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Abstract

We prove that the number of minimal transversals (and also the number of maximal
independent sets) in a 3-uniform hypergraph with n vertices is at most cn, where c ≈
1.6702. The best known lower bound for this number, due to Tomescu, is adn, where
d = 10

1
5 ≈ 1.5849 and a is a constant.

1 Introduction

An independent set in a graph is a set of vertices that contains no edge. An independent set
is maximal if it is not a proper subset of any other independent set. In 1965 Moon and Moser
[8] provided a complete answer to the following question raised by Erdős and Moser: ”What is
the maximum number f(n) of maximal independent sets possible in a graph with n vertices,
and which graphs have that many maximal independent sets?”

Moon and Moser proved that for every n ≥ 2, the extremal graphs are the graphs whose
every connected component is a triangle, except that if n mod 3 = 2 one component is an
edge and if n mod 3 = 1 one component is K4 or two components are edges. Thus,

f(n) =





3n/3 if n mod 3 = 0
4× 3(n−4)/3 if n mod 3 = 1
2× 3(n−2)/3 if n mod 3 = 2.

There is a natural generalization of the problem solved by Moon and Moser. Let G be a
fixed family of graphs. We ask: ”What is the maximum number fG(n) of maximal independent
sets possible in a graph in G with n vertices, and which graphs in G have that many maximal
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independent sets?” Several authors considered this problem for some special classes G of graphs.
Wilf [11] and independently Sagan [9] solved this problem when G is the family of trees. Griggs,
Grinstead and Guichard [1] and independently Füredi [2] answered the question when G is the
family of connected graphs. Hujter and Tuza [3] determined fG(n) and found the corresponding
extremal graphs when G is the family of triangle-free graphs.

It is also natural to ask an analogous question to the one posed by Erdős and Moser for
hypergraphs. By a hypergraph we mean a finite family of finite sets. We refer to these sets
as edges of the hypergraph. Given a hypergraph H, we set V (H) =

⋃H and call elements of
V (H) the vertices of H. A set of vertices in H is independent if it contains no edge of H. An
independent set in H is maximal if it is not a proper subset of any other independent set.

Here is a hypergraph analog of the question of Erdős and Moser: ”Given a fixed family of
hypergraphs G, what is the maximum number fG(n) of maximal independent sets possible in a
hypergraph in G with n vertices, and which hypergraphs have that many maximal independent
sets?”

This question is easy to answer when G = Gall is the family of all hypergraphs. Let Sn

be the hypergraph on n vertices whose edges are all sets of vertices of cardinality bn/2c + 1.
Clearly, a set I ⊆ V (Sn) is a maximal independent set in Sn if and only if |I| = bn/2c. Hence
fGall

(n) ≥ (
n

bn/2c
)
. On the other hand if I1, I2 are two different maximal independent sets in

some hypergraph then, obviously, I1 6⊆ I2 and I2 6⊆ I1 so by Sperner’s Lemma fGall
(n) ≤ (

n
bn/2c

)
.

Consequently, fGall
(n) =

(
n

bn/2c
)
.

For a given k ≥ 2, we denote by Ck the family of k-uniform hypergraphs, i.e. the family of
hypergraphs for which every edge is a k-element set. Tomescu [10] raised the question of finding
fCk

(n) (for a fixed k) and determining the family of the corresponding extremal hypergraphs.
Since C2 is the class of all graphs without isolated vertices, the result by Moon and Moser
resolves the case k = 2 in the problem of Tomescu.

For k > 2, Tomescu gave a construction of hypergraphs providing a lower bound for fCk
.

He conjectured that the actual value of fCk
(n) is equal to this lower bound.

Here is the construction of Tomescu [10] in the case of k = 3. which is the case of our main
interest in this paper. For simplicity, we assume that n is divisible by 5. Let X1, X2, . . . , Xn/5

be pairwise disjoint 5-element sets. We denote by P3(Xi), i = 1, 2, . . . , n/5, the family of all
3-element subsets of Xi. We define the hypergraph

H3
n =

n/5⋃

i=1

P3(Xi).

Clearly, a set I of vertices of H3
n is a maximal independent set in H3

n if and only if the
intersection of I with each of the sets Xi has 2 elements. Thus, there are

(
5
2

)n/5
= 10n/5 = dn,

where d = 10
1
5 ≈ 1.5849, maximal independent sets in H3

n and each of them has 2n/5 elements.
Consequently, fC3(n) ≥ dn, for n divisible by 5. A simple corollary of this observation is that
there is a constant a such that for every n, fC3(n) ≥ adn.

To the best of our knowledge the conjecture of Tomescu remains open and no nontrivial
upper bound for the number fC3(n) is known. In this paper we show that fC3(n) ≤ cn, where
c ≈ 1.6702. The exact value of c is of the form 1 + x4, where x is the root in (0, 1] of the
polynomial f(x) = (x4 +1)8−(x4 +1)7 +x2(x4 +1)4 +2x(x4 +1)2 +1− (x4 +1)8x5. In fact, we
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prove a stronger result that fC≤3
(n) ≤ cn, where C≤3 is the family of hypergraphs with every

edge of cardinality at most 3.
We formulate and prove our results in terms of transversals of hypergraphs rather than in

terms of independent sets in hypergraphs. For a hypergraphH, a set X ⊆ V (H) is a transversal
of H if X ∩ E 6= ∅ holds for every edge E ∈ H. A transversal is minimal if none of its proper
subsets is a transversal. One can readily verify that a set X is a maximal independent set in a
hypergraph H if and only if V (H) \X is a minimal transversal in H. Therefore the number of
maximal independent sets in any hypergraph H is equal to the number of minimal transversals
in H. Consequently, in particular, fG(n) is also equal to the maximum number of minimal
transversals possible in a hypergraph in G with n vertices. Similarly, the extremal hypergraphs
with fG(n) minimal transversals are the same as the extremal hypergraphs with fG(n) maximal
independent sets.

The problem of determining fC3(n) and finding hypergraphs in C3 maximizing the number of
minimal transversals (equivalently maximal independent sets) is interesting by its own right.
Nevertheless the motivation of the research presented in this paper also comes from some
problems occurring in logic.

Let X be a set of n Boolean variables. By a literal we mean a variable x or its negation
¬x, where x ∈ X. A clause over X is a disjunction ¬x1 ∨ . . . ∨ ¬xs ∨ y1 ∨ . . . ∨ yt, where
x1, . . . , xs, y1, . . . , yt ∈ X. Finally, a CNF theory over X is a conjunction of clauses over X.
A truth valuation for a CNF theory T is a function which assigns to every variable in X the
logic value of true or false. A truth valuation satisfies T if it satisfies all the clauses in T . We
say that a set M ⊆ X is a model of a CNF theory T , if the truth valuation that assigns the
value of true to all variables in M and the value of false to all variables in X \M satisfies the
theory T . Clearly, for any CNF theory T , there is a one-to-one correspondence between truth
valuations that satisfy T and models of T .

Minimal models of CNF theories play an important role in logic programming (see Lifschitz
[5], McCarthy [7]). Therefore algorithms of generating all minimal models of CNF theories
and counting them are of great interest (see Lonc and Truszczyński [6]).

When we restrict our attention to CNF theories in which no negation symbol occurs then
the problem of generating and counting minimal models in such theories reduces to the problem
of generating and counting transversals in some related hypergraphs. Indeed, let T be a CNF
theory over a set of variables X in which no variable occurs negated and let C1, C2, . . . , Cm be
the clauses in T . We define a hypergraph

H(T ) = {Ei : Ei is the set of variables occurring in Ci, i = 1, . . . , m}.

We observe that a set M ⊆ X is a (minimal) model of T if and only if M is a (minimal)
transversal in H(T ). Thus, our results on minimal transversals in hypergraphs can be trans-
lated into results on minimal models in CNF theories in which no negation symbol occurs.

In the rest of the paper we describe the proof of our main result (Theorem 2.1). The
argument uses a combinatorial lemma (Lemma 2.7) whose proof is long and requires a tedious
case analysis. Therefore, we only sketch it in the main body of the paper and present all details
in the appendix.

In this paper we write real numbers in the form v.wxyz.. , where v, w, x, y, z are decimal
digits in the decimal expansion of this real number.
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2 Main result

We observe that our definitions do not allow for a hypergraph to have isolated vertices. That
does not affect the generality of our considerations as isolated vertices are immaterial for
properties of transversals.

The main result of our paper establishes an upper bound on the number of minimal
transversals in a 3-uniform hypergraph.

Theorem 2.1 Every 3-uniform hypergraph H with n vertices has at most 1.6701..n minimal
transversals.

We derive Theorem 2.1 from a stronger result. We recall that C≤3 denotes the class of all
hypergraphs with every edge of cardinality at most 3.

Theorem 2.2 Every hypergraph H ∈ C≤3 such that |V (H)| = n has at most 1.6701..n minimal
transversals.

