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t. We investigate m
a-programs, that is, logi
 programs with
lauses built of monotone 
ardinality atoms of the form kX, where k isa non-negative integer and X is a �nite set of propositional atoms. Wedevelop a theory of m
a-programs. We demonstrate that the operational
on
ept of the one-step provability operator generalizes to m
a-programs,but the generalization involves nondeterminism. Our main results showthat the formalism of m
a-programs is a 
ommon generalization of (1)normal logi
 programming with its semanti
s of models, supported mod-els and stable models, (2) logi
 programming with 
ardinality atoms andwith the semanti
s of stable models, as de�ned by Niemel�a, Simons andSoininen, and (3) of disjun
tive logi
 programming with the possible-model semanti
s of Sakama and Inoue.1 Introdu
tionWe introdu
e and study logi
 programs whose 
lauses are built of monotone
ardinality atoms (m
-atoms), that is, expressions of the form kX , where k is anon-negative integer and X is a �nite set of propositional atoms. Intuitively, kXis true in an interpretation M if at least k atoms in X are true in M . Thus, theintended role for m
-atoms is to represent 
onstraints on lower bounds of 
ardi-nalities of sets. We refer to programs with m
-atoms as m
a-programs. We aremotivated in this work by the re
ent emergen
e and demonstrated e�e
tivenessof logi
 programming extended with means to model 
ardinality 
onstraints [12,11, 15℄, and by the need to develop sound theoreti
al basis for su
h formalisms.In the paper, we develop a theory of m
a-programs. In that we 
losely followthe development of normal logi
 programming and lift all its major 
on
epts,te
hniques and results to the setting of m
a-programs. There is, however, a ba-si
 di�eren
e. M
-atoms have, by their very nature, a built-in nondeterminism.They 
an be viewed as shorthands for 
ertain disjun
tions and, in general, thereare many ways to make an m
-atom kX true. This nondeterminism has a key
onsequen
e. The one-step provability operator is no longer deterministi
, as innormal logi
 programming, where it maps interpretations to interpretations. Inthe 
ase of m
a-programs, the one-step provability operator is nondeterminis-ti
. It assigns to an interpretation M a set of interpretations, ea
h regarded aspossible and equally likely out
omes of applying the operator to M .



Modulo this di�eren
e, our theory of m
a-programs parallels that of normallogi
 programs. First, we introdu
e models and supported models of an m
a-program and des
ribe them in terms of the one-step provability operator in mu
hthe same way it is done in normal logi
 programming. To de�ne stable models we�rst de�ne the 
lass of Horn m
a-programs by disallowing the negation operatorin the bodies of 
lauses. We show that the nondeterministi
 one-step provabilityoperator asso
iates with Horn m
a-programs a notion of a (nondeterministi
)
omputation (the 
ounterpart to the bottom-up 
omputation with normal Hornprograms) and a 
lass of derivable models (
ounterparts to the least model of anormal Horn program). We then lift the notion of the Gelfond-Lifs
hitz redu
t[8℄ to the 
ase of m
a-programs and de�ne a stable model of an m
a-program asa set of atoms that is a derivable model of the redu
t. A striking aspe
t of our
onstru
tion is that all its steps are literal extensions of the 
orresponding stepsin the original approa
h. We show that stable models behave as expe
ted. Theyare supported and, in 
ase of Horn m
a-programs, derivable.An intended meaning of an m
-atom 1fag is that a be true. More formally,1fag is true in an interpretation if and only if a is true in that interpretation.That 
onne
tion implies a natural representation of normal logi
 programs asm
a-programs. We show that this representation preserves all semanti
s we dis-
uss in the paper. It follows that the formalism of m
a-programs 
an be viewedas a dire
t generalization of normal logi
 programming.As we noted, an extension of logi
 programming with dire
t ways to model
ardinality 
onstraints was �rst proposed in [12℄. That work de�ned a syntax oflogi
