
Computing minimal models, stable models andanswer setsZbigniew Lonc1 and Miros law Truszczy�nski21 Faculty of Mathematics and Information Science, Warsaw University of Technology,00-661 Warsaw, Poland2 Department of Computer Science, University of Kentucky, Lexington,KY 40506-0046, USAAbstract. We propose and study algorithms for computing minimalmodels, stable models and answer sets of 2- and 3-CNF theories, andnormal and disjunctive 2- and 3-programs. We are especially interestedin algorithms with non-trivial worst-case performance bounds. We showthat one can �nd all minimal models of 2-CNF theories and all an-swer sets of disjunctive 2-programs in time O(m1:4422::n), generaliz-ing a similar result we obtained earlier for computing stable models ofnormal 2-programs (n is the number of atoms in an input theory orprogram and m is its size). Our main results concern computing stablemodels of normal 3-programs, minimal models of 3-CNF theories andanswer sets of disjunctive 3-programs. We design algorithms that runin time O(m1:6701::n), in the case of the �rst problem, and in timeO(mn22:2720::n), in the case of the latter two. All these bounds improveby exponential factors the best algorithms known previously. We alsoobtain closely related upper bounds on the number of minimal models,stable models and answer sets a 2- or 3-theory or program may have.1 IntroductionOur goal in this paper is to propose and study algorithms for computing minimalmodels of CNF theories, stable models of normal logic programs and answer setsof disjunctive logic programs. We are especially interested in algorithms for whichwe can derive non-trivial worst-case performance bounds. Our work builds onstudies of algorithms to compute models of propositional CNF theories [Kul99]and improves on our earlier study of algorithms to compute stable models [LT03].Propositional logic with the minimal-model semantics (propositional circum-scription) [McC80,Lif88], logic programming with stable-model semantics [GL88]and disjunctive logic programming with the answer-set semantics [GL91] areamong most commonly studied and broadly used knowledge representation for-malisms (we refer the reader to [MT93,BDK97] for a detailed treatment of theselogics and additional pointers to literature). Recently, they have been receivingmuch attention due to their applications in answer-set programming (ASP) | anemerging declarative programming paradigm. To solve a problem in ASP, pro-grammers write a logic theory or a logic program so that minimal models, stable

models and answer sets of the theory or program, respectively, are in one-to-one correspondence to problem solutions [MT99,Nie99,Bar03]. Fast algorithmsto compute minimal models, stable models and answer sets are essential for thecomputational e�ectiveness of propositional circumscription, logic programmingand disjunctive logic programming as answer-set programming systems.These computational tasks can be solved by a \brute-force" straightforwardsearch. We will now briey describe this approach. Here and throughout thepaper, by At(T) or At(P) we denote the set of atoms occurring in a theory Tor a program P . We represent models of propositional theories, stable models ofnormal logic programs and answer sets of disjunctive logic programs as sets ofatoms that are true in these models and answer sets. Finally, we use n to denotethe number of atoms of an input theory or program, and m to denote its size,that is, the total number of atom occurrences in the theory or program.We can compute all minimal models of a CNF theory T in time O(m3n).Indeed, to check whether a set M � At(T) is a minimal model of T , it is enoughto verify that M is a model of T and that none of its subsets is. Each such testcan be accomplished in O(m) steps. Thus, if jM j = i, we can verify whetherM is a minimal model of T in time O(m2i). Checking all sets of cardinality irequires O(�ni�m2n) steps and checking all sets | O(Pni=0 �ni�m2n) = O(m3n).Next, we note that to determine whether a set of atoms M is an answerset of a disjunctive logic program P we need to verify whether M is a minimalmodel of the reduct of P with respect to M [GL91] or, equivalently, whether Mis a minimal model of the propositional theory that corresponds to the reduct.Thus, a similar argument as before demonstrates that also answer sets of a �nitepropositional disjunctive logic program P can be computed in time O(m3n).In the case of stable models we can do better. The task of verifying whethera set of atoms M is a stable model of a �nite propositional logic program P canbe accomplished in time O(m). Consequently, one can compute all stable modelsof P , using an exhaustive search through all subsets of At(P), in O(m2n) steps.We refer to these straightforward algorithms and to the corresponding worst-case performance bounds of O(m3n) and O(m2n) as trivial. A fundamental ques-tion, and the main topic of interest in this paper, is whether there are algorithmsfor the three computational problems discussed here with better worst-case per-formance bounds.We note that researchers proposed several algorithms to compute minimalmodels of propositional CNF theories [BEP94,Nie96], stable models of logic pro-grams [SNS02] and answer sets of disjunctive logic programs [EFLP00]. Someimplementations based on these algorithms, for instance, smodels [SNS02] anddlv [EFLP00] perform very well in practice. However, so far very little is knownabout the worst-case performance of these implementations.In this paper, we study the three computational problems discussed earlier.We focus our considerations on t-CNF theories and t-programs, that is, theo-ries and programs, respectively, consisting of clauses containing no more thant literals. Despite restricted syntax, t-CNF theories and t-programs are of sig-ni�cant interest and appear frequently as encodings of problems in planning,