In the remainder of this section, we will prove Theorem 2.2. The proof depends on a
technical lemma. We outline the proof of the lemma here and provide the details of the proof
in the appendix.

We start by introducing concepts and notation needed for the proof. Let V be a set. We
call a pair A = (A+, A−) of disjoint subsets A+, A− ⊆ V a condition on subsets of V . We
say that a set T ⊆ V satisfies a condition (A+, A−) if A+ ⊆ T and T ∩ A− = ∅. A condition
(A+, A−) is trivial if A+ ∪A− = ∅. Otherwise, the condition (A+, A−) is non-trivial.

LetH be a hypergraph and let A be a condition. ByHA we denote the hypergraph obtained
from H by:

1. removing every edge E of H such that E ∩A+ 6= ∅
2. removing from all the remaining edges of H elements that are in A−

3. eliminating multiple edges.

Note that ∅ may be an edge in HA.
We have the following property of hypergraphs H and HA, which provides a basis for

inductive arguments concerning properties of transversals.

Lemma 2.3 Let H be a hypergraph and let A be a condition on subsets of V (H). If X ⊆ V (H)
is a minimal transversal of H and X satisfies A, then X \A+ is a minimal transversal of HA.

Proof: Let F be an edge of HA. Then, there is an edge E of H such that E ∩ A+ = ∅ and
F = E \ A−. Since X is a transversal of H, X ∩ E 6= ∅. Since X satisfies A, X ∩ A− = ∅.
Thus, X ∩ F 6= ∅. Finally, since E ∩ A+ = ∅, it follows that F ∩ A+ = ∅. Consequently, we
have that (X \ A+) ∩ F 6= ∅. Since F is an arbitrary edge of HA, X \ A+ is a transversal of
HA.

Let Y ⊆ X \ A+ be a transversal of HA. Since X ∩ A− = ∅ and A+ ∩ A− = ∅, Y ∪ A+

satisfies A. It is now easy to check that Y ∪ A+ ⊆ X and that Y ∪ A+ is a transversal of H.
By the minimality of X, Y ∪ A+ = X. Moreover, since Y ∩ A+ = ∅, Y = X \ A+. It follows
that X \A+ is a minimal transversal of HA. 2
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We note that it may happen that HA contains the empty edge. In such case, HA has no
transversals and consequently, H has no transversals satisfying A. It may also happen that
HA is empty. If that is the case, A+ is the only minimal transversal of H that satisfies A.

A key concept for the proof of Theorem 2.2 is that of a complete collection of conditions.
Let H be a hypergraph. A non-empty family A of non-trivial conditions is complete for H
if every minimal transversal of H satisfies at least one condition A ∈ A. The family A =
{({a}, ∅), (∅, {a})}, where a ∈ V (H), is an example of a complete family of conditions.

From now on we will fix attention on a class of hypergraphs C closed under the operations
of removing edges and removing vertices from edges. In other words, we assume that if H ∈ C,
and H′ is obtained from H by removing from H some of its edges and by removing from some
of the remaining edges some of their vertices, then H′ ∈ C. We note that in particular the class
C≤3 is closed under the operations of removing edges and removing vertices from edges.

We call a hypergraph H proper if H 6= ∅ and if ∅ 6∈ H. A descendant function for C is a
function assigning to each proper hypergraph in the class C a complete family of conditions.
Let ρ be a descendant function. We use ρ to associate with each hypergraph H ∈ C a labeled
tree T ρ

H that helps to estimate the number of minimal transversals of H. We will typically
omit ρ from the notation, as ρ will always be clear from the context.

We define tree TH inductively. If ∅ ∈ H or if H = ∅, TH consists of a single node labeled
with H. Otherwise (that means, when H is proper), we form a new node, label it with H and
make it the parent of all trees THA

, where A ∈ ρ(H). Since for every A ∈ ρ(H) the hypergraph
HA ∈ C and |V (HA)| ≤ |V (H)|, the definition is well founded. We denote the set of leaves of
the tree TH by L(TH).

Theorem 2.4 Let ρ be a descendant functions for C, where C is a class of hypergraphs closed
under the operations of removing edges and removing vertices from edges. Then, for every
hypergraph H ∈ C, the number of minimal transversals in a hypergraph H is at most |L(T ρ

H)|.

Proof: We proceed by induction. If ∅ ∈ H or if H = ∅, the assertion is evident. Let us consider
then a proper hypergraph H and let us assume that the assertion holds for every hypergraph
H′ with fewer vertices than H.

Let X be a minimal transversal of H. Since H is proper, ρ(H) is well defined and is a
complete family of conditions for H. Thus, there is a set A ∈ ρ(H) such that X satisfies A.
By Lemma 2.3, X = Y ∪ A+, where Y is a minimal transversal for HA. It follows that the
number of minimal transversals of H is at most

∑
A∈ρ(H) tA, where tA is the number of minimal

transversals of HA. By the induction hypothesis, tA ≤ |L(T ρ
HA

)|, and the assertion follows. 2

In the remainder of the paper, we will use Theorem 2.4 to prove Theorem 2.2. To obtain
specific bound claimed in Theorem 2.2 we need a method to estimate the number of leaves in
rooted trees. To this end, we adapt a method proposed in [4].

Let T be a rooted tree and let L(T ) be the set of leaves in T . For a node x in T , we denote
by D(x) the set of directed edges that link x with its children. For a leaf w of T , we denote
by P (w) the set of directed edges on the unique path from the root of T to the leaf w. The
following observation was shown in [4].

Proposition 2.5 [4] Let p be a function assigning positive real numbers to edges of a rooted
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tree T such that for every internal node x in T ,
∑

e∈D(x) p(e) = 1. Then,

|L(T )| ≤ max
w∈L(T )

(
∏

e∈P (w)

p(e))−1.

We will apply this result to derive an estimate on the number of leaves in the tree TH. We
define a measure to be any function µ that assigns to every hypergraph H ∈ C a real number
µ(H) such that 0 ≤ µ(H) ≤ |V (H)|. Given a measure µ, a descendant function ρ (defined on C)
is µ-compatible if for every proper hypergraph H and for every A ∈ ρ(H), µ(H)− µ(HA) > 0.
We denote the quantity µ(H)− µ(HA) by ∆(H,HA).

Let µ be a measure and ρ a descendant function defined on C. If ρ is µ-compatible then
there is a unique positive real number τ ≥ 1 satisfying the equation

∑

A∈ρ(H)

τ−∆(H,HA) = 1. (1)

Indeed, for τ ≥ 1 the left hand side of the equation (1) is a strictly decreasing continuous
function of τ . Furthermore, its value for τ = 1 is at least 1 (as ρ(H) 6= ∅) and it approaches
0 when τ tends to infinity. We denote the number τ ≥ 1 satisfying (1) by τH (to simplify
notation, we omit references to ρ and µ; they will always be clear from the context).

We say that a descendant function ρ defined on C is µ-bounded by τ0 if for every proper
hypergraph H ∈ C, τH ≤ τ0.

Theorem 2.6 Let µ be a measure and let ρ be a descendant function, both defined on a class
C of hypergraphs such that C is closed under the operations of removing edges and removing
vertices from edges. If ρ is µ-compatible and µ-bounded by τ0 then for every hypergraph H ∈ C

|L(TH)| ≤ τ
|V (H)|
0 . (2)

Proof: Let e = (x, y) be an edge in TH. It follows from the definition of TH that there is a
proper hypergraph F and a condition A ∈ ρ(F) such that x and y are labeled with F and FA,
respectively. We define D(e) = ∆(F ,FA). Since ρ is µ-compatible, D(e) > 0.

Let us now set p(e) = τ
−D(e)
F , where τF is the root of the equation (1) for the hypergraph

F . Since, ρ is µ-bounded by τ0, we have

p(e)−1 = τ
D(e)
F ≤ τ

D(e)
0

(we recall that τF ≥ 1).
Clearly, for every leaf w ∈ TH we have

∑

e∈P (w)

D(e) = µ(H)− µ(W) ≤ µ(H) ≤ |V (H)|,

where W is the hypergraph that labels w. Consequently,

(
∏

e∈P (w)

p(e))−1 ≤
∏

e∈P (w)

τ
D(e)
0 = τ

∑
e∈P (w) D(e)

0 ≤ τ
|V (H)|
0 .

Since the function p satisfies the assumptions of Proposition 2.5, the assertion follows. 2

Thus, to bound the number of leaves in the tree TH by τ
|V (H)|
0 , we need to define a measure

µ and a descendant function ρ satisfying the assumptions of Theorem 2.6. For the class C≤3,
which is of the primary interest to us here, we have the following lemma.
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Lemma 2.7 There is a measure µ defined for every hypergraph in the class C≤3 and a descen-
dant function ρ for C≤3 such that ρ is µ-compatible and µ-bounded by 1.6701.. .

Proof: Let H be a hypergraph from the class C≤3. We denote by k(H) the maximum number
of pairwise disjoint 2-element edges in H. We set

µ(H) = |V (H)| − αk(H),

where α = 0.1950.. (we discuss in the appendix the basis for that choice of α). Clearly, µ is a
measure on the class C≤3.

