y N hset(PY (X)) C X

if and only if

Y N At(P) N hset(PY MU (X 0 At(P))) € X N At(P).
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Thus, X |y PY if and only if X N At(P) Eynayp) PY"44P). That is, the third
condition of the definition of an SE-model holds foX, Y') if and only if it holds for
(X NAt(P),Y n At(P)). O

Lemma 6. Let P be a monotone-constraint program such th&t P) is finite. Then
for every(X,Y) € SE(P) such thatX # Y, the set

{(X:XCX'CY, X' #Y, (X',Y) € SE(P)} 2)
has a maximal element.

Proof. If At(P) N X = At(P)NY, then for every element € Y \ X, Y \ {y}
is a maximal element of the set (2). Indeed, siideY) € SE(P), by Lemma 5,
(X NAt(P),Y NAt(P)) € SE(P). SinceX N At(P) =Y N At(P) andy ¢ At(P),
XNAt(P) = (Y\{y})NAt(P). Therefore((Y\{y})NAt(P),YNAt(P)) € SE(P).
Then from Lemma 5 and the fagt \ {y} C Y, we have(Y \ {y},Y) € SE(P).
ThereforeY \ {y} belongs to the set (2) and so, it is a maximal element of this se
Thus, let us assume thdt(P) N X # At(P)NY. Letus defineX’ = X U (Y \
At(P)). ThenX C X' C Y andX’ # Y. Moreover, no element iX’ \ X belongs
to At(P). Thatis,X’ N At(P) = X N At(P). Thus, by Lemma 5X’',Y) € SE(P)
and so,X’ belongs to the set (2). Sindé\ X’ C A¢(P), by the finiteness ofit(P)
it follows that the set (2) contains a maximal element camitg X’. In particular, it
contains a maximal element. O

Theorem 2. Let P and Q be two monotone-constraint programs such tHa{P) U
At(Q) is finite. ThenP =, Q ifand only ifUE(P) = UE(Q).

Proof. (<) Let D be an arbitrary set of atoms afitibe a stable model aP U {rp}.
ThenY is a model ofP U {rp}. In particular,Y” is a model ofP and so,(Y,Y) €
UE(P). It follows that(Y,Y) € UE(Q), too. Thus)Y is a model ofQ. SinceY is
a model ofrp, D C Y. ConsequentlyY” is a model ofQ U {rp} and thus, also of
QU {rp})".

Let X = Can((Q U {rp})¥,Y). ThenD C X C Y and, by Proposition 7X is
aY-maximal model of Q U {rp})¥. ConsequentlyX is aY-maximal model ofpY .
SinceX CYandY = Q, (X,Y) € SE(Q).

Let us assume that # Y. Then, by Lemma 6, there is a maximal $&tsuch that
XCX CY, X' #£Yand(X")Y) € SE(Q). It follows that(X',Y) € UE(Q).
Thus,(X',Y) € UE(P) and so,X’ =y PY.SinceD C X', X' =y (PU{rp})Y.
We recall that” is a stable model aP U {rp}. Thus,Y = Can((PU{rp})¥,Y). By
Proposition 7Y C X’ and so we geKX’ = Y, a contradiction. It follows thak = Y
and, consequently, is a stable model af) U {rp}.

By symmetry, every stable model U {rp} is also a stable model d? U {rp}.
(=) First, we note thafY,Y) € UE(P) if and only if Y is a model ofP. Next, we
note thatP and@ have the same models. Indeed, the argument used in the groof o
Lemma 4 works also under the assumption tHat,, Q. Thus,(Y,Y) € UE(P) if
andonly if(Y,Y) € UE(Q).

Now let us assume th&tE(P) # UE(Q). Let(X,Y’) be an element afU E(P) \
UE(Q))U(UE(Q)\UE(P)). Without loss of generality, we can assume {#tY") €
UE(P)\UE(Q). Since(X,Y) € UE(P), it follows that
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1. XCY
2. Y | P and, consequently) = Q
3. X #Y (otherwise, by our earlier observatiofX’, Y') would belong td/ E(Q)).

Let R = (QU {rx})Y. Clearly, R is a Horn constraint program. Moreover, since
Y EQandX CVY,Y | R.Thus,Can(R,Y) is defined. We hav& C Can(R,Y) C
Y. We claim thatCan(R,Y) # Y. Let us assume to the contrary tl@@in(R,Y) =
Y. ThenY € St(Q U {rx}). Hence)Y € St(P U {rx}), thatis,Y = Can((P U
{rx})Y,Y). By Proposition 7Y is the least’-maximal model of P U {rx})¥ and
X is aY-maximal model of P U {rx})Y (since(X,Y) € SE(P), X =y PY and
s0, X Ey (PU{rx})Y, too). Consequentlyy’ C X and,asX C Y, X =Y, a
contradiction.

Thus,Can(R,Y) # Y. By Proposition 7Can(R,Y) is aY-maximal model of
R. SinceQY C R, it follows thatCan(R,Y) is aY-maximal model of@¥ and so,
(Can(R,Y),Y) € SE(Q). SinceCan(R,Y) # Y, from Lemma 6 it follows that
there is a maximal seX” such thatCan(R,Y) C X' C Y, X' # Y and(X',Y) €
SE(Q). By the definition,(X’,Y) € UE(Q). Since(X,Y) ¢ UE(Q). X # X'
Consequently, sinc& C X', X’ #Y and(X,Y) e UE(P), (X',Y) ¢ UE(P).

Thus,(X',Y) € UE(Q) \ UE(P). By applying now the same argument as above
to (X’,Y) we show the existence df” such thatX’ C X" C Y, X' £ X", X" #
Y and (X”)Y) € SE(P). Consequently, we hav® C X" X # X" andY #
X", which contradicts the fact tha,Y") € UE(P). It follows then that/ E(P) =
UE(Q). O

Examples.Let P = {1{p,q} < not(2{p,q})}, and@Q = {p < not(q), ¢ «
not(p)}. Then P and @ are strongly equivalent. We note that both programs have
{p}, {a}, and{p, ¢} as models. Furthermoré{p},{p}), ({¢},{a}). ({p},{p,q}).
({q},{p,q}), {p,q},{p,q}) and(0, {p, q}) are “all” SE-models of the two programs
2

Thus, by Theorem 1P and( are strongly equivalent.

We also observe that the first five SE-models are preciselyridlels of P and(@.
Therefore, by Theorem Z? and(@ are also uniformly equivalent.

Itis possible for two monotone-constraint programs to kiéoamly but not strongly
equivalent. If we add rulg < to P, and rulep < ¢ to @, then the two resulting pro-
grams, say?’ and@)’, are uniformly equivalent. However, they are not strongjyie-
alent. The program®’ U {¢q < p} and@’ U {¢ < p} have different stable models.
Another way to show it is by observing thi, {p, ¢}) is an SE-model of)’ but not an
SE-model ofP’. A

4 Fages Lemma

In general, supported models and stable models of a loggrano (both in the normal
case and the monotone-constraint case) do not coincidesRagmma [Fag94] (later

2From Lemma 5 and Theorem 1, it follows that only those SE-modws ¢ontain atoms only from
At(P) U At(Q) are the essential ones.
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extended in [ELO3]), establishes a sufficient conditionemahich a supported model
of a normal logic program is stable. In this section, we shuat Fages Lemma extends
to programs with monotone constraints.

