Approximating Answer Sets of Unitary Lifschitz-Woo
Programs

Victor W. Marek!, Inna Pivking&, and Mirostaw Truszczyski'

! Department of Computer Science, University of Kentucky
Lexington, KY 40506-0046, USA
2 Department of Computer Science, New Mexico State University
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA

Abstract. We investigate techniques for approximating answer sets of general
logic programs of Lifschitz and Woo, whose rules have single literals adshe
We propose three different methods of approximation and obtain resulise
relationship between them. Since general logic programs with single liteyals a
heads are equivalent to revision programs, we obtain results onxapatmns

of justified revisions of databases by revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and \Waw92]. Their syntax
follows closely that of disjunctive logic programs but teés one essential difference.
The operatonot, representing thdefault negatioris no longer confined to the bodies
of program rules but may appear in their heads, as well. hitsand Woo [LW92]
showed that the semantics of answer sets introduced famdisye logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general prograatsithnot contain dis-
junctions in the heads of their rules. We call such programgary. Unitary general
programs are of interest for two reasons. First, they go meybe class of normal
logic programs by allowing the default-negation operatathie rule heads. Second, in
a certain precise sense, unitary general programs areadgpiivo the class of revision
programs [MT98,MPT02], which provide a formalism for debtrg and enforcing
database revisions. Consequently, results for unitargmmprograms extend to the
case of revision programs.

The problem we focus on in this paper is that of approximatngwer sets of
unitary general programs. The problem to decide whetheitaryriogic program has
an answer set is NP-complét€onsequently, computing answer sets of unitary general
programs is hard and it is important to establish efficientsita approximate them. On
one hand, such approximations can be sufficient for someméagtasks. On the other
hand, they can be used by programs computing answer setarte fire search space
and can improve their performance significantly.

8 Without the restriction to unitary programs (and assuming that the polyhbiei@rchy does
not collapse) the problem is even harderS% -complete.

In the case of normal logic programs the well-founded mod&®%$88] provides an
effective approximation to all answer sétk can be computed in polynomial time and
is known to provide an effective pruning mechanism for paogs computing stable
models [SNV95,SNS02]. An obvious approach to the problenaat seems to be then
to extend the well-founded model and its properties to thsscbf unitary programs.
However, despite similarities between normal and unitaogmms, no counterpart of
the well-founded model has been proposed for the lattes slagar, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generétie well-founded
semantics but by exploiting this semantics in some othss, dérect ways. Namely, we
introduce three operators for unitary general programsusedthem to define the ap-
proximations. The first two operators are antimonotone aadlasely related to opera-
tors behind the well-founded semantics of normal logic protg. Iterating them yields
alternatingsequences. We use the limits of these sequences to cormfiruitst two
approximations to answer sets of unitary general progrdmes.two approximations
we obtain in this way are not comparable (neither is strotiggn the other one). The
third operator is not antimonotone in general. Howeverhad¢ase of unitary general
programs that have answer sets, iterating this operatoltsés an alternating sequence
and the limit of this sequence yields yet another approxomab answer sets of unitary
general programs. We show that this third approximatiotrager than the other two.
We also show that all three approaches imply sufficient d¢ardi for thenon-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision progrfMT98,MPT99].
Having introduced approximations to answer sets of unganeral programs, we show
that our results apply in a direct way to the case of revisimgmamming.

All programs we consider in the paper digite. That assumption simplifies argu-
ments. However, all our results can be extended to the cénérife programs.

2 Preliminaries

Atoms and literals. In the paper we consider a fixed gétof (propositional) atoms.
Expressions of the form andnot(a), wherea € U, areliterals (overU). We denote
the set of all literals ovel by Lit(U). A set of literalsL. C Lit(U) is coherentf there
isnoa € U such that bottw € L andnot(a) € L. A set of literalsL. C Lit(U) is
completdf for everya € U, a € L ornot(a) € L (it is possible that for some, both
a € L andnot(a) € L).

For a setM of atoms,M C U, we define

not(M) = {not(a): a € M} and M° = M Unot(U \ M).

The mappingV/ — M€ is a bijection between subsetsléfand coherent and complete
sets of literals contained ihit (U).

4 In the context of normal logic programming, answer sets are morenmonly known astable
models

Unitary general programs. A unitary general logic programor UG-programis a
collection of rules of the form:

O — Qpy.ne, Qo 1)
whereq, aq, . . ., a,, are literals fromLit(U). The literalc is theheadof the rule. The
set of literals{ay, . . ., a;, } is thebodyof the rule.

