
Logi programs with monotone ardinality atomsVitor W. Marek1, Ilkka Niemel�a2, and Miros law Truszzy�nski11 Department of Computer Siene, University of Kentuky,Lexington, KY 40506-0046, USA2 Department of Computer Siene and EngineeringHelsinki University of Tehnology,P.O.Box 5400, FIN-02015 HUT, FinlandAbstrat. We investigate ma-programs, that is, logi programs withlauses built of monotone ardinality atoms of the form kX, where k isa non-negative integer and X is a �nite set of propositional atoms. Wedevelop a theory of ma-programs. We demonstrate that the operationalonept of the one-step provability operator generalizes to ma-programs,but the generalization involves nondeterminism. Our main results showthat the formalism of ma-programs is a ommon generalization of (1)normal logi programming with its semantis of models, supported mod-els and stable models, (2) logi programming with ardinality atoms andwith the semantis of stable models, as de�ned by Niemel�a, Simons andSoininen, and (3) of disjuntive logi programming with the possible-model semantis of Sakama and Inoue.1 IntrodutionWe introdue and study logi programs whose lauses are built of monotoneardinality atoms (m-atoms), that is, expressions of the form kX , where k is anon-negative integer and X is a �nite set of propositional atoms. Intuitively, kXis true in an interpretation M if at least k atoms in X are true in M . Thus, theintended role for m-atoms is to represent onstraints on lower bounds of ardi-nalities of sets. We refer to programs with m-atoms as ma-programs. We aremotivated in this work by the reent emergene and demonstrated e�etivenessof logi programming extended with means to model ardinality onstraints [12,11, 15℄, and by the need to develop sound theoretial basis for suh formalisms.In the paper, we develop a theory of ma-programs. In that we losely followthe development of normal logi programming and lift all its major onepts,tehniques and results to the setting of ma-programs. There is, however, a ba-si di�erene. M-atoms have, by their very nature, a built-in nondeterminism.They an be viewed as shorthands for ertain disjuntions and, in general, thereare many ways to make an m-atom kX true. This nondeterminism has a keyonsequene. The one-step provability operator is no longer deterministi, as innormal logi programming, where it maps interpretations to interpretations. Inthe ase of ma-programs, the one-step provability operator is nondeterminis-ti. It assigns to an interpretation M a set of interpretations, eah regarded aspossible and equally likely outomes of applying the operator to M .



Modulo this di�erene, our theory of ma-programs parallels that of normallogi programs. First, we introdue models and supported models of an ma-program and desribe them in terms of the one-step provability operator in muhthe same way it is done in normal logi programming. To de�ne stable models we�rst de�ne the lass of Horn ma-programs by disallowing the negation operatorin the bodies of lauses. We show that the nondeterministi one-step provabilityoperator assoiates with Horn ma-programs a notion of a (nondeterministi)omputation (the ounterpart to the bottom-up omputation with normal Hornprograms) and a lass of derivable models (ounterparts to the least model of anormal Horn program). We then lift the notion of the Gelfond-Lifshitz redut[8℄ to the ase of ma-programs and de�ne a stable model of an ma-program asa set of atoms that is a derivable model of the redut. A striking aspet of ouronstrution is that all its steps are literal extensions of the orresponding stepsin the original approah. We show that stable models behave as expeted. Theyare supported and, in ase of Horn ma-programs, derivable.An intended meaning of an m-atom 1fag is that a be true. More formally,1fag is true in an interpretation if and only if a is true in that interpretation.That onnetion implies a natural representation of normal logi programs asma-programs. We show that this representation preserves all semantis we dis-uss in the paper. It follows that the formalism of ma-programs an be viewedas a diret generalization of normal logi programming.As we noted, an extension of logi programming with diret ways to modelardinality onstraints was �rst proposed in [12℄. That work de�ned a syntax oflogi programs with ardinality onstraints (in fat, with more general weightonstraints) and introdued the notion of a stable model. We will refer to pro-grams in that formalism as NSS-programs. One of the results in [12℄ showed thatNSS-programs generalized normal logi programming with the stable-model se-mantis of Gelfond and Lifshitz [8℄. However, the notion of the redut underly-ing the de�nition of a stable model given in [12℄ is di�erent from that proposedby Gelfond and Lifshitz [8℄ and the preise nature of the relationship betweennormal logi programs and NSS-programs was not lear.Ma-programs expliate this relationship. We show that the formalism ofma-programs parallels normal logi programming. In partiular, major on-epts, results and tehniques in normal logi programming have ounterparts inthe setting of ma-programs. We also prove that under some simple transforma-tions, NSS-programs are equivalent to ma-programs. Through this onnetion,the theory of normal logi programming an be lifted to the setting of NSS-programs leading to new haraterizations of stable models of NSS-programs.Finally, we show that ma-programs not only provide an overarhing frame-work for both normal logi programs and NSS-programs. They are also usefulin investigating disjuntive logi programs. In the paper, we show that logiprogramming with m-atoms generalize disjuntive logi programming with thepossible-model semantis introdued in [14℄.



