Computing minimal models, stable models and
answer sets

Zbigniew Lonc! and Mirostaw Truszczytiski?

! Faculty of Mathematics and Information Science, Warsaw University of Technology,
00-661 Warsaw, Poland
2 Department of Computer Science, University of Kentucky, Lexington,
KY 40506-0046, USA

Abstract. We propose and study algorithms for computing minimal
models, stable models and answer sets of 2- and 3-CNF theories, and
normal and disjunctive 2- and 3-programs. We are especially interested
in algorithms with non-trivial worst-case performance bounds. We show
that one can find all minimal models of 2-CNF theories and all an-
swer sets of disjunctive 2-programs in time O(ml1.4422..), generaliz-
ing a similar result we obtained earlier for computing stable models of
normal 2-programs (n is the number of atoms in an input theory or
program and m is its size). Our main results concern computing stable
models of normal 3-programs, minimal models of 3-CNF theories and
answer sets of disjunctive 3-programs. We design algorithms that run
in time O(m1.6701.."), in the case of the first problem, and in time
O(mn?2.2720..™), in the case of the latter two. All these bounds improve
by exponential factors the best algorithms known previously. We also
obtain closely related upper bounds on the number of minimal models,
stable models and answer sets a 2- or 3-theory or program may have.

1 Introduction

Our goal in this paper is to propose and study algorithms for computing minimal
models of CNF theories, stable models of normal logic programs and answer sets
of disjunctive logic programs. We are especially interested in algorithms for which
we can derive non-trivial worst-case performance bounds. Our work builds on
studies of algorithms to compute models of propositional CNF theories [Kul99)
and improves on our earlier study of algorithms to compute stable models [LT03].

Propositional logic with the minimal-model semantics (propositional circum-
scription) [McC80,Lif88], logic programming with stable-model semantics [GL88]
and disjunctive logic programming with the answer-set semantics [GL91] are
among most commonly studied and broadly used knowledge representation for-
malisms (we refer the reader to [MT93,BDK97] for a detailed treatment of these
logics and additional pointers to literature). Recently, they have been receiving
much attention due to their applications in answer-set programming (ASP) — an
emerging declarative programming paradigm. To solve a problem in ASP, pro-
grammers write a logic theory or a logic program so that minimal models, stable

models and answer sets of the theory or program, respectively, are in one-to-
one correspondence to problem solutions [MT99,Nie99,Bar03]. Fast algorithms
to compute minimal models, stable models and answer sets are essential for the
computational effectiveness of propositional circumscription, logic programming
and disjunctive logic programming as answer-set programming systems.

These computational tasks can be solved by a “brute-force” straightforward
search. We will now briefly describe this approach. Here and throughout the
paper, by At(T) or At(P) we denote the set of atoms occurring in a theory 7'
or a program P. We represent models of propositional theories, stable models of
normal logic programs and answer sets of disjunctive logic programs as sets of
atoms that are true in these models and answer sets. Finally, we use n to denote
the number of atoms of an input theory or program, and m to denote its size,
that is, the total number of atom occurrences in the theory or program.

We can compute all minimal models of a CNF theory T in time O(m3").
Indeed, to check whether a set M C A¢(T) is a minimal model of 7', it is enough
to verify that M is a model of T' and that none of its subsets is. Each such test
can be accomplished in O(m) steps. Thus, if |M| = i, we can verify whether
M is a minimal model of 7' in time O(m2¢). Checking all sets of cardinality i
requires O((})m2") steps and checking all sets — O(}_1 (7)m2") = O(m3™).

Next, we note that to determine whether a set of atoms M is an answer
set of a disjunctive logic program P we need to verify whether M is a minimal
model of the reduct of P with respect to M [GL91] or, equivalently, whether M
is a minimal model of the propositional theory that corresponds to the reduct.
Thus, a similar argument as before demonstrates that also answer sets of a finite
propositional disjunctive logic program P can be computed in time O(m3").

In the case of stable models we can do better. The task of verifying whether
a set of atoms M is a stable model of a finite propositional logic program P can
be accomplished in time O(m). Consequently, one can compute all stable models
of P, using an exhaustive search through all subsets of At(P), in O(m2™) steps.

We refer to these straightforward algorithms and to the corresponding worst-
case performance bounds of O(m3™) and O(m2") as trivial. A fundamental ques-
tion, and the main topic of interest in this paper, is whether there are algorithms
for the three computational problems discussed here with better worst-case per-
formance bounds.

We note that researchers proposed several algorithms to compute minimal
models of propositional CNF theories [BEP94,Nie96], stable models of logic pro-
grams [SNS02] and answer sets of disjunctive logic programs [EFLP00]. Some
implementations based on these algorithms, for instance, smodels [SNS02] and
dlv [EFLP00] perform very well in practice. However, so far very little is known
about the worst-case performance of these implementations.

