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Abstract. In this paper we propose a version of default logic with the
following two properties: (1) defaults with mutually inconsistent justi-
fications are never used together in constructing a set of default conse-
quences of a theory; (2) the reasoning formalized by our logic is related
to the traditional skeptical mode of default reasoning. Our logic is based
on the concept of a skeptical rational extension. We give characterization
results for skeptical rational extensions and an algorithm to compute
them. We present some complexity results. Our main goal is to char-
acterize cases when the class of skeptical rational extensions is closed
under intersection. In the case of normal default theories our logic coin-
cides with the standard skeptical reasoning with extensions. In the case
of seminormal default theories our formalism provides a description of
the standard skeptical reasoning with rational extensions.

1 Introduction

In this paper we investigate a version of default logic with the following two main
properties. First, defaults with mutually inconsistent justifications are never used
together in constructing a set of default consequences of a theory. This has
implications for the adequacy of our system to handle situations with disjunctive
information. Second, the reasoning formalized by our logic is closely related to
the traditional skeptical mode of default reasoning. In the case of normal default
theories it coincides with the standard skeptical reasoning with extensions. In
the case of seminormal default theories our formalism provides a description of
the standard skeptical reasoning with rational extensions. Our logic is defined
by means of a fixpoint construction and not as the intersection of extensions,
as is usually the case with the skeptical reasoning. Hence, our results provide
a fixpoint description of the standard skeptical reasoning from normal default
theories and, in the case of rational extensions, from seminormal default theories.

Default logic, introduced by Reiter [10], is one of the most extensively studied
nonmonotonic systems. Several recent research monographs offer a comprehen-
sive presentation of theoretical and practical aspects of default logic [1, 3, 6].
Default logic assigns to a default theory a collection of theories called exten-
sions. Extensions model all possible “realities” described by a default theory
and are used as the basis for two modes of reasoning: brave and skeptical. In the
brave mode, an arbitrarily selected extension defines the set of consequences for
a default theory. In the skeptical one, the intersection of all extensions serves



as the set of consequences. Skeptical consequences are more robust in the sense
that they hold in all possible realities described by a default theory.

All its desirable properties notwithstanding, there are situations where de-
fault logic of Reiter is not easily applicable. In particular, default logic does
not handle well incomplete information given in the form of disjunctive clauses
[9, 2, 4, 7]. To remedy this, several modifications of default logic were proposed:
disjunctive default logic [4], cumulative default logic [2], constrained default logic
[11] and rational default logic [7]. The first system introduces a new disjunction
operator to handle ”effective” disjunction. The latter three take into account,
in one way or another, the requirement that defaults with mutually inconsistent
justifications must not be used in the construction of the same extension. Not
surprisingly then, they are somewhat related. Connections between cumulative
default logic and constrained default logic are studied in [11]. Relations between
constrained default logic and rational default logic are discussed in [8].

In this paper we continue our investigation of rational default logic introduced
in [7]. The key idea behind the concept of a rational extension of a default theory
(D, W) is that of a maximal set of defaults in D active with respect to theories
W and S. The collection of all such sets (it is always nonempty) is denoted by
MA(D,W,S). Intuitively, it contains every group of defaults the reasoner can
select to justify that S is a rational extension of (D, W) (if none works, S is not a
rational extension). That is, S is a rational extension if S can be derived from W
by means of some set of defaults A € MA(D, W, S). In this paper, we strengthen
the requirements for a hypothetical context S to be a rational extension. As a
result we obtain a new fixpoint construction and a new class of extensions —
skeptical rational extensions. (The word ”extension” is being used here in a
broader sense. A rational or a skeptical rational extension of a default theory is
not, in general, an extension of the theory in Reiter’s sense — see Examples 1
and 2.) Specifically, for a theory S to be a skeptical rational extension, S must
be exactly the set of formulas that can be derived from W by means of every set
of defaults A € MA(D,W,S). In other words, S consists of those formulas the
reasoner can justify no matter which element from MA(D, W, S) is selected for
reasoning. This motivates the term skeptical used to designate these extensions.