Let P be a UG-program. We writ&™ (respectively,P~) to denote programs con-
sisting of all rules inP that have an atom (respectively, a negated atom) as the head.
Satisfaction and models. A set of atoms)M C U satisfies(is a modelof) an atom
a € U (respectively, a literahot(a) € Lit(U)), if a € M (respectivelya ¢ M).
The concept of satisfaction (being a model of) extends iraadsrd way to rules and
programs. As usual, we write: to denote the satisfaction relation.

Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-programP sets of literals that are closed under rule®inA setL of literals

is closedunder a UG-progran® if for every ruler = a < Body € P such that
Body C L, a € L. One can show that every UG-progrdfhas a least set of literals
closed under its rulésWe denote it byP*. We observe that i is a definite Horn
program,P* consists of atoms only and coincides with the least modél.of

Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic progrétime appropriate semantic
concept is that of a stable model. We recall that accordintpéooriginal definition
[GL88], a set of atomg/ is a stable model of a normal logic progrdpif

[PM]* = M, @)

wherePM is theGelfond-Lifschitzeduct of P with respect tal/. The following char-
acterization of stable models is well known [BTK93J is a stable model of a normal
logic programP if and only if

[PUnot(U\ M)|"NU =M. (3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs diati¢he resulting semantic
object amanswer setRather than to give the original definition from [LW92], wead

a basic characterization of answer sets of UG-programstiidie of use in the paper.
Its proof can be found in [Lif96,MPT99].

Proposition 1. Let P be a UG-program. A set of atondd is an answer set t@ if and
only if M is a stable model oP* and a model of”~. In particular, if M is an answer
set toP then) is a model ofP.

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequenadshair limits. A sequence
(X;) of sets of literals islternatingif

® If we treat literalsnot(a) as new atomsP becomes a Horn program and its least model is the
least set of literals closed undEx

1. XpC X, CXsC...
2. X1D2X320X5D...
3. Xo; € Xo9;41, fOr every non-negative integeér

If (X;) is an alternating sequence, we defitie= | J;~, Xo; and X* = (32) Xo;41.
We call the pair(X!, X*) thelimit of the alternating sequen¢&;). It follows directly
from the definition that for every non-negative integeandj,

X0 CX'C X" C Xojia

Alternating sequences are often defined by means of opsrtatr are antimono-
tone. An operatoty defined onLit(U) is antimonotonef for every two setsX C Y C
Lit(U),v(Y) C v(X). Lety be antimonotone. We definé, = 0 and X ;1 = v(X;).
It is well known (and easy to show) that the sequefg) is alternating. We callX;)
thealternatingsequence of.

We will consider in the paper the following two operators:

vpu(X)=[PUnot(U\ X)]"NU and vp(X) = [PUnot(U \ X)]".

Both operators are antimonotone and give rise to altematguences, sayV;) and
(Y;). Let (W', W) and (Y, Y“) be the limits of these sequences, respectively. One
can verify that these limits forralternating pairs That is, we have

ypu (W =W* and ypy(W*) = W' (4)

and
vp(YY) =Y* and yp(Y") =Y. (5)

One can show that if? is a normal logic program then the alternating sequence
of vp s is precisely the alternating sequence defining the welhfied semantics of
[VRS88,Van93].

One can also show that the limit of the alternating sequefficgrois the well-
founded model of the normal logic prografi obtained fromP by replacing every
literal not(a) with anewatom, say’, and adding rules of the forial «— not(a) (the
claim holds modulo the correspondente«~ not(a)). The mappingP — P’ was
introduced and studied in [PT95] in the context of revisioograms.

Approximating sets of atoms. Let M be a set of atoms. Every pair of séf§ S) that
approximates\/, that is, such thdf’ C M C S, implies a lower bound on the complete
representatiod/ of M:

TU{not(U\ S)} C M°.

Conversely, every sel of literals such that, C M¢ determines ampproximation
(T,S) of M,whereT' =U N LandS ={a € U: not(a) ¢ L}. Indeed,

UNLCMC{acU:not(a) ¢ L}.

In this way, we establish a bijection between approximatitmna set of atoma/ and
subsets ofi/¢. It follows that approximations of answer sets can be repriesl as
subsets of their complete representations. We have treiol fact.