model checking, computer-aided veri�cation, circuit design and combinatorics.To encode a problem by means of a propositional (disjunctive) logic programwe often proceed in a two-step process. We �rst develop an encoding of thisproblem as a program in the syntax of (disjunctive) DATALOG with nega-tion [MT99,Nie99,EFLP00]. In the next step, we ground this program and ob-tain its propositional counterpart also representing the problem in question. Itis clear that programs obtained by grounding �nite (disjunctive) DATALOG-with-negation programs are t-programs, for some �xed and usually small t thatdepends only on the problem speci�cation and not on a particular probleminstance. In fact, in most cases programs obtained by grounding and some sub-sequent straightforward simpli�cations become (disjunctive) 2- or 3-programs.In our earlier work, we studied the problem of computing stable models ofnormal t-programs [LT03]. We presented an algorithm to compute all stablemodels of a normal 2-program in time O(m3n=3) = O(m1:4422::n) and showedits asymptotic optimality. We proposed a similar algorithm for the class of normal3-programs and proved that its running time is O(m1:7071::n).In this paper, we improve on our results from [LT03] and extend them tothe problems of computing minimal models of CNF theories and answer sets ofdisjunctive logic programs. Since 2- and 3-CNF theories and 2- and 3-programsappear frequently in applications and since our results are strongest in the case ofthese two classes, we limit our discussion here to 2- and 3-theories and programsonly.Our results are as follows. We show that one can �nd all minimal mod-els of 2-CNF theories and all answer sets of disjunctive 2-programs in timeO(m1:4422::n), generalizing a similar result we obtained earlier for computingstable models of normal 2-programs. Our main results concern computing stablemodels of normal 3-programs, minimal models of 3-CNF theories and answer setsof disjunctive 3-programs. We design algorithms that run in time O(m1:6701::n),in the case of the �rst problem, and in time O(mn22:2720::n), in the case of thelatter two. These bounds improve by exponential factors the best algorithmsknown previously. We also obtain closely related upper bounds on the numberof minimal models, stable models and answer sets a 2- or 3-theory or programmay have.2 Lower boundsIn this section, we present lower bounds on the running time of algorithmsfor computing all minimal models, stable models or answer sets. We obtainthem by constructing theories and programs for which the total size of output islarge, and use this quantity to derive a lower bound on the exponential factor inour running-time estimates. Due to space limitations, we present here only theresults, leaving out details of the constructions. Let us de�ne �t = �2t�1t �1=2t�1.We have the following theorem and its straightforward corollary.

Theorem 1. Let t be an integer, t � 2. There are positive constants dt, Dt andD0t such that for every n � 2t�1 there is a t-CNF theory T (normal t-programP and disjunctive t-program P , respectively) with n atoms and such that1. The size m of T (P , respectively) satis�es m � dtn2. The number of minimal models of T (stable models of P or answer sets ofP , respectively) is at least Dt�nt and the sum of their cardinalities is at leastD0tn�nt .Corollary 1. Let t be an integer, t � 2.1. Every algorithm computing all minimal models of t-CNF theories (stablemodels of normal t-programs, answer sets of disjunctive t-programs, respec-tively) requires in the worst case at least
(n�nt) steps2. Let 0 < � < �t. There is no polynomial f and no algorithm for computingall minimal models of t-CNF theories (stable models of normal t-programs,answer sets of disjunctive t-programs, respectively) with worst-case perfor-mance of O(f(m)�n).For t = 2 and 3, the lower bound given by Corollary 1 specializes to
(n1:4422::n)and
(n1:5848::n), respectively.3 Main resultsWe will now present and discuss main results of our paper. Even when we donot mention explicitly an input theory or program, we follow our convention andwrite n for its number of atoms and m for its size.We start by stating two theorems that deal with minimal models of 2-CNFtheories and answer sets of disjunctive 2-programs. They extend the results weobtained in [LT03] for the case of stable models of normal 2-programs.Theorem 2. There are algorithms to compute all minimal models of 2-CNFtheories, stable models of normal 2-programs and answer sets of disjunctive 2-programs, respectively, that run in time O(m3n=3) = O(m1:4422::n).Theorem 3. Every 2-CNF theory (every normal 2-program and every disjunc-tive 2-program, respectively) has at most 3n=3 = 1:4422::n minimal models (stablemodels, answer-sets, respectively).It follows from Theorem 1 and Corollary 1 that these results are asymptoti-cally optimal.Next, we present results concerning the case of 3-CNF theories and normaland disjunctive 3-programs. These results constitute the main contribution ofour paper. First, we derive upper estimates on the number of minimal models,stable models and answer sets. In fact, we obtain the same upper bound in allthree cases. It improves the bound on the number of stable models of normal3-programs, which we derived in [LT03]. In the same time, it is the �rst non-trivial bound on the number of minimal models of 3-CNF theories and answersets of disjunctive programs.