2 Logi programs with monotone ardinality atomsLet At be a set of (propositional) atoms. An m-atom over At (short for amonotone ardinality atom over At) is any expression of the form kX , where kis a non-negative integer and X � At is a �nite set suh that k � jX j. We allX the atom set of an m-atom A = kX and denote it by aset(A). An intuitivereading of an m-atom kX is: at least k atoms in X are true. The intendedmeaning of kX explains the requirement that k � jX j. Clearly, if k > jX j, it isimpossible to have in X at least k true atoms and the expression kX is equivalentto a ontradition.An m-literal is an expression of the form A or not(A), where A is an m-atom. An ma-lause (short for a monotone-ardinality-atom lause) is an ex-pression r of the form H  L1; : : : ; Lm; (1)where H is an m-atom and Li, 1 � i � m, are m-literals. We all the m-atomH the head of r and denote it by hd (r). We all the set fL1; : : : ; Lmg the bodyof r and denote it by bd(r). An ma-lause is Horn if its body does not ontainliterals of the form not(A). Finally, for an ma-lause r, we de�ne the head setof r, hset(r), by setting hset(r) = aset(hd (r)).Ma-lauses form ma-programs. We de�ne the head set of an ma-programP , hset(P ), by hset(P ) = Sfhset(r) : r 2 Pg (if P = ;, hset(P ) = ;, as well). Ifall lauses in an ma-program P are Horn, P is a Horn ma-program.One an give a delarative interpretation to ma-programs in terms of anatural extension of the semantis of propositional logi. We say that a set Mof atoms satis�es an m-atom kX if jM \X j � k, and M satis�es an m-literalnot(kX) if it does not satisfy kX (that is, if jM \X j < k). A set of atoms Msatis�es an ma-lause (1) if M satis�es H whenever M satis�es all literals Li,1 � i � m. Finally, a set of atoms M satis�es an ma-program P if it satis�esall lauses in P . We often say \is a model of" instead of \satis�es". We use thesymbol j= to denote the satisfation relation.The following straightforward property of m-atoms explains the use of theterm \monotone" in their name.Proposition 1. Let A be an m-atom over a set of atoms At. For every setsM;M 0 � At, if M �M 0 and M j= A then M 0 j= A.Ma-lauses also have a proedural interpretation in whih they are viewedas derivation rules. Intuitively, if an ma-lause r has its body satis�ed by someset of atoms M , then r provides support for deriving from M any set of atomsM 0 suh that1. M 0 onsists of atoms mentioned in the head of r (r provides no grounds forderiving atoms that do not appear in its head)2. M 0 satis�es the head of r (sine r \�res", the onstraint imposed by its headmust hold).