To define a descendant function ρ, we proceed in two steps.
I. We first define ρ(F) for every proper hypergraph F ∈ C≤3 such that no 3-element edge in F
contains a 2-element edge of F . Moreover, we do it so that ∆(F ,FA) > 0, for every A ∈ ρ(F),
and τF ≤ 1.6701.. . (This is the tedious part of the argument. We provide the details for this
step in the appendix.)
II. Next, we extend the definition from Step I to all proper hypergraphs in the class C≤3. Let H
be a proper hypergraph in C≤3. We define F to be the hypergraph obtained by removing from
H its every 3-element edge that contains a 2-element edge (if there are no such edges, F = H).
Clearly, F is proper and satisfies the assumptions needed in Step I. We set ρ(H) = ρ(F).

SinceH and F have the same transversals, ρ(H) is indeed a complete collection of conditions
for H and, consequently, ρ is a descendant function. Moreover, since k(H) = k(F) and
|V (H)| ≥ |V (F)|, for every A ∈ ρ(H) (= ρ(F)),

∆(H,HA) ≥ ∆(F ,FA). (3)

Since the construction in Step I ensures ∆(F ,FA) > 0, ρ is µ-compatible. The equation (3)
also implies that τH ≤ τF . Thus, by properties of the construction from Step I, τH ≤ 1.6701.. .
In other words, ρ is µ-bounded by 1.6701.. . 2

Clearly, Theorem 2.2 (and so, also Theorem 2.1) follow directly from Theorem 2.6 and
Lemma 2.7.

The construction and the argument needed for Step I in the proof of Lemma 2.7 consist of
a tedious case analysis. We present them in the appendix.
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[2] Z. Füredi. The number of maximal independent sets in connected graphs. Journal of Graph
Theory 11(4):463-470, 1987.

[3] M. Hujter and Z. Tuza. The number of maximal independent sets in triangle-free graphs.
SIAM Journal on Discrete Mathematics, 6(2):284-288, 1993.

7



[4] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Com-
puter Science, pages 1-72, 1999.

[5] V. Lifschitz. Circumscriptive theories: a logic-based framework for knowledge representa-
tion. Journal of Philosophical Logic 17(4):391-441, 1988.
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Appendix: Proof of Lemma 2.7

We complete here the proof of Lemma 2.7. Specifically, for every proper hypergraph F in
C≤3 such that no 3-element edge of F contains a 2-element edge of F , we define a complete
collection of conditions ρ(F) and show that:

1. ∆(F ,FA) > 0, for every A ∈ ρ(F), and

2. τF ≤ 1.6701.. .

The definition consists of several cases that reflect the structure of the hypergraph F . In
each case, we assume that none of the cases considered earlier applies and we provide an explicit
complete collection ρ(F) of conditions for F . Then, for every A ∈ ρ(F), we find a bound kA,F
such that ∆(F ,FA) ≥ kA,F . In each case, it will be clear that kA,F ’s are positive. In each
case, we also find a unique positive real number τ ′F that satisfies the equation

∑

A∈ρ(F)

τ−kA,F = 1. (4)

and show that τ ′F ≤ 1.6701.. . Since ∆(F ,FA) ≥ kA,F > 0, it follows that τF ≤ τ ′F ≤ 1.6701..
(we recall that τF denotes the positive root of the equation (1)).

Case 1 covers hypergraphs F containing a 1-element edge. Case 2 covers hypergraphs F ,
which contain 2-element edges and some two among them share a vertex. Cases 3 - 6 address
the possibility, when F contains 2-element edges and they are all pairwise disjoint. That
assumption makes estimating k(F) easy. In the remaining cases, we assume that F consists of
3-element edges only. In these cases, for a vertex a of F , by Γ(a) we denote the graph induced
by the edges bc such that abc is an edge in F . In Case 7, we assume that for some vertex a,
Γ(a) has maximum degree at least 5. Case 8 covers hypergraphs with a vertex a such that Γ(a)
has maximum degree 4 or 3. Cases 9 - 15 cover situations when F contains a vertex a such
that the maximum degree of Γ(a) is 2 or 1. These cases do not cover hypergraphs F , in which
for every vertex a, Γ(a) is isomorphic to one of three graphs: the graph whose components are
a triangle and a single edge, the graph whose components are a 3-edge path and a single edge,
and the graph whose components are three single edges. Case 16 covers all such hypergraphs
F .

Let us now explain the choice of a particular value of α in the definition of the measure
µ(S) = |V (S)| − αk(S). The goal is to choose α so that the maximum of the solutions of the
equation (4) over all cases considered in the definition of ρ be as small as possible. It turns
out that Cases 5(iii) and 9 are, in a sense, “extremal”. In Case 5(iii) of the definition of ρ(S),
the equation (4) specializes to

τ−1+α + τ−4+3α + 2τ−6+4α + τ−8+5α = 1. (5)

In Case 9, the equation (4) becomes

τ−1 + τ−1−4α = 1. (6)

The positive root τ1(α) of the equation (5) satisfies the inequality τ1(α) > 1 and grows,
when α grows from 0 to 1. On the other hand, the positive root τ2(α) of the equation (6)
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decreases, when α grows from 0 to 1 and satisfies the inequalities 1 < τ2(α) ≤ 2. The larger of
the roots τ1(α) and τ2(α) is minimized when τ = τ1(α) = τ2(α). Equation (6) implies

τα = (τ − 1)−1/4. (7)

Substituting into (5) yields, after some simplification,

τ8 − τ7 + (τ − 1)1/2τ4 + 2(τ − 1)1/4τ2 + 1− τ8(τ − 1)5/4 = 0.

Substituting x = (τ − 1)1/4, we get

(x4 + 1)8 − (x4 + 1)7 + x2(x4 + 1)4 + 2x(x4 + 1)2 + 1− (x4 + 1)8x5 = 0.

As 1 < τ ≤ 2, 0 < x ≤ 1. The root x ∈ (0, 1] of the polynomial in the left-hand side of the
equation above satisfies 0.90478 < x < 0.90479. Thus, τ = 1 + x4 = 1.6701.. ≈ 1.6702. By (7)
we get α = ln(τ−1)

−4 ln τ = 0.1950.. . It can be checked by direct computations that in all remaining
cases, if α = 0.1950.. , then the roots of the equations (4) are smaller than 1.67.

In the remainder of the proof we write conditions as sets of expressions of the form a and
b̄, where a and b are vertices. That is, we identify a condition A with the set

A+ ∪ {ā : a ∈ A−}.

For instance, the condition ({a, c}, {b}} can be denoted as {a, b̄, c} or {a, c, b̄} (the order in
which we enumerate the elements is immaterial).
Case 1. There is a 1-element edge {a} in F .

Let A = {{a}}. Since each transversal of F contains the vertex a, A is a complete family
of conditions for F . We define ρ(F) = A.

Let M be a set of k(F) pairwise disjoint 2-element edges in F (we recall that k(F) denotes
the cardinality of a largest pairwise disjoint collection of 2-element edges in F). Every edge
of M that does not contain a is an edge of the hypergraph F{a}. Thus, k(F{a}) ≥ k(F) − 1.
Since |V (F{a})| ≤ |V (F)| − 1,

∆(F ,F{a}) = µ(F)− µ(F{a}) = |V (F)| − αk(F)− (|V (F{a})| − αk(F{a})) ≥ 1− α.

We set k{a},F = 1− α. Clearly k{a},F > 0.
The equation (4) specializes to

τ−1+α = 1.

We have τ ′F = 1 and, consequently, τF ≤ 1.
Comment. According to our discussion above, we will assume from now on that F has no
1-element edges.
Case 2. There is a pair of 2-element edges in F , which have a common vertex.

Let M be a largest set of pairwise disjoint 2-element edges in F . Because of the assumption
we adopt for Case 2, there is a 2-element edge, say e1 such that e1 /∈ M . Since M is a largest
set of pairwise disjoint 2-element edges in F , there is a 2-element edge, say e2, in M such that
e1 and e2 have a common vertex. Without loss of generality, e1 = ab and e2 = ac, for some
vertices a, b and c of F .
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Clearly, the family A′ = {{a}, {ā}} is complete. Every transversal satisfying the condition
{ā} must contain the vertices b and c because it intersects the edges ab and ac. Thus, every
such transversal satisfies the condition {ā, b, c} and the family

A = {{a}, {ā, b, c}}

is complete for F , as well. We define ρ(F) = A.
The hypergraph F{a} contains all 2-element edges of M except for ac. Thus, k(F{a}) ≥

k(F)−1. Moreover, every edge of M that does not contain a nor b is an edge of F{ā,b,c}. Thus,
k(F{ā,b,c}) ≥ k(F)− 2. Since |V (F{a})| ≤ |V (F)| − 1 and |V (F{ā,b,c})| ≤ |V (F)| − 3, we have

∆(F ,FA) ≥
{

1− α if A = {a}
3− 2α if A = {ā, b, c}.