In this paper, we study the three computational problems discussed earlier.
We focus our considerations on t-CNF theories and t-programs, that is, theo-
ries and programs, respectively, consisting of clauses containing no more than
t literals. Despite restricted syntax, t-CNF theories and t-programs are of sig-
nificant interest and appear frequently as encodings of problems in planning,

model checking, computer-aided verification, circuit design and combinatorics.
To encode a problem by means of a propositional (disjunctive) logic program
we often proceed in a two-step process. We first develop an encoding of this
problem as a program in the syntax of (disjunctive) DATALOG with nega-
tion [MT99,Nie99,EFLPO00]. In the next step, we ground this program and ob-
tain its propositional counterpart also representing the problem in question. It
is clear that programs obtained by grounding finite (disjunctive) DATALOG-
with-negation programs are t-programs, for some fixed and usually small ¢ that
depends only on the problem specification and not on a particular problem
instance. In fact, in most cases programs obtained by grounding and some sub-
sequent straightforward simplifications become (disjunctive) 2- or 3-programs.

In our earlier work, we studied the problem of computing stable models of
normal t-programs [LT03]. We presented an algorithm to compute all stable
models of a normal 2-program in time O(m3"/3) = O(m1.4422..") and showed
its asymptotic optimality. We proposed a similar algorithm for the class of normal
3-programs and proved that its running time is O(m1.7071..").

In this paper, we improve on our results from [LT03] and extend them to
the problems of computing minimal models of CNF theories and answer sets of
disjunctive logic programs. Since 2- and 3-CNF theories and 2- and 3-programs
appear frequently in applications and since our results are strongest in the case of
these two classes, we limit our discussion here to 2- and 3-theories and programs
only.

Our results are as follows. We show that one can find all minimal mod-
els of 2-CNF theories and all answer sets of disjunctive 2-programs in time
0(m1.4422.."), generalizing a similar result we obtained earlier for computing
stable models of normal 2-programs. Our main results concern computing stable
models of normal 3-programs, minimal models of 3-CNF theories and answer sets
of disjunctive 3-programs. We design algorithms that run in time O(m1.6701.."),
in the case of the first problem, and in time O(mn?2.2720.."), in the case of the
latter two. These bounds improve by exponential factors the best algorithms
known previously. We also obtain closely related upper bounds on the number
of minimal models, stable models and answer sets a 2- or 3-theory or program
may have.

2 Lower bounds

In this section, we present lower bounds on the running time of algorithms
for computing all minimal models, stable models or answer sets. We obtain
them by constructing theories and programs for which the total size of output is
large, and use this quantity to derive a lower bound on the exponential factor in

our running-time estimates. Due to space limitations, we present here only the
. . . o—1\1/2t—1
results, leaving out details of the constructions. Let us define p; = (Ztt 1) /2 .

We have the following theorem and its straightforward corollary.

Theorem 1. Let t be an integer, t > 2. There are positive constants dy, D; and
D; such that for every n > 2t—1 there is a t-CNF theory T (normal t-program
P and disjunctive t-program P, respectively) with n atoms and such that

1. The size m of T (P, respectively) satisfies m < din

2. The number of minimal models of T' (stable models of P or answer sets of
P, respectively) is at least Dyt and the sum of their cardinalities is at least
Dinp}.

Corollary 1. Let t be an integer, t > 2.

1. Every algorithm computing all minimal models of t-CNF theories (stable
models of normal t-programs, answer sets of disjunctive t-programs, respec-
tively) requires in the worst case at least 2(nuy) steps

2. Let 0 < a < pg. There is no polynomial f and no algorithm for computing
all minimal models of t-CNF theories (stable models of normal t-programs,

answer sets of disjunctive t-programs, respectively) with worst-case perfor-
mance of O(f(m)a™).

For ¢ = 2 and 3, the lower bound given by Corollary 1 specializes to £2(n1.4422..")
and 2(n1.5848..™), respectively.

3 Main results

We will now present and discuss main results of our paper. Even when we do
not mention explicitly an input theory or program, we follow our convention and
write n for its number of atoms and m for its size.

We start by stating two theorems that deal with minimal models of 2-CNF
theories and answer sets of disjunctive 2-programs. They extend the results we
obtained in [LTO03] for the case of stable models of normal 2-programs.

Theorem 2. There are algorithms to compute all minimal models of 2-CNF
theories, stable models of normal 2-programs and answer sets of disjunctive 2-
programs, respectively, that run in time O(m3"/3) = O(m1.4422..").

Theorem 3. Every 2-CNF theory (every normal 2-program and every disjunc-
tive 2-program, respectively) has at most 3n/3 = 1.4422..™ minimal models (stable
models, answer-sets, respectively).

It follows from Theorem 1 and Corollary 1 that these results are asymptoti-
cally optimal.

