
Logic programming with costsVictor W. MarekMiros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0027fmarek,mirekg@cs.engr.uky.eduFax: (606)-323-1971Phone: (606)-257-3961 AbstractWe investigate logic programs whose rules are assigned nonnegative real numbers.These numbers are interpreted as the costs of applying rules. There are several waysin which these costs can be interpreted. In the paper, two such interpretations arediscussed in detail. They are referred to as no-reusability and reusability interpretations.The former requires that an atom be paid for each time it appears in the body of arule that �res. In the latter, once an atom is derived (and the cost of its derivation iscovered), it can be used for free in the future.We show that under the �rst interpretation, weighted logic programming has sev-eral useful properties. In the �nite case, it is computationally tractable and there arepolynomial time algorithms for computing lowest costs of deriving atoms. Moreover,several basic concepts of logic programming, including resolution and one-step provabil-ity operator, can be generalized to weighted logic programming with the no-reusabilityinterpretation of costs. In contrast, for the second interpretation, the problem of com-puting lowest costs of deriving atoms from �nite weighted programs under the reusabilityinterpretation is NP-complete. In addition, logic characterizations of the lowest costs ofderiving atoms and sets of atoms require more complex notions.In the paper, we also discuss yet another interpretation of costs (as time). We showthat under this interpretation weighted logic programming is equivalent to the systemproposed by van Emden to incorporate con�dence factors into logic programs.
1

1 IntroductionLogic programming is a paradigm in which declarative aspects of �rst-order logic arecombined with corresponding provability techniques into an e�ective programming en-vironment. Programs are not necessarily encodings of speci�c algorithms to solve aproblem at hand. Rather, they consist of rules that describe relevant information. Thesemantics (meaning) of such programs is described by Herbrand interpretations of some�rst order theories. General reasoning (provability) techniques provide a computationalmechanism to check whether a given atom follows from the program or not.Computing with a logic program means �nding atoms entailed by it. In this context,programs consisting of rules without negation in the body, the so called Horn or de�niteprograms [Llo84], are especially well understood. The main issue is to decide whether anatom is a consequence of a program. For Horn programs, characterizations of collectionsof atoms that are implied by a program are well-known. They refer to the notionof the least Herbrand model and least �xpoint of the one-step provability operator.Furthermore, algorithmic methods, based on the resolution technique, to process queriesto Horn programs are known, too.In this paper we investigate an extension of (Horn) logic programming in which wenot only want to know whether an atom can be derived from a program. We are alsointerested in the cost of derivation.Assume that you are planning to acquire a bicycle. You have the following informa-tion:1. A bicycle can be purchased for $108.952. A bicycle can be assembled by a mechanic from two kits: kit1 and kit2. Themechanic charges $50.00 for labor. The �rst of the two kits, kit1, is available andcosts $49.993. You can assemble the bicycle yourself. Your time is worth $5.45/hour (minimumwage) and it takes approximately an hour to assemble the bike once you havethe following main parts: frame, back wheel and front wheel. Back wheel is puttogether in 2 hours from wheel frame, a tire and a brake. Front wheel requires thesame parts and the same amount of time to assemble. Wheel frame costs $14.95,a tire $8.99, and a brake $6.99. The frame costs $29.99.If we disregard the costs, we can formalize this information by a logic program as follows:(1) bicycle (2) bicycle kit1, kit2(3) kit1 (4) bicycle frame, frontWheel, backWheel(5) backWheel wheelFrame, tire, brake(6) frontWheel wheelFrame, tire, brake(7) frame 2

(8) wheelFrame (9) tire (10) brake The program implies that a bicycle can be acquired. In fact, there are two ways toaccomplish this. The �rst of them uses rule (1). The other one uses rules (4) - (10).Rule (2) cannot be used to acquire the bicycle as kit2 is not available (cannot be provedfrom the program).Let us now consider the costs. Clearly, the �rst way of acquiring the bicycle requiresat least $ 108.95. The attempt to use clause (2) fails as there is no way to acquire kit2,no matter how much resources we have available. Finally, acquiring the bicycle by meansof rules (4) - (10) costs $119.10. Indeed, each of the wheels costs $41.83 (parts - $30.93,labor - $10.90). The frame costs $29.99. The cost of labor to assemble the wheels andthe frame into a bike is $5.45.The reasoning about costs is not possible within the logic programming formalizationof the problem that is given above. The costs are simply not represented. In this paperwe study weighted logic programs in which every rule is assigned a non-negative realnumber. This number, called the weight or cost of a rule, is interpreted as the cost ofapplying this rule. In particular, we will formalize our bicycle example as the followingweighted logic program:(1) bicycle 108:99 �(2) bicycle 50:00 � kit1, kit2(3) kit1 49:99 �(4) bicycle 5:45 � frame, frontWheel, backWheel(5) frontWheel 10:90 � wheelFrame, tire, brake(6) backWheel 16:35 � wheelFrame, tire, brake(7) frame 29:99 �(8) wheelFrame 14:95 �(9) tire 8:99 �(10) brake 6:99 � rIn the paper, we will introduce the notion of derivation from a weighted program.It is a generalization of the notion of a derivation in the standard case (no costs). Wewill study the properties of derivations, in particular, their costs. Of main interest to uswill be the problem of computing the lowest costs of deriving an atom or a set of atoms.We will consider both the case of �nite propositional programs and the case of predicateprograms.It turns out that there are several ways to de�ne the cost of a derivation from acollection of weighted rules and they lead to di�erent results. Consider the following setof rules: 3