Theorem 4. Every 3-CNF theory T (every normal 3-program P and every dis-junctive 3-program P , respectively) has at most 1:6701::n minimal models (stablemodels, answer-sets, respectively).For 2-CNF theories and 2-programs, the common bound on the number ofminimal models, stable models and answer sets, appeared also as an exponentialfactor in formulas estimating the running time of algorithms to compute thecorresponding objects. In contrast, we �nd that there is a di�erence in how fastwe can compute stable models of normal 3-programs as opposed to minimalmodels of 3-CNF theories and answer sets of disjunctive 3-programs. The reasonis that the problem to check whether a set of atoms is a stable model of anormal program is in P, while the problems of deciding whether a set of atomsis a minimal model of a 3-CNF theory or an answer set of a disjunctive 3-program are co-NP complete [CL94,EG95]. Our next result concerns computingstable models of normal 3-programs. It gives an exponential improvement on thecorresponding result from [LT03].Theorem 5. There is an algorithm to compute stable models of normal 3-programs that runs in time O(m1:6701::n).Since checking whether a set of atoms is a minimal model of a 3-CNF theoryor an answer set of a disjunctive 3-program is NP-hard, our results concerningcomputing minimal models and answer sets are weaker. Nevertheless, in each casethey provide an exponential improvement over the trivial bound of O(m3n).Theorem 6. There is an algorithm to compute minimal models of 3-CNF the-ories and answer sets of disjunctive 3-programs, respectively, that runs in timeO(mn22:2720::n).4 Outlines of algorithms and proofsDue to space limitations, we will not discuss here proofs of Theorems 2 and3. We only mention that one can prove these results by modifying argumentswe developed in [LT03] for the case of stable models of normal 2-programs. Wewill however sketch proofs of Theorems 4, 5 and 6, as they require several newtechniques.Let T be a CNF theory. By Lit(T) we denote the set of all literals built ofatoms in At(T). For a set of literals L � Lit(T), we de�ne:L+ = fa 2 At(T) : a 2 Lg and L� = fa 2 At(T) : :a 2 Lg.We also de�ne L0 = L+ [L�. A set of literals L is consistent if L+ \ L� = ;.A set of atoms M � At(T) is consistent with a set of literals L � Lit(T), ifL+ �M and L� \M = ;.Let T be a CNF theory and let L � Lit(T) be a set of literals. By TL wedenote the theory obtained from T by removing:

min+(T; S; L)% T and S are CNF theories, L is a set of literals% T , S and L satisfy the preconditions: L � Lit(T), and S = TL(0) if S does not contain an empty clause then(1) if S = ; then(2) M := L+; output(M)(3) else(4) A := complete(S);(5) for every A 2 A do(6) SA := SA;(7) min+(T; SA; L [A)(8) end of min+. Fig. 1. Algorithm min+1. every clause c that contains a literal ` 2 L (intuitively, eliminate every clausethat is subsumed by a literal in L)2. all occurrences of literals built of atoms in L0 that remain after performingstep (1) (intuitively, resolve the remaining clauses with literals in L).We note that it may happen that TL contains empty clauses (is contradictory) oris empty (is a tautology). The theory TL has the following important property.Proposition 1. Let T be a CNF theory and let L � Lit(T). If X � At(T) is aminimal model of T consistent with L, then X n L+ is a minimal model of TL.We will now describe an algorithm min+, from which we will subsequentlyderive algorithms for all three computational tasks that we study here. The inputparameters of min+ are: CNF theories T and S, and a set of literals L. We willrequire that L � Lit(T) and S = TL. We will refer to these two conditions as thepreconditions for min+. The output of the algorithm min+(T; S; L) is a familyM+L(T) of sets containing all minimal models of T that are consistent with L.The input parameter S is determined by the two other parameters T and L(through the preconditions on T , S and L). We choose to specify it explicitly asthat simpli�es the description and the analysis of the algorithm.A key concept that we need is that of a complete collection. Let T be a CNFtheory. A non-empty collection A of non-empty subsets of Lit(T) is complete forT if every minimal model of T is consistent with at least one set A 2 A. Thecollection A = ffag; f:agg, where a is an atom of T , is a simple example of acomplete collection for T .In the description of the algorithm min+ given in Figure 1, we assume thatcomplete is a procedure computing, for an input CNF theory T , a completecollection of sets of literals.We note that the algorithm min+(T; S; L) is well de�ned as the recursivecalls min+(T;SA; L [A) (line (7)) are legal. Indeed, since L0 \ A0 = ; and