Definition 5. A monotone-constraint prograif is calledtighton a setM C At(P) of
atoms, if there exists a mappingrom M to ordinals such that for every rule= A —
A1, ..., Ag,not(Agiq),. .. ,not(A,,) in P(M), if X is the domain ofdA and X; the
domain of4;, 1 < i < k, then for everyr € M N X and for everyn € M N Ule X,
Aa) < A(z).

We will now show that tightness provides a sufficient comditior a supported
model to be stable. In order to prove a general result, wedststblish it in the Horn
case.

Lemma 7. Let P be a Horn monotone-constraint program and Mtbe a supported
model ofP. If P is tight onM, then) is a stable model oP.

Proof. Let M be an arbitrary supported model Bfsuch thatP is tight onM. Let A
be a mapping showing the tightnessfobn M. We will show that for every ordinalk
and for every atom: € M such that\(z) < a, € Can(P, M). We will proceed by
induction.

For the basis of the induction, let us consider an aiom M such that\(z) = 0.
SinceM is a supported model faP andx € M, there exists a rule € P(M) such
thatz € hset(r). Moreover, sinceP is tight onM, for every A € bd(r) and for every
y € Dom(A)N M, \y) < A(z) = 0. Thus, for everyA € bd(r), Dom(A) N M = ().
SinceM = bd(r) and sinceP is a Horn monotone-constraint program, it follows that
0 = bd(r). Consequentlyhset(r) N M C Can(P, M) and sox € Can(P, M).

Let us assume that the assertion holds for every ordinala and let us consider
x € M such that\(z) = «. As before, sincé/ is a supported model d?, there exists
aruler € P(M) such thate € hset(r). By the assumptionpP is tight on M and,
consequently, for everst € bd(r) and for everyy € Dom(A)NM, A(y) < Mz) = a.
By the induction hypothesis, for every € bd(r), Dom(A)NM C Can(P, M). Since
P is a Horn monotone-constraint progra@iqen(P, M) = bd(r). By Proposition 3,
hset(r) N M C Can(P, M) and sox € Can(P, M).

It follows that M C Can(P, M). By the definition of a canonical computation,
we haveCan(P, M) C M. Thus,M = Can(P, M). By Proposition 6\ is a stable
model of P. |

Given this lemma, the general result follows easily.

Theorem 3. Let P be a monotone-constraint program and Mtbe a supported model
of P. If Pistight onM, thenM is a stable model oP.

Proof. One can check that i/ is a supported model d?, then it is a supported model
of the reductP™. SinceP is tight on M, the reductP is tight on, too. Thus,M
is a stable model oP™ (by Lemma 7) and, consequently, a derivable modeP &f
(by Proposition 6). It follows thad/ is a stable model aP. O
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5 Logic PL™ and the completion of a monotone-con-
straint program

The completionof a normal logic program [Cla78] is a propositional theorkose
models are precisely supported models of the program. Tupported models of
normal logic programs can be computed by means of SAT solu#rder some con-
ditions, for instance, when the assumptions of Fages Lenwotth bupported models
are stable. Thus, computing models of the completion cdd gtable models, an idea
implemented in the first version smodelssoftware [BLO2].

Our goal is to extend the concept of the completion to prograrth monotone
constraints. The completion, as we define it, retains mudheo$tructure of monotone-
constraint rules and allow us, in the restricted settinipafseprograms, to use pseudo-
boolean constraint solvers to compute supported modelsobfjgrograms. In this sec-
tion we define the completion and prove a result relating sttpd models of programs
to models of the completion. We discuss extensions of tkigliré the next section and
their practical computational applications in Section 8.

To define the completion, we first introduce an extension gppsitional logic with
monotone constraints, a formalism we denoteHdy™<. A formulain the logic PL™¢
is an expression built from monotone constraints by meam®olean connectives,

V (and theirinfinitary counterparts),— and—. The notion of a model of a constraint,
which we discussed earlier, extends in a standard way toléiss of formulas in the
logic PL™¢.

ForasetL = {Ay,..., Ay, not(Agi1),...,not(A,,)} of literals, we define

LN =A N NAg A=A AL A=A,

Let P be a monotone-constraint program. We form twmpletionof P, denoted
Comp(P), as follows:

1. For every rule € P we include inComp(P) a PL™* formula
[bd(r)]" — hd(r)
2. For every atom: € At(P), we include inComp(P) a PL™ formula
z — \/{[bd(r)]": r € Pz € hset(r)}

(we note that when the set of ruleskhis infinite, the disjunction may be infini-
tary).

The following theorem generalizes a fundamental resulthenprogram comple-
tion from normal logic programming [Cla78] to the case ofgmaims with monotone
constraints.

Theorem 4. Let P be a monotone-constraint program. A 9dt C At(P) is a sup-
ported model o if and only if M is a model ofComp(P).
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Proof. (=) Let us suppose thal/ is a supported model dP. Then} is a model of
P, that is, for each rule € P, if M = bd(r) thenM |= hd(r). SinceM E bd(r)
if and only if M = [bd(r)]", it follows that all formulas inComp(P) of the first type
are satisfied by .

Moreover, sinceM is a supported model aP, M C hset(P(M)). That is, for
every atomr € M, there exists at least one ruten P such thatr € hset(r) and
M = bd(r). Therefore, all formulas ilComp(P) of the second type are satisfied by
M, too.

(<) Let us now suppose that/ is a model ofComp(P). SinceM = bd(r) if and
only if M = [bd(r)]", and sinceM satisfies formulas of the first type iflomp(P),
M is a model ofP.

Letz € M. SinceM satisfies the formula — \/{[bd(r)]": r € P,x € hset(r)},
it follows that M satisfies\/{[bd(r)]": r € P,z € hset(r)}. That is, there is €
P such thatM satisfies[bd(r)]" (and s0,bd(r), too) andx € hset(r). Thus,x €
hset(P(M)). Hence,M is a supported model d?. O

Theorems 3 and 4 have the following corollary.

Corollary 5. Let P be a monotone-constraint program. A 3é¢tC At(P) is a stable
model ofP if P is tight onM and M is a model ofComp(P).

We observe that for the material in this section it is not ssaey to require that
constraints appearing in the bodies of program rules be toaeoHowever, since we
are only interested in this case, we adopted the monotgrasgumption here, as well.

6 Loops and loop formulas in monotone-constraint pro-
grams

The completion alone is not quite satisfactory as it relatggortechot stablemodels

of monotone-constraint programs with modelsfai™¢ theories. Loop formulas, pro-
posed in [LZ02], provide a way to eliminate those supportediets of normal logic
programs, which are not stable. Thus, they allow us to uses®iers to compute sta-
ble models ofrbitrary normal logic programs and not only those, for which suppmbrte
and stable models coincide.

We will now extend this idea to monotone-constraint proggaim this section, we
will restrict our considerations to progranfisthat arefinitary, that is, A¢(P) is finite.
This restriction implies that monotone constraints thatesy in finitary programs have
finite domains.