(a) a 1 c(b) b 1 c(c) c 3 :To compute a, one needs to compute c. Hence, the cost of computing a is 4. Assumethat in addition to computing a we want to compute b. The key question is: do we needto compute c again? In the case when weighted rules model production processes (likein our bicycle example), another copy of c is needed in order to obtain b. Hence weneed to compute it from scratch and pay for it. There are, however, other possibilities.For instance, an auxiliary result can be used in a mathematical proof as many timesas necessary, without the need to re-derive it. Similarly, when describing a design ofa complex object, each part needs to be designed once, independently of the numberof times it actually appears as a component. If rules (a) - (c) model a structure of adesign, there is no need to pay for the derivation of c again. Coming back to our bicycleexample, if the goal is to develop a design of a bike, rules (5) - (11) can be used to thisend. However, costs have to be interpreted di�erently. Once a wheel frame is designedfor the front wheel (and we paid for the design), the same design can be used in thedesign of the back wheel with no need to pay for it again.Similar distinctions can be made when considering the following two rules:(d) a 1 d; d(e) d 2 :Assume that these rules describe how an item can be obtained from other items. Underthe \design interpretation", to generate a design for a, the design of d needs only to bedescribed once. In such case, rule (d) is equivalent to(d0) a 1 d:The situation is di�erent under the \production interpretation". Rule (d) states thattwo di�erent copies of an item d are needed to produce item a while rule (d0) states thatjust one copy of d is needed to yield a. Consequently, rules (d) and (d0) are not equivalentwhen \production" interpretation is assumed. Let us note that in logic programming,rules like (d) are usually considered as poorly encoded but equivalent versions of (d0).This discussion points to two approaches to computing costs of deriving elements(atoms). One is based on the no-reusability assumption, the other one on the reusabilityassumption. In the �rst of them, in order to apply a rule, one has to pay for the derivationof all the atoms in the body of the rule as well as for the application of the rule. In thesecond model, one has to pay for the application of the rule and for the derivation of thoseatoms in the body of the rule that have not yet been computed. Those that have beenestablished earlier can be used for free. There are evident similarities to the concept of4

using lemmas in mathematical arguments and to tabling in logic programming (facts oncederived are available to use in future derivations). The di�erence is that in mathematicalreasoning or in deriving facts from logic programs, there is no cost function to minimize.In contrast, in our case, we will be looking for derivations of minimum possible cost.Thus, while tabling improves e�ciency of computation in logic programming [RRS+95],here the complexity of optimizing with respect to the reusability cost i increases (seeSection 3).In this paper, we will formally de�ne and study these two measures of the cost of aderivation. We will show that the no-reusability measure has a number of useful proper-ties. First, the problem of computing the minimum cost of deriving a set of atoms can bereduced (in polynomial time) to that of computing the minimum cost of deriving a singleatom. Second, there exists an embedding of weighted logic programming into constraintlogic programming. Third, in the case of �nite propositional weighted programs, theminimum cost of a derivation can be computed in polynomial time by a version of Dijk-stra shortest path algorithm. Finally, in the case of predicate programs we have naturalcounterparts to the notions such as Herbrand base, model, one-step provability operatorand the resolution procedure. These notions provide characterizations of minimum costsof deriving atoms.The reusability measure behaves in a drastically di�erent way. The problem of com-puting the minimum cost of deriving a set of atoms cannot be reduced to that of comput-ing the minimum cost of deriving a single atom. No constraint logic programming inter-pretation of weighted logic programs capturing the reusability interpretation is knownso far. Further, in the �nite propositional case, computing lowest costs is related to theminimum Steiner tree problem rather than to the shortest path problem and, thus, isNP-hard. Finally, while generalizations of the notion of Herbrand base, one-step prov-ability operator and resolution procedure can be formulated in the case of the reusabilityapproach, they are substantially more complex than in the no-reusability case. For in-stance, a generalization of the Herbrand base to the case of reusability consists of �nitesets of ground atoms, and not just ground atoms.There are several other ways of measuring costs of derivations. The weights of rulescan also be interpreted as time. Then, under our \production" interpretation, the costof deriving an atom is equal to the total time needed to \produce" an atom, assumingthat no two tasks can be done in parallel. But what if we allow parallelism? Let usassume that we have enough resources (people, machines, processors, etc.) to execute aweighted rule(f) d 2 a; bin parallel. That is, our resources allow us to \produce" a and b concurrently. Considerthe program consisting of rules (a) - (c) and (f). The time needed to produce d is 6.Indeed, a takes 4 time units and b takes 4 time units. Both can be computed in parallel.Then, 2 time units are needed to assemble a and b into d. Note that under the no-reusability interpretation, the cost of producing d is 10 (the cost of producing a and b5