Proposition 2. Let P be a UG-program and Ief’ and .S be two sets of atoms. For every
answer sef\/ of P,if T C M C Sthen[PUT Unot(U \ S)]* C M°.

Proof: We havel’ C M C S. Thus,T Unot(U \ S) C M€, Letr = o — Body be a
rule in P such thatBody C M*. It follows that M satisfies the body of. SincelM is
an answer set aP, M satisfiesy and so € M*¢. Thus, T Unot(U \ S) C M* and
Me¢ is closed undeP. Consequently,P UT Unot(U \ S)]* C M°. O

In the case of normal logic programs, the well-founded motielt is, the limit
(W', W) of the alternating sequenc¢&’;) of the operatory ;, approximates every
stable model (if they exist) and, in some cases determiregtistence of a unique
stable model.

Theorem 1 ([VRS88,Lif96]). Let (W!, W) be the well-founded model of a normal
logic programP.

1. For every stable modél/ of P, W! Unot(U \ W) C M°.
2. f W' =W, thenW! is a unique stable model fdp.

In the remainder of the paper, we will propose approximatitmanswer sets of
UG-programs generalizing Theorem 1.

3 Approximating answer setsusing operators~yp,; and yp

Our first approach exploits the fact that every answer selifbgprogramP is a stable
model of P (Proposition 1). LetP be a UG-program and lgi7!, W*) be the limit
of the alternating sequence of the operagpr ;. As we observed(W!, W) is the
well-founded model of°*. We define

Appz,(P) = [P Unot(U \ W*)]*.

By (4), W! = [PUnot(U \ W*)]* " U. Hence W' C Appz,(P) and so,Appz,(P)
contains all literals that are true in the well-founded mqdg’, w+).

Theorem 2. Let P be a UG-program. For every answer setof P, Appz,(P) C M€.
In addition, if Appz, (P) is incoherent therP has no answer sets.

Proof: LetM be an answer set d?. By Proposition 1)/ is a stable model oP*. Let

(W, W) be the well-founded model @P*. By Theorem 1not(U \ W*) C M¢.

Moreover, sincelM is an answer set oP, M is a model of P (Proposition 1, again)

and so,M¢ is closed unde. Since Appz,(P) is the least set of literals containing

not(U \ W*) and closed undeP, Appz,(P) C M¢, as claimed. The second part of

the assertion follows from the first one. O
We will illustrate this approach with an example.

Example 1.Let us consider the following UG-prograf:

a < not(b), not(c) d — not(b)
¢ « ¢,not(b) not(b) —
b «— not(d)

All but the last rule belong t@*. The operator »+ ;; determines the following alter-
nating sequenc@V;) of sets:

0 {a,b,d} —0....

It follows that the well-founded model QP+ is (W!, W) = (0, {a,b,d}). Conse-
quently,
Appz,(P) = [P U {not(c)}]* = {a,d,not(b), not(c)}.

In this case, the well-founded model &f" alone provides a weak bound on answer
sets of P. The improved boundppz,(P), which closes the model undét, pro-
vides a much stronger approximation. In fact, only one &ets approximated by
{a,d,not(b), not(c)}. This set is{a, d} and it happens to be a unique answer set of
P.

Let @ = P U {not(a) < d}. SinceQ™ = P, it follows that Appz,(Q) =
[Q U {not(c)}]* = {a,d,not(a), not(b), not(c)}. SinceAppz,(Q) is incoherent)
has no answer sets, a fact that can be verified directly. |

The approximatiodppz, (P), whereP is the first program from Example 1, is
complete and coherent, and we noted that the unique setmkat@atAppz, (P) ap-
proximates is a unique answer setof It is a general property extending Theorem
1(2).

Corollary 1. Let P be a UG-program. IfAppz,(P) is coherent and complete then
Appz,(P) NU is a unique answer set @1.

Proof: Sincedppz, (P) is coherent and complete, Theorem 2 implies fhats at most
one answer set. To prove the assertion it is then enough totslad N/ = Appz,(P)N
U is an answer set a?.

Let (W', W*) be the well-founded model d?*. SinceAppz, (P) = [PUnot (U \
W), [P Unot(U \ W*)]* is coherent and complete. Consequently,

M =[PUnot(U\ W")|".

It follows thatnot(U \ W*) C not(U \ M). Thus,M° C [P Unot(U \ M)]*.
It also follows thatM/€ is closed under the rules iR. Sincenot(U \ M) C M¢,
[PUnot(U \ M)]* C M¢°. Thus,

M® = [P Unot(U \ M)]*.