Clearly, the proess of deriving M 0 from M by means of r is nondeterministi inthe sense that, in general, there are several sets that are supported by r and M .This notion of nondeterministi derivability extends to programs and leads tothe onept of the nondeterministi one-step provability operator. Let P be anma-program and let M � At be a set of atoms. We set P (M) = fr 2 P : M j=bd(r)g. We all ma-lauses in P (M), M-appliable.De�nition 1. Let P be an ma-program and let M � At. A set M 0 is nonde-terministially one-step provable from M by means of P , if M 0 � hset(P (M))and M 0 j= hd (r), for every ma-lause r in P (M).The nondeterministi one-step provability operator T ndP , is a funtion fromP(At) to P(P(At)) and suh that for every M � At, T ndP (M) onsists all setsM 0 that are nondeterministially one-step provable from M by means of P .As we indiate next, for every M � At , T ndP (M) is nonempty. It follows thatT ndP an be viewed as a formal representation of a nondeterministi operator onP(At), whih assigns to every subset M of At a subset of At arbitrarily seletedfrom the olletion T ndP (M) of possible outomes. Sine T ndP (M) is nonempty,this nondeterministi operator is well de�ned.Proposition 2. Let P be an ma-program and letM � At. Then, hset(P (M)) 2T ndP (M). In partiular, T ndP (M) 6= ;.The operator T ndP plays a fundamental role in our researh. It allows us to for-malize proedural interpretations of ma-lauses and identify for them mathinglasses of models that provide the orresponding delarative aount.Our �rst result haraterizes models of ma-programs. This haraterizationis a generalization of the familiar desription of models of normal logi programsas pre�xpoints of TP .Theorem 1. Let P be an ma-program and let M � At. The set M is a modelof P if and only if there is M 0 2 T ndP (M) suh that M 0 �M .A straightforward orollary states that every ma-program has a model.Corollary 1. Let P be an ma-program. Then, hset(P ) is a model of P .Models of ma-programs may ontain elements that have no support in aprogram and the model itself. For instane, let us onsider an ma-program Ponsisting of the lause: 1fp; qg  not(1fqg), where p and q are two di�erentatoms. Let M1 = fqg. Clearly, M1 is a model of P . However, M1 has no supportin P and itself. Indeed, T ndP (M1) = f;g and so, P and M1 do not provide supportfor any atom. Similarly, another model of P , the set M2 = fp; rg, where r 2 Atis an atom di�erent from p and q, has no support in P and itself. We haveT ndP (M2) = ffpg; fqg; fp; qgg and so, p has support in P and M2, but r doesnot. Finally, the set M3 = fpg, whih is also a model of P , has support in Pand itself. Indeed, T ndP (M3) = ffpg; fqg; fp; qgg and there is a way to derive M3from P and M3. We formalize now this disussion in the following de�nition.



De�nition 2. Let P be an ma-program. A set of atoms M is a supportedmodel of P if M 2 T ndP (M).The use of the term \model" is justi�ed. By Theorem 1, supported modelsof P are indeed models of P , as stated in the following result.Corollary 2. Every supported model of an ma-program P is a model of P .Finally, we have the following haraterization of supported models.Proposition 3. Let P be an ma-program. A set M � At is a supported modelof P if and only if M is a model of P and M � hset(P (M)).3 Horn ma-programsTo introdue stable models of ma-programs, we need �rst to study Horn ma-programs. With eah Horn ma-program P one an assoiate the onept of aP -omputation. Namely, a P -omputation is a sequene (Xn)n=0;1;::: suh thatX0 = ; and, for every non-negative integer n,1. Xn � Xn+1, and2. Xn+1 2 T ndP (Xn).Given a omputation t = (Xn)n=0;1;:::, we all S1n=0Xn the result of the om-putation t and denote it by Rt.Proposition 4. Let P be a Horn ma-program and let t be a P -omputation.Then Rt � hset(P (Rt)).If P is a Horn ma-program then P -omputations exist. Let M be a model ofP . We de�ne the sequene tP;M = (XP;Mn )n=0;1;::: as follows. We set XP;M0 = ;and, for every n � 0, XP;Mn+1 = hset(P (XP;Mn )) \M .Theorem 2. Let P be a Horn ma-program and let M � At be its model. Thesequene tP;M is a P -omputation.We all the P -omputation tP;M the anonial P -omputation for M . Sineevery ma-program P has models, we obtain the following orollary.Corollary 3. Every Horn ma-program has at least one omputation.The results of omputations are supported models (and, thus, also models)of Horn ma-programs.Proposition 5. Let P be a Horn ma-program and let t be a P -omputation.Then, the result of t, Rt, is a supported model of P .We use the onept of a omputation to identify a ertain lass of models ofHorn ma-programs.