The class of skeptical rational extensions has several desirable properties. For
many default theories, it contains a least element with respect to inclusion. In
such a case, this least skeptical rational extension can be used as a formal model
of skeptical default reasoning (sometimes identical with and sometimes different
from the traditional model of skeptical default reasoning).

In this paper we investigate properties of skeptical rational extensions. We
restrict ourselves to the propositional case only. We give characterization results
for skeptical rational extensions and an algorithm to compute them. We present
some complexity results. Our main goal is to characterize cases when the class of
skeptical rational extensions is closed under intersection. We obtain the strongest
results for normal and seminormal default theories. We show that the intersection
of all rational extensions of a seminormal default theory is its least skeptical
rational extension. In particular, it means that the intersection of all extensions



of a normal default theory is, in fact, its least skeptical rational extension.

2 Definitions and Examples

Let £ be a language of propositional logic. A default is any expression of the
form
a:MpBy,...,Mpy
’y )
where «, 3;, 1 < i < k and ~ are propositional formulas from £. The formula «
is called the prerequisite of d, p(d) in symbols. The formulas §;, 1 < i < k, are
called the justifications of d. The set of justifications is denoted by j(d). Finally,
the formula -y is called the consequent of d and is denoted ¢(d). For a collection
D of defaults by p(D), j(D) and ¢(D) we denote, respectively, the sets of all

prerequisites, justifications and consequents of the defaults in D. A default of
a:Mp (Q:M(ﬁ/\’y)
B

the form , resp.) is called normal (seminormal, resp.).

A default theory is a pair (D, W), where D is a set of defaults and W is a set
of propositional formulas. A default theory (D, W) is normal (seminormal, resp.)
if all defaults in D are normal (seminormal, resp.). A default theory (D, W) is
finite if both D and W are finite.

For a set D of defaults and for a propositional theory S, we define

MpBy, ..., M
DS:{g:a ﬂl: ) /8
Y

ke D, and SV -8;, lgigk}

son) = {20, ).

Given a set of inference rules A, by Cn(-) we mean the consequence operator
of the formal proof system consisting of propositional calculus and the rules in
A (it is defined for all theories in the language).

The key notion of (standard) default logic is the notion of an extension !. A
theory S is an extension for a default theory (D, W) if S = CnPs(W).

For a detailed presentation of default logic the reader is referred to [6].

In [7] we introduced the notions of an active set of defaults and a rational
extension of a default theory. A set A of defaults is active with respect to sets
of formulas W and S if it satisfies the following conditions:

AS1 j(A)=0,o0r j(A) US is consistent,
AS2 p(A) C CnAs(W).

The set of all subsets of a set of defaults D which are active with respect to W
and S will be denoted by A(D,W,S).

Observe, that () is active with respect to every W and S. Hence, A(D, W, S)
is always nonempty. By the Kuratowski-Zorn Lemma, every A € A(D,W,S) is

! Our definition is different from but equivalent to the original definition of Reiter [10].



contained in a maximal (with respect to inclusion) element of A(D,W,S) (see
[7]). Define MA(D,W,S) to be the set of all maximal elements in A(D, W, S).

In [7], we defined S to be a rational extension for a default theory (D, W) if
S = Cn*s (W) for some A € MA(D,W,S). We will now define the notion of a
skeptical rational extension.

Definition 1. A theory S is a skeptical rational extension for a default theory
(D,W) if
S = N CnAs (W). 0
AEMA(D,W,S)

We will illustrate the notions defined above with several examples. The first
example exhibits a default theory which does not have an extension or a rational
extension but has a skeptical rational extension. In all examples a, b, ¢ and d
stand for distinct propositional atoms.

Ezample 1. Let D = {:A{;“, :Mbﬁb}. The default theory (D, () has no extension

and no rational extension. On the other hand, S = Cn({a V b}) is its skeptical
rational extension. Indeed, we have

MA(D,0,S) = {{:J\iﬂa}’{;]\?b}}

N Cn?s (§) = Cn({a}) N Cn({b}) = Cn({aV b}) = S.