It follows now thatM/ is a model ofP~. Moreover, it also follows thad/ = [P+ U
not(U \ M)|* and so,M is a stable model oP*. Thus,M is an answer setdP. O

We will now introduce another approximation to answer séis 0G-programpP.
This time, we will use the operatof. LetY; be the alternating sequence of the operator
vp and let(Y', Y*) be the limit of(Y;). We define

Appz,(P) =Y.

Theorem 3. Let P be a UP-program. IfM/ is an answer-set foP then Appz,(P) C
Me¢. In addition, if Appz, is incoherent, the® has no answer sets.

Proof: Let M be an answer set d? and let(Y;) be the alternating sequence for the
operatoryp. We will show by induction that for every> 0, Yo, N U C M C Y5;41.

SinceYy = 0, YoNnU C M. We will now assume thdty; N U C M and show that
M C Y3;41. Our assumption implies thafot(U \ M) C not(U \ Y3;). Thus, since
M is a stable model oP ™, it follows from (3) that

M = [PTUnot(U\ M)]*NU C [PUnot(U\ M)]* C [PUnot(U\ Ys;)]* = Ya;41.

Next, we assume that/ C Ys;,; and show tha¥s; ., N U C M. The assumption

implies thatnot (U \ Y2;41) C not(U \ M). Thus,
Yoita NU = [PUnot(U \ Ya;11)]" NU C [PUnot(U \ M)|"NU
=[Pt Unot(U\ M)]*NU = M.

The last but one equality follows from the fact thift is a model of P~ and the last
inequality follows from the fact that/ is a stable model oP ™.

From the claim it follows thaf\/ C Y. Thus,not(U \ Y*) C M*€. SinceM is a
model of P, M¢ is closed undeP. Thus,Y'! = [P Unot(U \ Y*)]* C M. ad

As before, if the approximation provided bippz,(P) is complete and coherent,
P has a unique answer set.

Corollary 2. Let P be a UG-program such that ppz,(P) is complete and coherent.
Then,Appz,(P) N U is a unique answer set &f.

The following example illustrates our second approach.

Example 2.LetU = {a, b}. Let P be a UG-program consisting of rules:
not(a) < not(b)
b < not(a)
a <
Iterating the operatoyp results in the following alternating sequence:
0+ {a,b,not(a),not(b)} — {a} — {a,b,not(a),not(b)} —
Its limitis ({a}, {a, b, not(a), not(b)}) and so,Appz,(P) = {a}. O

We conclude this section by showing that the approximatiépsz, and Appz,
are, in general, not comparable.

The following example shows that there is a UG-progrBreuch thatdppz, (P)
and Appz,(P) are coherent and ppz,(P) is apropersubset ofd ppz, (P).

Example 3.LetU = {a,b, ¢, d, e} and letP be a UG-program consisting of the rules:

a « not(a) d + not(c),not(e)
b <« not(a) e —
¢ < not(d) a <« c,e

not(e) < a,b

Computing Appz, (P). The programP* consists of all rules of except the last one.
The alternating sequence gf+ ; starts as follows:

0 {a,b,c,d,e} — {e} — {a,b,c,e} — {a,qe} — {a,c,e} —
Thus, its limitis({a, ¢, e}, {a, c,e}) and
Appz,(P) = [P U{a,c, e} U{not(b),not(d)}|* = {a, c,e, not(b),not(d)}.
Computing Appz,(P). lterating the operatoyp yields the following sequence:
0 — Lit(U) — {e} — Lit(U) —
Thus, the limitis({e}, Lit(U)) and so,Appz,(P) = {e}. O

The next example shows that for some programs the oppositesiand the second
approximation is strictly more precise.

Example 4.LetU = {a, b, ¢} and letP be a UG-program consisting of the rules:
a « not(b) c—a,b
b — not(a) not(a) <
Computing Appz, (P). The alternating sequence of the operatpr ;; is
0 {a,b,c} —0—....

Thus,
Appz,(P) = P* = {not(a), b}.