De�nition 3. Let P be a Horn ma-program. We say that a set of atoms M isa derivable model of P if there exists a P -omputation t suh that M = Rt.Derivable models an be obtained as results of their own anonial ompu-tations.Proposition 6. Let M be a derivable model of a Horn ma-program P . ThenM = RtP;M .Proposition 5 and Theorem 2 entail several properties of Horn ma-programs,their omputations and models. We gather them in the following orollary.Corollary 4. Let P be a Horn ma-program. Then:1. P has at least one derivable model.2. P has a largest derivable model.3. Every derivable model of P is a supported model of P .4. For every model M of P there is a derivable model M 0 of P suh that M 0 �M .5. Every minimal model of P is derivable.4 Stable models of ma-programsWe will now use the results of the two previous setions to introdue and studythe lass of stable models of ma-programs.De�nition 4. Let P be an ma-program and let M � At. The redut of P withrespet to M , PM in symbols, is a Horn ma-program obtained from P by (1)removing from P every lause ontaining in the body a literal not(A) suh thatM j= A, and (2) removing all literals of the form not(A) from all remaininglauses in P . A set of atoms M is a stable model of P if M is a derivable modelof the redut PM .Stable models of an ma-program P are indeed models of P . Thus, the useof the term \model" in their name is justi�ed. In fat, a stronger property holds:stable models of ma-programs are supported.Proposition 7. Let P be an ma-program. If M � At is a stable model of Pthen M is a supported model of P .With the notion of a stable model in hand, we an strengthen Proposition 5.Proposition 8. Let P be a Horn ma-program. A set of atoms M � At is aderivable model of P if and only if M is a stable model of P .



We will now desribe a proedural haraterization of stable models of ma-programs, relying on a notion of a omputation related to but di�erent from theone we disussed in Setion 3 in the ontext of Horn programs. A di�erene isthat now at eah stage in a omputation we must make sure that one a lauseis applied, it remains appliable at any stage of the proess. It is not a prioriguaranteed due to the presene of negation in the bodies of general ma-lauses.A formal de�nition is as follows. Let P be an ma-program. A sequene " =(Xn)n=0;1;2;::: is a quasi P -omputation, if X0 = ; and if for every n = 0; 1; : : :there is a lause rn 2 P suh that1. Xn j= bd(rn).2. there is X � hset(rn) suh that X j= hd(rn) and Xn+1 = Xn [X (this X iswhat is \omputed" by applying rn).3. for every i = 0; 1 : : : ; n and for every m-atom kX ourring negated inbd(ri), Xn+1 6j= kX .We all the set S1�k<!Xk the result of the quasi P -omputation ".Theorem 3. A set of atoms M is a stable model of P if and only if M is amodel of P and for some quasi P -omputation ", M is the result of ".Theorem 3 states that if we apply lauses arefully, making sure that atno stage we satisfy an m-atom appearing negated in lauses applied so far(inluding the one seleted to apply at the present stage) and we ever omputea model in this way, then this model is a stable model of P . Conversely, everystable model an be obtained as a result of suh a areful omputation.5 Extension of ma-programs by onstraint ma-lausesWe an extend the language of ma-programs by allowing lauses with the emptyhead. Namely, we de�ne a onstraint ma-lause to be an expression r of the form L1; : : : ; Lm; (2)where Li, 1 � i � m, are m-literals.The notion of satis�ability that we introdued for ma-lauses extends tothe ase of ma-onstraints. A set of atoms M satis�es a onstraint r if thereis a literal L 2 bd(r) suh that M 6j= L. We an now extend the de�nitions ofsupported and stable models to the more general lass of ma-programs withonstraint ma-lauses as follows.De�nition 5. Let P be an ma-program with onstraint ma-lauses. A set ofatoms M is a supported (stable) model of P if M is a supported (stable) modelof P 0, where P 0 onsists of all non-onstraint ma-lauses in P , and if M is amodel of all onstraint ma-lauses in P .Let us observe that several of our earlier results suh as Proposition 7 andTheorem 3 lift verbatim to the ase of programs with onstraints.