We set kA,F to be the bound appearing in the appropriate case of the definition above.
The equation (4) specializes to

τ−1+α + τ−3+2α = 1.

Assuming α = 0.1950.. , we have τ ′F ≤ 1.58 and, consequently, τF ≤ 1.58.
Comment. From now on we will assume that 2-element edges in F are vertex-disjoint. We
will denote this set of edges by M .
In addition, when establishing lower bounds kA,F on ∆(F ,FA) we will always use the inequality
|V (FA)| ≤ |V (F)| − |A| and we will not state that fact explicitly anymore. We always specify
conditions by enumerating their elements. In all cases, it is easy to show that all vertices
involved in the specification of a condition are in fact different and we will typically omit these
arguments. Thus, evaluating |A| is straightforward.
Case 3. There is a vertex, say a, that belongs to a 2-element edge, say e = ab in F , and to
no other edge of F .

The family A′ = {{a}, {ā}} is complete for F . Every minimal transversal satisfying {a}
satisfies {a, b̄}. Indeed, if a transversal T of F contains both a and b then T − {a} is a
transversal of F , too (as e is the only edge in F containing a). Furthermore, every transversal
of F satisfying {ā} satisfies {ā, b} because it must intersect e. Therefore, the family

A = {{a, b̄}, {ā, b}}

is complete for F and we set ρ(F) = A.
Clearly, all 2-element edges of F except for e are still 2-element edges in both F{a,b̄} and

F{ā,b}. Since by Case 2, all 2-element edges in F form an independent set, k(F{a,b̄}) ≥ k(F)−1
and k(F{ā,b}) ≥ k(F)− 1. Hence, for A ∈ A, we have

∆(F ,FA) ≥ 2− α.

We set kA,F = 2− α, for every A ∈ A, and note that kA,F > 0.
The equation (4) specializes to

2τ−2+α = 1.

Assuming α = 0.1950.. , we have τ ′F ≤ 1.47 and, consequently, τF ≤ 1.47.
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Comment. From now on we will not explicitly state the numbers kA,F . We will specify them
implicitly in inequalities bounding ∆(F ,FA) from below. In each case, it is straightforward to
see that the numbers are positive, due to the fact that α < 1.
Case 4. There is a vertex a in F that belongs to a 2-element edge, say e1 = ab, and to exactly
one 3-element edge, say e2 = acd.

The collection A′ = {{ā}, {a, b̄}, {a, b}} is complete for F . Every transversal of F satisfying
{ā} satisfies {ā, b} (as it intersects e1). Let T be a minimal transversal for F satisfying {a, b}.
If T contains c or d then, since e1 and e2 are the only two edges in F that contain a, T − {a}
is a transversal for F , contrary to the minimality of T . Thus, every minimal transversal for F
satisfying {a, b} satisfies {a, b, c̄, d̄}. It follows that

A = {{ā, b}, {a, b̄}, {a, b, c̄, d̄}}.

is complete and we define ρ(F) = A.
Clearly, all 2-element edges of F except for e1 are 2-element edges in F{ā,b} and F{a,b̄}.

Thus, k(F{ā,b}) ≥ k(F) − 1 and k(F{a,b̄}) ≥ k(F) − 1. Moreover, every 2-element edge of F
except for e1 and those 2-element edges that contain c or d are 2-element edges in F{a,b,c̄,d̄}.
Consequently, k(F{a,b,c̄,d̄}) ≥ k(F)− 3. Hence,

∆(F ,FA) ≥
{

2− α if A = {ā, b}, {a, b̄}
4− 3α if A = {a, b, c̄, d̄}.

The equation (4) specializes to

2τ−2+α + τ−4+3α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.65 and, consequently, τF ≤ 1.65.
Comment. We note that in all cases the arguments to show that A is a complete collection
of conditions are similar. We typically start with a complete collection A′ of conditions. Then,
we extend (strengthen) some of the conditions in A′. For instance, if A is a condition and
there is an edge e ∈ F such that e \A− = {a}, for some vertex a, then a must belong to every
transversal satisfying A. Consequently, A can be replaced with the condition (A+ ∪ {a}, A−).
The second type of an argument to extend conditions that we use here exploits the property
of minimality. That approach applies when we explicitly know all edges in F that contain a
vertex a. If a transversal T satisfies a condition A such that a ∈ A+, then the minimality of
T implies that T − {a} is not a transversal. Thus, it must not intersect at least one edge in
F that contains a. That implies that some vertices must be included in A−. We used this
method in Cases 3 and 4. In the remainder of the proof, we will typically omit arguments of
the first type and only sketch arguments of the second type.
Case 5. There is a vertex a in F that occurs in a 2-element edge, say e1 = ab, and two
3-element edges, say e2 = acd and e3 = afg , such that c, d 6= f, g.
Subcase (i). The vertices c, d, f, g do not belong to any 2-element edges.

Clearly, A′ = {{a}, {ā}} is a complete family of conditions. Since {ā} can be extended (by
means of the first method) to {ā, b}, the family

A = {{a}, {ā, b}}

is complete, as well, and we set ρ(F) = A.
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All 2-element edges of F except for e1 are 2-element edges in F{a}. Thus, k(F{a}) ≥
k(F)− 1. Moreover, e1 is not a 2-element edge of F{ā,b} while e4 = cd and e5 = fg are. Since
no 2-element edge of F is a subset of a 3-element edge of F , e4 and e5 are not edges of F
and, by the assumptions of this subcase, do not have common vertices with 2-element edges
of M − {e1}. Hence, k(F{ā,b}) ≥ k(F) + 1. It follows that

∆(F ,FA) ≥
{

1− α if A = {a}
2 + α if A = {ā, b}.

The equation (4) specializes to
τ−1+α + τ−2−α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
Subcase (ii). The vertices c and d or the vertices f and g do not belong to any 2-element
edge. Without loss of generality, we assume that the latter holds.

By Case 5(i), we can assume that at least one of c and d, say c belongs to a 2-element edge,
say e4 = ch. We note that d 6= h (otherwise, e4 would be a subset of e2).

The family A′ = {{a}, {ā, c}, {ā, c̄}} is complete. The sets {ā, c} and {ā, c̄} can be extended
to {ā, c, b} and {ā, c̄, b, d, h}, respectively. Hence, the family

A = {{a}, {ā, c, b}, {ā, c̄, b, d, h}}

is complete and we set ρ(F) = A.
All 2-element edges of F except for e1 are 2-element edges in F{a}. Thus, k(F{a}) ≥

k(F) − 1. Moreover, all edges of M other than e1 and e4 are 2-element edges of F{ā,c,b}. In
addition, e5 = fg is also a 2-element edge of F{ā,c,b}. Since e5 is not an edge of F (as e5 is
a subset of e3) and does not have common vertices with the 2-element edges of M − {e1, e4},
k(F{ā,c,b}) ≥ k(F) − 1. Finally, all edges of M − {e1, e4} that do not contain d are 2-element
edges of F{ā,c̄,b,d,h}. In addition, e5 = fg is also a 2-element edge of F{ā,c̄,b,d,h}. Since e5 is
not an edge of F and does not have common vertices with the remaining 2-element edges of
F{ā,c̄,b,d,h}, k(F{ā,c̄,b,d,h}) ≥ k(F)− 2. Hence,

∆(F ,FA) ≥




1− α if A = {a}
3− α if A = {ā, c, b}
5− 2α if A = {ā, c̄, b, d, h}.

The equation (4) specializes to

τ−1+α + τ−3+α + τ−5+2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Subcase (iii). At least one of the vertices c and d, say c, belongs to a 2-element edge in
F , say e4, whose other vertex is not in e3, and at least one of the vertices of f and g, say f ,
belongs to a 2-element edge, say e5, whose other vertex is not in e2.

Let e4 = ch and e5 = fj . By our assumptions, h does not occur in e3 and j does not occur
in e2, so a, b, c, d, f , g, h, j are pairwise different. Let

A = {{a}, {ā, f, c, b}, {ā, f̄ , c, b, g, j}, {ā, f, c̄, b, d, h}, {ā, f̄ , c̄, b, d, g, h, j}}.
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The family A′ = {{a}, {ā, f, c}, {ā, f̄ , c}, {ā, f, c̄}, {ā, f̄ , c̄}} clearly is complete. Since A can
be obtained from strengthening some of the conditions in A′, A is complete, too, and we set
ρ(F) = A.