 programs with 
ardinality 
onstraints (in fa
t, with more general weight
onstraints) and introdu
ed the notion of a stable model. We will refer to pro-grams in that formalism as NSS-programs. One of the results in [12℄ showed thatNSS-programs generalized normal logi
 programming with the stable-model se-manti
s of Gelfond and Lifs
hitz [8℄. However, the notion of the redu
t underly-ing the de�nition of a stable model given in [12℄ is di�erent from that proposedby Gelfond and Lifs
hitz [8℄ and the pre
ise nature of the relationship betweennormal logi
 programs and NSS-programs was not 
lear.M
a-programs expli
ate this relationship. We show that the formalism ofm
a-programs parallels normal logi
 programming. In parti
ular, major 
on-
epts, results and te
hniques in normal logi
 programming have 
ounterparts inthe setting of m
a-programs. We also prove that under some simple transforma-tions, NSS-programs are equivalent to m
a-programs. Through this 
onne
tion,the theory of normal logi
 programming 
an be lifted to the setting of NSS-programs leading to new 
hara
terizations of stable models of NSS-programs.Finally, we show that m
a-programs not only provide an overar
hing frame-work for both normal logi
 programs and NSS-programs. They are also usefulin investigating disjun
tive logi
 programs. In the paper, we show that logi
programming with m
-atoms generalize disjun
tive logi
 programming with thepossible-model semanti
s introdu
ed in [14℄.



2 Logi
 programs with monotone 
ardinality atomsLet At be a set of (propositional) atoms. An m
-atom over At (short for amonotone 
ardinality atom over At) is any expression of the form kX , where kis a non-negative integer and X � At is a �nite set su
h that k � jX j. We 
allX the atom set of an m
-atom A = kX and denote it by aset(A). An intuitivereading of an m
-atom kX is: at least k atoms in X are true. The intendedmeaning of kX explains the requirement that k � jX j. Clearly, if k > jX j, it isimpossible to have in X at least k true atoms and the expression kX is equivalentto a 
ontradi
tion.An m
-literal is an expression of the form A or not(A), where A is an m
-atom. An m
a-
lause (short for a monotone-
ardinality-atom 
lause) is an ex-pression r of the form H  L1; : : : ; Lm; (1)where H is an m
-atom and Li, 1 � i � m, are m
-literals. We 
all the m
-atomH the head of r and denote it by hd (r). We 
all the set fL1; : : : ; Lmg the bodyof r and denote it by bd(r). An m
a-
lause is Horn if its body does not 
ontainliterals of the form not(A). Finally, for an m
a-
lause r, we de�ne the head setof r, hset(r), by setting hset(r) = aset(hd (r)).M
a-
lauses form m
a-programs. We de�ne the head set of an m
a-programP , hset(P ), by hset(P ) = Sfhset(r) : r 2 Pg (if P = ;, hset(P ) = ;, as well). Ifall 
lauses in an m
a-program P are Horn, P is a Horn m
a-program.One 
an give a de
larative interpretation to m
a-programs in terms of anatural extension of the semanti
s of propositional logi
. We say that a set Mof atoms satis�es an m
-atom kX if jM \X j � k, and M satis�es an m
-literalnot(kX) if it does not satisfy kX (that is, if jM \X j < k). A set of atoms Msatis�es an m
a-
lause (1) if M satis�es H whenever M satis�es all literals Li,1 � i � m. Finally, a set of atoms M satis�es an m
a-program P if it satis�esall 
lauses in P . We often say \is a model of" instead of \satis�es". We use thesymbol j= to denote the satisfa
tion relation.The following straightforward property of m
-atoms explains the use of theterm \monotone" in their name.Proposition 1. Let A be an m
-atom over a set of atoms At. For every setsM;M 0 � At, if M �M 0 and M j= A then M 0 j= A.M
a-
lauses also have a pro
edural interpretation in whi
h they are viewedas derivation rules. Intuitively, if an m
a-
lause r has its body satis�ed by someset of atoms M , then r provides support for deriving from M any set of atomsM 0 su
h that1. M 0 
onsists of atoms mentioned in the head of r (r provides no grounds forderiving atoms that do not appear in its head)2. M 0 satis�es the head of r (sin
e r \�res", the 
onstraint imposed by its headmust hold).