plus the cost of applying rule (f)) and under the reusability interpretation, the cost ofproducing d is 7. Hence, all three interpretations are di�erent.Interestingly, the \parallel" measure of costs has all the nice properties of the no-reusability measure. In particular, computing the lowest cost of deriving an atom froma �nite propositional program can be done in polynomial time, appropriate resolutionprocedure can be de�ned and an embedding into constraint logic programming exists.Moreover, these results can be proved by the same techniques that are used in the proofsof the corresponding results for the no-reusability measure.Logic programs with weights were �rst studied by van Emden [vE86]. The syntaxof van Emden's programs is almost identical to that of weighted logic programs. Thedi�erence is that van Emden requires that the label assigned to a rule be from theinterval (0; 1]. It is motivated by the intention of van Emden to represent and computecon�dence factors (his paper was written in the heyday of expert systems). It turnsout that weighted logic programming with the parallel measure of costs is isomorphic tothe van Emden's approach. Consequently, all the nice computational properties of theno-reusability and parallel measures of costs hold for the van Emden's system, too.Existence of almost identical results for all three systems | weighted logic pro-gramming with no-reusability and parallel cost measures, and the van Emden system |suggest that there is a more general approach to weighted logic programming that wouldallow us to treat all these three interpretations as special cases. Finding this commongeneralization remains an open problem.The paper is organized as follows. In Section 2, we introduce weighted logic programsand two interpretations of rule weights and costs | one based on the no-reusabilityassumption, the other one based on the reusability assumption. We also state andprove several basic properties of weighted logic programs. In the following section, westudy the case of �nite propositional weighted programs. We establish the complexityof computing minimum costs of derivations and present polynomial time algorithmsto compute these minimum costs (for the no-reusability approach). In Section 4, wedeal with predicate programs with, possibly, in�nite Herbrand bases. In the case ofno-reusability measures, we introduce generalizations to the notions of Herbrand base,model, one-step provability operator and resolution procedure. We use these conceptsto characterize minimum costs of deriving atoms and sets of atoms. We brie
y discussa corresponding approach for the reusability interpretation. As mentioned, it is muchmore complex and does not yield elegant computational methods.In Section 5, we discuss yet another interpretation of costs. In this approach, ruleweights are interpreted as time and we assume that premises of a rule can be computed\in parallel". Finally, in Section 6, we discuss the approach of van Emden [vE86]. Weshow that van Emden's system of logic programming for con�dence factors is isomor-phic to our weighted logic programming under the the \parallel" measure of cost. inparticular, there is a 1-to-1 transformation between the programs in both systems suchthat the corresponding intended models are preserved. As a consequence, we get resultson complexity of computing con�dence factors using the system of van Emden (in thecase of �nite propositional programs) and a resolution technique (for the general case).6

The last section contains conclusions and open problems.To close the introduction let us note that there were also other attempts to incor-porate real numbers directly into logic programming [Sub89, BBS92, NS94, LNS97]. Inthese papers weights are interpreted as probabilities. Although models studied thereare subsets of the same generalization of Herbrand base that is used in this paper, thesimilarity ends there. The interpretation of the programs, and in particular of theirminimal models is di�erent than here.2 PreliminariesWe will now formally introduce weighted logic programs, the notions of derivation treeand forest, and the two models of measuring the costs of derivations.Let L be some �rst-order language and let At be its set of atoms. A weighted logicprogram rule is an expression of the formC = a s b1; : : : ; bn (1)where s is a nonnegative real number and a; b1; : : : ; bn are atoms of L. As usual, a iscalled the head of C, the atoms b1; : : : ; bn are said to form the body of C. The real numbers is called the cost of applying rule C (or, simply, the cost of C). Given a weighted ruleC, we will denote its cost by wt(C).A weighted logic program is a set P of weighted rules. Most of our results are con-cerned with the case of �nite predicate and propositional programs. Given a weightedlogic program P , by u(P) we will denote the underlying logic program, that is, the col-lection of rules from P with their weights stripped. By the Herbrand base of a weightedprogram P , denoted by H(P), we mean the Herbrand base of the program u(P). Simi-larly, by ground(P) we mean the set of ground instances of weighted clauses from P . Notethat weights do not contain variables and, thus, do not change during the instantiation.The basic intuition behind weighted rules and programs is that they are consideredin the context of some resources necessary in order for weighted rules to be used. Specif-ically, the intended meaning of a weighted rule (1) is: if b1; : : : ; bn have been establishedand the amount of available resources equals or exceeds s, then we can derive a and, todo so, we decrease the amount of available resources by s. Let us consider a rulea s :It allows us to derive a but only if we have enough resources (at least s).The central question we study in this paper is: what is the cost of deriving a groundatom or a set of ground atoms by means of a weighted logic program P . To studythis question, we need the notion of a derivation. Let P be a logic program (possiblyweighted; weights of rules are immaterial in this de�nition). A derivation tree from P isa rooted �nite tree " such that1. each vertex of " is labeled with a rule of the form r�, where r 2 P and � is aground substitution 7