AEMA(D,D,S)

and

O

The default theory ({%},@) is a classical example of a theory without
extensions. More generally, a default theory containing the default 422 where
a is an atom that does not appear in any other default or formula, does not have
an extension. Hence, the fact that Cn({a V b}) is a skeptical rational extension
of the default theory of Example 1 may seem counterintuitive. However, the
meaning of the defaults in D is: if —a (—b, resp.) is possible, then conclude a (b,
resp.). In the context of Cn({a V b}), any of the two defaults can fire (but not
together). Hence, no matter what is the choice, a V b follows.

The next example shows that there are also default theories which have
extensions but do not have skeptical rational extensions.

Ezample 2. Let us consider the default theory (D, W), where W = {a V b} and
D {:M—'a :M=b :M(—lcv—-d)}'

)

c d > —cA—d

This theory has a unique extension Cn({aVb, ¢,d}). We proved in [7] that (D, W)
does not have rational extensions.

Assume that S is a skeptical rational extension for (D,W). Then aVb € S.
Ifend¢ S then

MA(D,WS):{{:MW :M(ﬂcvﬁd)}y{:M—'b :M(ﬁcvﬂd)}}'

c ’ —cA—d d ' —cA-d



Thus, aermap,w,s) CnAs(W) = L and S # L (because cAd € S). So, assume
that cAd € S. Then

= ({2 (22

and e pma(p,w,s) CnAs (W) = Cn({aVb,cvd}) # S (because cAd ¢ Cn({aV
b,cV d})). Hence, (D, W) does not have skeptical rational extensions. |

One of the properties we are especially interested in here is closure under
intersection of the family of skeptical rational extensions. The following example
presents a default theory for which the family of skeptical rational extensions
is closed under intersection. This theory is normal. We will later show that this
property holds for every normal default theory with a finite number of extensions.

Ezample 3. Let W = ) and
a:Mb a:M-b :Ma
p= {5 )
Let S; = Cn({a,b}), S2 = Cn({a,-b}) and S = S1 NSz = Cn({a}). Then
MA(D,W,51)={{:Ma,asz}}, MA(D,W,52)={{:MG a:Mﬁb}}

a b a b

MA(D, W, S) = {{:Ma,a:Mb}j{:Mcaa:M—lb}}‘

a b a —b

Clearly, S; and S are extensions, rational extensions and skeptical rational
extensions for (D, W) and S is also a skeptical rational extension for (D, W). O

and

For some default theories the family of their skeptical rational extensions is
not closed under finite intersection.

Example 4. Let W = () and
D— :M-a,Md :M(=bVa),Md : M-d,M-b
N b ’ bAc ’ c '
Let S; = Cn({b}), S2 = Cn({c}) and S = S1 NSz = Cn({bV c}). Then

MAD, W, Sy) = {{:M—'a,Md}7{:M(—-bVa),Md}},

b bAc

: M—a, Md :M(=bVa),Md) (:M-d, M-b
MA(D;WNSZ)Z{{ b ’ ( b/\C) };{ ¢ }};

and MA(D,W,S) = MA(D,W,S,). It is easy to see that S; and S- are skeptical
rational extensions for (D, W) while S is not. This default theory does not have
a least skeptical rational extension.

Let us note that S; and Sy are also rational extensions for (D, W). Let
Sz = Cn({b,c}). We have MA(D, W, S3) = MA(D,W,S;). Hence, S; is also
a rational extension of (D,W). Finally, it is easy to see that Sz is the only
(Reiter’s) extension for (D, W). i




We conclude this section with an alternative characterization of active sets.

Proposition2. A set A of defaults is active with respect to sets of formulas W
and S if and only if it satisfies AS1 and the following condition:

AS2' p(A) C CnMo A (W), i

3 General Properties

In this section we present some results (Theorems 8 and 9, Corollary 10) pro-
viding sufficient conditions for the intersection of skeptical rational extensions
to be a skeptical rational extension too. These results will be used in Sections 5
and 6. We start with several auxiliary observations. (Simple proofs of Lemmas
3, 4 and 6 are omitted due to space restriction.)