Clearly, the pro
ess of deriving M 0 from M by means of r is nondeterministi
 inthe sense that, in general, there are several sets that are supported by r and M .This notion of nondeterministi
 derivability extends to programs and leads tothe 
on
ept of the nondeterministi
 one-step provability operator. Let P be anm
a-program and let M � At be a set of atoms. We set P (M) = fr 2 P : M j=bd(r)g. We 
all m
a-
lauses in P (M), M-appli
able.De�nition 1. Let P be an m
a-program and let M � At. A set M 0 is nonde-terministi
ally one-step provable from M by means of P , if M 0 � hset(P (M))and M 0 j= hd (r), for every m
a-
lause r in P (M).The nondeterministi
 one-step provability operator T ndP , is a fun
tion fromP(At) to P(P(At)) and su
h that for every M � At, T ndP (M) 
onsists all setsM 0 that are nondeterministi
ally one-step provable from M by means of P .As we indi
ate next, for every M � At , T ndP (M) is nonempty. It follows thatT ndP 
an be viewed as a formal representation of a nondeterministi
 operator onP(At), whi
h assigns to every subset M of At a subset of At arbitrarily sele
tedfrom the 
olle
tion T ndP (M) of possible out
omes. Sin
e T ndP (M) is nonempty,this nondeterministi
 operator is well de�ned.Proposition 2. Let P be an m
a-program and letM � At. Then, hset(P (M)) 2T ndP (M). In parti
ular, T ndP (M) 6= ;.The operator T ndP plays a fundamental role in our resear
h. It allows us to for-malize pro
edural interpretations of m
a-
lauses and identify for them mat
hing
lasses of models that provide the 
orresponding de
larative a

ount.Our �rst result 
hara
terizes models of m
a-programs. This 
hara
terizationis a generalization of the familiar des
ription of models of normal logi
 programsas pre�xpoints of TP .Theorem 1. Let P be an m
a-program and let M � At. The set M is a modelof P if and only if there is M 0 2 T ndP (M) su
h that M 0 �M .A straightforward 
orollary states that every m
a-program has a model.Corollary 1. Let P be an m
a-program. Then, hset(P ) is a model of P .Models of m
a-programs may 
ontain elements that have no support in aprogram and the model itself. For instan
e, let us 
onsider an m
a-program P
onsisting of the 
lause: 1fp; qg  not(1fqg), where p and q are two di�erentatoms. Let M1 = fqg. Clearly, M1 is a model of P . However, M1 has no supportin P and itself. Indeed, T ndP (M1) = f;g and so, P and M1 do not provide supportfor any atom. Similarly, another model of P , the set M2 = fp; rg, where r 2 Atis an atom di�erent from p and q, has no support in P and itself. We haveT ndP (M2) = ffpg; fqg; fp; qgg and so, p has support in P and M2, but r doesnot. Finally, the set M3 = fpg, whi
h is also a model of P , has support in Pand itself. Indeed, T ndP (M3) = ffpg; fqg; fp; qgg and there is a way to derive M3from P and M3. We formalize now this dis
ussion in the following de�nition.