S = TL, SA = SA = (TL)A = TL[A. Moreover, L [A � Lit(T). Thus, T , SAand L [A satisfy the preconditions for the algorithm min+.Proposition 2. Let T be a CNF theory and let L � Lit(T) be a set of literals. IfX is a minimal model of T consistent with L, then X is among the sets returnedby min+(T; TL; L).Proof: We prove the assertion, proceeding by induction on jAt(TL)j. Let usassume that jAt(TL)j = 0 and that X is a minimal model of T . By Proposition1, X nL+ is a minimal model of TL. In particular, TL contains no empty clause.Since jAt(TL)j = 0, TL = ;. Consequently, X n L+ = ; (as X n L+ is a minimalmodel of TL). It follows that, X � L+. Furthermore, since X is consistent withL, L+ � X . Thus, X = L+. Finally, since TL is empty, the program enters line(2) and outputs X since, as we already showed, X = L+.For the inductive step, let us assume that jAt(TL)j > 0 and that X is aminimal model of T consistent with L. By Proposition 1, X n L+ is a minimalmodel of TL. Since A, computed in line (4), is a complete collection for TL, thereis A 2 A such that X nL+ is consistent with A. Clearly, L0\A0 = ;. Thus, X isconsistent with L[A. By the induction hypothesis, the call min+(T;SA; L[A)(within loop (5)) returns the set X (as we observed earlier, the parameters T ,SA and L [A satisfy the preconditions for the algorithm min+). 2Corollary 2. Let T be a CNF theory. The family M+; (T) of sets that are re-turned by min+(T; T; ;) contains all minimal models of T .Typically, algorithms for computing stable models and answer sets of logicprograms, and minimal models of CNF theories search over a binary tree: at eachbranch point they select a variable and consider for it both truth assignments.The search tree traversed by our algorithm is not necessarily binary. At eachbranch point, the search splits into as many di�erent paths as there are elementsin the complete family returned by the procedure complete. While algorithmssearching over binary trees can be derived from our template by designing theprocedure complete to return collections consisting of at most two sets, the classof algorithms speci�ed by our template is broader.We will now study the performance of the algorithm min+. First, for a CNFtheory S we de�ne a tree TS inductively as follows. If S contains an empty clauseor if S is empty, TS consists of a single node labeled with S. Otherwise, let Abe a complete family computed by the procedure complete(S). To construct treeTS , we create a node and label it with S. Next, we connect this node to roots ofthe trees TSA , where A 2 A. Since the theories SA have fewer atoms than S, thede�nition is well founded. We denote the set of leaves of the tree TS by L(TS).One can show that for every CNF theory T and for every set of literals L �Lit(T), the tree TS , where S = TL, is precisely the tree of recursive calls to theprocedure min+ made by the top-level call min+(T; S; L). In particular, the treeTT describes the exectution of the call min+(T; T; ;). Since only those recursivecalls that correspond to leaves of TT produce output, Corollary 2 implies thefollowing result.

Proposition 3. Let T be a CNF theory. The number of minimal models of Tis at most jL(TT)j.We use the tree TT to estimate not only the number of minimal models of aCNF theory T but also the running time of the algorithm min+. We say thatan implementation of the procedure complete is splitting if for every theory T ,such that jAt(T)j � 2, it returns a complete family with at least two elements.We can show the following result.Theorem 7. Let us assume that there is a splitting implementation of the al-gorithm complete that runs in time O(t(m)), where t is an integer function suchthat t(m) =
(m). Then, for every CNF theory T , the algorithm min+ runs inO(jL(TT)jt(m)) steps in the worst case.The speci�c bounds on jL(TT)j and hence, on the number of minimal modelsof a CNF theory T and on the running time of the algorithm min+ depend onthe procedure complete. For 3-CNF theories we have the following results.Theorem 8. There is a splitting implementation of the procedure complete suchthat t(m) = O(m) and for every 3-CNF theory T , jL(TT)j � 1:6701::n.Corollary 3. There is an implementation of the algorithm min+ that, for 3-CNF theories, runs in time O(m1:6701::n).Corollary 3 is a direct consequence of Theorems 7 and 8. The proof of Theo-rem 7 is routine and we omit it. We will outline a proof of Theorem 8 in Section5. In the remainder of this section, we will show that Theorem 8 and Corol-lary 3 imply our main results concerning minimal models of 3-CNF theories,stable models of normal 3-programs and answer sets of disjunctive 3-programs(Theorems 4, 5 and 6).We start with the problem of computing minimal models of a CNF theoryT . Let us assume that we have an algorithm test min which, for a given CNFtheory T and a set of