Lemma3. Let (D,W) be a default theory. Let S be a set of formulas and let
A€ A(D,W,S). Then A € A(D,W,T) for every theory T such that A satisfies
AS1 forT. |

Lemmad. Let (D,W) be a default theory. Let S and T be theories such that
SCT.IfAe MAD,W,S) and A€ A(D,W,T), then A€ MA(D,W,T). O

Lemmalb. Let (D, W) be a default theory and let S = ﬂle Si (k> 1), where
each theory S; is closed under propositional provability. Then MA(D,W,S) C
UL, MA(D,W,S,).

Proof. Let A € MA(D,W,S). Then A satisfies AS1 for S. Thus, j(A) = 0 or
j(A) U S is consistent. If j(A) = 0 then for every i (1 <14 < k), A satisfies AS1
for S;. Let us assume now that j(A) U S is consistent. We have

k k
Cn(i(4) U ) = Cn(i(4) U] 5) = Cr(((G(D U S)). (1)
We will show that
k k
Cn((Y(A4) uS) = () Cn(i(4) US)). 2

Clearly, the left-hand side of (2) is contained in the right-hand side. So, we need
to prove only the converse inclusion. Consider a formula ¢ € ﬂle Cn(j(A)US;).
For every ¢ (1 < i < k), ¢ is provable from j(A4) U S;. By the Compactuess
Theorem, for every i, there is a finite subset S} of \S; such that ¢ is provable
from j(A) U S.. Let ¢; be the conjunction of all formulas from S! (1 < i < k).
Then ¢ is provable from j(A) U {¢;}. Since S; is closed under propositional
consequences, ¢; € S;. Consequently, p1V...Vy € ﬂle S;. Let v be a valuation
satisfying (F_, (j(A) U S;). Since N, (j(A) U S;) = j(A) UNE, S;, it follows



that v satisfies j(A) and v satisfies p1 V...V ¢i. Hence, v satisfies j(A4) U {p;}
for some i (1 <4 < k). Since ¢ is provable from j(A) U {¢;}, v satisfies ¢. Thus,
v € Cn(NZ, ((A) U Sy)).

It follows from (1) and (2) that if j(A) U S is consistent then for some i
(1 <i<k)j(A)US;is consistent. Hence, in both cases (j(A) =0, or j(A)U S
is consistent) A satisfies AS1 for some S; (1 < i < k). By Lemma 3, A €
A(D,W,S;) for some i (1 < i < k). Since S C S;, then by Lemma 4, A €
MA(D,W,S;) for some i (1 <i < k) and we are done. |

We will denote by GD(D,S) the set of generating defaults from D with
respect to S, that is,

a:MpBy,...,MpB
v

GD(D,S):{ "eD:Ska and Slyfﬁﬂi,lgigk}.

Lemma6. Let a theory S be an extension of a default theory (D, W) and let
A€ A(D,W,S). Then A C GD(D,S). In particular, if GD(D,S) € A(D,W,S)
then MA(D,W,S) ={GD(D,S)}. O

Example 4 indicates that the notions of an extension, a rational extension
and a skeptical rational extension are, in general, different. However, under some
conditions they coincide. One such situation is described in our first theorem (the
proof is omitted due to space restriction).

Theorem 7. Let (D, W) be a default theory and let S be a propositional theory
such that MA(D,W,S) = {GD(D,S)}. Then S is an extension of (D,W) if
and only if S is a rational extension of (D, W) if and only if S is a skeptical
rational extension of (D,W). i

The next several results describe conditions which guarantee that the inter-
section of skeptical rational extensions is also a skeptical rational extension.

Theorem 8. Let {S; : i € I} be a set of skeptical rational extensions for a default
theory (D, W), let S = (\;c; Si and MA(D,W,S) = U;c; MA(D, W, S;). Then
S is a skeptical rational extension for (D, W).

Proof. We have

ﬂ Cns (W) = ﬂ CnMoMA (W) =
AEMA(D,W,S) AEMA(D,W,S)
N N onMmw) = |  ontssw)=()8i =5
i€l AeMA(D,W,S;) i€l AeMA(D,W,S;) iel

O

Theorem 9. Let {S; : i € I} be a set of extensions for a default theory (D, W)
such that for every i € I, MA(D,W,S;) = {GD(D, S;)}. Let S = (\;c; Si and
MA(D,W,S) € Use MA(D,W,S;). Then S is a skeptical rational extension
for (D, W).