De�nition 2. Let P be an m
a-program. A set of atoms M is a supportedmodel of P if M 2 T ndP (M).The use of the term \model" is justi�ed. By Theorem 1, supported modelsof P are indeed models of P , as stated in the following result.Corollary 2. Every supported model of an m
a-program P is a model of P .Finally, we have the following 
hara
terization of supported models.Proposition 3. Let P be an m
a-program. A set M � At is a supported modelof P if and only if M is a model of P and M � hset(P (M)).3 Horn m
a-programsTo introdu
e stable models of m
a-programs, we need �rst to study Horn m
a-programs. With ea
h Horn m
a-program P one 
an asso
iate the 
on
ept of aP -
omputation. Namely, a P -
omputation is a sequen
e (Xn)n=0;1;::: su
h thatX0 = ; and, for every non-negative integer n,1. Xn � Xn+1, and2. Xn+1 2 T ndP (Xn).Given a 
omputation t = (Xn)n=0;1;:::, we 
all S1n=0Xn the result of the 
om-putation t and denote it by Rt.Proposition 4. Let P be a Horn m
a-program and let t be a P -
omputation.Then Rt � hset(P (Rt)).If P is a Horn m
a-program then P -
omputations exist. Let M be a model ofP . We de�ne the sequen
e tP;M = (XP;Mn )n=0;1;::: as follows. We set XP;M0 = ;and, for every n � 0, XP;Mn+1 = hset(P (XP;Mn )) \M .Theorem 2. Let P be a Horn m
a-program and let M � At be its model. Thesequen
e tP;M is a P -
omputation.We 
all the P -
omputation tP;M the 
anoni
al P -
omputation for M . Sin
eevery m
a-program P has models, we obtain the following 
orollary.Corollary 3. Every Horn m
a-program has at least one 
omputation.The results of 
omputations are supported models (and, thus, also models)of Horn m
a-programs.Proposition 5. Let P be a Horn m
a-program and let t be a P -
omputation.Then, the result of t, Rt, is a supported model of P .We use the 
on
ept of a 
omputation to identify a 
ertain 
lass of models ofHorn m
a-programs.



De�nition 3. Let P be a Horn m
a-program. We say that a set of atoms M isa derivable model of P if there exists a P -
omputation t su
h that M = Rt.Derivable models 
an be obtained as results of their own 
anoni
al 
ompu-tations.Proposition 6. Let M be a derivable model of a Horn m
a-program P . ThenM = RtP;M .Proposition 5 and Theorem 2 entail several properties of Horn m
a-programs,their 
omputations and models. We gather them in the following 
orollary.Corollary 4. Let P be a Horn m
a-program. Then:1. P has at least one derivable model.2. P has a largest derivable model.3. Every derivable model of P is a supported model of P .4. For every model M of P there is a derivable model M 0 of P su
h that M 0 �M .5. Every minimal model of P is derivable.4 Stable models of m
a-programsWe will now use the results of the two previous se
tions to introdu
e and studythe 
lass of stable models of m
a-programs.De�nition 4. Let P be an m
a-program and let M � At. The redu
t of P withrespe
t to M , PM in symbols, is a Horn m
a-program obtained from P by (1)removing from P every 
lause 
ontaining in the body a literal not(A) su
h thatM j= A, and (2) removing all literals of the form not(A) from all remaining
lauses in P . A set of atoms M is a stable model of P if M is a derivable modelof the redu
t PM .Stable models of an m
a-program P are indeed models of P . Thus, the useof the term \model" in their name is justi�ed. In fa
t, a stronger property holds:stable models of m
a-programs are supported.Proposition 7. Let P be an m
a-program. If M � At is a stable model of Pthen M is a supported model of P .With the notion of a stable model in hand, we 
an strengthen Proposition 5.Proposition 8. Let P be a Horn m
a-program. A set of atoms M � At is aderivable model of P if and only if M is a stable model of P .