All edges in M −{e1} are 2-element edges in F{a} and so k(F{a}) ≥ k(F)− 1. All edges in
M−{e1, e4, e5} are 2-element edges in F{ā,f,c,b} and so k(F{ā,f,c,b}) ≥ k(F)−3. All edges in M−
{e1, e4, e5} that do not contain g are 2-element edges in F{ā,f̄ ,c,b,g,j}. Thus, k(F{ā,f̄ ,c,b,g,j}) ≥
k(F)− 4. Similarly, all edges in M − {e1, e4, e5} that do not contain d are 2-element edges in
F{ā,f c̄,b,d,h}. Thus, k(F{ā,f,c̄,b,d,h}) ≥ k(F) − 4. Finally, all edges in M − {e1, e4, e5} that do
not contain d or g are 2-element edges in F{ā,f̄ ,c̄,b,d,g,h,j} and so k(F{ā,f̄ ,c̄,b,d,g,h,j}) ≥ k(F)− 5.
Hence,

∆(F ,FA) ≥





1− α if A = {a}
4− 3α if A = {ā, f, c, b}
6− 4α if A = {ā, f̄ , c, b, g, j}, {ā, f, c̄, b, d, h}
8− 5α if A = {ā, f̄ , c̄, b, d, g, h, j}.

The equation (4) becomes

τ−1+α + τ−4+3α + 2τ−6+4α + τ−8+5α = 1.

For α = 0.1950.. , we have τ ′F = 1.6701.. and, consequently, τF ≤ 1.6701.. .
Subcase (iv). There is a 2-element edge e4 with one vertex in e2 and the other one in e3,
and both edges e2 and e3 have vertices which do not belong to any 2-element edges.

Without loss of generality, e4 = cf . Clearly, d and g do not belong to any 2-element edges.
Since A′ = {{a}, {ā, c}, {ā, c̄}} is complete for F ,

A = {{a}, {ā, c, b}, {ā, c̄, b, d, f}}
is complete for F , as well. We define ρ(F) = A.

All edges in M − {e1} are 2-element edges in F{a} and so k(F{a}) ≥ k(F) − 1. All edges
in M − {e1, e4} are 2-element edges in F{ā,c,b}. In addition, e5 = fg is also a 2-element edge
in F{ā,c,b}. Since e5 6∈ F and does not have common vertices with the 2-element edges of
M − {e1, e4}, k(F{ā,c,b}) ≥ k(F)− 1. Finally, all edges in M − {e1, e4} are 2-element edges of
F{ā,c̄,b,d,f} and so k(F{ā,c̄,b,d,f}) ≥ k(F)− 2. Hence,

∆(F ,FA) ≥




1− α if A = {a}
3− α if A = {ā, c, b}
5− 2α if A = {ā, c̄, b, d, f}.

The equation (4) specializes to

τ−1+α + τ−3+α + τ−5+2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Subcase (v). There is a 2-element edge e4 with one vertex in e2 and the other vertex in e3,
and exactly one of the vertices of e2 and e3 does not belong to any 2-element edge.

Without loss of generality, e4 = cf and g is the vertex that does not belong to any 2-
element edge in F . Let the 2-element edge that contains d be e5 = dj. Since the family
A′ = {{a}, {ā, f, d}, {ā, f̄ , d}, {ā, f, d̄}, {ā, f̄ , d̄}} is complete and the family

A = {{a}, {ā, f, d, b}, {ā, f̄ , d, b, c, g}, {ā, f, d̄, b, c, j}, {ā, f̄ , d̄, b, c, g, j}}.
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can be obtained by strengthening some of the conditions in A′, A is complete, too. We set
ρ(F) = A.

All edges in M−{e1} are 2-element edges in F{a} and so k(F{a}) ≥ k(F)−1. Moreover, all
edges in M −{e1, e4, e5} are 2-element edges in FA, for A = F{ā,f,d,b}, F{ā,f̄ ,d,b,c,g}, F{ā,f,d̄,b,c,j}
and F{ā,f̄ ,d̄,b,c,g,j}. Thus, k(FA) ≥ k(F)− 3 for all those sets A and, consequently,

∆(F ,FA) ≥





1− α if A = {a}
4− 3α if A = {ā, f, d, b}
6− 3α if A = {ā, f̄ , d, b, c, g}, {ā, f, d̄, b, c, j}
7− 3α if A = {ā, f̄ , d̄, b, c, g, j}.

The equation (4) specializes to

τ−1+α + τ−4+3α + 2τ−6+3α + τ−7+3α = 1,

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Subcase (vi). There is a 2-element edge e4 with one vertex in e2 and the other one in e3 and
all vertices of e2 and e3 belong to 2-element edges.

Without the loss of generality, e4 = cf . By Case 5(iii), we can assume also that the vertices
d and g form a 2-element edge e5 = dg.

Let us assume first that e1 = ab, e2 = acd and e3 = afg are the only edges containing a.
We observe that

A′ = {{ā}, {a, b̄}, {a, b, c̄, d̄}, {a, b, f̄ , ḡ}}
is a complete collection of conditions. Indeed, let us suppose T is a minimal transversal in F ,
which does not satisfy any of the conditions in A′. Since T satisfies neither {ā} nor {a, b̄},
a ∈ T and b ∈ T . Similarly, as T satisfies neither {a, b, c̄, d̄} nor {a, b, f̄ , ḡ}, c ∈ T or d ∈ T , and
also f ∈ T or g ∈ T . Since a belongs to the edges e1, e2 and e3 only, T − {a} is a transversal
in F , contrary to the minimality of T .

Since the conditions {ā}, {a, b, c̄, d̄} and {a, b, f̄ , ḡ} can be extended, it follows that

A = {{ā, b}, {a, b̄}, {a, b, c̄, d̄, f, g}, {a, b, f̄ , ḡ, c, d}}

is complete. We set ρ(F) = A.
All edges in M −{e1} are 2-element edges in F{ā,b} and F{a,b̄}. Thus, k(F{ā,b}), k(F{a,b̄}) ≥

k(F) − 1. Moreover, all edges in M − {e1, e4, e5} are 2-element edges in F{a,b,c̄,d̄,f,g} and
F{a,b,f̄ ,ḡ,c,d}. Thus, k(F{a,b,c̄,d̄,f,g}), k(F{a,b,f̄ ,ḡ,c,d}) ≥ k(F)− 3 and, consequently,

∆(F ,FA) ≥
{

2− α if A = {ā, b}, {a, b̄}
6− 3α if A = {a, b, c̄, d̄, f, g}, {a, b, f̄ , ḡ, c, d}.

The equation (4) specializes to

2τ−2+α + 2τ−6+3α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.61 and, consequently, τF ≤ 1.61.
Suppose now that a belongs to some 3-element edge e 6= e2, e3. If e and e2 have exactly

one vertex in common (it must be a) then replacing e3 by e we get Case 5(ii) or 5(iii).
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Let e and e2 have two vertices in common (say a and c). Replacing e3 by e we get Case
6(i), which we consider below (and which is independent of Case 5).
Case 6. There is a vertex, say a, that occurs in a 2-element edge, say e1 = ab and two
3-element edges, say e2 = acd and e3 = afg, such that e2 and e3 have 2 vertices in common.

Clearly, a is one of the vertices common to e2 and e3. Without loss of generality, c = f .
Since e2 6= e3, d 6= g.
Subcase (i). The vertex c belongs to a 2-element edge, say e4 = ch.

We define
A = {{a}, {ā, c, b}, {ā, c̄, b, d, g, h}}.

Since A′ = {{a}, {ā, c}, {ā, c̄}} is complete and A can be obtained from A′ by extending {ā, c}
and {ā, c̄}, it follows that A is complete and we set ρ(A) = A.

All edges in M − {e1} are 2-element edges in F{a} and so k(F{a}) ≥ k(F) − 1. All edges
in M − {e1, e4} are 2-element edges in F{ā,c,b}. Thus, k(F{ā,c,b}) ≥ k(F) − 2. Finally, all
edges in M − {e1, e4} that do not contain d or g are 2-element edges in F{ā,c̄,b,d,g,h} and so
k(F{ā,c̄,b,d,g,h}) ≥ k(F)− 4. Hence,

∆(F ,FA) ≥




1− α if A = {a}
3− 2α if A = {ā, c, b}
6− 4α if A = {ā, c̄, b, d, g, h}.

The equation (4) specializes to

τ−1+α + τ−3+2α + τ−6+4α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Comment. As we noted, the argument for Case 6(i) concludes also the argument for Case 5.
Subcase (ii). The vertex c does not belong to any 2-element edge and at most one of the
vertices d, g belongs to a 2-element edge.

We define
A = {{a}, {ā, c, b}, {ā, c̄, b, d, g}}.

As before, it is easy to see that A is complete and we set ρ(F) = A.
All edges in M − {e1} are 2-element edges in F{a} and F{ā,c,b}. Consequently, k(F{a}) ≥

k(F) − 1 and k(F{ā,c,b}) ≥ k(F) − 1. Moreover, all edges in M − {e1} that do not contain d
or g (by the assumption of the subcase, at most one edge is excluded by that condition), are
2-element edges in F{ā,c̄,b,d,g} and so k(F{ā,c̄,b,d,g}) ≥ k(F)− 2. Hence,

∆(F ,FA) ≥




1− α if A = {a}
3− α if A = {ā, c, b}
5− 2α if A = {ā, c̄, b, d, g}.