Proof. Every S; is a skeptical rational extension for (D, W) (Theorem 7). By
Theorem 8, to prove the assertion it suffices to show that (J;c; MA(D, W, S;) C
MA(D,W,S). Let A € MA(D,W,S;) for some i € I. Hence, A = GD(D, S;).
Since S C S;, A satisfies AS1 for S. By Lemma 3, A € A(D,W,S). There
is B € MA(D,W,S) such that A C B. According to the assumption, B €
MA(D, W, S;) for some j € I, that is, B = GD(D, S;). Since A = GD(D, S;),
we have GD(D, S;) C GD(D,S;). Thus, Cn(W U ¢(GD(D, S;))) € Cn(W U
c¢(GD(D, S;))). By Theorem 3.57 in [6], we have S; = Cn(WUc(GD(D, S;))) and
S; = Cn(W Uc(GD(D, S;))), so we get S; C S;. Since S; and S; are extensions
of the same default theory, S; = S; and A = B. Hence, A € MA(D,W,S). O
Lemma 5 and Theorem 9 imply the following corollary.

Corollary 10. Let Sy,...,Sk (k > 1) be extensions of a default theory (D, W)
such that for every i (1 <i < k), MAD,W,S;) = {GD(D,S;)}. Then S =
ﬂle S; is a skeptical rational extension for (D, W). O

Observe that even though in Theorem 9 and Corollary 10 we assume that
sets S; are extensions, by Theorem 7 every S; is also a rational extension and a
skeptical rational extension for (D, W).

4 Algorithmic Issues

Proposition11. Let S be a skeptical rational extension for a default theory
(D,W) such that D is finite. Then S = Cn(W U{p1 V...V @i}), where every
wi = Nc(A;) for some Ay € MA(D,W,S).

Proof. Since D is finite, MA(D,W,S) is finite, as well. Let us assume that
MA(D,W,S) ={A1,...,Ar}. For each A; € MA(D,W,S) define p; = A c¢(A;)
(since each A; is finite, ; is well-defined). Since A; € A(D, W, S), Cn4)s (W) =
Cn(W Uc(4;)) = Cn(W U {¢;}). Hence,

k k
S =) CnAs (W) = () Cn(W U{p:i}) = Cn(W U {p1 V...V @i}).

i=1 i=1
O

If (D, W) is finite then the number of sets of the form Cn(W U {p1 V...V
vr}), where every ; is of the form A c¢(A) for some A C D, is also finite.
For every such set S, one can compute MA(D,W,S) and check whether S =
Nacrmap,w,s) CnAs (W). Thus, we have the following algorithm for computing
skeptical rational extensions.

1. For every A C D, compute o4 = A c(A) (pg =T). Let & = {pa: A C D}.
2. For every ¥ C &

(a) compute ¢y =\/ ¥,

(b) for every A C D, verify whether A € MA(D, W, W U {¢}),

(¢c) compute ¢ = VAeMA(D,W,WU{zp}) PA,



(d) check whether WU{p} F ¢ and WU{9} F ¢; if s0, output Cn(W U{¢})
as a skeptical rational extension for (D, W).

The following example shows that there are default theories (D, W) and sets
S such that the size of MA(D,W,S) is exponential in the size of D. It follows
that an algorithm for verifying whether S is a skeptical rational extension of
(D, W) must have in the worst case an exponential complexity.

Ezample 5. Let us consider the default theory (D, W) where

D:{:Mm : M—py : Mpy :M_‘pn}

o w1 P D
p1,---,Ppn are distinct propositional atoms and W = ). Then MA(D, W, Cn(0))
has 2" elements, each of them obtained by selecting exactly one default from
each pair Mpi :Mopi O
pi —Pi
The complexity of reasoning with skeptical rational extensions in the general
case remains an open problem.

5 Seminormal Default Theories

In this section we study skeptical rational extensions of seminormal default theo-
ries. We show that every seminormal default theory has a least skeptical rational
extension and that it coincides with the intersection of all rational extensions.

Our first main result of this section shows that every skeptical rational ex-
tension of a seminormal default theory can be represented as the intersection of
a certain number (possibly infinitely many) of rational extensions.