We will now des
ribe a pro
edural 
hara
terization of stable models of m
a-programs, relying on a notion of a 
omputation related to but di�erent from theone we dis
ussed in Se
tion 3 in the 
ontext of Horn programs. A di�eren
e isthat now at ea
h stage in a 
omputation we must make sure that on
e a 
lauseis applied, it remains appli
able at any stage of the pro
ess. It is not a prioriguaranteed due to the presen
e of negation in the bodies of general m
a-
lauses.A formal de�nition is as follows. Let P be an m
a-program. A sequen
e " =(Xn)n=0;1;2;::: is a quasi P -
omputation, if X0 = ; and if for every n = 0; 1; : : :there is a 
lause rn 2 P su
h that1. Xn j= bd(rn).2. there is X � hset(rn) su
h that X j= hd(rn) and Xn+1 = Xn [X (this X iswhat is \
omputed" by applying rn).3. for every i = 0; 1 : : : ; n and for every m
-atom kX o

urring negated inbd(ri), Xn+1 6j= kX .We 
all the set S1�k<!Xk the result of the quasi P -
omputation ".Theorem 3. A set of atoms M is a stable model of P if and only if M is amodel of P and for some quasi P -
omputation ", M is the result of ".Theorem 3 states that if we apply 
lauses 
arefully, making sure that atno stage we satisfy an m
-atom appearing negated in 
lauses applied so far(in
luding the one sele
ted to apply at the present stage) and we ever 
omputea model in this way, then this model is a stable model of P . Conversely, everystable model 
an be obtained as a result of su
h a 
areful 
omputation.5 Extension of m
a-programs by 
onstraint m
a-
lausesWe 
an extend the language of m
a-programs by allowing 
lauses with the emptyhead. Namely, we de�ne a 
onstraint m
a-
lause to be an expression r of the form L1; : : : ; Lm; (2)where Li, 1 � i � m, are m
-literals.The notion of satis�ability that we introdu
ed for m
a-
lauses extends tothe 
ase of m
a-
onstraints. A set of atoms M satis�es a 
onstraint r if thereis a literal L 2 bd(r) su
h that M 6j= L. We 
an now extend the de�nitions ofsupported and stable models to the more general 
lass of m
a-programs with
onstraint m
a-
lauses as follows.De�nition 5. Let P be an m
a-program with 
onstraint m
a-
lauses. A set ofatoms M is a supported (stable) model of P if M is a supported (stable) modelof P 0, where P 0 
onsists of all non-
onstraint m
a-
lauses in P , and if M is amodel of all 
onstraint m
a-
lauses in P .Let us observe that several of our earlier results su
h as Proposition 7 andTheorem 3 lift verbatim to the 
ase of programs with 
onstraints.



6 M
a-programs and normal logi
 programmingAn m
-atom 1fag is true in a model M if and only if a is true in M . Thus,intuitively, 1fag and a are equivalent. That suggests a way to interpret normal
lauses and programs as m
a-
lauses and m
a-programs. Letr = 
 a1; : : : ; am;not(b1); : : : ;not(bn):By m
a(r) we mean the m
-
lause1f
g  1fa1g; : : : ; 1famg;not(1fb1g); : : : ;not(1fbng):(If all ai and all bi are distin
t, whi
h we 
an assume without loss of generality, asimpler translation, 1f
g  mfa1; : : : ; amg;not(1fb1; : : : ; bng), 
ould be used.)Moreover, given a normal program P , we set m
a(P ) = fm
(r) : r 2 Pg.This en
oding interprets normal logi
 programs as m
a-programs so thatbasi
 properties and 
on
epts of normal logi
 programming 
an be viewed asspe
ial 
ases of properties and 
on
epts in m
a-programming. In the followingtheorem, we gather several results establishing appropriate 
orresponden
es.Theorem 4. Let P be a normal logi
 program and let M be a set of atoms.1. P is a Horn program if and only if m
a(P ) is a Horn m
a-program.2. If P is a Horn program then the least model of P is the only derivable modelof m
a(P ).3. fTP (M)g = T ndm
a(P )(M).4. m
a(PM ) = m