Let P be a finitary monotone-constraint program. Tesitive dependency graph
of P is the directed graptvp = (V, E), whereV = At(P) and(u, v) is an edge ik
if there exists arule € P suchthat € hset(r) andv € Dom(A) for some monotone
constraintd € bd(r) (that is, A appears non-negated #d(r)). We note that positive
dependency graphs of finitary programs are finite.

Let G = (V, E) be a directed graph. A sét C V is aloopin G if the subgraph
of G induced byL is strongly connected. A loop imaximalif it is not a proper subset
of any other loop inG. Thus, maximal loops are vertex sets of strongly connected
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components ofz. A maximal loop isterminatingif there is no edge iz from L to
any other maximal loop.

These concepts can be extended to the case of programdoBy @aximal loop
terminating loop) of a monotone-constraint prografm, we mean the loop (maximal
loop, terminating loop) of the positive dependency gréph of P. We observe that
every finitary monotone-constraint prografhhas a terminating loop, sina@p is
finite.

Let X C At(P). By Gp[X] we denote the subgraph 6fp inducedby X. We
observe that ifX # () then every loop of7 p[X] is a loop of Gp.

Let P be a monotone-constraint programmFor every modelM of P (in particular,
for every model\/ of Comp(P)), we defineM — = M \ Can(PM, M). SinceM is a
model of P, M is a model ofPM . Thus,Can(P™, M) is well defined and so i8/~.

For every loop in the grapfi » we will now define the corresponding loop formula.
First, for a constraintl = (X, C) and asell C At,wesetd;;, = (X, {Y € C: Y N
L = 0}) and callA|;, therestrictionof A to L. Next, letr be a monotone-constraint
rule, say

r= A« Ay, ..., Ap,n0ot(Ag41),...,n0t(A,,).

If L C At, then define L™ formula Sy (r) by setting
ﬁL(T) = AI\L /\~~'/\Ak\L /\“Ak+1 A...AN—A,,.

Let L be a loop of a monotone-constraint progr&nThen, theloop formulafor
L, denoted byL P(L), is the PL™¢ formula

LP(L) = \/L — \/{ﬁL(T): r € P andL N hset(r) # 0}

(we recall that we use the convention to writor the constrain€(a) = ({a}, {{a}}).
A loop completiorof a finitary monotone-constraint prografhis the PL™< theory

LComp(P) = Comp(P)U{LP(L): LisaloopinGp}.

The following theorem exploits the concept of a loop formtadarovide a neces-
sary and sufficient condition for a model being a stable mddatsfinite one.

Theorem 6. Let P be a finitary monotone-constraint program. A 8étC At(P)is a
stable model oP if and only if M is a model ofLComp(P).

Proof. (=) Let M be a stable model dP. ThenM is a supported model d? and, by
Theorem 4M = Comp(P).

Let L be aloop inP. If M NL = () thenM = LP(L). Thus, let us assume that
M N L # (. SinceM is a stable model oP, M is a derivable model oP¥, that is,
M = Can(P™,M). Let (X,,)n=01,.. be the canonicaP™ -derivation with respect
to M (since we assume that is finite and each constraint iR has a finite domain,
P-derivations reach their results in finitely many stepsic8iCan(PM, M) N L =
M N L # 0, there is a smallest indexsuch thatX,, N L # (. In particular, it follows
thatn > 0 (asXy = 0) andL N X,,_; = 0.
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SinceX,, = hset(PM(X,,_1)NM andX,,NL # (), thereisarule € PM(X,,_;)
such thathset(r) N L # 0, that is, such thal. N hset(r)) # 0. Let ' be a rule
in P, which contributes to PM. Then, for every literahot(A4) € bd(r'), M =
not(A). Let A € bd(r'). ThenA € bd(r) and so.X,,_; = A. SinceX,,_; N L =0,
Xn-1 F AL, too, By the monotonicity ofl|;, M |= A|;. Thus,M |= B (r'). Since
hset(r')N L # 0, L N hset(r)) # @ and soM = LP(L). Thus,M = LComp(P).
(<) Let us consider a se¥/ C A¢(P) such thatM is not a stable model aoP. If
M is not a supported model @? that M (= Comp(P) and soM is not a model of
LComp(P). Thus, let us assume thaf is a supported model aP. It follows that
M~ #0.LetL C M~ be aterminating loop fo& p[M ~].

Let 7’ be an arbitrary rule irP such thatl N hset(r’)) # 0, and letr be the rule
obtained fromr’ by removing negated constraints from its body. Now, let (sia®
that M = §,/(L). It follows that for every literanot(A) € bd(r'), M = not(A).
Thus,» € PM. Moreover, sincel is a terminating loop foiG p[M ], for every
constraintA € bd(r'), Dom(A) N M~ C L. SinceM [ A, it follows that
Can(PM, M) = A. Consequentlypset(r')NL C hset(r')NM C Can(PM M) and
so,L N Can(PM M) # (), a contradiction. ThusM = \/{3.(L): v € PandL N
hset(r')) # 0}. SinceM k= \/L, it follows that M ¥ LP(L) and so,M [~
LComp(P). O

The following result follows directly from the proof of Thesm 6 and provides us
with a way to filter out specific non-stable supported modesfComp(P).

Theorem 7. Let P be a finitary monotone-constraint program afd a model of
Comp(P). If M~ is not empty, thed/ violates the loop formula of every terminating
loop of Gp[M~].

Finally, we point out that, Theorem 6 does not hold when a EnogP contains
infinitely many rules. Here is a counterexample:
Examples.Let P be the set of following rules:

Hao} « Har}
Hai} « Haz}

Han} — Hang1}

Let M = {aop,...,an,...}. ThenM is a supported model dP. The only stable
model of P is (). However, M~ = M \ () does not contain any terminating loop.
The problem arises because there is an infinite simple pahifl/ ~]. Therefore,

G p[M ~] does not have a sink, yet it does not have a terminating ldbprei A

The results of this section, concerning the program congoletnd loop formulas
— most importantly, the loop-completion theorem — form tlasik of a new software
system to compute stable modeldpdrseprograms. We discuss this matter in Section
8.
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7 Programs with convex constraints

We will now discuss programs with convex constraints, whacé closely related to
programs with monotone constraints. Programs with coneastraints are of interest
as they do not involve explicit occurrences of the defauliation operatonot, yet are
as expressive as programs with monotone-constraints.dvergthey directly subsume
an essential fragment of the clasdmdrseprograms [SNS02].

A constraint( X, C) is convexif foreveryW,Y, Z C X suchthaW CY C Z and
W, Z € C,we haveY” € C. A constraint rule of the form (1) iseonvex-constraint rule
if A, A1,..., A, are convex constraints amd = k. Similarly, a constraint program
built of convex-constraint rules is@nvex-constraint program

The concept of a model discussed in Section 2 applies to germestraint pro-
grams. To define supported and stable models of convex+edmgbrograms, we view
them as special programs with monotone-constraints.

To this end, we define thepward and downward closure®f a constraintd =
(X, C) to be constraintsit = (X,C*) andA~ = (X, C~), respectively, where

Ct ={Y C X: forsomeWW € C,W C Y}, and
C-={Y C X:forsomeW € C,Y C W}.