Theorem 12. For every skeptical rational extension S of a seminormal default
theory (D, W) there is a set {S; : i € I} of rational extensions for (D, W) such
that S = ﬂiEI S;.

Proof. Let S be a skeptical rational extension for (D, W). Consequently, we have
S = Naermap,w,s) Crs (W). Let MA(D,W,S) = {A; : i € I} and let us
denote S; = Cn49)s (W) (i € I). Then S = (),., Si. We will show that each S;
is a rational extension for (D, W).

Since A; € MA(D,W,S), A; satisfies AS1 for S. Hence, j(4;) = 0 or
j(A;) U S is consistent. If j(A;) = 0 then A; satisfies AS1 for S;. If j(4;)U S
is consistent then, since W C S, j(A4;) UW is consistent. Since all defaults in
A; are seminormal, j(A;) implies ¢(A;). It follows that j(A4;) U c(A;) U W is
consistent. Since 4; € MA(D,W,S), Cn4)s(W) = Cn(W U c(4;)). Hence,
S; = Cn(W U c¢(4;)). It follows that j(A4;) US; is consistent. Consequently, A;
satisfies AS1 for S;. Thus, in both cases (j(4;) =0, or j(A;) US is consistent)
A; satisfies AS1 for S;. By Lemma 3, A; € A(D,W,S;). Since S C S;, then by
Lemma 4, A; € MA(D,W,S;). It follows that (A4;)s, = Mon(A;) = (A;)s. Since

iel



S; = CnlA9)s (W), we have S; = Cn(4s: (W), Hence, S; is a rational extension
of (D, W). i

In [6] a technique for constructing an extension of a default theory from an
ordering of defaults was presented and thoroughly studied. In [7] we adapted
this technique to the case of rational extensions. We will use some properties
of this construction in the proof of the second main result of this section. The
reader is referred to [6, 7] for details.

We assume that the set of the atoms of our language £ is denumerable.
Consequently, the set of all defaults over the language £ is denumerable.

Let (D,W) be a default theory and < a well-ordering of D. We define an
ordinal 7<. For every ordinal £ < n< we define a set of defaults AD,; and a
default d¢. We also define a set of defaults AD_. We proceed as follows:

If the sets AD¢, £ < a, have been defined but 4 has not been defined then

1. If there is no default d € D'\ J;, AD¢ such that:
(a) j(d) =0 or WU c(Ugco ADg) Ui (U< ADg) U j(d) is consistent, and
(b) WU e(Ueo ADe) F p(d),
then - = «.

2. Otherwise, define do to be the <-least default d € D\ J,_, AD¢ such that
the conditions (a) and (b) above hold. Then set ADy = {J;, AD¢ U {da}.

When the construction terminates, put AD< = (¢,  ADg. The theory Cn(WU
¢(AD%)) will be called generated by the well-ordering <.
We will need the following property of this construction.

Theorem 13. (extended version of [7]) Let (D, W) be a seminormal default
theory and let < be a well-ordering of D. Then T4 = Cn(W U c(ADL)) is a
rational extension for (D,W). Moreover, AD, € MA(D,W,T<). O

It follows from this theorem that every seminormal default theory has a
rational extension. In the proof of our next result we will also need the following
proposition.

Proposition 14. (extended version of [7]) Let (D, W) be a default theory and
let S and T be rational extensions of (D,W) such that S = Cns (W) for some
A€ MAD,W,S), T = CnBr (W) for some B € MA(D,W,T) and A C B.
Then A=B and S =T. O

Now we are ready to present the second main result of this section.

Theorem 15. The intersection of all rational extensions of a seminormal de-
fault theory is the least skeptical rational extension for this theory.

Proof. Let {S; : @ € I} be the set of all rational extensions of a seminormal
default theory (D,W) and let S = );; S;. By Theorem 12, we need only to
prove that S is a skeptical rational extension for (D, W).