a(P )M .5. M is a model (supported model, stable model) of P if and only if M is amodel (supported model, stable model) of m
a(P ).Finally, we identify a 
lass of m
a-programs, whi
h o�ers a most dire
t gen-eralization of normal logi
 programming.De�nition 6. An m
a-
lause r is deterministi
 if hd (r) = 1fag, for some atoma. An m
a-program is deterministi
 if every 
lause in P is deterministi
.The intuition behind the term is 
lear. If the head of an m
a-
lause is of theform 1fag, then there is only one possible e�e
t of applying the 
lause: a has tobe 
on
luded. Thus, the nondeterminism that arises in the 
ontext of arbitrarym
-atoms disappears. Formally, we 
apture this property in the following result.Proposition 9. Let P be a deterministi
 m
a-program. Then, for every set ofatoms M , T ndP (M) = fM 0g, for some set of atoms M 0.Thus, for a deterministi
 m
a-program P , the operator T ndP is deterministi
and, so, 
an be regarded as an operator with both the domain and 
odomainP(At). We will write T dP , to denote it. Models, supported models and stablemodels of a deterministi
 m
a-program 
an be introdu
ed in terms of the opera-tor T dP in exa
tly the same way the 
orresponding 
on
epts are de�ned in normal



logi
 programming. In parti
ular, the algebrai
 treatment of logi
 programmingdeveloped in [7, 13, 2℄ applies literally to deterministi
 m
a-programs and resultsin a natural and dire
t extension of normal logi
 programming. We will expli
itlymention just one result here that will be of importan
e later in the paper.Proposition 10. Let P be a deterministi
 Horn program. Then P has exa
tlyone derivable model and this model is the least model of P .7 M
a-programs and NSS-programsWe will �rst brie
y review the 
on
ept of an NSS-program [12℄, the semanti
sof stable models of su
h programs, as introdu
ed in [12℄, and then relate thisformalism to that of m
a-programs.A 
ardinality atom (
-atom, for short) is an expression of the form kXl, whereX � At , and l and k are integers su
h that 0 � k � l � jX j. We 
all X an atomset of a 
-atom A = kXl and, as before, we denote it by aset(A)3.We say that a set of atoms M satis�es a 
-atom kXl if k � jM \ X j � l(M j= kXl, in symbols). It is 
lear that when k = 0 or l = jX j, the 
orrespondinginequality is trivially true. Thus, we omit from the notation k, if equal to 0, andl, if equal to jX j.A 
ardinality-atom 
lause (
a-
lause, for short) is an expression r of the formA B1; : : : ; Bn;where A and Bi, 1 � i � n, are 
-atoms. We 
all A the head of r and fB1; : : : ; Bngthe body of r. We denote them by hd(r) and bd(r), respe
tively. A 
a-program isa 
olle
tion of 
a-
lauses.We say that a set M � At satis�es a 
a-
lause r if M satis�es hd(r) wheneverit satis�es ea
h 
-atom in the body of r. We say that M satis�es a 
a-program Pif M satis�es ea
h 
a-
lause in P . We write M j= r and M j= P in these 
ases,respe
tively.We will now re
all the 
on
ept of a stable model of a 
a-program [12℄. LetP be an NSS-program and let M � At . By the NSS-redu
t of P with respe
t toM we mean the NSS-program obtained by:1. eliminating from P every 
lause r su
h that M 6j= B, for at least one 
-atomB 2 bd(r).2. repla
ing ea
h remaining 
a-
lause r = kXl  k1Y1l1; : : : knYnln with all
lauses of the form 1fag  k1Y1; : : : ; knYn, where a 2 X \M .With some abuse of notation, we denote the resulting program by PM (the typeof the program determines whi
h redu
t we have in mind). It is 
lear that PMis a deterministi
 Horn m
a-program. Thus, it has a least model, lm(PM ).3 To be pre
ise, [12℄ allows also for negated atoms to appear as elements of X. One
an eliminate o

urren
es of negative literals by introdu
ing new atoms. Thus, forthis work, we de
ided to restri
t the syntax of NSS-programs.