We note that the constrairt™ is monotone. We call a constraifiX’, C') antimonotone
if C is closed under subset, that is, for evélyY C X,if Y € C andIW C Y then
W € C. ltis clear that the constraint— is antimonotone.

The upward and downward closures allow us to represent amyegraonstraint as
the “conjunction” of a monotone constraint and an antimonetconstraint.Namely,
we have the following property of convex constraints.

Proposition 8. A constraint(X, C) is convex if and only i€ = C* N C~.

Proof. (<) Let us assume that = C*+ N C~and let us consider a s&f such that
M'C M C M", whereM’, M" € C. it follows thatM’ € CT andM"” € C~. Thus,
M e C*TandM € C~. ConsequentlyM € C, which implies that X, C) is convex.
(=) The definitions directly imply that’ C C* andC € C~. Thus,C C CTNC~.
Let us consided! ¢ C+ N C~. Then there are sef§’, M’ € C such thatM’ C M
andM C M". SinceC is convex,M € C. Thus,Ct* N C~ C C and so,C =
ctncC-. O

This proposition suggests an encoding of convex-consfpaigrams as monotone-
constraint programs. To present it, we need more notation.aFconstraintd =
(X,C), we call the constrain(X,C), whereC = P(X) \ C, the dual constraint
for A. We denote it byA. It is a direct consequence of the definitions that a comgtrai
A is monotone if and only if its duall is antimonotone.

Let C be a convex constraint. We setc(C) = {C} if C is monotone. We set
me(C) = {not(C)}, if C is antimonotone. We definac(C) = {C*t,not(C-)}, if
C'is neither monotone nor antimonotone. Cleathandmc(C) have the same models.

Let P be a convex-constraint program. Byc(P) we denote the program with
monotone constraints obtained by replacing everyifeP with a ruler’ such that

hd(r') = hd(r)" and bd(r') = U{mc(A): A€ bd(r)}
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and, if hd(r) is notmonotone, also with an additional ruté such that

hd(r") = (0,0) and bd(r") = {hd(r)~} U bd(r").

By our observation above, all constraints appearing irsrofewc( P) are indeed mono-
tone, that ismc(P) is a program with monotone constraints.

It follows from Proposition 8 thaf/ is a model ofP if and only if M is a model
of me(P). We extend this correspondence to supported and stablelsrafdeconvex
constraint progran® and the monotone-constraint program(P).

Definition 6. Let P be a convex constraint program. Then a set of atdmds a
supported (or stable) model éf if M is a supported (or stable) model ofc(P).

With these definitions, monotone-constraint programs eawiéwed (almost) di-
rectly as convex-constraint programs. Namely, we noterntf@iotone and antimono-
tone constraints are convex. Next, we observe thdt i a monotone constraint, the
expressiomot(A) has the same meaning as the antimonotone consttairthe sense
that for every interpretation/, M = not(A) if and only if M |= A.

Let P be a monotone-constraint program. By P) we denote the program ob-
tained fromP by replacing every rule of the form (1) inP with »’ such that

hd(r') = hd(r) and bd(r') = | J{A;:i=1,... .k} U| J{A;:j=k+1,...,m}

One can show that progrand3 and cc(P) have the same models, supported models
and stable models. In fact, for every monotone-constraioggam P we haveP =
me(ec(P)).

Remark. Another consequence of our discussion is that the defagtion operator
can be eliminated from the syntax at the price of allowingraahotone constraints
and using antimonotone constraints as negated literals. |

Due to the correspondences established above, one cad éxteanvex-constraint
programs all concepts and results we discussed earliereicdhtext of monotone-
constraint programs. In many cases, they can also be stagadly in the language of
convex-constraints. The most important for us are the netf the completion and
loop formulas, as they lead to new algorithms for computitadple models ofparse
programs. Therefore, we will now discuss them in some detail

As we just mentioned, we could ugemp(mc(P)) as a definition of the comple-
tion Comp(P) for a convex-constraint logic prograf. Under this definition Theo-
rems 9 extends to the case of convex-constraint programsevw, Comp(mc(P))
involves monotone constraints and their negationsrast@¢onvex constraints that ap-
pear inP. Therefore, we will now propose another approach, whicksgmees convex
constraints ofP.

To this end, we first extend the logieL™¢ with convex constraints. In this exten-
sion, which we denote by’L< and refer to as theropositional logic with convex-
constraints formulas are boolean combinations of convex constrairie. semantics
of such formulas is given by the notion of a model obtainedxigreding over boolean
connectives the concept of a model of a convex constraint.

Thus, the only difference between the lodtd ™, which we used to define the
completion and loop completion for monotone-convex protrand the logidPL is
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that the former uses monotone constraints as building blo€kormulas, whereas the
latter is based on convex constraints. In fact, since mamotwmnstraints are special
convex constraints, the logieL™¢ is a fragment of the logi@ L.

Let P be a convex-constraint program. The completioplenoted byComp(P),
is the following set ofPLc¢ formulas:

1. Forevery rule: € P we include inComp(P) a PL* formula
[bd(r)]" — hd(r)

(as before, for a set of convex constraiftsL.” denotes the conjunction of the
constraints in)

2. For every atom: € A¢(P), we include inComp(P) a PL* formula
r — \/{[bd(r)]/\: r € P, x € hset(r)}

(again, we note that when the set of ruledris infinite, the disjunction may be
infinitary).

One can now show the following theorem.

Theorem 8. Let P be a convex-constraint program and et C A¢(P). Then)M is a
supported model aP if and only if M is a model ofComp(P).

Proof. (Sketch) By the definition)/ is a supported model a? if and only if M is a
supported model afic(P). It is a matter of routine checking th&omp (me(P)) and
Comp(P) have the same models. Thus the assertion follows from Thedre [

Next, we restrict attention tfinitary convex-constraint programs, that is, programs
with finite set of atoms, and extend to this class of progrdrasibtions of the positive
dependency graph and loops. To this end, we exploit its septation as a monotone-
constraint programnc(P). That is, we define the positive dependency graph, loops
and loop formulas folP as the positive dependency graph, loops and loop formulas of
me(P), respectively. In particulad, is a loop of P if and only if L is a loop ofmc(P)
and the loop formula fof., with respect to a convex-constraint programis defined
as the loop formuld.P(L) with respect to the programuc(P)3. We note that since
loop formulas for monotone-constraint programs only mpdibn-negated literals in
the bodies of rules and leave negated literals intact, theeens to be no simple way
to extend the notion of a loop formula to the case of a conwmstraint progran
without making references tac(P).

We now define doop completiorof a finitary convex-constraint program as the
PLec theory

LComp(P) = Comp(P)U{LP(L): Lis aloop ofP}.

We have the following theorem that provides a necessary affidisnt condition
for a set of atoms to be a stable model of a convex-constreagram.

3There is one minor simplification one might employ. For a monotamestraintA, - A and A are
equivalent and! is antimonotone and so, convex. Thus, we can eliminate thatper from loop formulas
of convex-constraint programs by writing instead of- A.
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Theorem 9. Let P be a finitary convex-constraint program. A get C A¢(P) is a
stable model oP if and only if M is a model ofLComp(P).