Let A € MA(D,W,S). Let us consider any well-ordering < of D in which

the defaults in A precede all other defaults. Assume also that the defaults of A



are ordered by < according to the order in which their corresponding monotonic
inference rules are applied in the process of computing Cn4s (W). It is easy to
see that A C AD .. Since the theory (D, W) is seminormal, the theory generated
by <, Cn(W U c¢(ADL)), is a rational extension for (D, W) (Theorem 13), that
is, Cn(W U c¢(ADZ)) = S; for some i € I. Moreover, AD, € MA(D,W,S;).

AD . satisfies AS1 for S;. Hence, j(ADZ) =0 or j(ADZ)US; is consistent.
If j(ADL) = 0 then AD, = 0 (every default in D has a justification). Since
ACAD; =0, A= AD.. If j(AD<) U S; is consistent then, since S C S;,
J(ADZ)US is consistent. By Lemma 3, AD, € A(D,W,S). By the maximality
of A, we get A = AD_. Hence, in both cases (j(AD<) = 0, or j(ADZ) U S;
is consistent) A = AD_, that is, A € MA(D,W,S;) for some i € I. Thus,
MA(D,W,S) C Ujer MA(D, W, S;).

Moreover, we proved that for every A € MA(D,W,S) there is ¢ € I such
that

Cn?s (W) = Cn(W U c¢(A)) = S; and A € MA(D,W,S;). (3)

Thus,
N o) =[S

AEMA(D,W,S) il

for some I' C I. We will show that I' = I, that is, that for every i € I, there is
B € MA(D,W,S) such that S; = CnBs(W).

Since S; is a rational extension for (D, W), there is B € MA(D,W, S;) such
that S; = Cn®si(W). Since S C S;, then by Lemma 3, B € A(D,W, S). Hence,
thereis C € MA(D,W,S) such that B C C. By (3), there is j € I such that C €
MA(D,W,S;) and Cn®s (W) = S;. It is easy to see that C's, = Mon(C) = Cs.
Hence, S; = Cn“i (W). By Proposition 14, B = C, that is, B € MA(D, W, S).
Moreover, Bs = Mon(B) = Bs,. Thus, S; = CnBs:(W) = CnPs(W). Hence,
we have shown that I' = I, that is, ﬂAeMA(D7W75) CnAs(W) = S. Thus, S is a
skeptical rational extension for (D, W). i

Corollary 16. FEvery seminormal default theory has a skeptical rational exten-
si0m. O

Example 2 shows that Corollary 16 is not true for general default theories.

Theorem 15 shows that the intersection of all rational extensions is a skeptical
rational extension. This is not true for an arbitrary family of rational extensions
of a seminormal default theory, even if the theory is finite (cf. Theorem 20).

Ezample 6. Let
D_{:M(a/\—-b) :M(bA—c) :M(c/\—-a)}

a ’ b ’ c
The default theory (D, 0) is a classical example of a seminormal default theory
without extensions. This theory has three rational extensions: S; = Cn({a}),
Sz = Cn({b}) and S5 = Cn({c}). According to Theorem 15, their intersection
S =8NS NS =Cn({aVbVc})is a skeptical rational extension for (D, 0).



However, the intersections of any two rational extensions, Sio = S; NSy =
C’n({a \Y b}), 513 = 51 n 53 = C’n({a \Y C}) and 523 = Sz n S3 = C?’L({bv C}),
are not skeptical rational extensions. Indeed, it is easy to see that for any i, j
(1<i<j<3),

MAD. .55 = {{:M(a/\ﬂb)},{:M(bb/\—lc)}j{:M(c/\—la)}}_

a C

Hence,
N Cn*u(0) =Cn({avbve)) =S # Sy
AEMA(D,0,S;:;)

Let us also observe that none of Sy, Ss, S3 is a skeptical rational extension. O
Theorem 15 implies the following corollary.

Corollary 17. A formula ¢ belongs to all skeptical rational extensions of a semi-
normal default theory (D, W) if and only if ¢ belongs to all rational extensions
of (D,W). O

The complexity of reasoning with rational extensions was studied in [7]. In
particular, we proved that the problem of deciding whether a formula belongs
to all rational extensions of a finite default theory is IT{'-complete. It remains
IT¥-complete even under the restriction to the class of normal default theories.
Since every normal default theory is seminormal, we obtain the following result.