Next, we present results concerning the case of 3-CNF theories and normal
and disjunctive 3-programs. These results constitute the main contribution of
our paper. First, we derive upper estimates on the number of minimal models,
stable models and answer sets. In fact, we obtain the same upper bound in all
three cases. It improves the bound on the number of stable models of normal
3-programs, which we derived in [LT03]. In the same time, it is the first non-
trivial bound on the number of minimal models of 3-CNF theories and answer
sets of disjunctive programs.

Theorem 4. Every 3-CNF theory T' (every normal 3-program P and every dis-
Junctive 3-program P, respectively) has at most 1.6701.." minimal models (stable
models, answer-sets, respectively).

For 2-CNF theories and 2-programs, the common bound on the number of
minimal models, stable models and answer sets, appeared also as an exponential
factor in formulas estimating the running time of algorithms to compute the
corresponding objects. In contrast, we find that there is a difference in how fast
we can compute stable models of normal 3-programs as opposed to minimal
models of 3-CNF theories and answer sets of disjunctive 3-programs. The reason
is that the problem to check whether a set of atoms is a stable model of a
normal program is in P, while the problems of deciding whether a set of atoms
is a minimal model of a 3-CNF theory or an answer set of a disjunctive 3-
program are co-NP complete [CL94,EG95]. Our next result concerns computing
stable models of normal 3-programs. It gives an exponential improvement on the
corresponding result from [LT03].

Theorem 5. There is an algorithm to compute stable models of normal 3-
programs that runs in time O(m1.6701..").

Since checking whether a set of atoms is a minimal model of a 3-CNF theory
or an answer set of a disjunctive 3-program is NP-hard, our results concerning
computing minimal models and answer sets are weaker. Nevertheless, in each case
they provide an exponential improvement over the trivial bound of O(m3").

Theorem 6. There is an algorithm to compute minimal models of 3-CNF the-
ories and answer sets of disjunctive 3-programs, respectively, that runs in time
O(mn?2.2720..7).

4 Outlines of algorithms and proofs

Due to space limitations, we will not discuss here proofs of Theorems 2 and
3. We only mention that one can prove these results by modifying arguments
we developed in [LTO03] for the case of stable models of normal 2-programs. We
will however sketch proofs of Theorems 4, 5 and 6, as they require several new
techniques.

Let T be a CNF theory. By Lit(T') we denote the set of all literals built of
atoms in A¢(T'). For a set of literals L C Lit(T), we define:

Lt ={a€ At(T):a€ L} and L™ ={a € At(T): ~a € L}.

We also define Ly = LT U L. A set of literals L is consistent if Lt N L™ = .
A set of atoms M C At(T) is consistent with a set of literals L C Lit(T), if
LTCMand L-NM =0.

Let T be a CNF theory and let L C Lit(T) be a set of literals. By T, we
denote the theory obtained from 7" by removing:

mint (T, S, L)

% T and S are CNF theories, L is a set of literals

% T, S and L satisfy the preconditions: L C Lit(T'), and S = T
) if S does not contain an empty clause then
) if S=0 then

) M := L*; output(M)
) else

) A = complete(S);
) for every A € A do
) SA = Su;

) min™ (T, SA,L U A)
)

end of min™.

Fig. 1. Algorithm min™

1. every clause ¢ that contains a literal ¢ € L (intuitively, eliminate every clause
that is subsumed by a literal in L)

2. all occurrences of literals built of atoms in Ly that remain after performing
step (1) (intuitively, resolve the remaining clauses with literals in L).

We note that it may happen that 77, contains empty clauses (is contradictory) or
is empty (is a tautology). The theory T}, has the following important property.

Proposition 1. Let T be a CNF theory and let L C Lit(T). If X C At(T) is a
minimal model of T' consistent with L, then X \ LT is a minimal model of T .

We will now describe an algorithm min™, from which we will subsequently
derive algorithms for all three computational tasks that we study here. The input
parameters of min™ are: CNF theories T and S, and a set of literals L. We will
require that L C Li¢(T') and S = Tr,. We will refer to these two conditions as the
preconditions for min™. The output of the algorithm min™ (T, S, L) is a family
M (T) of sets containing all minimal models of T that are consistent with L.
The input parameter S is determined by the two other parameters 7" and L
(through the preconditions on 7', S and L). We choose to specify it explicitly as
that simplifies the description and the analysis of the algorithm.

A key concept that we need is that of a complete collection. Let T be a CNF
theory. A non-empty collection A of non-empty subsets of Lit(T) is complete for
T if every minimal model of T is consistent with at least one set A € A. The
collection A = {{a},{—a}}, where a is an atom of T, is a simple example of a
complete collection for T'.

In the description of the algorithm min™ given in Figure 1, we assume that
complete is a procedure computing, for an input CNF theory T', a complete
collection of sets of literals.

We note that the algorithm min™ (T, S, L) is well defined as the recursive
calls min™ (T, SA, L U A) (line (7)) are legal. Indeed, since Ly N A9 = () and

S =T, SA=S4 = (Tr)a = Trua- Moreover, LU A C Lit(T). Thus, T, SA
+

and L U A satisfy the preconditions for the algorithm min™.
Proposition 2. Let T be a CNF theory and let L C Lit(T) be a set of literals. If
X is a minimal model of T consistent with L, then X is among the sets returned
by min™ (T, Ty, L).