2. if vertex v is labeled with a rule a b1; : : : ; bk, then v has exactly k childrenv1; : : : ; vk in ", and for each i, 1 � i � k, vi is labeled with a rule whose head is bi.Clearly, the nodes labeled with rules that have empty bodies are leaves of derivationtrees. A derivation forest is a �nite collection of derivation trees. (Note that in logicprogramming derivations are usually de�ned as sequences of atoms. Our de�nition of aderivation tree constitutes an equivalent alternative.)Let " be a derivation tree (forest). By R(") we denote the set of all rules used tolabel the nodes of ". If " is a derivation tree, its root will be denoted by root(").An important question is: what is implied by a derivation tree or forest? Commonly,a derivation (proof) is said to provide a justi�cation for the head of the last rule of aderivation. However, it is clear that, at least in the standard setting, a derivation in thesame time implies the heads of all its rules. Interestingly, in the case of weighted logicprogramming, the concept of a set of atoms yielded or implied by derivation trees andforests depends on the model of costs. Indeed, let us look again at the two rules (a)and (c). Consider a derivation shown in Figure 1. Under the no-reusability model (itis convenient to resort to our \production" intuition here), this derivation yields a only.It is so because c, available after rule (c) is applied, is then used up while producing aduring the application of rule (a).
v

v a c
1

3
c

2

1

Figure 1: Derivation tree using rules (c) and (a)Under the reusability model (\design" analogy), once c is obtained through an ap-plication of rule (c), it is used to \activate" rule (a), but remains available for otherapplications in the future. Hence, under the reusability model, both a and c are impliedby the derivation tree in Figure 1. To derive fa; cg under the no-reusability model, aderivation forest is needed (see Figure 2).
v

v a c
1

3 3
c cv

32

1

Figure 2: Derivation forest implying fa; cg under the no-reusability assumptionTo formalize this discussion, we will now introduce two relations `reu and `nr. Let" be a derivation forest (or tree) and let A be a set of atoms. De�ne" `reu A8

if A is contained in the set of the heads of all rules used as labels by ". De�ne" `nr Aif A is contained in the set of heads of rules used to label the roots of the trees in ".Clearly, the relations `reu and `nr capture the concept of a derivation forest (tree)implying a set of atoms for the two cost models considered. Note that if " is a tree,under the no-reusability model it implies exactly one atom | the head of the rule usedas the label of the root.The following property of derivation forests can be easily proved using standard logicprogramming techniques (observe that the notion of a weight is immaterial in the contextof derivation trees and forests).Proposition 2.1 Let P be a weighted logic program and let A be a �nite subset of theleast model of u(P). Then1. there is a derivation forest " such that " `reu A2. there is a derivation forest " such that " `nr A.We will now introduce the notion of the cost of derivation trees and forests forboth cost models. Let " be a derivation tree. We will �rst assume the no-reusabilityinterpretation of costs. That is, each time an atom serves as a premise to a rule in aderivation, we have to pay for this atom's derivation. The resulting notion of the costof a derivation tree will be referred to as the no-reusability cost.We de�ne the no-reusability cost of a vertex v in " by induction. Assume that v islabeled by a rule r and that the costs of all children v1; : : : ; vk of a vertex v have beenalready computed. Then, the cost of v is de�ned bycstnr(v) = wt(r) + kXi=1 cstnr(vi):The no-reusability cost of the derivation tree ", cstnr("), is now de�ned as the cost of theroot of ". For a derivation forest ", its no-reusability cost cstnr(") is de�ned as the sumof the costs of all its trees. It is easy to see that the cost of a derivation forest under theno-reusability interpretation can be equivalently de�ned as the sum of weights of rulesused to label the nodes of the derivation forest, counting the cost of each rule as manytimes as it appears as a label.Our second de�nition of cost assumes the reusability model. That is, once an atom isderived, we can use it for free whenever it appears as a premise of a rule in a derivation.The resulting notion of cost will be referred to as reusability cost. For a derivation forest", the reusability cost cstreu(") is de�ned bycstreu(") = Xr2R(")wt(r):9