Proof. (Sketch) Sincé\/ is a stable model oP if and only of M is a stable model of
me(P), Theorem 6 implies that/ is a stable model oP if and only if M is a stable
model of LComp(mc(P)). It is a matter of routine checking th&tComp(mec(P))
and LComp(P) have the same models. Thus, the result follows. O

In a similar way, Theorem 7 implies the following result fanvex-constraint pro-
grams.

Theorem 10. Let P be a finitary convex-constraint program aid a model ofComp(P).
If M~ is not empty, therl/ violates the loop formula of every terminating loop of
Gp [Mf]

We emphasize that one could simply us€omp(mc(P)) as a definition of the
loop completion for a convex-constraint logic program. léwer, our definition of the
completion component of the loop completion retains thecstire of constraints in a
programP, which is important when using loop completion for compiatabf stable
models, the topic we address in the next section of the paper.

8 Applications

In this section, we will use theoretical results on the pangcompletion, loop formulas
and loop completion of programs with convex constraintsdsigh and implement a
new method for computing stable modelddrseprograms [SNS02].

8.1 Lparseprograms

[SNSO02] introduced and studied an extension of normal lpgigramming with weight
atoms. Formally, aveight atomis an expression

A=lla; =wy,...,ar = wglu,

wherea;, 1 < i < k are propositional atoms, arddu andw;, 1 < ¢ < k are non-
negative integers. If all weights; are equal to 1A is acardinality atom written as
H{ay, ..., ax}u.

An Iparse ruleis an expression of the form

A Ay, A,

whereA, A4, ..., A, are weight atoms. We refer to setslpérserules adparse pro-
grams [SNS02] defined folparseprograms the semantics of stable models.
A set M of atoms is anodelof (or satisfie} a weight atorm[a; = wy,...,a; =

wi|u if
k

ZSZ{wi:aieM}gu.
i=1

25



With this semantics a weight atoffu; = wy,...,ar = wg]u can be identified
with a constraint X, C'), whereX = {a4,...,a;} and

k
C:{YQX:ZSZ{wi:aiEY}Su}.

i=1

We notice that all weights in a weight atolr are non-negative. Therefore, if
M C M’ C M" and bothM and M" are models ofV, thenM’ is also a model of
W. It follows that the constraintX, C') we define above is convex.

Since(X, C) is convex, weight atoms represent a class of convex conttrand
Iparse programs syntactically are a class of programs with congmstraints. This
relationship extends to the stable-model semantics. NafMNT04, MT04] showed
thatlparseprograms can be encoded as programs with monotone comssaitnat the
concept of a stable model is preserved. The transformased there coincides with
the encodingnc described in the previous section, when we restrict therl&tiparse
programs. Thus, we have the following theorem.

Theorem 11. Let P be an Iparse program. A sétf C At is a stable model of ac-
cording to the definition from [SNS02] if and onlylif is a stable model aP according
to the definition given in the previous section (wHers viewed as a convex-constraint
program).

It follows that to compute stable modelslpfrseprograms we can use the results
obtained earlier in the paper, specifically the results agmam completion and loop
formulas for convex-constraint programs.

Remark. To be precise, the syntax ¢arse programs [SNS02] is more general. It
allows both atoms and negated atoms to appear within wetghtsa It also allows
weights to be negative. However, negative weightparseprograms are treated just
as a notational convenience. Specifically, an expressigheoforma = w within a
weight atom (wherav < 0) represents the expressiaot(a) = —w (eliminating
negative weights in this way from a weight atom requires tications of the bounds
associated with this weight atom). Moreover, by introdgcirew propositional vari-
ables one can remove occurrences of negative literals frogrgms. These transfor-
mations preserve stable models (modulo new atoms). WettefSNS02, MNTO6] for

a detailed discussion of this transformation.

In addition to weight atoms, the bodies lparserules may contain propositional
literals (atoms and negated atoms) as conjuncts. We caaceefthese propositional
literals with weight atoms as follows: an atancan be replaced with the cardinality
atom1{a}, and a literahot(a) — with the cardinality ator{a }0. This transformation
preserves stable models, too. Moreover, the size of thdtiresyrogram does not
increase more than by a constant factor. Thus, through @nsfarmations discussed
here, monotone- and convex-constraint programs capthiteaay Iparseprogramsd

8.2 Computing stable models ofparse programs

In this section we present an algorithm for computing steieels ofparseprograms.
Our method uses the results we obtained in Section 7 to ratdeqaroblem to that of
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computing models of the loop completion of arseprogram. The loop completion
is a formula in the logicPL<¢, in which the class of convex constraints is restricted to
weight constraints, as defined in the previous subsecti@wilVdenote the fragment
of the logic PL¢¢ consisting of such formulas byL**.
To make the method practical, we need programs to computelmod theories
in the logic PL**. We will now show a general way to adapt to this task off-thets
pseudo-boolean constraint solvgEES03, ARMS02, Wal97, MRO5, LT03]
Pseudo-boolean constraint®B for short) are integer programming constraints in
which variables have 0-1 domains. We will write them as irzditjes

wy X 1+ ...+ wE X TR comp w, 3)

where comp stands for one of the relations, >, < and >, w;’s andw are integer
coefficients (not necessarily non-negative), afid are integers taking value O or 1. A
set of pseudo-boolean constraints jgseudo-boolean theary

Pseudo-boolean constraints can be viewed as constraireasic idea is to treat
each 0-1 variable: as a propositional atom (which we will denote by the same let-
ter). Under this correspondence, a pseudo-boolean congtBa is equivalent to the
constraint X, C), whereX = {zy,...,z;} and

k
C={Y CX: Z{wi: x; €Y} comp w}
i=1

in the sense that solutions to (3) correspond to mode{Xo€) (x; = 1 in a solution
if and only if z; is true in the corresponding model). In particular, if aleffecientsw;
and the boundv in (3) are non-negative, and fomp = ‘>, then the constraint (3)
is equivalent to a monotone lower-bound weight atofn; = wy, ..., x, = w,)].

It follows that an arbitrary weight atom can be representedr® or two pseudo-
boolean constraints. More generally, an arbitr&é/’* formula F' can be encoded as
a set of PB constraints. We will describe the translation as a two-ptepess.

The first step consists of convertirig to a clausalform ,(F)*. To control the
size of the translation, we introduce auxiliary propositibatoms. Below, we describe
the translation”” —— 7.;(F') under the assumption thét is a formula of the loop
completion of arparseprogramP. Our main motivation is to compute stable models
of logic programs and to this end algorithms for computingleis of loop completions
are sufficient.

Let F be a formula in the loop completion of dparseprogramP. We define
7.1(F') as follows (in the transformation, we use a propositionaifrat as a shorthand
for the cardinality atonC'(x) = 1{z}).