Proof: We prove the assertion, proceeding by induction on |At(TL)|. Let us
assume that |At(Tr)| = 0 and that X is a minimal model of T'. By Proposition
1, X'\ LT is a minimal model of T,. In particular, T}, contains no empty clause.
Since |At(TL)| =0, Tt = 0. Consequently, X \ LT =@ (as X \ L™ is a minimal
model of T7). It follows that, X C LT. Furthermore, since X is consistent with
L, LT C X. Thus, X = L. Finally, since T, is empty, the program enters line
(2) and outputs X since, as we already showed, X = L*.

For the inductive step, let us assume that |A¢(Tr)| > 0 and that X is a
minimal model of T' consistent with L. By Proposition 1, X \ LT is a minimal
model of T,. Since A, computed in line (4), is a complete collection for 77, there
is A € A such that X \ L is consistent with A. Clearly, LoN Ay = 0. Thus, X is
consistent with L U A. By the induction hypothesis, the call min™ (T, SA, LU A)
(within loop (5)) returns the set X (as we observed earlier, the parameters T,
SA and L U A satisfy the preconditions for the algorithm min™). |

Corollary 2. Let T be a CNF theory. The family Mg(T) of sets that are re-
turned by mint (T, T,0) contains all minimal models of T'.

Typically, algorithms for computing stable models and answer sets of logic
programs, and minimal models of CNF theories search over a binary tree: at each
branch point they select a variable and consider for it both truth assignments.
The search tree traversed by our algorithm is not necessarily binary. At each
branch point, the search splits into as many different paths as there are elements
in the complete family returned by the procedure complete. While algorithms
searching over binary trees can be derived from our template by designing the
procedure complete to return collections consisting of at most two sets, the class
of algorithms specified by our template is broader.

We will now study the performance of the algorithm min™. First, for a CNF
theory S we define a tree Tg inductively as follows. If S contains an empty clause
or if S is empty, Tg consists of a single node labeled with S. Otherwise, let A
be a complete family computed by the procedure complete(S). To construct tree
Ts, we create a node and label it with S. Next, we connect this node to roots of
the trees Tg,, where A € A. Since the theories S4 have fewer atoms than S, the
definition is well founded. We denote the set of leaves of the tree Ts by L(7s).

One can show that for every CNF theory T and for every set of literals L C
Lit(T), the tree Tg, where S = T, is precisely the tree of recursive calls to the
procedure mint made by the top-level call min™ (T, S, L). In particular, the tree
Tr describes the exectution of the call min™ (T, T,). Since only those recursive
calls that correspond to leaves of 7y produce output, Corollary 2 implies the
following result.

Proposition 3. Let T be a CNF theory. The number of minimal models of T
is at most |L(TT)|.

We use the tree Tr to estimate not only the number of minimal models of a
CNF theory T" but also the running time of the algorithm min™. We say that
an implementation of the procedure complete is splitting if for every theory T,
such that |A¢(T)| > 2, it returns a complete family with at least two elements.
We can show the following result.

Theorem 7. Let us assume that there is a splitting implementation of the al-
gorithm complete that runs in time O(t(m)), where t is an integer function such
that t(m) = 2(m). Then, for every CNF theory T, the algorithm min™ runs in
O(|L(T7)|t(m)) steps in the worst case.

The specific bounds on |L(77)| and hence, on the number of minimal models
of a CNF theory T and on the running time of the algorithm min™* depend on
the procedure complete. For 3-CNF theories we have the following results.

Theorem 8. There is a splitting implementation of the procedure complete such
that t(m) = O(m) and for every 3-CNF theory T, |L(Tr)| < 1.6701..™.

Corollary 3. There is an implementation of the algorithm min™ that, for 3-
CNF theories, runs in time O(m1.6701..7).

Corollary 3 is a direct consequence of Theorems 7 and 8. The proof of Theo-
rem 7 is routine and we omit it. We will outline a proof of Theorem 8 in Section
5. In the remainder of this section, we will show that Theorem 8 and Corol-
lary 3 imply our main results concerning minimal models of 3-CNF theories,
stable models of normal 3-programs and answer sets of disjunctive 3-programs
(Theorems 4, 5 and 6).

We start with the problem of computing minimal models of a CNF theory
T. Let us assume that we have an algorithm test_min which, for a given CNF
theory T and a set of atoms M C At(T) returns the boolean value true if M is
a minimal model of 7', and returns false, otherwise.

We now modify the algorithm min* by replacing each occurrence of the
command output(M) (line (2)), which outputs a set M, with the command

if test_min(T, M) then output(M).