We will show later that, under the no-reusability assumption, there are close con-nections between weighted logic programming and standard logic programming (and,especially, constraint logic programming). This is in sharp contrast with the reusabilityapproach, for which only much weaker analogies are established.To illustrate the two concepts of the cost, consider program P consisting of rules (a),(b) and (c) described in the introduction, and of rules(g) d 3 a; b(h) e 3 b.Figure 3 shows a derivation forest, say ", from this program. Under the reusabilityassumption, " implies the set of atoms fa; b; c; d; eg (and each of its subsets). The costcstreu(") is 11. On the other hand, under the no-reusability assumption, " implies fd; eg(and its subsets) and the cost cstnr(") is 18.
(3) (3)

(1)

(6)

(2)

(3)

(2)

(7)

Figure 3: An example of a derivation forestDerivation forests have a natural representation as graphs. Let " be a derivationforest. The corresponding derivation graph is obtained from " by collapsing all verticeslabeled by the same rule. Figure 4 shows the derivation graph for the derivation forestshown in Figure 3.
(6)

(3)

(1) (2)

(7)

Figure 4: The derivation graph of the derivation forest from Figure 3It is easy to see that if all rules in a program have weight 1 then the number of nodesin a derivation forest (respectively, derivation graph) coincides with the no-reusability(respectively, reusability) cost of this derivation.Let A be a set of atoms. De�necstnr(A) = inffcstnr("): " is a derivation forest such that " `nr Agand cstreu(A) = inffcstreu("): " is a derivation forest such that " `reu Ag:10

Observe that if there is no derivation forest that proves A (for instance, when A isin�nite) then the corresponding cost (cstnr(A) or cstreu(A)) is equal to in�nity.In this paper, for each of these two cost measures, we will study the following threequestions:Single-atom-derivation: Given a weighted logic program P , an atom x, and an integerk, decide whether there is a derivation tree of x from P with cost no more than k?Set-of-atoms-derivation: Given a weighted logic program P , a set of atoms X, andan integer k, decide whether there is a derivation forest of X from P with cost nomore than k?Least-model-derivation: Given a weighted logic program P and an integer k, decidewhether there is a derivation forest of the least model of u(P) with cost no morethan k? (This is a special case of set-of-atoms-derivation problem, when X is theleast model of P .)We conclude this section with several simple properties of the notions introducedearlier.Proposition 2.2 Let P be a weighted logic program and let A be a subset of the leastmodel of u(P).1. If A is �nite, cstnr(A) and cstreu(A) are �nite.2. If both P and A are �nite, then the in�ma cstnr(A) and cstreu(A) are attained.Proof: (1) By Proposition 2.1, there is a derivation forest " such that " `nr A. Thisderivation forest has a �nite cost cstnr("). Moreover, the cost cstnr(�) of every derivationforest � is non-negative. Hence, it follows that cstnr(A) is �nite. The argument in thecase of the reusability model is the same.(2) Let P = fr1; : : : ; rmg. Consider a derivation forest " such that " `nr A (suchderivations exist by Proposition 2.1). Since the cost cstnr(�) of any derivation forest �is of the form n1s1 + : : :+ nmsm;where ni are non-negative integers and si are the costs of applying rule ri, there are only�nitely many di�erent reals in the interval [0; cstnr(")] that can serve as the cost of aderivation that implies A. Hence, the claim, for the no-reusability case, follows. Thereasoning for the reusability case is the same and is omitted. 2The assertion of Proposition 2.2(2) fails if in�nite programs are allowed. Consider aprogram P = fr1; r2; : : : ; g, where rk = p 1=k . Clearly, cstnr(p) = cstreu(p) = 0 butthere is no derivation forest of p of cost 0.Our last result in this section deals only with the no-reusability case and shows thatfunction cstnr(�) is additive. There is no corresponding result for the reusability measure.11