1. If Fisofthe formA4; A ... A A, — A, thenty(F)=F
2.1f Fisofthe formxz — ([bd(r1)]") V...V ([bd(r)]"), then we introduce new propo-
sitional atoms,. 1, . .., b, and setr.;(F') to consist of the followingPL™“* clauses:

x_>br,1V~~~\/br,l

4A PLY° clauseis any formulaBy A ... A By, — Hi V...V H,, whereB; andH; are weight atoms.
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[bd (7)]" — by.;, for everybd(r;)
b.; — Aj, foreverybd(r;) andA; € bd(r;)

3. If Fis of the form\/ L — \/, {B.(r)}, whereL is a set of atoms, and eve#y, (r)
is a conjunction of weight atoms, then we introduce new psamal atomsdf;, - for
everyS.(r) in F and represeny/ L as the weight atorV, = 1[I, =1:1; € L]. We
then definer.;(F') to consist of the following clauses:

Wi, — \/ bdfr.,

Br(r) — bdfr -, foreveryf(r) € F
bdfr,» — Aj;, foreveryf(r) € FandA; € Br(r).

Itis clear that the size.;(F) is linear in the size of".

The second step of the translation, convertB/&'* formulaC' in a clausal form
into a set of PB constraints;,,(C). To define the translatiod’ — 7,,(C), let us
consider aPL"* clauseC' of the form

Bl/\.../\Bm4>13'1\/...\/I'In7 (4)

whereB;’s and H;'s are weight atoms.

We introduce new propositional atoms . . . , b,,, andhy, ..., h,, to represent each
weight atom in the clause. As noted earlier in the paper, melgiwrite z for a weight
atoms of the formi [z = 1]. With the new atoms, the clause (4) becomes a propositional
clauseb; A ... Ab,, — hy V...V h,. We represent it by the following B constraint:

—bl—...—bm+}L1+...+hnZ1—m. (5)

Here and later in the paper, we use the same symbols to dengesitional variables
and the corresponding 0-1 integer variables. The contdkaimiays imply the correct
meaning of the symbols. Under this convention, it is easyetthat a propositional
clauseb; A ... Ab,, — h1 V...V h, and itsPB constraint (5) have the same models.
We introduce nexPB constraints that enforce the equivalence of the newly intro
duced atoms; (or h;) and the corresponding weight atos (or H;).
Let B = lla; = wy,...,ax = wi|u be a weight atom and a propositional
atom. We splitB to BT and B~ and introduce two more atom$ andb~. To model
B = b, we model with pseudo-boolean constraints the followimgehequivalences:
b=btAb~,bT =Bt,andb— = B
1. The first equivalence can be captured with three propositiclauses. Hence the
following three PB constraints model that equivalence:

—b+b" >0 (6)
~b+b" >0 (7
bt —b"+b> -1 (8)
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2. The second equivalende, = B, can be modeled by the following twBB con-

straints
k

(=) x b* + Z(ai X w;) >0 )
=1
k k
—O S wi =141 x b+ (g xwi) <1-1 (10)
=1 i=1

3. Similarly, the third equivalencé,- = B~, can be modeled by the following two

PB constraints .
sz—u ) x b~ +Za7><wz SZ (12)

k
(u+1)xb‘+2(aixwi)2u+1 (12)
i=1

We define nowr,, (C), for a PL** clauseC, as the set of all pseudo-boolean con-
straints (5) and (6), (7), (8), (11), (12), (9), (10) constad for every weight atom
occurring inC'. One can verify that the size of, (C) is linear in the size o€. There-
fore, 7, (701 (F)) has size linear in the size &f.

In the special case where d@|’s and H;'s are weight atoms of the formb; = 1]
andl[h; = 1], we do not need to introduce any new atoms &#ticonstraints (6), (7),
(8), (11), (12), (9), (10). Them,; (C) consists of a singl&@B constraint (5).

We have the following theorem establishing the correctioéslke transformation
7. The proof of the theorem is straightforward.

Theorem 12. Let F' be a loop completion formula in logi®L**, and M a set of
atoms,M C At(F). ThenM is a model ofF' in PL™® logic if and only if M has a
unique extensiot/’ by some of the new atoms #¥ (7, (7;(F'))) such thatM’ is a
model of the pseudo-boolean theaty (7., (F)).

We note that when we use solvers designeddb’* theories, then translation,,
is no longer needed. The benefit of using such solvers is thatomnot need to split
weight atoms in thePL** theories and do not need the auxiliary atoms introduced in
pr.

8.2.1 The algorithm

We follow the approach proposed in [LZ02]. As in that papee, fivst compute the
completion of dparseprogram. Then, we iteratively compute models of the comple-
tion using aPB solver. Whenever a model is found, we test it for stabilityhd# model
is not a stable model of the program, we extend the complétidoop formulas iden-
tified in Theorem 10. Often, adding a single loop formula fdteut several models of
Comp(P) that are not stable models &f

The results given in the previous section ensure that owrigthgn is correct. We
present it in Figure 1. We note that it may happen that in thestixease exponentially
many loop formulas are needed before the first stable modielired or we determine

29



Input: P — alparseprogram;
A — a pseudo-boolean solver
BEGIN
compute the completiofomp(P) of P;
T 1= 71 (ret( Comp(P)));
do
if (solverA finds no models of") output “no stable models found” and terminate;
M :=amodel ofl" found by 4;
if (M is stable) outpufi/ and terminate;
compute the redud?™ of P with respect ta\/;
compute the greatest stable modél, contained in\/, of PM;
M~ =M\ M';
find all terminating loops i/ —;
compute loop formulas and convert them it constraints using,, andr.;;
add all PB constraints computed in the previous stefi’to
while (true);
END

Figure 1: Algorithm ofpbmodels

that no stable models exist [LZ02]. However, that probleisegronly rarely in practical
situations.

The implementation opbmodels supports severaPB solvers includingsatzoo
[ESO03], pbs[ARMS02], wsatoip[Wal97]. It also supports a programsatcc[LTO03]
for computing models oPL"® theories. When this last program is used, the transfor-
mation, from “clausal’PL"“ theories to pseudo-boolean theories is not needed. The
first two of these four programs are complét® solvers. The latter two are local-
search solvers based wsat[SKC94].

We output the message “no stable model found” in the firstdirtbe loop and not
simply “no stable models exist” since in the case wheis a local-search algorithm,
failure to find a model of the completion (extended with looptfiulas in iteration two
and the subsequent ones) does not imply that no models exist.

8.3 Performance

In this section, we present experimental results concgtthi@ performance qfbmodels.
The experiments comparedmodels, combined with severaPB solvers, tasmodels
[SNS02] andcmodels [BLO2]. We focused our experiments on problems whose state-
ments explicitly involve pseudo-boolean constraints, asdesignebmodels with
such problems in mind.

5In fact, in many cases programs turn out to be tight with resfetiteir supported models. Therefore,
supported models are stable and no loop formulas are necessdkry
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For most benchmark problems we trieghodels did not perform well. Only in one
case (vertex-cover benchmark) the performancenafdels was competitive, although
even in this case it was not the best performer. Thereforeloneot report here results
we compiled foremodels. For a complete set of results we obtained in the experiments
we refer tohttp://www.cs.uky.edu/ai/pbmodels

In the experiments we used instances of the foIIowmg probldéraveling sales-
person weightedn-queensweighted Latin squaremagic squarevertex coverand
Towers of Hanai The Iparse programs we used for the first four problems involve
general pseudo-boolean constraints. Programs modekngshtwo problems contain
cardinality constraints only.