Computing Appz,(P). Iteratingyp yields:
0 +— Lit(U) — {not(a), b} — {not(a),b,not(c)} — {not(a),b,not(c)} —
Thus,Appz,(P) = {not(a), b, not(c)}. |

4 Strong approximation

Let P be a UG-program and C Lit(U) a set of literals (not necessaritpheren). By
theweak reducbf P with respect taZ we mean the programtZ obtained fromP by:

1. removing all rules that contain in the body a literadt(a) such thata € Z and
not(a) ¢ Z;
2. removing from the bodies of the remaining rules all litereot(a) such that: ¢ Z.

Let us note that i: € Z andnot(a) € Z, not(a) will not be removed from the rules
that remain after Step 1.
Let Z be a set of literalsZ C Lit(U). We define
Vp(Z) = [P]]".

In general, the operatoyy is not antimonotone. Thus, the sequefiZe) obtained by
iteratingyp (starting with the empty set) in general is not alternating.

Example 5.Let P be a UG-program consisting of the rules:

a <« not(b) ¢ « not(d)
b — d —
not(b) < not(c)

By the definition,Z, = (). When computingP®Z°, no rule is removed in Step 1 of the
definition of the weak reduct, and every literal of the forrat(a) is removed from
the bodies of rules itP. Thus,Z; = {a,b,¢c,d,not(b)}. When computing??:, we
observe thanot(b) € Z;. Thus, the first rule is not removed despite the fact that
b € Z,. Hence, we have:

a — not(b)
P2 = b , andso,Z, = {b,d}.

w d -
In the next step, we compute:
b «—

pPZ2 — not(b) — , andso,Z3 = {b7 d, nOt(b)}'

w d -
When computing”Z:, the rulea «— not(b) is againnotremoved in Step 1. Thus,

a < not(b)
b+

not(b) — '
d«—

pZs — and so,Zs = {a,b,d, not(b)}.

We note thatZ, is nota subset ofZ3. Thus, for this progranP, the sequencéZ;) is
not alternating. |

In the remainder of this section we show that under some tiondithe sequence
(Z;) is alternating and may be used to approximate answer set&efrograms. We
first establish a lemma providing conditions, under wHigf¥ |* is antimonotone irnX.

Lemmal. Let P be a UG-program X and X’ be sets of literals such that C X'.
Moreover, let at least one of the following conditions hold:

1. X' is coherent

2. X C [PX']* and[PX']* is coherent.
3. [PXT*CcXx

4. X C [PX]* and[P.X]* is coherent.

Then[PX']* C [PX]*.

The next lemma describes two propertieg@f]* under the assumption that is
coherent.

Lemma?2. Let P be a UG-program and{ a coherent set of literalsX C Lit(U).

L [PY] = [PN7].

2. [PY] = [(PT)5 7] Unot(X') = [(P*)*"Y]* Unot(X'),
whereX' is the set of atoms such thae X' if and only if there is a rulemot(a) <
Body in (P~)X such thaf(P)X"V]* |= Body.

We can now prove the following characterization of answé&s seUG-programs.

Lemma3. Let P be a UG-programM C U a set of atoms, andvV a set of atoms
consisting of all atom& € U such thata ¢ M and there is a rulenot(a) < Body
in P such thatM = Body. ThenM is an answer set of if and only if [PM]* =
M Unot(N).

Proof: &) By Proposition 1M/ is a stable model oP* and a model of°~. In partic-
ular,[(PT)M]* = M. Let X' be the set specified in Lemma 2(2), defined %or= M.
Since[(PT)M]* = M and M is a model of P—, for everya € X', a ¢ M. Thus,
X' = N and the assertion follows from Lemma 2(2).
(<) It follows from Lemma 2(2) that\/ = [(P*)M]*. Thus, M is stable model of
P*. Let us consider a rulaot(a) < Body from P~ such thatM satisfiesBody.
Let Body' consist of all atoms iBody. It follows thatnot(a) « Body' is a rule in
(P7)M . SinceM = Body, M = Body'. Thus, by Lemma 2(2jpot(a) € [PM]*.
Since[PM]* = M Unot(N), a € not(N) which, in turn, impliesz ¢ M. It follows
that M is a model ofP~ and so, an answer set &t |
The results we presented above allow us to prove that as ktigedower (even)
terms of the sequend¢’;) are coherent, the sequence behaves as an alternating one.

Proposition 3. Leti be an integer; > 0, such thatZ,; is coherent. Then

1. 20 C 2y C ... C Zoi
2. Zy 27232 ...2 Zai
3. Z2; € Zaiq1.