atoms M � At(T) returns the boolean value true if M isa minimal model of T , and returns false, otherwise.We now modify the algorithm min+ by replacing each occurrence of thecommand output(M) (line (2)), which outputs a set M , with the commandif test min(T;M) then output(M).We denote the resulting algorithm by min mod (we assume the same precondi-tions on min mod as in the case of min+). Since all minimal models of T thatare consistent with L belong toM+L(T) (the output of min+(T; S; L)), it is clearthat the algorithm min mod(T; S; L) returns all minimal models of T .Computation of stable models and answer sets of logic programs follows asimilar pattern. First, let us recall that we can associate with a disjunctive logicprogram P (therefore, also with every normal logic program P) its propositionalcounterpart, a CNF theory T (P) consisting of clauses of P but interpreted in

propositional logic and rewritten into CNF. Speci�cally, to obtain T (P) we re-place each disjunctive program clausec1 _ : : : _ cp a1; : : : ; ar;not(b1); : : : ;not(bs)in P with a CNF clause:a1 _ : : : _ :ar _ b1 _ : : : _ bs _ c1 _ : : : _ cp:It is well known that stable models (answer sets) of (disjunctive) logic programP are minimal models of T (P) [MT93].Let us assume that test stb(P;M) and test anset(P;M) are algorithms tocheck whether a set of atoms M is a stable model and an answer set, respectively,of a program P .To compute stable models of a logic program P that are consistent with a setof literals L, we �rst compute the CNF theory T (P). Next, we run on the tripleT (P), T (P)L and L, the algorithm min+ modi�ed similarly as before (we notethat the triple (T (P); T (P)L; L) satis�es its preconditions). Namely, we replacethe command output(M) (line (2)), which outputs a set M , with the commandif test stb(P;M) then output(M).The e�ect of the change is that we output only those sets in M+L(T (P)), whichare stable models of P . Since every stable model of P is a minimal model ofT (P), it is also an element ofM+L(T (P)). Thus, this modi�ed algorithm, we willrefer to it as stb mod , indeed outputs all stable models of P and nothing more.To design an algorithm to compute answer sets, we will refer to it as ans set ,we proceed in the same way. The only di�erence is that we use the algorithmtest anset in place of test stb to decide whether to output a set.Let t1 be an integer function such that the worst-case running time of thealgorithm min+ is O(t1(n;m)). Similarly, Let t2 be an integer function such thatthe worst-case running time of the algorithm test min (test stb or test anset ,depending on the problem) is O(t2(n;m)). The following observation is evident.Proposition 4. The running time of the algorithms min mod, stb mod andans set (in the worst case) is O(t1(n;m) + t2(n;m)), where = jL(TT)j orjL(TT (P))j, depending on the problem.Proofs of Theorems 4 and 5. As we noted, stable models of a normal programP are minimal models of a CNF theory T (P). The same is true for answer setsof a disjunctive logic program P . Thus, Theorem 4 follows from Proposition 3and Theorem 8. It is well known that one can check in time O(m) whether aset of atoms M � At(P) is a stable model of a normal logic program P . Thus,Theorem 5 follows from Proposition 4, Theorem 8 and Corollary 3. 2We will now prove Theorem 6. We focus on the case of minimal models of 3-CNF theories. The argument in the case of answer sets of disjunctive 3-programsis similar. We start with a simple result on testing minimality.

Proposition 5. Let p be an integer function and t an integer such that t � 2.If there is an algorithm that decides in time O(p(n;m)) whether a t-CNF theoryT is satis�able, then there is an algorithm that decides in time O(jM jp(jM j;m+1) + m) whether a set M � At(T) of atoms is a minimal model of a t-CNFtheory T .Proof: Let M = fa1; : : : ; akg. We de�ne L = f:x : x 2 At(T) nMg and observethat M is a minimal model of T if and only if M is a model of T and none oft-CNF theories TL [f:aig, i = 1; : : : ; k, is satis�able. 2There is an algorithm to decide satis�ability of 3-CNF theories that runs intime O(m1:4756::n) [Rod96]. Thus, by Proposition 5, there is an an algorithmto decide whether a set M � At(T) is a minimal model of a 3-CNF theory Tthat runs in time O(jM jm1:4756::jM j). We denote this algorithm test min .Proof of Theorem 6. Let � be a real number such that 0:6 < � < 1 (we willspecify � later). To estimate the running time of the algorithm min+, we splitM+L(T) into two parts:M1 = fM 2M+L(T) : jM j � �ng and M2 = fM 2M+L(T) : jM j < �ng:Clearly, the total time tmin needed to execute all calls to test min throughoutthe execution of min+ is:tmin = XM2M1mjM j(1:4756::)jM j + XM2M2mjM j(1:4756::)jM j:We have XM2M1mjM j(1:4756::)jM j = Xi��nm�ni�i(1:4756::)i� �mn2� nd�ne�(1:4756::)d�ne:This last inequality follows from that fact that for every i, i � 0:6n,m�ni�i(1:4756::)i � m� ni+ 1�(i+ 1)(1:4756::)i+1;and from the observation that the number of terms in the sum is less than n.To estimate the second term, we note that jM2j � jM+L(T)j and, for everyM 2M2, jM j < �n. Thus,XM2M2 mjM j(1:4756::)jM j � (�mn)(1:6701::)n(1:4756::)�n:Let us choose � so that 1:6701::n = � nd�ne�. For this �, we obtain that tmin =O(mn2(1:6701::(1:4756::)�)n). One can verify that � = 0:7907:: . It follows thatthe complexity of our algorithm is O(mn22:2720::n), which completes the proofof Theorem 6. 2