Proposition 2.3 Let P be a weighted program and let a1; : : : ; ak be atoms. Then,cstnr(fa1; : : : ; akg) = kXi=1 cstnr(ai):Proof: If at least one atom ai is not derivable from u(P), then there is no derivation treeof ai and there is no derivation forest of fa1; : : : ; akg. Hence, both sides of the identityare equal to in�nity.Therefore, from now on we will assume that all atoms ai are derivable from u(P).Let " be a derivation forest of fa1; : : : ; akg. For each ai, this derivation forest containsa derivation tree "i that implies ai. Hence,cstnr(") � kXi=1 cstnr("i) � kXi=1 cstnr(ai):Consequently, cstnr(fa1; : : : ; akg) � kXi=1 cstnr(ai):Conversely, let "i be a derivation of ai. Let " be a derivation forest consisting of all trees"i. Then, " `nr fa1; : : : ; akg andkXi=1 cstnr("i) = cstnr(") � cstnr(fa1; : : : ; akg):Consequently, kXi=1 cstnr(ai) � cstnr(fa1; : : : ; akg):Hence, the equality follows. 2Remark 2.1 Proposition 2.3 shows that under the no-reusability interpretation of thecost, problems set-of-atoms-derivation and least-model-derivation can be reduced (inpolynomial time) to the single-atom-derivation problem.3 Finite propositional weighted logic programsIn this section we will investigate computational issues related to �nite propositionalweighted logic programs. We will start our discussion of the three problems listedin Section 2, that is single-atom-derivation, set-of-atoms-derivation and least-model-derivation, in the case of the no-reusability approach.First, we will study the case of propositional weighted bi-horn programs. A bi-hornrule is a de�nite (Horn) rule with at most one atom in the body. A weighted bi-hornprogram is a weighted logic program that consists only of (weighted) bi-horn rules. We12

will associate with each propositional weighted bi-horn program P a weighted directedgraph G(P). All atoms appearing in P , together with one new element st, are thevertices of the graph G(P). There is a directed edge from x to y if one of the followingtwo cases holds:1. x = st and y = a for some rule a 2 P2. x = b and y = a for some rule a b 2 P .The edge of G(P) corresponding to a rule r will be denoted by er. Similarly, the rulethat gives rise to an edge e of G(P) will be denoted by re.The weight of the rule re 2 P that de�nes an edge e in G(P) is assigned to e as theweight of e. We will denote it by wt(e). For a subgraph H of G(P), the sum of theweights of all edges in H will be called the weight of H and will be denoted by wt(H).We have the following result establishing a correspondence between derivation treesand directed paths in G(P) that start in st. Throughout the paper, by a path we meana simple path, that is, repetitions of vertices are not allowed.Proposition 3.1 Let P be a weighted bi-horn program and let a be an atom appearingin P .1. Let " be a derivation tree of a from P . There is a directed path W in G(P) startingin st and terminating in a. Moreover, the length of W is not greater than the costof " (for both measures of cost).2. Conversely, let W be a directed path in G(P) starting in st and terminating ina. The rules corresponding to the edges of W determine a derivation tree " of afrom P in which no rule is used more than once as a label and with the same cost(under both cost measures) as the length of W .Proof: (1) Since every rule in a bi-horn program has at most one atom in the body, theunderlying tree T (") of " is a path. For every atom v that appears as the head of a rulein ", let us denote by r(v) the lowest rule in " with the head v. Next, de�neR0(") = fr(v): v is the head of a rule in R(")g:Let r1; : : : ; rm be an enumeration of R0(") according to the order in which the rulesappear in ". Let k be the integer such that rk = r(a).Clearly, the body of r1 is empty. Hence, the corresponding edge, er1, starts in st.Moreover, for every i, 1 � i � k � 1, the head of ri is the only premise of ri+1. Conse-quently, the head of the edge eri is the tail of eri+1. Thus, the edges corresponding to therules fr1; : : : ; rkg form a path starting in st. Since the last of these edges correspondsto the rule with a as the head, the path ends in a.Due to the direct correspondence between the costs of rules and edges, the secondpart of the assertion of (1) follows. Part (2) can be argued similarly. 2By Proposition 3.1, it follows that for weighted bi-horn programs, the single-atom-derivation problem, for each of the two cost measures, is equivalent to the shortest-pathproblem: 13

Given a directed weighted graph G, a vertex st of G, a vertex x of G andan integer k, decide whether there is a directed path in G between st and xand such that the sum of its edges is at most k.Indeed, by Proposition 3.1, there is a derivation tree " of x from a bi-horn program Psuch that cstreu(") � k (or, equivalently, cstnr(") � k) if and only if there is a path fromst to x in G(P) with length no more than k. Hence, we get the following result.Theorem 3.2 For the class of weighted bi-horn logic programs and for each cost measurecstnr and cstreu the single-atom-derivation problem is in P and can be solved by Dijkstrashortest path algorithm.We will now show that, under the no-reusability interpretation, this result extendsto the case of arbitrary weighted logic programs. Furthermore, as observed in Remark2.1, problems set-of-atoms-derivation and all-atoms-derivation can be reduced to single-atom-derivation. Hence, all of them are in class P.Theorem 3.3 Under the no-reusability interpretation, problems single-atom-derivation,set-of-atoms-derivation and all{atoms-derivation are all in P.Proof: Let P be a �nite propositional weighted logic program. Throughout the algo-rithm, we will maintain two sets of atoms A � C � At(P). After every iteration of thealgorithm, A will consist of those atoms for which the lowest cost of deriving them hasalready been found. For an atom a 2 A, this cost will be denoted by d(a). Similarly,C will consist of those atoms that are not in A but can be proved from the atoms in Aby applying one rule from P . For each atom c 2 C, d(c) denotes the lowest cost of aderivation tree " of c such that the heads of the rules from R(") n root(") are in A.In the remainder of the proof, we will use C and A to denote the corresponding setsbefore an iteration and C 0 and A0 to denote the updated versions of these sets after theiteration.We start with A = ;, C = fa: a w 2 Pg, d(a) = minfw: a w 2 Pg and d(a) =1 forevery atom a appearing in P , a =2 C. In each iteration, we select an element from c 2 Cwith the lowest value of d(c). We include it in A and update the sets A and C. Thatis, we remove c from C and add it to A (in this way we obtain sets that we denote C 0and A0). Including c to A may increase the set of the rules with bodies included in theset A0. Consequently, two types of updates may become necessary:1. Some new atoms may have to be added to C. It is the case for every atom a suchthat a =2 C and there is a rule r 2 P such that body(r) � A0. For each such atoma, d(a) is computed by the following formula:d(a) = Xb2body(r) d(b) + wt(r):
14