Traveling salesperson problem (TSP)An instance consists of a weighted complete
graph withn vertices, and a bound. All edge weights and are non-negative integers.
A solution to an instance is a Hamiltonian cycle whose totaight (the sum of the
weights of all its edges) is less than or equalto

We randomly generateid weighted complete graphs widd vertices, To this end,
in each case we assign to every edge of a complete undire@pt gn integer weight
selected uniformly at random from the rarige19]. By settingw to 100 we obtained a
set of “easy” instances, denoted BgP-e(the bound is high enough for every instance
in the set to have a solution). From the same collection gflisawe also created a set
of “hard” instances, denoted BYSP-h by settingw to 62. Since the requirement on
the total weight is stronger, the instances in this set iregariake more time.
Weightedn-queens problem (WNQ) An instance to the problem consists of a weighted
n x n chessboard and a bound All weights and the bound are non-negative integers.
A solution to an instance is a placementofjlueens on the chessboard so that no two
gueens attack each other and the weight of the placemens(theof the weights of
the squares with queens) is not greater than

We randomly generate&l) weighted chessboards of the si¥ex 20, where each
chessboard is represented by a setof n integer weightsw; ;, 1 < 4,5 < n, all
selected uniformly at random from the rande19]. We then created two sets of in-
stances, easy (denotedpg-9 and hard (denoted byng-H, by setting the bound
to 70 and 50, respectively.

Weighted Latin square problem (WLSQ). An instance consists of am x n array

of weightsw; ;, and a boundv. All weights w; ; andw are non-negative integers. A
solution to an instance is anx n array L with all entries from{1,...,n} and such
that each element ifil, ..., n} occurs exactly once in each row and in each column of
L, andz;;l Z?:l L[Z,]] X Wy 5 < w.

We setn = 10 and we randomly generatéd sets of integer weights, selecting
them uniformly at random from the randé..9]. Again we created two families of
instances, easyMsqg-6 and hardylsg-h, by settingw to 280 and225, respectively.
Magic square problem An instance consists of a positive integerThe goal is to
construct am x n array using each integér ...n? as an entry in the array exactly
once in such a way that entries in each row, each column andtinrbain diagonals
sum up ton(n? + 1)/2. For the experiments we used the magic square problem for
n = 4,5 and6.

Vertex cover problem. An instance consists of graph withvertices andn edges, and
a non-negative integdr — a bound. A solution to the instance is a subset of vertices
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of the graph with no more thanvertices and such that at least one end vertex of every
edge in the graph is in the subset.

We randomly generate& graphs, each witB0 vertices andlO0 edges. For each
graph, we set to be a smallest integer such that a vertex cover with thayrekements
still exists.

Towers of Hanoi problem. This is a slight generalization of the original problem. We
considered the case with six disks and three pegs. An instemsists of an initial
configuration of disks that satisfies the constraint of trabjam (larger disk must not
be on top of a smaller one) but does not necessarily requiegsatl disks are on one
peg. These initial configurations were selected so thatweeg 31, 36, 41 and 63 steps
away from the goal configuration (all disks from the largeghie smallest on the third
peg), respectively. We also considered a standard versitmegroblem with seven
disks, in which the initial configuration iR27 steps away from the goal.

We encoded each of these problems as a program in the geywetax sflparse
which allows the use of relation symbols and variables [Skr&ach of these pro-
grams is available dittp://www.cs.uky.edu/ai/pbmodels . We then used
these programs in combination with appropriate instansaspauts toparse[Syr99].

In this way, for each problem and each set of instances wergtekea family of
ground (propositional)parse programs so that stable models of each of these pro-
grams represent solutions to the corresponding instarfaie @roblem (if there are

no stable models, there are no solutions). We used thesédarmi Iparse programs

as inputs to solvers we were testing. All these ground prograre also available at
http://www.cs.uky.edu/ai/pbmodels

In the tests, we useghbmodels with the following four PB solvers:satzoo [ES03],
pbs [ARMS02], wsatce [LTO3], and wsatoip [Wal97]. In particularwsatec deals with
PL** theories directly.

All experiments were run on machines with 3.2GHz Pentium WCI5B memory,
running Linux with kernel version 2.6.11, gcc version 3.3mall cases, we used 1000
seconds as the timeout limit.

We first show the results for thmagic squareandtowers of Hanoiproblems. In
Table 1, for each solver and each instance, we report thesmonding running time
in seconds. Local-search solvers were unable to solve athedhstances in the two
problems and so are not included in the table.

| Benchmark | smodels| pbmodels-satzod pbmodels-pbs|
magic squarg4 x 4) 1.36 1.70 2.41
magic squarg5 x 5) > 1000 28.13 0.31
magic squarg6 x 6) > 1000 75.58 > 1000
towers of Hano(d = 6,t = 31) 16.19 18.47 1.44
towers of Hanoid = 6,¢ = 36) 32.21 31.72 1.54
towers of Hano(d = 6,t = 41) 296.32 49.90 3.12
towers of Hano(d = 6,t = 63) | > 1000 > 1000 3.67
towers of Hanoi(d = 7,t = 127) | > 1000 > 1000 22.83

Table 1: Magic square and towers of Hanoi problems

Both pbmodels-satzoo and pbmodels-pbs perform better thansmodels on pro-
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\ | #of SAT instanceg # of UNSAT instances # of UNKNOWN instances

TSP-e 50 0 0
TSP-h 31 1 18
wng-e 49 0 1
wng-h 29 0 21
wlsg-e 45 4 1
wisg-h 8 41 1
vtxcov 50 0 0

Table 2: Summary of Instances

\ | smodels| pbmodels-satzod pbmodels-pbs|

TSP-e 45/17 50/30 18/3
TSP-h 7/3 16/14 0/0
wng-e 11/5 26/23 0/0
wng-h 2/2 0/0 0/0
wisg-e 21/1 49/29 46/19
wisg-h 0/0 47/26 47723
vixcov 50,40 50/1 1773
sum over all | 136/68 238/123 158/48

Table 3: Summary on all instances

grams obtained by encoding instances of both problems. 8&rebthapbmodels-pbs
performs exceptionally well in the tower of Hanoi problerisl the only solver that
can compute a plan for disks, which requires 127 steps. Magic square and Towers
of Hanoi problems are highly regular. Such problems arencdtehallenge for local-
search problems, which may explain a poor performance werebgd forpbmodel s-
wsatce andpbmodels-wsatoip on these two benchmarks.

For the remaining four problems, we used 50-element fasndfénstances, which
we generated randomly in the way discussed above. We sttittepgerformance of
complete solverss(nodels, pbmodels-satzoo andpbmodels-pbs) on all instances. We
then included local-search solvenshfnodels-wsatcec and pbmodels-wsatoip) in the
comparisons but restricted attention only to instanceswieae determined to be sat
isfiable (as local-search solvers are, by their design, lertaldecide unsatisfiability).
In Table 2, for each family we list how many of its instances satisfiable, unsatisfi-
able, and for how many of the instances none of the solversiegcewas able to decide
satisfiability.

In Table 3, for each of the seven families of instances anddehcompletesolver,
we report two values/w, wheres is the number of instances solved by the solver and
w is the number of times it was the fastest among the three.