6 Ma-programs and normal logi programmingAn m-atom 1fag is true in a model M if and only if a is true in M . Thus,intuitively, 1fag and a are equivalent. That suggests a way to interpret normallauses and programs as ma-lauses and ma-programs. Letr =  a1; : : : ; am;not(b1); : : : ;not(bn):By ma(r) we mean the m-lause1fg  1fa1g; : : : ; 1famg;not(1fb1g); : : : ;not(1fbng):(If all ai and all bi are distint, whih we an assume without loss of generality, asimpler translation, 1fg  mfa1; : : : ; amg;not(1fb1; : : : ; bng), ould be used.)Moreover, given a normal program P , we set ma(P ) = fm(r) : r 2 Pg.This enoding interprets normal logi programs as ma-programs so thatbasi properties and onepts of normal logi programming an be viewed asspeial ases of properties and onepts in ma-programming. In the followingtheorem, we gather several results establishing appropriate orrespondenes.Theorem 4. Let P be a normal logi program and let M be a set of atoms.1. P is a Horn program if and only if ma(P ) is a Horn ma-program.2. If P is a Horn program then the least model of P is the only derivable modelof ma(P ).3. fTP (M)g = T ndma(P )(M).4. ma(PM ) = ma(P )M .5. M is a model (supported model, stable model) of P if and only if M is amodel (supported model, stable model) of ma(P ).Finally, we identify a lass of ma-programs, whih o�ers a most diret gen-eralization of normal logi programming.De�nition 6. An ma-lause r is deterministi if hd (r) = 1fag, for some atoma. An ma-program is deterministi if every lause in P is deterministi.The intuition behind the term is lear. If the head of an ma-lause is of theform 1fag, then there is only one possible e�et of applying the lause: a has tobe onluded. Thus, the nondeterminism that arises in the ontext of arbitrarym-atoms disappears. Formally, we apture this property in the following result.Proposition 9. Let P be a deterministi ma-program. Then, for every set ofatoms M , T ndP (M) = fM 0g, for some set of atoms M 0.Thus, for a deterministi ma-program P , the operator T ndP is deterministiand, so, an be regarded as an operator with both the domain and odomainP(At). We will write T dP , to denote it. Models, supported models and stablemodels of a deterministi ma-program an be introdued in terms of the opera-tor T dP in exatly the same way the orresponding onepts are de�ned in normal



logi programming. In partiular, the algebrai treatment of logi programmingdeveloped in [7, 13, 2℄ applies literally to deterministi ma-programs and resultsin a natural and diret extension of normal logi programming. We will expliitlymention just one result here that will be of importane later in the paper.Proposition 10. Let P be a deterministi Horn program. Then P has exatlyone derivable model and this model is the least model of P .7 Ma-programs and NSS-programsWe will �rst briey review the onept of an NSS-program [12℄, the semantisof stable models of suh programs, as introdued in [12℄, and then relate thisformalism to that of ma-programs.A ardinality atom (-atom, for short) is an expression of the form kXl, whereX � At , and l and k are integers suh that 0 � k � l � jX j. We all X an atomset of a -atom A = kXl and, as before, we denote it by aset(A)3.We say that a set of atoms M satis�es a -atom kXl if k � jM \ X j � l(M j= kXl, in symbols). It is lear that when k = 0 or l = jX j, the orrespondinginequality is trivially true. Thus, we omit from the notation k, if equal to 0, andl, if equal to jX j.A ardinality-atom lause (a-lause, for short) is an expression r of the formA B1; : : : ; Bn;where A and Bi, 1 � i � n, are -atoms. We all A the head of r and fB1; : : : ; Bngthe body of r. We denote them by hd(r) and bd(r), respetively. A a-program isa olletion of a-lauses.We say that a set M � At satis�es a a-lause r if M satis�es hd(r) wheneverit satis�es eah -atom in the body of r. We say that M satis�es a a-program Pif M satis�es eah a-lause in P . We write M j= r and M j= P in these ases,respetively.We will now reall the onept of a stable model of a a-program [12℄. LetP be an NSS-program and let M � At . By the NSS-redut of P with respet toM we mean the NSS-program obtained by:1. eliminating from P every lause r suh that M 6j= B, for at least one -atomB 2 bd(r).2. replaing eah remaining a-lause r = kXl  k1Y1l1; : : : knYnln with alllauses of the form 1fag  k1Y1; : : : ; knYn, where a 2 X \M .With some abuse of notation, we denote the resulting program by PM (the typeof the program determines whih redut we have in mind). It is lear that PMis a deterministi Horn ma-program. Thus, it has a least model, lm(PM ).3 To be preise, [12℄ allows also for negated atoms to appear as elements of X. Onean eliminate ourrenes of negative literals by introduing new atoms. Thus, forthis work, we deided to restrit the syntax of NSS-programs.