5 Algorithm complete and a proof of Theorem 8In this section we outline main ideas behind the proof of Theorem 8. They areconcerned with the design of the procedure complete. In our approach, we areguided by a method to estimate the number of leaves in a search tree proposedin [Kul99]. We outline here this method adapted to our needs.Let T be a rooted tree and let, as before, L(T) be the set of leaves in T .For a node x in T , we denote by C(x) the set of directed edges that link x withits children. For a leaf w of T , we denote by P (w) the set of directed edges onthe unique path from the root of T to the leaf w. The following observation wasshown in [Kul99].Proposition 6. [Kul99] Let p be a function assigning positive real numbers toedges of a rooted tree T such that for every internal node x in T ,Pe2C(x) p(e) =1. Then, jL(T)j � maxw2L(T)(Qe2P (w) p(e))�1:To estimate the number of leaves in our search tree TT , we associate withevery 3-CNF theory T a certain measure � of its complexity, which approximatesthe number of leaves in the tree TT . We de�ne �(T) = n(T) � �c(T), wheren(T) = jAt(T)j, c(T) is the maximum number of 2-clauses in T with pairwisedisjoint sets of atoms, and � is a constant such that 0 � � � 1 (we will specify� later). Clearly, for every 3-CNF theory T , �(T) � 0.This de�nition reects the following intuition. The number of leaves in thetree TT grows when the number of atoms in T grows. On the other hand, if Thas a large number of 2-clauses, the number of leaves in TT is usually smallerthan in the case when T has few 2-clauses (and the same number of atoms).For a directed edge e = (T 0; T 00) in the tree TT (we recall that vertices of TTare CNF theories), we de�ne �(e) = �(T 0) � �(T 00) and make an assumption(which we will verify later) that �(e) � 0. Clearly, for every leaf W 2 L(TT),Xe2P (W)�(e) = �(T)� �(W) � �(T) � n(T): (1)Next, for every internal node S of the tree TT , by �S we denote the uniquepositive real number satisfying the equationXe2C(S) ���(e) = 1 (2)and we de�ne �0 to be the largest of these roots. One can verify that for eachinternal node S, �S � 1. Thus, �0 � 1, too.Finally, for every edge e = (S; S0) in the tree TT , we de�ne p(e) = ���(e)S .Since �(e) � 0, p(e)�1 = ��(e)S � ��(e)0 .Let W 2 L(TT). We now have (the last inequality in the chain follows by (1))(Ye2P (W) p(e))�1 � Ye2P (W) ��(e)0 = �Pe2P (W)�(e)0 � �n(T)0 :

By the de�nition, the function p satis�es the assumptions of Proposition 6.Thus (we recall that by our convention, n(T) = n),jL(TT)j � �n0 : (3)When designing the procedure complete, our goal is then to make sure thatthe value �0 be as small as possible. To this end, we consider several cases thatreect di�erent structural properties of a 3-CNF theory S. In each of the caseswe compute the numbers �(e), where e = (S; SA) and A is an element of thecomplete family produced by running the procedure complete on input S. Nextwe �nd the positive root �S of the equation (2).To get the best upper bound for the number jL(T)j of leaves in TT (seeinequality (3)), we choose the value of � so that the maximum of the solutionsof the equation (2) over all cases considered in the de�nition of the procedurecomplete is as small as possible. This optimal value turns out to be � = 0:1950:: .Moreover, for this choice of � we can also show that for each edge e = (S; SA)in the tree TT , �(e) � 0 thus, verifying an earlier assumption.Since there are many cases in our de�nition of the procedure complete, we donot have space to give a full description of it. Instead we consider here in detailthe two cases which actually determine the optimal value of �.Case 1. We assume that the theory S has no 2-clauses and there are fourclauses in S of the form a _ �i _ i, i = 1; 2; 3; 4, where a is an atom and�1; : : : ; �4; 1; : : : ; 4 are literals with pairwise distinct atoms di�erent from a.In this case the procedure complete outputs the family A = ffag; f:agg. Theset of atoms of both Sfag and Sf:ag are At(S) � fag so n(Sfag) = n(Sf:ag) =n(S)�1. We also observe that, c(S) = 0 and that by the de�nition of Sf:ag, thetheory Sf:ag contains at