We denote the resulting algorithm by min_mod (we assume the same precondi-
tions on min_mod as in the case of min™). Since all minimal models of T' that
are consistent with L belong to M} (T) (the output of min™* (T, S, L)), it is clear
that the algorithm min_mod(T, S, L) returns all minimal models of T'.
Computation of stable models and answer sets of logic programs follows a
similar pattern. First, let us recall that we can associate with a disjunctive logic
program P (therefore, also with every normal logic program P) its propositional
counterpart, a CNF theory T'(P) consisting of clauses of P but interpreted in

propositional logic and rewritten into CNF. Specifically, to obtain T'(P) we re-
place each disjunctive program clause

aV...Ve¢ ¢ ai,...,ar,not(b),... ,not(b)
in P with a CNF clause
a1 V...V2a, Vb V...VbsVeci V... V.

It is well known that stable models (answer sets) of (disjunctive) logic program
P are minimal models of T'(P) [MT93].

Let us assume that test_stb(P, M) and test_anset(P, M) are algorithms to
check whether a set of atoms M is a stable model and an answer set, respectively,
of a program P.

To compute stable models of a logic program P that are consistent with a set
of literals L, we first compute the CNF theory T'(P). Next, we run on the triple
T(P), T(P)L, and L, the algorithm min™ modified similarly as before (we note
that the triple (T'(P),T(P)r, L) satisfies its preconditions). Namely, we replace
the command output(M) (line (2)), which outputs a set M, with the command

if test_stb(P, M) then output(M).

The effect of the change is that we output only those sets in M} (T'(P)), which
are stable models of P. Since every stable model of P is a minimal model of
T(P), it is also an element of M} (T(P)). Thus, this modified algorithm, we will
refer to it as stb_mod, indeed outputs all stable models of P and nothing more.

To design an algorithm to compute answer sets, we will refer to it as ans_set,
we proceed in the same way. The only difference is that we use the algorithm
test_anset in place of test_stb to decide whether to output a set.

Let t; be an integer function such that the worst-case running time of the
algorithm min™ is O(t;(n,m)). Similarly, Let ¢5 be an integer function such that
the worst-case running time of the algorithm test_min (test_stb or test_anset,
depending on the problem) is O(t2(n,m)). The following observation is evident.

Proposition 4. The running time of the algorithms min_mod, stb_mod and
ans_set (in the worst case) is O(t1(n,m) + vt2(n,m)), where v = |L(TT)| or
|L(Tr(p))|, depending on the problem.

Proofs of Theorems 4 and 5. As we noted, stable models of a normal program
P are minimal models of a CNF theory T'(P). The same is true for answer sets
of a disjunctive logic program P. Thus, Theorem 4 follows from Proposition 3
and Theorem 8. It is well known that one can check in time O(m) whether a
set of atoms M C At(P) is a stable model of a normal logic program P. Thus,
Theorem 5 follows from Proposition 4, Theorem 8 and Corollary 3. a

We will now prove Theorem 6. We focus on the case of minimal models of 3-
CNF theories. The argument in the case of answer sets of disjunctive 3-programs
is similar. We start with a simple result on testing minimality.

Proposition 5. Let p be an integer function and t an integer such that t > 2.
If there is an algorithm that decides in time O(p(n,m)) whether a t-CNF theory
T is satisfiable, then there is an algorithm that decides in time O(|M|p(|M|, m+
1) + m) whether a set M C At(T) of atoms is a minimal model of a t-CNF
theory T'.

Proof: Let M = {ay,...,ar}. We define L = {—z: z € At(T) \ M} and observe
that M is a minimal model of T" if and only if M is a model of 7" and none of
t-CNF theories Tt U {—a;}, i =1,... ,k, is satisfiable. m|

There is an algorithm to decide satisfiability of 3-CNF theories that runs in
time O(m1.4756..") [Rod96]. Thus, by Proposition 5, there is an an algorithm
to decide whether a set M C At(T) is a minimal model of a 3-CNF theory T
that runs in time O(|M|m1.4756../Ml). We denote this algorithm test_min.
Proof of Theorem 6. Let 8 be a real number such that 0.6 < 8 < 1 (we will
specify 3 later). To estimate the running time of the algorithm min™, we split
M (T) into two parts:

My ={M e M} (T): |M| > Bn} and My = {M € M} (T): |M| < Bn}.