This last proposition is crucial for the definition of ourrthiapproximation. Let us
consider the sequend¢;). If for every i, Zs; is coherent, Proposition 3 implies that
the sequencg?;) is alternating. Let 2!, Z*) be the limit of(Z;). We define

Appz4(P) = Z' U {not(a): a € U\ Z"}.

Otherwise, there issuch thatZ,; is incoherent. In this case, we say thgipz,(P) is
undefined.

Theorem 4. Let P be a UG-program. If\/ is an answer set oP then Appz4(P) is
defined anddppzs(P) C Me. If Appzs(P) is not defined, the® has no answer sets.

Proof: The second part of the assertion follows from the éing. To prove the first part
of the assertion, we will show that for every> 0, Z5; C M€, andM C Zy;11.

We proceed by induction oh If i = 0, thenZ, = () C M¢. We now assume that
Za; € M€ and prove thall C Z5;41.

SinceZy; C M€ and M€ is coherent/Zs; is coherent, too. By Lemma 1 (applied
to X = Zy and X’ = M¢, under the assumption (4))PM°]* C [PZ2]*. Thus,
[PY]* C Zoiyr. By Lemma 2(1),[P}]* C Zaiy1. By Lemma 3,M C [P}1]".
Therefore M C Z; 4.

Next, we assume that/ C Z5;,, and prove thatZy; o C M*€. Let us note that
Zoiyo = [Pf”“]* and that by Lemma 3PM]* C M¢. Thus, it will suffice to show
that[P7*+']* C [PM]*. To this end, we note that by Lemma®, C [PM]* and so
Lemma 1 applies (under the condition (4))X0= M and X’ = Z5;.1, and implies
the required inclusion.

It follows that Z! C M¢ and thatM C Z“. If a ¢ Z“, thena ¢ M and so,
not(a) € M¢. Thus,Appz4(P) = Z' Unot(U \ Z*) C M°. O

Example 6.Let P be a UG-program consisting of the rules:

not(a) «— not(d) «— not(c)
a «— not(b) d — not(e)
b — not(a) e « not(d)
c+—a,b f—de

Iterating the operatoy} results in the following sequence:

0+ {a,b,c,d,e, f,not(a),not(d)} — {not(a),b} — {b,d, e, f,not(a), not(d)}
— {b,e,not(a),not(d)} — {b,e,not(a),not(d)} —

Thus, the sequendgZ;) is alternating. Its limit is(Z!, Z*), whereZ! = Z* = {b, e,
not(a),not(d)}. Thus,

Appzs(P) = Z' Unot(U \ Z*) = {b, e, not(a), not(c), not(d), not(f)}.
Since Appzs(P) is coherent and complet® has a unique answer set), e}. This

example also demonstrates it can improve on the bound provided By itself. O

5 Propertiesof Appx,

In this section we will show that il ppz; is defined then it is stronger than the other
two approximations. We recall that #ppz4(P) is undefined, therP has no answer
sets, that isP is inconsistentlt follows that for allconsistentUG-programs Appz is
stronger than the the other two approximations.
Theorem 5. LetP be a UG-program. [fAppz;(P) is defined then

Appz,(P) U Appzy(P) € Apprs(P)

There are programs which show tHaipz, is strictly stronger.

Example 7.Let P be the UG-program from Example 4. We recall thigipz, (P) =
{not(a),b}. Let us computedppz,(P). By iterating the operator’’, we obtain the
following sequence:

Zy=0r— Z1 ={a,b,c,not(a)} — Zy = {not(a),b} — Z3 = {not(a),b}....

Hence Appz4(P) = {not(a), b, not(c)} andAppz, (P) is apropersubset oA ppz(P).
O

Example 8.Let P be the UG-program from Example 3. We recall thigtpz,(P) =
{e}. To computedppz,(P), we note that by iterating the operatgff we get the fol-
lowing sequence:

Zo =0+ Zy ={a,b,c,d,e,not(e)} — Zy = {e} —
Z3 =A{a,b,c,e,not(e)} — Zy ={a,c,e} — Zs ={a,ce}....
Hence,Appz4(P) = {a,not(b), c,not(d), e} and Appz,(P) is aproper subset of
Appz4(P). O

Finally, we show that ifAppzs(P) is defined and complete thdn has a unique
answer set.

Corollary 3. Let P be a UG-program such thatppz(P) is defined and complete.
ThenAppzs(P) N U is an answer set aP and P has no other answer sets.