De�nition 7. Let P be a 
a-program. A set M � At is a stable model of P ifM = lm(PM ) and M j= P .We will now show that the formalisms of m
a-programs and 
a-programswith their 
orresponding stable-model semanti
s are equivalent. We start bydes
ribing an en
oding of 
a-
lauses and 
a-programs by m
a-
lauses and m
a-programs. To simplify the des
ription of the en
oding and make it uniform,we assume that all bounds are present (we re
all that whenever any of thebounds are missing from the notation, they 
an be introdu
ed ba
k). Let r bethe following 
a-
lause: kXl k1X1l1; : : : ; kmXmlm: We represent this 
a-
lauseby a pair of m
a-
lauses, e1m
a(r) and e2m
a(r) that we de�ne as the followingtwo m
a-
lauses, respe
tively:kX  k1X1; : : : ; kmXm;not((l1 + 1)X1); : : : ;not((lm + 1)Xm);and  (l + 1)X; k1X1; : : : ; kmXm;not((l1 + 1)X1); : : : ;not((lm + 1)Xm):Given a 
a-program P , we translate it into an m
a-programem
a(P ) = [r2Pfe1m
a(r); e2m
a(r)g:Theorem 5. Let P be a 
a-program. A set of atoms M is a stable model of P ,as de�ned for 
a-programs, if and only if M is a stable model of em
a(P ), asde�ned for m
a-programs.This theorem shows that the formalism of m
a-programs is at least as ex-pressive as that of 
a-programs. The 
onverse is true as well: 
a-programs are atleast as expressive as m
a-programs. Let r be the following m
a-
lause:kX  k1X1; : : : ; kmXm;not(l1Y1); : : : ;not(lnXn):We de�ne e
a(r) as follows. If there is i, 1 � i � n, su
h that li = 0, we sete
a(r) = kX  kX (in fa
t any tautology would do). Otherwise, we sete
a(r) = kX  k1X1; : : : ; kmXm; Y1(l1 � 1); : : : ; Yn(ln � 1):Given an m
a-program P , we de�ne e
a(P ) = fe
a(r) : r 2 Pg.Theorem 6. Let P be an m
a-program. A set of atoms M is a stable model ofP , as de�ned for m
a-programs, if and only if M is a stable model of e
a(P ), asde�ned for 
a-programs.Theorems 5 and 6 establish the equivalen
e of 
a-programs and m
a-programswith respe
t to the stable model semanti
s. The same translations also preservethe 
on
ept of a model. Finally, Theorem 5 suggests a way to introdu
e thenotion of a supported model for a 
a-program: a set of atoms M is de�ned to



be a supported model of a 
a-program P if it is a supported model of the m
a-program em
a(P ). With this de�nition, the two translations em
a and e
a alsopreserve the 
on
ept of a supported model.We also note that this equivalen
e demonstrates that 
a-programs with thesemanti
s of stable models as de�ned in [12℄ 
an be viewed as a generalization ofnormal logi
 programming. It follows from Theorems 4 and 6 that the en
odingof normal logi
 programs as 
a-programs, de�ned as the 
omposition of thetranslations m
a and e
a , preserves the semanti
s of models, supported modelsand stable models (an alternative proof of this fa
t, restri
ted to the 
ase ofstable models only was �rst given in [12℄ and served as a motivation for the 
lassof 
a-programs and its stable-model semanti
s). This result is important, as it isnot at all evident that the NSS-redu
t and De�nition 7 generalize the semanti
sof stable models as de�ned in [8℄.Given that the formalisms of 
a-atoms and m
a-atoms are equivalent, it isimportant to stress what di�ers them. The advantage of the formalism of 
a-programs is that it does not require the negation operator in the language.The strength of the formalism of m
a-programs lies in the fa
t that its syntax so
losely resembles that of normal logi
 programs, and that the development of thetheory of m
a-programs so 
losely follows that of the normal logi
 programming.8 M
a-programs and disjun
tive logi
 programsThe formalism of m
a-programs also extends an approa
h to disjun
tive logi
programming, proposed in [14℄. In that paper, the authors introdu
ed and in-vestigated a semanti
s of possible models for disjun
tive logi
 programs. We willnow show that disjun
tive programming with the semanti
s of possible modelsis a spe
ial 
ase of the logi
 m
a-programs with the semanti
s of stable models.Let r be a disjun
tive logi
 program 
lause of the form:
1 _ : : : _ 
k  a1; : : : ; am;not(b1); : : : ;not(bn);where all ai, bi and 
i are atoms. We de�ne an m
a-
lausem
ad(r) = 1f
1; : : : ; 
kg  1fa1g; : : : ; 1famg;not(1fb1g); : : : ;not(1fbng):For a disjun
tive logi
 program P , we de�ne m
ad(P ) = fm
ad(r) : r 2 Pg. Wehave the following theorem.Theorem 7. Let P be a disjun
tive logi
 program. A set of atomsM is a possiblemodel of P if and only if M is a stable model of the m
a-program m
ad(P ).We also note that there are strong analogies between the approa
h we proposehere and some of the te
hniques dis
ussed in [14℄. In parti
ular, [14℄ presentsa 
omputational pro
edure for disjun
tive programs without negation that isequivalent to our notion of a P -
omputation. We stress however, that the 
lassof m
a-programs is more general and that our approa
h, 
onsistently exploitingproperties of an operator T ndP , is better aligned with a standard development ofnormal logi
 programming.