Clearly, the total time %,,;, needed to execute all calls to test_min throughout
the execution of min™ is:

tmin = 9 m|M|(1.4756.) M1+ 3 m|M]|(1.4756..)M.
MeM; MeM,

We have

3" m|M|(1.4756.) M = S m<?)i(1.4756..)i

MeM;, i>0n

< ﬂmn2< > (1.4756..) 1871

n
[Bn]
This last inequality follows from that fact that for every i, i > 0.6n,

m<7;>¢(1.4756..)i > m<i Z 1) (i + 1)(1.4756..) "+,

and from the observation that the number of terms in the sum is less than n.
To estimate the second term, we note that |Ms| < |[M] (T)| and, for every
M € Ms, |[M| < fn. Thus,

> m|M|(1.4756.) M| < (Bmn)(1.6701..)"(1.4756..)°".
MeM-

Let us choose g so that 1.6701.." = ([6nn1)' For this 3, we obtain that t,,;, =

O(mn?(1.6701..(1.4756..)%)™). One can verify that 3 = 0.7907.. . It follows that
the complexity of our algorithm is O(mn?2.2720.."), which completes the proof
of Theorem 6. O

5 Algorithm complete and a proof of Theorem 8

In this section we outline main ideas behind the proof of Theorem 8. They are
concerned with the design of the procedure complete. In our approach, we are
guided by a method to estimate the number of leaves in a search tree proposed
in [Kul99]. We outline here this method adapted to our needs.

Let 7 be a rooted tree and let, as before, L(7) be the set of leaves in 7.
For a node z in 7, we denote by C(z) the set of directed edges that link = with
its children. For a leaf w of T, we denote by P(w) the set of directed edges on
the unique path from the root of 7 to the leaf w. The following observation was
shown in [Kul99].

Proposition 6. [Kul99] Let p be a function assigning positive real numbers to
edges of a rooted tree T such that for every internal node x in T, ZeEC(z) ple) =

1. Then, |L(T)| < maxweL(T)(Heep(w)p(e))_l.

To estimate the number of leaves in our search tree 77, we associate with
every 3-CNF theory T a certain measure p of its complexity, which approximates
the number of leaves in the tree Tr. We define u(T') = n(T') — ac(T'), where
n(T) = |At(T)|, ¢(T') is the maximum number of 2-clauses in 7' with pairwise
disjoint sets of atoms, and « is a constant such that 0 < a < 1 (we will specify
« later). Clearly, for every 3-CNF theory T, u(T") > 0.

This definition reflects the following intuition. The number of leaves in the
tree T grows when the number of atoms in 7' grows. On the other hand, if T
has a large number of 2-clauses, the number of leaves in 77 is usually smaller
than in the case when T' has few 2-clauses (and the same number of atoms).

For a directed edge e = (7", T") in the tree T (we recall that vertices of Tp
are CNF theories), we define A(e) = u(T") — u(T") and make an assumption
(which we will verify later) that A(e) > 0. Clearly, for every leaf W € L(Tr),

S Afe) = ulT) - u(W) < u(T) < n(T). 1

ecP(W)

Next, for every internal node S of the tree Tp, by 75 we denote the unique
positive real number satisfying the equation

o a0 =1 (2)

ecC(S)

and we define 7y to be the largest of these roots. One can verify that for each
internal node S, 7¢ > 1. Thus, 79 > 1, too.

Finally, for every edge e = (S,5') in the tree 77, we define p(e) = TgA(e).
Since A(e) >0, p(e)~! = TA(S) <A,

Let W € L(Tr). We now have (the last inequality in the chain follows by (1))

H ple) < H A(e) eep(W)A(e) ST(;L(T).

ecP(W) eeEP(W)

By the definition, the function p satisfies the assumptions of Proposition 6.
Thus (we recall that by our convention, n(T) = n),

IL(T2)] < 73 (3)

When designing the procedure complete, our goal is then to make sure that
the value 79 be as small as possible. To this end, we consider several cases that
reflect different structural properties of a 3-CNF theory S. In each of the cases
we compute the numbers A(e), where e = (S,54) and A is an element of the
complete family produced by running the procedure complete on input S. Next
we find the positive root 7g of the equation (2).

To get the best upper bound for the number |L(T)| of leaves in Ty (see
inequality (3)), we choose the value of a so that the maximum of the solutions
of the equation (2) over all cases considered in the definition of the procedure
complete is as small as possible. This optimal value turns out to be a = 0.1950.. .
Moreover, for this choice of @ we can also show that for each edge e = (S, Sa)
in the tree 7y, A(e) > 0 thus, verifying an earlier assumption.

Since there are many cases in our definition of the procedure complete, we do
not have space to give a full description of it. Instead we consider here in detail
the two cases which actually determine the optimal value of «.

Case 1. We assume that the theory S has no 2-clauses and there are four
clauses in S of the form aV B; V v, ¢t = 1,2,3,4, where a is an atom and
B,y Ba,71, .-+ ,7va are literals with pairwise distinct atoms different from a.

In this case the procedure complete outputs the family A = {{a}, {—a}}. The
set of atoms of both Si,) and S,y are At(S) — {a} so n(Sg.y) = n(S{-a}) =
n(S) — 1. We also observe that, ¢(S) = 0 and that by the definition of S;-}, the
theory S;,} contains at least four 2-clauses 3; V v, ¢ = 1,2, 3,4, with pairwise
different atoms. Hence ¢(Sy-,}) > 4. Consequently,

A(S{-ap) = 1(S) = p(Si=ay) = n(S) = n(Sg=ay) — ac(S) — c(Si=ay)) 2 1 + 4.