The equation (4) specializes to

τ−1+α + τ−3+α + τ−5+2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Subcase (iii). The vertex c does not belong to any 2-element edge and both vertices d and g
belong to (not necessarily different) 2-element edges.
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First, we assume that e1, e2 and e3 are the only edges that contain a. Clearly, the collection

A′ = {{a, b̄}, {a, b}, {ā, c}, {ā, c̄}}

is complete. Every minimal transversal T of F satisfying {a, b} satisfies {a, b, c̄} (otherwise,
b, c ∈ T − {a}, and T − {a} is a transversal in F , a contradiction). The conditions {ā, c} and
{ā, c̄} can also be extended and it follows that

A = {{a, b̄}, {a, b, c̄}, {ā, c, b}, {ā, c̄, b, d, g}}

is complete. We set ρ(F) = A.
All edges in M − {e1} are 2-element edges in F{a,b̄}, F{a,b,c̄} and F{ā,c,b}. Consequently,

k(F{a,b̄}), k(F{a,b,c̄}), k(F{ā,c,b}) ≥ k(F) − 1. Moreover, all edges in M − {e1} that do not
contain d or g are 2-element edges in F{ā,c̄,b,d,g}, so k(F{ā,c̄,b,d,g}) ≥ k(F)− 3. Hence,

∆(F ,FA) ≥




2− α if A = {a, b̄}
3− α if A = {a, b, c̄}, {ā, c, b}
5− 3α if A = {ā, c̄, b, d, g}.

The equation (4) specializes to

τ−2+α + 2τ−3+α + τ−5+3α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
Let us suppose now that e1, e2 and e3 are not the only edges that contain a. Then a

belongs to some 3-element edge e 6= e2, e3 (since a belongs to a 2-element edge e1 it does not
belong to any other 2-element edge in F).

If a is the only common vertex of e and e2, then Case 5 (completed when we completed
Case 6(i)) applies. Thus, we can assume that e has two common vertices with e2. If e contains
d, then Case 6(i) applies. Thus, c is a common vertex of e and e2. In the same way we argue
that c is a common vertex of e and e3. Thus, e = ach (and, of course, h 6= d, g). Since, clearly,
A′ = {{a}, {ā, c}, {ā, c̄}} is complete, it follows that

A = {{a}, {ā, c, b}, {ā, c̄, b, d, g, h}}

is complete, too. We set ρ(F) = A.
All edges in M−{e1} are 2-element edges in F{a} and F{ā,c,b}. Thus, k(F{a}), k(F{ā,c,b}) ≥

k(F) − 1. Moreover, all edges in M − {e1} that do not contain d, g or h are 2-element edges
in F{ā,c̄,b,d,g,h} and so k(F{ā,c̄,b,d,g,h}) ≥ k(F)− 4. Hence,

∆(F ,FA) ≥




1− α if A = {a}
3− α if A = {ā, c, b}
6− 4α if A = {ā, c̄, b, d, g, h}.

The equation (4) specializes to

τ−1+α + τ−3+α + τ−6+4α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.64 and, consequently, τF ≤ 1.64.
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Comment. From now on we will assume that F contains 3-element edges only, that is, from
now on, k(F) = 0.
In addition, for a vertex a, we denote by Γ(a) the undirected graph induced by the set of edges
{bc : abc ∈ F}.
Case 7. There is a vertex a ∈ F such that Γ(a) has a vertex of degree at least 5.

Let b be a vertex of degree at least 5 in Γ(a) and let b1, b2, b3, b4, b5 be neighbors of b in
Γ(a). We define A′ = {{a}, {ā, b}, {ā, b̄}}. Clearly, A′ is complete. Every transversal satisfying
{ā, b̄} satisfies {ā, b̄, b1, b2, b3, b4, b5} as it intersects the edges abbi, i = 1, 2, 3, 4, 5. Hence, the
family

A = {{a}, {ā, b}, {ā, b̄, b1, b2, b3, b4, b5}}
is complete and we set ρ(F) = A.

It follows that (we recall that from Case 7 on we can assume that k(F) = 0)

∆(F ,FA) ≥




1 if A = {a}
2 if A = {ā, b}
7 if A = {ā, b̄, b1, b2, b3, b4, b5}.

The equation (4) becomes
τ−1 + τ−2 + τ−7 = 1.

We have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
Case 8. The maximum degree of a vertex in Γ(a) is 4 or 3.

Let b be a vertex of maximum degree in Γ(a). If the degree of b is 4 then we denote its
neighbors by b1, b2, b3 and b4. If the degree of b is 3, we denote its neighbors by b1, b2 and b3.
Subcase (i). Γ(a) has a vertex of degree 4 and there are at least 5 edges in Γ(a).

Let cd be an edge in Γ(a) that is not incident to b. We define A′ = {{a}, {ā, b}, {ā, b̄}} and
argue similarly as before that

A = {{a}, {ā, b}, {ā, b̄, b1, b2, b3, b4}}
is complete. We set ρ(F) = A.

The hypergraph F{ā,b} contains the 2-element edge cd, so k(F{ā,b}) ≥ 1. Thus,

∆(F ,FA) ≥




1 if A = {a}
2 + α if A = {ā, b}
6 if A = {ā, b̄, b1, b2, b3, b4}.

The equation (4) becomes
τ−1 + τ−2−α + τ−6 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.64 and, consequently, τF ≤ 1.64.
Subcase (ii). Γ(a) is a star.

Clearly, the family A′ = {{a}, {ā, b}, {ā, b̄}} is complete. The condition {ā, b̄} extends to
{ā, b̄, b1, b2, b3}. Moreover, every minimal transversal T satisfying {a} satisfies {a, b̄} (if not,
T − {a} is a transversal contrary to the minimality of T ). Hence,

A = {{a, b̄}, {ā, b}, {ā, b̄, b1, b2, b3}}
is complete and we set ρ(F) = A.
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We now have

∆(F ,FA) ≥
{

2 if A = {a, b̄}, {ā, b}
5 if A = {ā, b̄, b1, b2, b3}.

The equation (4) becomes
2τ−2 + τ−5 = 1.

We have τ ′F ≤ 1.52 and, consequently, τF ≤ 1.52.
Subcase (iii). The maximum degree of a vertex in Γ(a) is 3, and for some vertex of maximum
degree in Γ(a), say b, Γ(a) contains at least 2 independent edges not incident to b.

Let c1d1 and c2d2 be two independent edges in Γ(a) that are not incident to b. The family
A′ = {{a}, {ā, b}, {ā, b̄}} is complete for F . Thus,

A = {{a}, {ā, b}, {ā, b̄, b1, b2, b3}}

is complete, too, and we set ρ(F) = A.
The hypergraph F{ā,b} contains the 2-element edges c1d1 and c2d2 and so k(F{ā,b}) ≥ 2.

Thus,

∆(F ,FA) ≥




1 if A = {a}
2 + 2α if A = {ā, b}
5 if A = {ā, b̄, b1, b2, b3}.

The equation (4) becomes
τ−1 + τ−2−2α + τ−5 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.65 and, consequently, τF ≤ 1.65.
Subcase (iv). The maximum degree of a vertex in Γ(a) is 3 and for some vertex of maximum
degree in Γ(a), say b, Γ(a) contains at least 2 edges not incident to b.

Let c1d
′ and c2d

′′ be two edges in Γ(a) that are not incident to b. By Case 8(iii), we can as-
sume that d′ = d′′ = d for some vertex d. Clearly, the collectionA′ = {{a}, {ā, b, d}, {ā, b, d̄}, {ā, b̄}}
is complete. It follows that

A = {{a}, {ā, b, d}, {ā, b, d̄, c1, c2}, {ā, b̄, b1, b2, b3}}.

is complete, as well. We set ρ(F) = A.
We have

∆(F ,FA) ≥




1 if A = {a}
3 if A = {ā, b, d}
5 if A = {ā, b, d̄, c1, c2}, {ā, b̄, b1, b2, b3}.

The equation (4) specializes to
τ−1 + τ−3 + 2τ−5 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.65 and, consequently, τF ≤ 1.65.
Subcase (v). The maximum degree of a vertex in Γ(a) is 3 and for some vertex of maximum
degree in Γ(a), say b, Γ(a) has exactly one edge not incident to b.

Let cd be the edge in Γ(a) that is not incident to b. Clearly, A′ = {{a, b̄}, {a, b}, {ā, b}, {ā, b̄}}
is complete. Thus,

A = {{a, b̄}, {a, b, c̄, d̄}, {ā, b}, {ā, b̄, b1, b2, b3}}
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is complete (for instance, we have that every minimal transversal T satisfying {a, b} satisfies
{a, b, c̄, d̄} as otherwise, T − {a} would be a transversal, contrary to the minimality of T ). We
set ρ(F) = A.

The hypergraph F{ā,b} contains the 2-element edge cd, so k(F{ā,b}) ≥ 1. Thus,

∆(F ,FA) ≥





2 if A = {a, b̄}
4 if A = {a, b, c̄, d̄}
2 + α if A = {ā, b}
5 if A = {ā, b̄, b1, b2, b3}.