De�nition 7. Let P be a a-program. A set M � At is a stable model of P ifM = lm(PM ) and M j= P .We will now show that the formalisms of ma-programs and a-programswith their orresponding stable-model semantis are equivalent. We start bydesribing an enoding of a-lauses and a-programs by ma-lauses and ma-programs. To simplify the desription of the enoding and make it uniform,we assume that all bounds are present (we reall that whenever any of thebounds are missing from the notation, they an be introdued bak). Let r bethe following a-lause: kXl k1X1l1; : : : ; kmXmlm: We represent this a-lauseby a pair of ma-lauses, e1ma(r) and e2ma(r) that we de�ne as the followingtwo ma-lauses, respetively:kX  k1X1; : : : ; kmXm;not((l1 + 1)X1); : : : ;not((lm + 1)Xm);and  (l + 1)X; k1X1; : : : ; kmXm;not((l1 + 1)X1); : : : ;not((lm + 1)Xm):Given a a-program P , we translate it into an ma-programema(P ) = [r2Pfe1ma(r); e2ma(r)g:Theorem 5. Let P be a a-program. A set of atoms M is a stable model of P ,as de�ned for a-programs, if and only if M is a stable model of ema(P ), asde�ned for ma-programs.This theorem shows that the formalism of ma-programs is at least as ex-pressive as that of a-programs. The onverse is true as well: a-programs are atleast as expressive as ma-programs. Let r be the following ma-lause:kX  k1X1; : : : ; kmXm;not(l1Y1); : : : ;not(lnXn):We de�ne ea(r) as follows. If there is i, 1 � i � n, suh that li = 0, we setea(r) = kX  kX (in fat any tautology would do). Otherwise, we setea(r) = kX  k1X1; : : : ; kmXm; Y1(l1 � 1); : : : ; Yn(ln � 1):Given an ma-program P , we de�ne ea(P ) = fea(r) : r 2 Pg.Theorem 6. Let P be an ma-program. A set of atoms M is a stable model ofP , as de�ned for ma-programs, if and only if M is a stable model of ea(P ), asde�ned for a-programs.Theorems 5 and 6 establish the equivalene of a-programs and ma-programswith respet to the stable model semantis. The same translations also preservethe onept of a model. Finally, Theorem 5 suggests a way to introdue thenotion of a supported model for a a-program: a set of atoms M is de�ned to



be a supported model of a a-program P if it is a supported model of the ma-program ema(P ). With this de�nition, the two translations ema and ea alsopreserve the onept of a supported model.We also note that this equivalene demonstrates that a-programs with thesemantis of stable models as de�ned in [12℄ an be viewed as a generalization ofnormal logi programming. It follows from Theorems 4 and 6 that the enodingof normal logi programs as a-programs, de�ned as the omposition of thetranslations ma and ea , preserves the semantis of models, supported modelsand stable models (an alternative proof of this fat, restrited to the ase ofstable models only was �rst given in [12℄ and served as a motivation for the lassof a-programs and its stable-model semantis). This result is important, as it isnot at all evident that the NSS-redut and De�nition 7 generalize the semantisof stable models as de�ned in [8℄.Given that the formalisms of a-atoms and ma-atoms are equivalent, it isimportant to stress what di�ers them. The advantage of the formalism of a-programs is that it does not require the negation operator in the language.The strength of the formalism of ma-programs lies in the fat that its syntax solosely resembles that of normal logi programs, and that the development of thetheory of ma-programs so losely follows that of the normal logi programming.8 Ma-programs and disjuntive logi programsThe formalism of ma-programs also extends an approah to disjuntive logiprogramming, proposed in [14℄. In that paper, the authors introdued and in-vestigated a semantis of possible models for disjuntive logi programs. We willnow show that disjuntive programming with the semantis of possible modelsis a speial ase of the logi ma-programs with the