Corollary 18. The problem IN-ALL: Given a finite seminormal default theory
(D,W) and a formula ¢, decide if ¢ is in all skeptical rational extensions of
(D, W), is 11 -complete. O

The complexity of the problem of deciding whether a formula belongs to at
least one skeptical rational extension of a seminormal default theory remains
open. The argument we used for the problem IN-ALL does not work here.

6 Normal Default Theories

The results obtained in the previous section for seminormal default theories
clearly extend to the case of normal default theories. In this case, however, we
can still strengthen some of them. We start this section with a simple proposition.

Proposition19. Let S be an extension of a normal default theory (D, W). Then
MA(D,W,S)={GD(D,S)}.

Proof. If S is inconsistent then MA(D, W, S) = {0} and GD(D, S) = 0, so the
assertion holds. Assume now that S is consistent. According to Lemma 6, it is
sufficient to prove that GD(D,S) € A(D,W,S) and this fact is proven in the
proof of Theorem 3.1 in [7]. m|



The main result of this section shows that finite intersections of extensions
(or rational extensions - for normal default theories these notions coincide, see
[7]) are skeptical rational extensions. In particular, (rational) extensions are also
skeptical rational extensions for normal default theories (unlike in the case of
seminormal ones).

Theorem 20. Let (D, W) be a normal default theory.

1. Let Sy,...,Sk (k > 1) be extensions of (D,W). Then S = ﬂle Si is a
skeptical rational extension for (D, W).

2. Every skeptical rational extension of (D, W) can be represented as the inter-
section of a certain number (possibly infinitely many) of extensions.

Proof. The first assertion follows from Proposition 19 and Corollary 10. The
second assertion follows from Theorem 12 and from the fact that for normal
default theories extensions and rational extensions coincide. O

Corollary 21. Let (D, W) be a normal default theory with a finite number of ex-
tensions. Then the family of all skeptical rational extensions of (D, W) is closed
under intersection. In particular, the family of all skeptical rational extensions
of a finite normal default theory is closed under intersection. O

The question whether the intersection of an arbitrary collection of exten-
sions of a normal default theory is a skeptical rational extension remains open.
However, Theorem 15 and the fact that for normal default theories extensions
coincide with rational extensions imply a weaker result.

Theorem 22. The intersection of all extensions of a normal default theory is
the least skeptical rational extension for this theory. |

The following example shows that Theorem 22 is not true for seminormal
default theories.

Ezample 7. Let

) )

D- :Ma :M=-b :M((Ac)
| a —b c '

The default theory (D,0) has one extension: S; = Cn({a,—b}). This theory
has two rational extensions: S; and Sy = Cn({a,c}). It has also two skeptical
rational extensions: Sy and Sz = Cn({a, bV c}). Hence, S; is the intersection of
all extensions while Ss is the least skeptical rational extension (which, according
to Theorem 15, coincides with the intersection of all rational extensions) and

St ;é S3. O
Theorems 20 and 22 imply the following corollary.

Corollary 23. A formula ¢ belongs to some (resp. all) skeptical rational exten-
sion(s) of a normal default theory (D, W) if and only if v belongs to some (resp.
all) extension(s) of (D, W). i



Using Corollary 23 and the results from [5] on the complexity of the problems
IN-SOME and IN-ALL for extensions of normal default theories we get the
following complexity result.

Corollary 24. The problem IN-SOME: Given a finite normal default theory
(D, W) and a formula ¢, decide if ¢ is in some skeptical rational extension
of (D, W), is X¥-complete. The problem IN-ALL: Given a finite normal default
theory (D, W) and a formula p, decide if  is in all skeptical rational extensions
of (D,W), is ITI{ -complete. |

7 Conclusions

In this paper we proposed a new version of default logic. It is based on the
concept of a skeptical rational extension. We showed that in the case of normal
default theories our version of default logic coincides with the standard skeptical
reasoning with extensions. In the case of seminormal default theories it coincides
with the standard skeptical reasoning with rational extensions. We presented
some general properties of skeptical rational extensions, an algorithm to compute
them and some complexity results. However, the complexity of reasoning with
skeptical rational extensions from arbitrary default theories is an open problem.
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