The positive root of the equation (2) is in this case not larger than the positive

root 7 of the equation 7=t +77171% = 1, where a = 0.1950.. (indeed, the function
O t1, ... t,) = Zle — is decreasing for 7 > 1 and t1,... ,¢ > 0). This root
is 7 = 1.6701.. .
Case 2. We assume that no two 2-clauses of the theory S have a common
atom. Moreover there are five 2-clauses a; V b;, i = 1,2, 3,4, 5, and two 3-clauses
a1 Vas Vasz,ar VagVasin S, where ay,...,as,b1,...,bs are pairwise different
atoms.

The following family

A" = {{ar}, {~ar, a2, a4}, {—ar, a2, —as}, {-a1, —asz, as}, {—ar, —as, —as }}

is complete. We observe that every model consistent with —a; is consistent with b;
because the clause a; V b; has to be satisfied. Moreover, every model consistent
with —a; and —as (respectively —a; and —a4) has to be consistent with asg

(respectively as) because the clause a1 V as V as (respectively a1 V aq V as) has
to be satisfied. These observations show that the family

A= {{a1},{—a1,a2,a4,b1},{—ai, a2, 7a4,b1,bs,0a5}, {~ai,~az,as,b1,b2,a3},
{_'ala a2, Gy, b17 b27 b4;a37 0’5}}

is complete.

For every A € A, the theory S4 contains all 2-clauses of S except for those
which have an atom or its negation in A. Since no two 2-clauses in S have a
common atom, the only clauses which are in S but not in S4 are of the form
a; V b;. For example, for A = {-ay, a2, -a4,b1,bs, a5}, Sa has the same 2-clauses
as S, except for a1 Vby, as Vbs, agVby, and a5 Vbs, which are not in S4. Thus, for
this particular A, ¢(Sa) = ¢(S) — 4. Proceeding similarly for all the sets A € A,
we get

(S)-1,if A={a1};
(S) — 3, if A= {—|a1,a2,a4,bl};
C(SA) = C(S) - 47 if A= {_'alaa2;_'a'47bl7b47a5};
(S) - 4, if A= {—|a1,—-a2,a4,b1,b2,a3};
(S) — 5, if A= {—|a1,—|a2,—|a4,b1,bg,b4,a3,a5}.

Clearly, A(Sa) = u(S) — pu(Sa) = |A] — a(ce(S) — ¢(S4)). Consequently,

1—a, if A={a1};
4 —3a,if A={-a1,a2,a4,b01 };
A(S4) =1 6 —4a,if A ={-a1,as,a4,b1,bs,as};
6 — 4o, it A= {-ay1,as,as,b1,bs,a3};
8—50[, ifA:{—|a1,—|a2,—|a4,b1,bg,b4,a3,a5}.

Thus, the equation (2) in this case reduces to 771+ 4 7743 4 9r=6+da
778%+5a = 1. Its positive solution (assuming o = 0.1950..) is 7 = 1.6701.. .

It turns out that in all remaining cases the solutions of the equations (2) are
smaller than 1.6701.. so, 79 = 1.6701.. . Thus, by the inequality (3), the bound
on |L(77)| follows.

Given a 3-CNF theory T', one can recognize in time O(m) which case in the
procedure complete applies (clearly each of the cases we discussed here can be
recognized in time O(m) and all other cases are described in similar terms).
Thus, our procedure complete can be implemented to run in time t(m) = O(m).
Moreover, in each case, one can produce the appropriate complete collection
also in time O(m). Lastly, one can design all the cases so that the procedure
complete is splitting (again, this is evident for the two cases discussed here).
These observations complete the proof of Theorem 8. O

6 Discussion

Algorithms we presented in the case of 2-CNF theories, and normal and dis-
junctive 2-programs have worst-case performance of O(ml1.4422..""). The al-
gorithm we designed for computing stable models of normal 3-programs runs

in time O(m1.6701..”). Finally, our algorithms for computing minimal models
of 3-CNF theories and answer sets of disjunctive logic programs run in time
O(mn?2.2720.."). All these bounds improve by exponential factors over the cor-
responding straightforward ones.

The key question is whether still better algorithms are possible. In this con-
text, we note that our algorithms developed for the case of 2-CNF theories and
2-programs are optimal, as long as we are interested in all minimal models, stable
models and answer sets, respectively. However, we can compute a single minimal
model of a CNF theory T or decide that 7" is unsatisfiable in polynomial time,
using Proposition 5 and a well known fact that deciding satisfiability of 2-CNF
theories is in P. In contrast, deciding whether a normal 2-program has a stable
model and whether a disjunctive 2-program has an answer set is NP-complete.
Thus, it is unlikely that there are polynomial-time algorithms to compute a sin-
gle stable model (answer set) of a (disjunctive) 2-program or decide that none
exist. Whether our bound of O(m1.4422..") can be improved by an exponential
factor if we are interested in computing a single stable model or a single answer
set, rather than all of them, is an open problem.