semantis of stable models.Let r be a disjuntive logi program lause of the form:1 _ : : : _ k  a1; : : : ; am;not(b1); : : : ;not(bn);where all ai, bi and i are atoms. We de�ne an ma-lausemad(r) = 1f1; : : : ; kg  1fa1g; : : : ; 1famg;not(1fb1g); : : : ;not(1fbng):For a disjuntive logi program P , we de�ne mad(P ) = fmad(r) : r 2 Pg. Wehave the following theorem.Theorem 7. Let P be a disjuntive logi program. A set of atomsM is a possiblemodel of P if and only if M is a stable model of the ma-program mad(P ).We also note that there are strong analogies between the approah we proposehere and some of the tehniques disussed in [14℄. In partiular, [14℄ presentsa omputational proedure for disjuntive programs without negation that isequivalent to our notion of a P -omputation. We stress however, that the lassof ma-programs is more general and that our approah, onsistently exploitingproperties of an operator T ndP , is better aligned with a standard development ofnormal logi programming.



9 DisussionResults of our paper point to a entral position of ma-programs among otherlogi programming formalisms. First, ma-programs form a natural general-ization of normal logi programs, with most onepts and tehniques loselypatterned after their ounterparts in normal logi programming. Seond, ma-programs with the stable-model semantis generalize disjuntive logi program-ming with the possible-model semantis of [14℄. Third, ma-programs providediret means to model ardinality onstraints, a feature that has beome broadlyreognized as essential to omputational knowledge representation formalisms.Moreover, it turns out that ma-programs are, in a ertain sense that we madepreise in the paper, equivalent, to logi programs with ardinality atoms pro-posed and studied in [12℄. Thus, ma-programs provide a natural link betweennormal logi programs and the formalism of [12℄, and help explain the nature ofthis relationship, hidden by the original de�nitions in [12℄.In this paper, we outlined only the rudiments of the theory of ma-programs.There are several questions that follow from our work and that deserve moreattention. First, our theory an be extended to the ase of programs built ofmonotone-weight atoms, that is, expressions of the form afp1 : w1; : : : ; pk : wkg,where a, w1; : : : wk are non-negative reals and p1; : : : ; pk are propositional atoms.Intuitively, suh an atom is satis�ed by an interpretation (set of atoms) M if thesum of weights assigned to atoms in M \ fp1; : : : ; pkg is at least a.Next, there is a question whether Fages lemma [6℄ generalizes to ma-programs.If so, for some lasses of programs, one ould redue stable-model omputationto satis�ability heking for propositional theories with ardinality atoms [4,9℄. That, in turn, might lead to e�etive omputational methods, alternative todiret algorithms suh as smodels [10℄ and similar in spirit to the approah ofmodels [5, 1℄.Another interesting aspet onerns some syntati modi�ations and \nor-mal form representations" for ma-programs. For instane, at a ost of introdu-ing new atoms, one an rewrite any ma-program into a simple ma-programin whih every ma-lause ontains at most one ma-literal in its body and inwhih the use of negation is restrited (but not eliminated). We will presentthese results in a full version of the paper.The emergene of a nondeterministi one-step provability operator is parti-ularly intriguing. It suggests that, as in the ase of normal logi programming[7, 13℄, the theory of ma-programs an be developed by algebrai means. Forthat to happen, one would need tehniques for handling nondeterministi oper-ators on latties, similar to those presented in the deterministi operators in [2,3℄. That approah might ultimately lead to a generalization of the well-foundedsemantis to the ase of ma-programs.
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