6 Corollariesfor the case of revision programs

Revision programming [MT98] is a formalism for describingdeenforcing constraints
on databases. The main concepts in the formalism are aaliddatabase, a revision
program, and justified revisions.

Expressions of the forrin(a) andout(a) (a € U) arerevision literals Intuitively,
in(a) (respectivelyput(a)) means that atora is in (respectively, is not in) a database.

A revision programconsists of rulesx «— ay,...,a,, Wherea, «;,...,a, are
revision literals. Given a revision prografand an initial databasg [MT98] defined
P-justified revisionsof I to represent revisions that satisfy the constraintg®pfre
“grounded” in P andI, and differ minimally from the initial database.

As we mentioned earlier, unitary general programs are atgriv to revision pro-
grams. The equivalence is established by the so csli#ting theorenfiMPT99], which
allows us to reduce any pai, I), whereP is a revision program anfl is an initial
database, to a unitary general program so thduistified revisions off correspond to
answer sets of the unitary general program. Consequetithgsalts of our paper im-
ply results about approximations of justified revisionstrial descriptions ofAppz,
Appz,, and Appz4 for revision programs can be found in [PivO5]. Approximato
Appz, and Appz,, for revision programs were originally described in [Piv01]

Acknowledgments. Inna Pivkina was supported by the NSF-funded ADVANCE Insti-
tutional Transformation Program at New Mexico State Ursitgy Grant No. 0123690,
and NMSU College of Arts and Sciences Research Center GrardiIN3-43891. The
other two authors were supported by the NSF Grants No. 0@a2d 0325063.

References

[BTK93] A. Bondarenko, F. Toni, and R.A. Kowalski. An assumptiomsed framework for
non-monotonic reasoning. In A. Nerode and L. Pereira, editagic programming and
non-monotonic reasoning (Lisbon, 199ppges 171-189, Cambridge, MA, 1993. MIT
Press.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic pesgs. InProceedings of
the 5th International Conference on Logic Programmipgges 1070-1080. MIT Press,
1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic prograaeral disjunctive
databasedNew Generation Computing:365-385, 1991.

[Lif96] V. Lifschitz. Foundations of logic programming. Rrinciples of Knowledge Represen-
tation, pages 69-127. CSLI Publications, 1996.

[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmimmic reasoning. lifPro-
ceedings of the 3rd international conference on principles of knowlesjgresentation
and reasoning, KR '92pages 603-614, San Mateo, CA, 1992. Morgan Kaufmann.

[MPT99] V. W. Marek, I. Pivkina, and M. Truszchgki. Revision programming = logic pro-
gramming + integrity constraints. In G. Gottlob, E. Grandjean, and K., Sslitors,
Computer Science Logic, 12th International Workshop, CSlveRime 1584 of.ecture
Notes in Computer Scienggages 73—89. Springer, 1999.

[MPTO02] V.W. Marek, I. Pivkina, and M. Truszcagki. Annotated revision programaAsrtificial
Intelligence Journal138:149-180, 2002.

[MT98] W.Marek and M. Truszczyski. Revision programmingd.heoretical Computer Science
190(2):241-277, 1998.

[Piv01] I. Pivkina. Revision programming: a knowledge repreg@migormalism. PhD disser-
tation, University of Kentucky, 2001.

[Piv05] I. Pivkina. Defining well-founded semantics for revisiongmaimming Technical Report
NMSU-CS-2005-001, New Mexico State University, Computer Scienepatment,
2005.

[PT95] T.C. Przymusiski and H. Turner. Update by means of inference rulesLadgic pro-
gramming and nonmonotonic reasoning (Lexington, KY, 1,988ume 928 ofLecture
Notes in Computer Sciengeages 156—174, Berlin, 1995. Springer.

[SNS02] P. Simons, I. Niem&] and T. Soininen. Extending and implementing the stable model
semanticsAtrtificial Intelligence 138:181-234, 2002.

[SNV95] V.S. Subrahmanian, D. Nau, and C. Vago. WFSranch bound= stable models.
IEEE Transactions on Knowledge and Data Engineering62—-377, 1995.

[Van93] A. Van Gelder. The alternating fixpoint of logic programs witlyaon. Journal of
Computer and System Sciencé8(1):185-221, 1993.

[VRS88] A.Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded aed well-founded seman-
tics for general logic programs. BCM Symposium on Principles of Database Systems
pages 221-230, 1988.