The worst-case behavior of our algorithms designed for the case of 3-CNF
theories and 3-programs does not match the lower bound of O(n1.5848..) im-
plied by Corollary 1. Thus, there is still room for improvement, even when we
want to compute all minimal models, stable models and answer sets. In fact, we
conjecture that exponentially faster algorithms exist.

In the case of 3-CNF theories, one can show, again using Proposition 5 and
the algorithm from [Rod96], that there is a simple algorithm to compute one
minimal model of a 3-CNF theory or determines that it is unsatisfiable, running
in time O(p(m,n)1.4756.."), where p is a polynomial. This is a significantly
lower bound than O(mn?2.2720..") that we obtained for computing all minimal
models. We do not know however, whether the bound O(p(m,n)1.4756..") is
optimal. Furthermore, we do not known whether an exponential improvement
over the bound of O(mn?2.2720..") is possible if we want to compute a single
answer set of a disjunctive 3-program or determine that none exist. Similarly,
we do not know whether one can compute a single stable model of a 3-program
or determine that none exists in time exponentially lower than O(m1.6701..").

In some cases, our bound in Theorems 6 can be improved. Let F be the class
of all ONF theories consisting of clauses of the form a; V...V a, or aV b, where

ai,...,qp, @ and b are atoms. Similarly, let G be the class of all disjunctive
programs with clauses of the form a; V...V ap ¢ not(b1),... ,not(b,) or a «
b,not(by),... ,not(b,), whereay,... ,ap, b1,..., by, a and b are atoms. Checking

whether a set M is a minimal model of a theory from F or an answer set of a
program from G is in P (can be solved in linear time). Thus, using Proposition
4, one can show the following result.

Theorem 9. There is an algorithm to compute minimal models of 3-CNF' the-
ories in F (answer sets of disjunctive 8-programs in G, respectively), that runs
in time O(m1.6701..m).

References

[Bar03]
[BDK97]

[BEP94]

[CL94]

C. Baral. Knowledge representation, reasoning and declarative problem solv-
ing. Cambridge University Press, 2003. ISBN 0521818028.

G. Brewka, J. Dix, and K. Konolige. Nonmonotonic Reasoning, An Querview.
CSLI Publications, 1997.

R. Ben-Eliyahu and L. Palopoli. Reasoning with minimal models: Efficient
algorithms and applications. In Proceedings of KR’94, San Francisco, CA,
1994. Morgan Kaufmann.

M. Cadoli and M. Lenzerini. The complexity of propositional closed world
reasoning and circumscription. Journal of Computer and System Sciences,
48:255-310, 1994. Shorter version in the Proceedings of AAAI-90.

[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declara-

[EG95]

[GL8S]

[GLO1]
[Kul99]
[Lif88]

[LT03]

[McC80]
[MT93]

[MT99]

[Nie96]

[Nie99)]

[Rod96]

[SNS02]

tive problem-solving in DLV. In Jack Minker, editor, Logic-Based Artificial
Intelligence, pages 79-103. Kluwer Academic Publishers, Dordrecht, 2000.
T. Eiter and G. Gottlob. On the computational cost of disjunctive logic
programming: propositional case. Annals of Mathematics and Artificial In-
telligence, 15(3-4):289-323, 1995.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International
Conference on Logic Programming, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Computing, 9:365-385, 1991.

O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, pages 1-72, 1999.

V. Lifschitz. Circumscriptive theories: a logic-based framework for knowledge
representation. Journal of Philosophical Logic, 17(4):391-441, 1988.

Z. Lonc and M. Truszczynski. Computing stable models: worst-case per-
formance estimates. Theory and Practice of Logic Programming, 2003. To
appear.

J. McCarthy. Circumscription — a form of non-monotonic reasoning. Arti-
ficial Intelligence, 13(1-2):27-39, 1980.

W. Marek and M. Truszczynski. Nonmonotonic Logic; Context-Dependent
Reasoning. Springer-Verlag, Berlin, 1993.

V.W. Marek and M. Truszczynski. Stable models and an alternative logic
programming paradigm. In K.R. Apt, W. Marek, M. Truszczyniski, and D.S.
Warren, editors, The Logic Programming Paradigm: a 25-Year Perspective,
pages 375-398. Springer Verlag, 1999.

Ilkka Niemeld. A tableau calculus for minimal model reasoning. In Pro-
ceedings of the Fifth Workshop on Theorem Proving with Analytic Tableauz
and Related Methods, Lecture Notes in Computer Science, pages 278-294.
Springer-Verlag, 1996.

I. Niemela. Logic programming with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3-4):241-273, 1999.

R. Rodosek. A new approach on solving 3-satisfiability. In Proc. 3rd Int.
Conf. on AI and Symbolic Math. Comput., pages 197-212. Springer-Verlag,
1996. LNCS 1138.

P. Simons, I. Niemeld, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138:181-234, 2002.