The equation (4) specializes to

τ−2 + τ−4 + τ−2−α + τ−5 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.6 and, consequently, τF ≤ 1.6.
Comment. From now on we can assume that for every vertex a, Γ(a) has maximum degree 1
or 2 (we do not need that assumption in Case 9 but all of the remaining cases in our argument
do require it).
Case 9. Γ(a) contains 4 independent edges.

Let c1d1, c2d2, c3d3, c4d4 be independent edges in Γ(a). We define

A = {{a}, {ā}}.

Clearly, A is complete and we set ρ(F) = A.
The hypergraph F{ā} contains four independent 2-element edges cidi, i = 1, 2, 3, 4, so

k(F{ā}) ≥ 4. Thus,

∆(F ,FA) ≥
{

1 if A = {a}
1 + 4α if A = {ā}.

The equation (4) specializes to
τ−1 + τ−1−4α = 1.

For α = 0.1950.. , we have τ ′F = 1.6701.. and, consequently, τF ≤ 1.6701.. . We note that
Case 9 is one of the two extremal cases that we used to determine the optimal value for α.
Case 10. The maximum degree of a vertex in Γ(a) is 2 and Γ(a) has at least 5 edges.
Subcase (i). There is a pair of nonadjacent vertices of degree 2 in Γ(a).

Let b and c be two nonadjacent vertices of degree 2 in Γ(a). We denote by b1 and b2 the
neighbors of b and by c1 and c2 the neighbors of c. We define

A = {{a}, {ā, b̄, b1, b2}, {ā, b, c}, {ā, b, c̄, c1, c2}}

Starting with A′ = {{a}, {ā, b̄}, {ā, b, c}, {ā, b, c̄}} and reasoning in a standard way, one can
show that A is complete. We set ρ(F) = A.

Since maximum degree of a vertex in Γ(a) is 2, there are in Γ(a) at most two edges other
that bb1 and bb2 which are incident to a vertex in {b, b1, b2}. Since Γ(a) has at least 5 edges,
there is an edge, say df , in Γ(a) whose endvertices are different from b, b1 and b2. Thus, the
hypergraph F{ā,b̄,b1,b2} contains the 2-element edge df and k(F{ā,b̄,b1,b2}) ≥ 1. Similarly, there
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is an edge, say gh, in Γ(a) whose endvertices are different from b and c. Hence, the hypergraph
F{ā,b,c} contains the 2-element edge gh, so k(F{ā,b,c}) ≥ 1. Thus,

∆(F ,FA) ≥





1 if A = {a}
4 + α if A = {ā, b̄, b1, b2}
3 + α if A = {ā, b, c}
5 if A = {ā, b, c̄, c1, c2}.

The equation (4) specializes to

τ−1 + τ−4−α + τ−3−α + τ−5 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
Subcase (ii). Vertices of degree 2 are pairwise adjacent in Γ(a).

If there are no vertices of degree 2 in Γ(a) then Γ(a) contains 4 independent edges and
Case 9 applies. Let b be a vertex of degree 2 in Γ(a) and let b1 and b2 be the neighbors of b.
We define

A = {{a}, {ā, b}, {ā, b̄, b1, b2}}}.
The family A is, clearly, complete. We set ρ(F) = A.

Let us assume that some two edges in Γ(a) that are not incident to b have a common vertex,
say c. Then, the degree of c in Γ(a) is 2 and none of the edges incident to c is incident to b.
This contradicts the assumption of this subcase. Thus, the hypergraph F{ā,b} contains three
pairwise disjoint 2-element edges and so k(F{ā,b}) ≥ 3. We have

∆(F ,FA) ≥




1 if A = {a}
2 + 3α if A = {ā, b}
4 if A = {ā, b̄, b1, b2}.

The equation (4) specializes to

τ−1 + τ−2−3α + τ−4 = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Case 11. The maximum degree of a vertex in Γ(a) is 2, Γ(a) has 4 edges and there is a pair
of nonadjacent vertices of degree 2 in Γ(a).

Let b and c be two nonadjacent vertices of degree 2 in Γ(a). We denote by b1 and b2 the
neighbors of b, and by c1 and c2 the neighbors of c. Clearly, the collection of conditions

A′ = {{a, b̄}, {a, b}, {ā, b̄}, {ā, b, c}, {ā, b, c̄}}
is complete. A standard reasoning shows that

A = {{a, b̄}, {a, b, c̄}, {ā, b̄, b1, b2}, {ā, b, c}, {ā, b, c̄, c1, c2}}
is complete too (for instance, every minimal transversal T satisfying {a, b} satisfies {a, b, c̄} for
otherwise T −{a} would be a transversal in F , contrary to the minimality of T ). We also note
that since b and c are nonadjacent in Γ(a), b, c, c1, c2 are pairwise different. Thus,

∆(F ,FA) ≥





2 if A = {a, b̄}
3 if A = {a, b, c̄}, {ā, b, c}
4 if A = {ā, b̄, b1, b2}
5 if A = {ā, c̄, b, c1, c2}.
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The equation (4) specializes to

τ−2 + 2τ−3 + τ−4 + τ−5 = 1.

We have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Case 12. The maximum degree of a vertex in Γ(a) is 2, Γ(a) has 4 edges and there is exactly
one vertex of degree 2 in Γ(a).

Let b be the vertex of degree 2 in Γ(a), let c and d be the neighbors of b in Γ(a) and let
f1f2, g1g2 be the two isolated edges in Γ(a). We define

A = {{a}, {ā, b}, {ā, b̄, c, d}}.

Clearly, the family A is complete and we set ρ(F) = A.
Both hypergraphs F{ā,b} and F{ā,b̄,c,d} contain two independent 2-element edges f1f2 and

g1g2. Thus, k(F{ā,b}), k(F{ā,b̄,c,d}) ≥ 2 and we have

∆(F ,FA) ≥




1 if A = {a}
2 + 2α if A = {ā, b}
4 + 2α if A = {ā, b̄, c, d}.

The equation (4) specializes to

τ−1 + τ−2−2α + τ−4−2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Case 13. The maximum degree of a vertex in Γ(a) is 2 and Γ(a) has 3 edges.

Let b be a vertex of degree 2 in Γ(a). We denote by b1 and b2 the neighbors of b. Let cc1 be
the edge in Γ(a) which is not incident to b. Clearly, the collection A′ = {{a, b̄}, {a, b}, {ā, b̄},
{ā, b, c}, {ā, b, c̄}} is complete. We define

A = {{a, b̄}, {a, b, c̄, c̄1}, {ā, b̄, b1, b2}, {ā, b, c}, {ā, b, c̄, c1}}

As in other cases, a standard reasoning shows that A is complete (for instance, every minimal
transversal T satisfying {a, b} satisfies {a, b, c̄, c̄1} for otherwise T −{a} would be a transversal,
contrary to the minimality of T ). We set ρ(F) = A. We also note that as the edge cc1 is not
incident to b, the vertices b, c and c1 are pairwise different. Thus,

∆(F ,FA) ≥




2 if A = {a, b̄}
3 if A = {ā, b, c}
4 if A = {a, b, c̄, c̄1}, {ā, b̄, b1, b2}, {ā, b, c̄, c1}.

The equation (4) specializes to
τ−2 + τ−3 + 3τ−4 = 1.

We have τ ′F ≤ 1.65 and, consequently, τF ≤ 1.65.
Case 14. The graph Γ(a) has two edges and they are independent.

Let b1b2 and c1c2 be the two edges in Γ(a). We define

A = {{a, b̄1, b̄2}, {a, c̄1, c̄2}, {ā}}.
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Let T be a minimal transversal in F . If a /∈ T , then T satisfies {ā}. Thus, let a ∈ T and let us
assume that T does not satisfy {a, b̄1, b̄2}. Then, T −{a} intersects the edge ab1b2. Since ab1b2

and ac1c2 are the only two edges in F that contain a and since T − {a} is not a transversal,
it follows that T − {a} does not intersect ac1c2. Thus, T satisfies {a, c̄1, c̄2}. It follows that A
is complete and we set ρ(F) = A.

The hypergraph F{ā} contains two independent 2-element edges b1b2 and c1c2. Conse-
quently, k(F{ā}) ≥ 2. Thus,

∆(F ,FA) ≥
{

3 if A = {a, b̄1, b̄2}, {a, c̄1, c̄2}
1 + 2α if A = {ā}.

The equation (4) specializes to
2τ−3 + τ−1−2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.61 and, consequently, τF ≤ 1.61.
Case 15. The graph Γ(a) has either one edge or two adjacent edges.

Let b be any vertex of Γ(a), if Γ(a) has one edge, or the vertex of degree 2, if Γ(a) has two
adjacent edges. We denote by c a neighbor of b in Γ(a). We define

A = {{ā}, {a, b̄}}.
Every minimal transversal T satisfying {a} satisfies {a, b̄} for otherwise T − {a} would be a
transversal too, contrary to the minimality of T . Hence, the family A is complete.