The results in Table 3 show that overglimodels-satzoo solved more instances
than pbmodels-pbs, followed by smodels. When we look at the number of times a
solver was the fastest onghmodels-satzoo was a clear winner overall, followed by
smodels and then bypbmodels-pbs. Looking at the seven families of tests individually,
we see thapbmodels-satzoo performed better than the other two solvers on five of the
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\ | smodels| pbmodels-satzod pbmodels-pbs] pbmodels-wsatcd pbmodels-wsatoip

TSP-e 45/3 50/5 18/2 32/7 47/34
TSP-h 7/0 16/2 0/0 19/6 28/22
wng-e 11/0 26/0 0/0 49/45 49/4
wng-h 2/0 0/0 0/0 29/15 29/14
wisg-e 21/0 45/0 44/0 45/33 45/14
wisg-h 0/0 7/0 8/0 7/1 8/7

vixcov 50,/0 50,/0 47/0 50/36 50/15

sumoverall | 136/3 194/7 117/2 231/143 256,/110

Table 4: Summary on SAT instances

families. On the other twamodels was the best performer (although, it is a clear
winner only on the vertex-cover benchmark; all solvers vemsentially ineffective on
thewng-h.

We also studied the performancedfmodels combined with local-search solvers
wsatce [LTO3] andwsatoip [Wal97]. For this study, we considered only those instances
in the seven families that we knew were satisfiable. Tableesqmnts results for all
solvers we studied (including the complete ones). As be&aeh entry provides a pair
of numberss/w, wheres is the number of solved instances ands the number of
times the solver performed better than its competitors.

The results show superior performancepdinodels combined with local-search
solvers. They solve more instances than complete solversifiingsmodels). In addi-
tion, they are significantly faster, winning much more fregtly than complete solvers
do (complete solvers were faster only on 12 instances, Witkd-search solvers were
faster on 253 instances).

Our results demonstrate thalimodels with solvers of pseudo-boolean constraints
outperformssmodels on several types of search problems involving pseudo-boole
(weight) constraints).

We note that we also analyzed the run-time distributionsefsh of these fami-
lies of instances. A run-time distribution is regarded asaaraccurate and detailed
measure of the performance of algorithms on randomly géeeiiastances (we re-
fer to [HSO5] for a detailed discussion of this matter in tluatext of local-search
methods). The results are consistent with the summarytseptgsented above and
confirm our conclusions. As the discussion of run-time distions requires much
space, we do not include this analysis here. They are alailthe websitéttp:
Ilmww.cs.uky.edu/ai/pbmodels

9 Related work

Extensions of logic programming with means to model propgdfsets(typically con-
sisting of ground terms) have been extensively studiedallisuhese extensions are
referred to by the common termiofgic programming with aggregateShe term comes
from the fact that most properties of sets of practical egeare defined through “ag-
gregate” operations such as sum, count, maximum, minimuiregarage. We chose

34



the termconstraintto stress that we speak about abstract properties that define
straints on truth assignments (which we view as sets of gtoms

Some early work on logic programs with aggregates includ&8R90, KS91].
More recently, [NSS99, SNS02] introduced the cladpafseprograms. We discussed
this formalism in detail earlier in this paper.

[Pel04, PDBO06] studied a more general class of aggregattslewreloped a sys-
tematic theory of aggregates in logic programming basedempproximation theory
[DMTO0O]. The resulting theory covers not only the stable mlsdsemantics but also
the supported-model semantics and extensions of 3-valuigdd<Kleene and well-
founded semantics. The formalism of [Pel0O4, PDBO06] allowdthitrary aggregates
(not only monotone ones) to appear in the bodies of rules.ddevy it does not allow
for aggregates to appear in the heads of program clausesoRlifeerences in the syn-
tax and the scope of semantics studied there is no simpleavajete [Pel04, PDB06]
to programs with monotone (convex) constraints. We notedhahat there are pro-
grams with monotone constraints that after some minor stintmodifications can be
viewed as programs in the formalism of [Pel04, PDBO06] and iaz&e the same sta-
ble models according to the definitions from [MT04, MNTO6HdFel04, PDBO6] (in
particular, programs with abstract monotone constraiits the heads of rules of the
form C(a)).

[FLPO4] developed the theory disjunctivelogic programs with aggregates. As in
[Pel04, PDBO06], [FLP04] does not allow for aggregates toeappn the heads of pro-
gram clauses. This is one of the differences between thabapip and programs with
monotone (convex) constraints we studied here. The oth@rrddference is related
to the postulate of the minimality of stable models (caiedwer set the context of
the formalism considered in [FLP04]). In keeping with th&ispf the original answer-
set semantics [GL91], answer sets of disjunctive prograitisaggregates, as defined
in [FLPO4], are minimal models. Stable models of programth abstract constraints
do not have this property. However, for the class of prograiitis abstract monotone
constraints with the heads of rules of the fofti:) the semantics of answr sets defined
in [FLPO4] coincides with the semantics of stable modelefi'T0O4, MNTO6].

Yet another approach to aggregates in logic programmingvesented in [SE06].
That approach considered programs of the syntax similaragrams with monotone
abstract constraints. It allowed arbitrary constraints gmly monotone ones) but not
under the scope afot operator. A general principle behind the definition of tredo-
model semantics in [SE06] is to view a program with constsafts a concise repre-
sentation of a set of its “instances”, each being a normét lpgpgram. Stable models
of the program with constraints are defined as stable modets mstances and is
quite different from the operator-based definition of [MNs[OHowever, for programs
with montoneconstraint atoms which fall in the scope of the formalismSEQ6] both
approaches coincide.

We also note that a recent paper [SPTO6] presentathservativeextension of the
syntax proposed in [MT04, MNTO6], in which clauses are bofilarbitrary constraint
atoms.

Finally, we point out the work of [FL0O4, Fer05] which treaggaegates asested
expressionsin particular, [Fer05] introduces a propositional logiithwa certain non-
classical semantics, and shows that it extends severabaqipes to programs with ag-
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gregates, including those of [SNS02] (restricted to coagdp programs) and [FLP04].
The nature of the relationship of the formalism of [FerO54 @nograms with abstract
constraints remains an open problem.

10 Conclusions

Our work shows that concepts, techniques and results framaldogic programming,
concerning strong and uniform equivalence, tightness age$lemma, program com-
pletion and loop formulas, generalize to the abstractregttf programs with monotone
and convex constraints. These general properties spectaliewresults aboulparse
programs (with the exception of the characterization gfrequivalence olparsepro-
grams, which was first obtained in [Tur03]).

Given these results we implemented a new softyéraodeldor computing stable
models oflparse programs. The approach reduces the problem to that of camgput
models of theories consisting of pseudo-boolean conssrafor which several fast
solvers exist [MRO5]. Our experimental results show fiatnodelsvith PB solvers,
especially local searckB solvers, performs better thamodels on several types of
search problems we tested. Moreover, as new and more effiddrers of pseudo-
boolean constraints become available (the problem isviecemuch attention in the
satisfiability and integer programming communities), taefgrmance opbmodelswill
improve accordingly.
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