2. For some atoms a 2 C 0, the value d(a) may have to be modi�ed (lowered). It isthe case for every atom a 2 C 0 such thatd(a) > Xb2body(r) d(b) + wt(r):In such case, d(a) is replaced by Pb2body(r) d(b) + wt(r).In each iteration, these updates are executed by inspecting all rules with c in the bodyand with all other atoms from the body in A (that is, rules activated by moving c fromC to A). For each of these rules, depending on whether its head is in the current versionof C or not, either update of type (2) or of type (1) is executed. We continue iteratingas long as C is not empty.We will now prove the correctness of this algorithm. To this end, we will prove, byinduction on the number of iterations, that after every iteration the following conditionshold:1. For every a 2 A, d(a) is the minimum cost of a derivation tree of a from P2. C consists of those atoms that are not in A but can be proved in one step from A3. For every a 2 C, d(c) is the lowest cost of a derivation tree of c whose all rules butone (labeling the root) have heads in A.Clearly, all conditions hold before we start the iterations. Let us assume that all theseconditions hold after k iterations. We will show that they hold after k + 1 iterations(assuming C 6= ; after the iteration k).Let c be the vertex selected in the iteration k+1 fromC. By the induction hypothesis,there is a derivation tree of c with cost d(c). Assume that d(c) is not the minimum costof deriving c. Let " be a minimum cost derivation tree of c. Let � be a subderivationtree of " (a derivation tree based on a subtree of T (") and using the same labels for itsnodes as ") such that all its rules but the one used to label the root have heads in A.Since c =2 A, such a derivation tree � exists.Denote by c0 the head of the rule labeling the root of T (�). By the induction hypoth-esis, c0 2 C. Moreover, d(c0) � cstnr(�) � cstnr(") < d(c). Consequently, c0 should havebeen selected in the iteration k+1 rather that c| a contradiction. Hence, condition (1)holds after iteration k + 1. Conditions (2) and (3) are also satis�ed due to the updateprocess, described earlier, that is applied in each iteration. 2The algorithm described in the proof of Theorem 3.3 is based on the same ideas asthe algorithm by Dijkstra to compute shortest paths in directed graphs. Consequently,it can be implemented in the same way, with a Fibonacci heap used to represent the setC. This yields an implementation of the algorithm to compute a cost of deriving a singleatom (under the no-reusability interpretation of costs) that runs in time O(m+n logn),where m is the size of the program and n is the number of atoms appearing in theprogram. 15

Let us consider now the reusability measure cstreu. Again, let us start with the caseof bi-horn programs. In this case, the set-of-atoms-derivation problem is equivalent todirected minimum Steiner tree (DMST) problem:Given a directed weighted graph G, a vertex st of G, a subset X of the vertexset of G and an integer k, decide whether there is a directed subtree of Grooted in st, covering all vertices in X, and such that the sum of its edges isat most k.Indeed, using the reasoning of the proof of Proposition 3.1, one can show that there is aderivation forest " for a set of atoms A and such that cstreu(") � k, if and only if thereis a tree in G(P) rooted in st, covering all vertices in A and with total weight at mostk. In the special case, when A consists of all atoms derivable from P , deciding whetherA has a derivation forest of cost at most k (all-atoms-derivation problem) becomesequivalent to the directed minimum cost spanning tree (DMCST) problem:Given a directed weighted graph G, a vertex st of G, and an integer k, decidewhether there is a directed subtree of G rooted in st, covering all verticesreachable from st, and such that the sum of its edges is at most k.These observations, together with some well-known results on DMST problem andDMCST problem, imply the following theorem.Theorem 3.4 For the class of weighted bi-horn logic programs and the reusability mea-sure cstreu we have:1. Set-of-atoms-derivation problem is NP-complete2. All{atoms-derivations is in P.Proof: Part (2) follows from the well-known results for the DMCST problem [Tar77,GGST86]. We will now prove part (1) by showing that DMST problem is NP-complete.It is clear that the problem is in NP. To prove NP-hardness, we will use the fact thatthe undirected version of Minimum Steiner Tree problem is known to be NP-complete[GJ79]. Let us recall that the Minimum Steiner Tree (MST) problem is de�ned asfollows:Given an undirected weighted graph G, a subset X of the vertex set of Gand an integer k, decide whether there is a subtree of G covering all verticesin X and such that the sum of its edges is at most k.Let G be an undirected weighted graph with the vertex set V . Let G� be a directedgraph with V as its vertex set and obtained from G by replacing each undirected edgefx; yg in G by two directed edges (x; y) and (y; x). To each edge (x; y) of G� we assignthe weight of the edge fx; yg in G. 16