Thus,

∆(F ,FA) ≥
{

1 if A = {ā}
2 if A = {a, b̄}.

The equation (4) specializes to
τ−1 + τ−2 = 1.

We have τ ′F ≤ 1.62 and, consequently, τF ≤ 1.62.
Comment. It is easy to check that the only possibilities not covered by Cases 7 - 15 are when
Γ(a) is one of the following three graphs: the graph whose components are a triangle and a
single edge (denoted by C3 ∪ P1), the graph whose components are a 3-edge path and a single
edge (denoted by P3 ∪ P1), and the graph whose components are three single edges (denoted
by 3P1).
Case 16. For every vertex a occurring in F , Γ(a) is isomorphic to P3 ∪ P1, C3 ∪ P1 or 3P1.
Subcase (i). There is a vertex a such that Γ(a) is isomorphic to P3 ∪ P1.

Let d, b, c and e be the consecutive vertices of the path P3 in Γ(a), and let f and g be the
vertices of the isolated edge in Γ(a).

Clearly, the graph Γ(b) contains the edges ad and ac. Thus, it is not isomorphic to 3P1.
Let us suppose that Γ(b) is isomorphic to C3 ∪P1. Then, cd is an edge of Γ(b) or, equivalently,
F contains the edge bcd. Consequently, the graph Γ(d) contains the edges ab and bc. Since a
belongs to the following four edges in F only: abd , abc, ace and afg , no edge of the form ah,
where h 6= b, is an edge of Γ(d). It follows that Γ(d) is isomorphic to P3 ∪ P1 and that there
is an edge ch in Γ(d), for some h 6= a, b. Consequently, F contains the following edges: cdh,
where h 6= a, b, ace, abc and bcd. These edges induce the edges ae, ab, bd and dh in Γ(c). Since
a, b, e, d and h are pairwise different, except for possibly e = h, Γ(c) is isomorphic to either
P4 or C4, a contradiction with the assumption of Case 16.
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It follows that Γ(b) is isomorphic to P3∪P1. Clearly, da and ac are edges of Γ(b). Let b1b2,
b3b4 be the remaining two edges of Γ(b). Obviously, the edges b1b2 and b3b4 are independent
and b1, b2, b3, b4 6= a.

By symmetry, Γ(c) is isomorphic to P3 ∪ P1, too. Since it contains the edges ab and ae, it
also contains an edge, say e1e2, with endvertices different form a, b and e.

Clearly, the collection A′ = {{a, b, c}, {a, b, c̄}, {a, b̄}, {ā, b}, {ā, b̄}} is complete. We define

A = {{a, b, c, f̄ , ḡ}, {a, b, c̄}, {a, b̄}, {ā, b}, {ā, b̄, c, d}}.
A standard argument shows that A is complete, as well (for instance, every minimal transver-
sal T satisfying {a, b, c} satisfies {a, b, c, f̄ , ḡ} as otherwise T − {a} would be a transversal,
contradiction with minimality of T ). Hence, the family A is complete and we define ρ(F) = A.

The hypergraph F{a,b,c̄} contains the 2-element edge e1e2. Thus, k(F{a,b,c̄}) ≥ 1. The
hypergraph F{a,b̄} contains two independent 2-element edges b1b2 and b3b4 and so k(F{a,b̄}) ≥ 2.
The hypergraph F{ā,b} contains two independent 2-element edges ce and fg , so k(F{ā,b}) ≥ 2.
Finally, the hypergraph F{ā,b̄,c,d} contains the 2-element edge fg , so k(F{ā,b̄,c,d}) ≥ 1. It follows
that

∆(F ,FA) ≥





5 if A = {a, b, c, f̄ , ḡ}
3 + α if A = {a, b, c̄}
2 + 2α if A = {a, b̄}, {ā, b}
4 + α if A = {ā, b̄, c, d}.

The equation (4) specializes to

τ−5 + τ−3−α + 2τ−2−2α + τ−4−α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
Subcase (ii). There is a vertex a = a1 such that Γ(a1) is isomorphic to C3 ∪ P1 and for no
vertex x, Γ(x) is isomorphic to P3 ∪ P1.

Let a2, a3 and a4 be the vertices of degree 2 in Γ(a1) and let b1 and c1 be the vertices of
degree 1. Clearly, b1, c1 6∈ {a1, a2, a3, a4}. Since the graph Γ(a2) has a vertex of degree 2 (the
edges a1a3 and a1a4 belong to Γ(a2)), the graph Γ(a2) is isomorphic to C3∪P1 and a3a4 is one of
its edges, that is, a2a3a4 is an edge in F . Similarly, Γ(a3) and Γ(a4) are isomorphic to C3∪P1.
For i = 2, 3, 4, let bi and ci be the vertices of degree 1 in Γ(ai). Clearly, bi, ci 6∈ {a1, a2, a3, a4},
for i = 2, 3, 4.

If, for some i 6= j, {bi, ci} = {bj , cj}, say bi = bj and ci = cj , then pairs ajci, ciai are edges
in Γ(bi) and the degree of ci in Γ(bi) is 2. Hence, Γ(bi) is isomorphic to C3 ∪ P1 and aiaj is
an edge in Γ(bi), a contradiction (we note that biaiaj is not a edge in F and so, biaj is not an
edge in Γ(ai)).

Thus, {b1, c1}, {b2, c2}, {b3, c3}, {b4, c4} are pairwise different. If each pair of the sets
{bi, ci}, i = 1, 2, 3, 4, has a common vertex, then there is a vertex, say b1, which belongs to
all four sets. It follows that aib1ci, i = 1, 2, 3, 4, are edges in F . Thus, Γ(b1) contains four
different edges aici, i = 1, 2, 3, 4 and so, it is isomorphic to C3 ∪ P1. Since a1, a2, a3 and a4

are pairwise different and ci 6∈ {a1, a2, a3, a4}, for i = 1, 2, 3, 4, we get c1 = c2 = c3 = c4 (Γ(b1)
has 5 vertices as it is isomorphic to C3 ∪ P1). It follows that Γ(b1) has a vertex of degree 4, a
contradiction.

Thus, some two of the sets {bi, ci}, i = 1, 2, 3, 4, are disjoint. Without loss of generality,
{b1, c1} and {b2, c2} are disjoint. Clearly, it follows that b1, c1, b2 and c2 are pairwise different.
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We define
A = {{a1}, {ā1, a2}, {ā1, ā2, a3, a4}}.

Since A′ = {{a1}, {ā1, a2}, {ā1, ā2}} is complete and every transversal satisfying {ā1, ā2} sat-
isfies {ā1, ā2, a3, a4} (it intersects the edges a1a2a3 and a1a2a4), the family A is complete. We
set ρ(F) = A.

The hypergraph F{ā1,a2} contains two independent 2-element edges a3a4 (obtained from the
3-element edge a1a3a4 in F) and b1c1 (obtained from the 3-element edge a1b1c1 in F). Hence
k(F{ā1,a2}) ≥ 2. The hypergraph F{ā1,ā2,a3,a4} also contains two disjoint 2-element edges: b1c1

(obtained from the 3-element edge a1b1c1 in F) and b2c2 (obtained from the 3-element edge
a2b2c2 in F). Hence k(F{ā1,ā2,a3,a4}) ≥ 2. Thus,

∆(F ,FA) ≥




1 if A = {a1}
2 + 2α if A = {ā1, a2}
4 + 2α if A = {ā1, ā2, a3, a4}.

The equation (4) specializes to

τ−1 + τ−2−2α + τ−4−2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.67 and, consequently, τF ≤ 1.67.
Subcase (iii). For every vertex a in F the graph Γ(a) is isomorphic to 3P1.

Let b1c1, b2c2 and b3c3 be the edges of Γ(a). We define

A = {{ā}, {a, b̄1, c̄1}, {a, b̄2, c̄2}, {a, b̄3, c̄3}}.

It is a complete collection of conditions. Indeed, if T is a minimal transversal such that a ∈ T
and, for each i = 1, 2, 3, bi ∈ T or ci ∈ T , then T −{a} is a transversal, as well, a contradiction.

The hypergraph F{ā} contains three pairwise disjoint 2-element edges b1c1, b2c2 and b3c3.
Hence k(F{ā}) ≥ 3. Since, for every i = 1, 2, 3, Γ(bi) consists of 3 independent edges one of
which is aci, the hypergraph F{a,b̄i,c̄i} contains two independent 2-element edges whose vertices
are different from a and ci. Hence, k(F{a,b̄i,c̄i}) ≥ 2. It follows that

∆(F ,FA) ≥
{

1 + 3α if A = {ā}
3 + 2α if A = {a, b̄i, c̄i}, i = 1, 2, 3.

The equation (4) specializes to
τ−1−3α + 3τ−3−2α = 1.

For α = 0.1950.. , we have τ ′F ≤ 1.66 and, consequently, τF ≤ 1.66.
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