least four 2-clauses �i _ i, i = 1; 2; 3; 4, with pairwisedi�erent atoms. Hence c(Sf:ag) � 4. Consequently,�(Sf:ag) = �(S)� �(Sf:ag) = n(S)� n(Sf:ag)� �(c(S)� c(Sf:ag)) � 1 + 4�:The positive root of the equation (2) is in this case not larger than the positiveroot � of the equation ��1+��1�4� = 1, where � = 0.1950:: (indeed, the function�(�; t1; : : : ; tk) =Pki=1 1� ti is decreasing for � � 1 and t1; : : : ; tk � 0). This rootis � = 1.6701:: .Case 2. We assume that no two 2-clauses of the theory S have a commonatom. Moreover there are �ve 2-clauses ai _ bi, i = 1; 2; 3; 4; 5, and two 3-clausesa1 _ a2 _ a3, a1 _ a4 _ a5 in S, where a1; : : : ; a5; b1; : : : ; b5 are pairwise di�erentatoms.The following familyA0 = ffa1g; f:a1; a2; a4g; f:a1; a2;:a4g; f:a1;:a2; a4g; f:a1;:a2;:a4ggis complete. We observe that every model consistent with :ai is consistent with bibecause the clause ai _ bi has to be satis�ed. Moreover, every model consistentwith :a1 and :a2 (respectively :a1 and :a4) has to be consistent with a3

(respectively a5) because the clause a1 _ a2 _ a3 (respectively a1 _ a4 _ a5) hasto be satis�ed. These observations show that the familyA = ffa1g; f:a1; a2; a4; b1g; f:a1; a2;:a4; b1; b4; a5g; f:a1;:a2; a4; b1; b2; a3g;f:a1;:a2;:a4; b1; b2; b4; a3; a5ggis complete.For every A 2 A, the theory SA contains all 2-clauses of S except for thosewhich have an atom or its negation in A. Since no two 2-clauses in S have acommon atom, the only clauses which are in S but not in SA are of the formai_ bi. For example, for A = f:a1; a2;:a4; b1; b4; a5g, SA has the same 2-clausesas S, except for a1_b1, a2_b2, a4_b4, and a5_b5, which are not in SA. Thus, forthis particular A, c(SA) = c(S)� 4. Proceeding similarly for all the sets A 2 A,we get c(SA) = 8>>>><>>>>: c(S)� 1; if A = fa1g;c(S)� 3; if A = f:a1; a2; a4; b1g;c(S)� 4; if A = f:a1; a2;:a4; b1; b4; a5g;c(S)� 4; if A = f:a1;:a2; a4; b1; b2; a3g;c(S)� 5; if A = f:a1;:a2;:a4; b1; b2; b4; a3; a5g.Clearly, �(SA) = �(S)� �(SA) = jAj � �(c(S)� c(SA)). Consequently,�(SA) =8>>>><>>>>:1� �; if A = fa1g;4� 3�; if A = f:a1; a2; a4; b1g;6� 4�; if A = f:a1; a2;:a4; b1; b4; a5g;6� 4�; if A = f:a1;:a2; a4; b1; b2; a3g;8� 5�; if A = f:a1;:a2;:a4; b1; b2; b4; a3; a5g.Thus, the equation (2) in this case reduces to ��1+� + ��4+3� + 2��6+4� +��8+5� = 1: Its positive solution (assuming � = 0:1950::) is � = 1.6701:: .It turns out that in all remaining cases the solutions of the equations (2) aresmaller than 1.6701:: so, �0 = 1:6701:: . Thus, by the inequality (3), the boundon jL(TT)j follows.Given a 3-CNF theory T , one can recognize in time O(m) which case in theprocedure complete applies (clearly each of the cases we discussed here can berecognized in time O(m) and all other cases are described in similar terms).Thus, our procedure complete can be implemented to run in time t(m) = O(m).Moreover, in each case, one can produce the appropriate complete collectionalso in time O(m). Lastly, one can design all the cases so that the procedurecomplete is splitting (again, this is evident for the two cases discussed here).These observations complete the proof of Theorem 8. 26 DiscussionAlgorithms we presented in the case of 2-CNF theories, and normal and dis-junctive 2-programs have worst-case performance of O(m1:4422::n). The al-gorithm we designed for computing stable models of normal 3-programs runs

in time O(m1:6701::n). Finally, our algorithms for computing minimal modelsof 3-CNF theories and answer sets of disjunctive logic programs run in timeO(mn22:2720::n). All these bounds improve by exponential factors over the cor-responding straightforward ones.The key question is whether still better algorithms are possible. In this con-text, we note that our algorithms developed for the case of 2-CNF theories and2-programs are optimal, as long as we are interested in all minimal models, stablemodels and answer sets, respectively. However, we can compute a single minimalmodel of a CNF theory T or decide that T is unsatis�able in polynomial time,using Proposition 5 and a well known fact that deciding satis�ability of 2-CNFtheories is in P. In contrast, deciding whether a normal 2-program has a stablemodel and whether a disjunctive 2-program has an answer set is NP-complete.Thus, it is unlikely that there are polynomial-time algorithms to compute a sin-gle stable model (answer set) of a (disjunctive) 2-program or decide that noneexist. Whether our bound of O(m1:4422::n) can be improved by an exponentialfactor if we are interested in computing a single stable model or a single answerset, rather than all of them, is an open problem.The worst-case behavior of our algorithms designed for the case of 3-CNFtheories and 3-programs does not match the lower bound of O(n1:5848::n) im-plied by