9 Dis
ussionResults of our paper point to a 
entral position of m
a-programs among otherlogi
 programming formalisms. First, m
a-programs form a natural general-ization of normal logi
 programs, with most 
on
epts and te
hniques 
loselypatterned after their 
ounterparts in normal logi
 programming. Se
ond, m
a-programs with the stable-model semanti
s generalize disjun
tive logi
 program-ming with the possible-model semanti
s of [14℄. Third, m
a-programs providedire
t means to model 
ardinality 
onstraints, a feature that has be
ome broadlyre
ognized as essential to 
omputational knowledge representation formalisms.Moreover, it turns out that m
a-programs are, in a 
ertain sense that we madepre
ise in the paper, equivalent, to logi
 programs with 
ardinality atoms pro-posed and studied in [12℄. Thus, m
a-programs provide a natural link betweennormal logi
 programs and the formalism of [12℄, and help explain the nature ofthis relationship, hidden by the original de�nitions in [12℄.In this paper, we outlined only the rudiments of the theory of m
a-programs.There are several questions that follow from our work and that deserve moreattention. First, our theory 
an be extended to the 
ase of programs built ofmonotone-weight atoms, that is, expressions of the form afp1 : w1; : : : ; pk : wkg,where a, w1; : : : wk are non-negative reals and p1; : : : ; pk are propositional atoms.Intuitively, su
h an atom is satis�ed by an interpretation (set of atoms) M if thesum of weights assigned to atoms in M \ fp1; : : : ; pkg is at least a.Next, there is a question whether Fages lemma [6℄ generalizes to m
a-programs.If so, for some 
lasses of programs, one 
ould redu
e stable-model 
omputationto satis�ability 
he
king for propositional theories with 
ardinality atoms [4,9℄. That, in turn, might lead to e�e
tive 
omputational methods, alternative todire
t algorithms su
h as smodels [10℄ and similar in spirit to the approa
h of
models [5, 1℄.Another interesting aspe
t 
on
erns some synta
ti
 modi�
ations and \nor-mal form representations" for m
a-programs. For instan
e, at a 
ost of introdu
-ing new atoms, one 
an rewrite any m
a-program into a simple m
a-programin whi
h every m
a-
lause 
ontains at most one m
a-literal in its body and inwhi
h the use of negation is restri
ted (but not eliminated). We will presentthese results in a full version of the paper.The emergen
e of a nondeterministi
 one-step provability operator is parti
-ularly intriguing. It suggests that, as in the 
ase of normal logi
 programming[7, 13℄, the theory of m
a-programs 
an be developed by algebrai
 means. Forthat to happen, one would need te
hniques for handling nondeterministi
 oper-ators on latti
es, similar to those presented in the deterministi
 operators in [2,3℄. That approa
h might ultimately lead to a generalization of the well-foundedsemanti
s to the 
ase of m
a-programs.
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