Corollary 1. Thus, there is still room for improvement, even when wewant to compute all minimal models, stable models and answer sets. In fact, weconjecture that exponentially faster algorithms exist.In the case of 3-CNF theories, one can show, again using Proposition 5 andthe algorithm from [Rod96], that there is a simple algorithm to compute oneminimal model of a 3-CNF theory or determines that it is unsatis�able, runningin time O(p(m;n)1:4756::n), where p is a polynomial. This is a signi�cantlylower bound than O(mn22:2720::n) that we obtained for computing all minimalmodels. We do not know however, whether the bound O(p(m;n)1:4756::n) isoptimal. Furthermore, we do not known whether an exponential improvementover the bound of O(mn22:2720::n) is possible if we want to compute a singleanswer set of a disjunctive 3-program or determine that none exist. Similarly,we do not know whether one can compute a single stable model of a 3-programor determine that none exists in time exponentially lower than O(m1:6701::n).In some cases, our bound in Theorems 6 can be improved. Let F be the classof all CNF theories consisting of clauses of the form a1_ : : :_ap or a_:b, wherea1; : : : ; ap, a and b are atoms. Similarly, let G be the class of all disjunctiveprograms with clauses of the form a1 _ : : : _ ap not(b1); : : : ;not(br) or a b;not(b1); : : : ;not(br), where a1; : : : ; ap, b1; : : : ; br, a and b are atoms. Checkingwhether a set M is a minimal model of a theory from F or an answer set of aprogram from G is in P (can be solved in linear time). Thus, using Proposition4, one can show the following result.Theorem 9. There is an algorithm to compute minimal models of 3-CNF the-ories in F (answer sets of disjunctive 3-programs in G, respectively), that runsin time O(m1:6701::n).

References[Bar03] C. Baral. Knowledge representation, reasoning and declarative problem solv-ing. Cambridge University Press, 2003. ISBN 0521818028.[BDK97] G. Brewka, J. Dix, and K. Konolige. Nonmonotonic Reasoning, An Overview.CSLI Publications, 1997.[BEP94] R. Ben-Eliyahu and L. Palopoli. Reasoning with minimal models: E�cientalgorithms and applications. In Proceedings of KR'94, San Francisco, CA,1994. Morgan Kaufmann.[CL94] M. Cadoli and M. Lenzerini. The complexity of propositional closed worldreasoning and circumscription. Journal of Computer and System Sciences,48:255{310, 1994. Shorter version in the Proceedings of AAAI-90.[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declara-tive problem-solving in DLV. In Jack Minker, editor, Logic-Based Arti�cialIntelligence, pages 79{103. Kluwer Academic Publishers, Dordrecht, 2000.[EG95] T. Eiter and G. Gottlob. On the computational cost of disjunctive logicprogramming: propositional case. Annals of Mathematics and Arti�cial In-telligence, 15(3-4):289{323, 1995.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InR. Kowalski and K. Bowen, editors, Proceedings of the 5th InternationalConference on Logic Programming, pages 1070{1080. MIT Press, 1988.[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and dis-junctive databases. New Generation Computing, 9:365{385, 1991.[Kul99] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.Theoretical Computer Science, pages 1{72, 1999.[Lif88] V. Lifschitz. Circumscriptive theories: a logic-based framework for knowledgerepresentation. Journal of Philosophical Logic, 17(4):391{441, 1988.[LT03] Z. Lonc and M. Truszczy�nski. Computing stable models: worst-case per-formance estimates. Theory and Practice of Logic Programming, 2003. Toappear.[McC80] J. McCarthy. Circumscription | a form of non-monotonic reasoning. Arti-�cial Intelligence, 13(1-2):27{39, 1980.[MT93] W. Marek and M. Truszczy�nski. Nonmonotonic Logic; Context-DependentReasoning. Springer-Verlag, Berlin, 1993.[MT99] V.W. Marek and M. Truszczy�nski. Stable models and an alternative logicprogramming paradigm. In K.R. Apt, W. Marek, M. Truszczy�nski, and D.S.Warren, editors, The Logic Programming Paradigm: a 25-Year Perspective,pages 375{398. Springer Verlag, 1999.[Nie96] Ilkka Niemel�a. A tableau calculus for minimal model reasoning. In Pro-ceedings of the Fifth Workshop on Theorem Proving with Analytic Tableauxand Related Methods, Lecture Notes in Computer Science, pages 278{294.Springer-Verlag, 1996.[Nie99] I. Niemel�a. Logic programming with stable model semantics as a constraintprogramming paradigm. Annals of Mathematics and Arti�cial Intelligence,25(3-4):241{273, 1999.[Rod96] R. Rodo�sek. A new approach on solving 3-satis�ability. In Proc. 3rd Int.Conf. on AI and Symbolic Math. Comput., pages 197{212. Springer-Verlag,1996. LNCS 1138.[SNS02] P. Simons, I. Niemel�a, and T. Soininen. Extending and implementing thestable model semantics. Arti�cial Intelligence, 138:181{234, 2002.