Let X be a subset of V and let k be an integer. We have that G, X � V and aninteger k is a YES instance of MST problem if and only if there is a vertex st 2 V suchthat G�, st, X and k is a YES instance of the DMST problem. Indeed, assume that Tis a subtree of G covering all vertices in X and such that the sum of all edges of T isat most k. Select any vertex in T , say st, and form a directed tree T � by ordering alledges in T \away" from st. Clearly, T � is a directed subtree of G�, covering X, rootedin st and with the same total cost as T . Conversely, if T � is a directed subtree of G�,covering X, rooted in st and with the sum of its edges no more than k, then the tree Tobtained from T � by dropping the ordering of the edges is a subtree of G. Moreover, itcovers X and has the same cost as T �.It follows that if there existed a polynomial time algorithm to solve DMST problemthen, calling it jV j times, once for each vertex of V as a potential root, would constitutea polynomial time method for solving MST. Since MST is NP-hard, NP-hardness ofDMST follows. 2We will next study the case of arbitrary propositional weighted programs and thereusability measure cstreu. It turns out that all three problems are, under these assump-tions, NP-complete.Theorem 3.5 Under the reusability model problems single-atom-derivation, set-of-atoms-derivation and all-atoms-derivation are NP-complete.Proof. All problems are clearly in NP. NP-hardness of the set-of-atoms-derivation prob-lem follows from Theorem 3.4. We will now show NP-hardness of single-atom-derivationproblem.Let P be a propositional weighted logic program, let X be a set of atoms and let k bean integer (that is, P , X and k form an input for the set-of-atoms-derivation problem).Assume that X = fa1; : : : ; akg. Let P 0 be a program obtained by adding to P a rulez 0 a1; : : : ; ak;where z is a new atom not appearing in P . Clearly, z has a derivation tree from P 0with cost no more than k if and only if X has a derivation forest from P with cost nomore than k. Since the set-of-atoms-derivation problem is NP-hard, NP-hardness of thesingle-atom-derivation problem follows.Finally, consider a propositional weighted logic program P , an atom x and and integerk (an input to the single-atom-derivation problem). De�neP 0 = P [fa 0 x: a 2 H(P); a 6= xg:Clearly, if x is not derivable from P (this can be checked in linear time in the size of P[DG84]) then there is no derivation tree of x from P with cost at most k. Otherwise (xis derivable from P) we have that there is a derivation tree of x with cost at most k ifand only if the least model of P 0 has a derivation from P 0 with cost at most k. Since the17

single-atom-derivation is NP-hard, the NP-hardness of the all-atoms-derivation follows.2 The results of this section point to a fundamental di�erence between the reusabilitymeasure cstreu and the no-reusability measure cstnr. In the �rst case, computing mini-mum costs of derivations of atoms and sets of atoms is NP-hard, in the second one, itcan be accomplished in polynomial time.4 Computing costs for predicate programsSeveral concepts of standard logic programming, such as Herbrand base, model, one-stepprovability operator and a resolution procedure, have natural extensions to the case ofweighted logic programs. The associated notion of a cost of an atom turns out to coincidewith the no-reusability cost introduced in the previous section. We will also show thatunder the no-reusability interpretation, weighted logic programming can be embeddedinto constraint logic programming. This seems to be the underlying reason for all theelegant properties of no-reusability measure.We will now introduce these generalizations, and formally establish connections tothe no-reusability interpretation of weighted logic programs. We will also describe theconnection to constraint logic programming.At the end of this section, we will brie
y discuss possible extensions of the conceptsof Herbrand base, model, one-step provability operator and resolution procedure thatare appropriate to capture the reusability approach.We will assume that predicate weighted programs contain at least one constant sym-bol, so the Herbrand universe of the underlying language is non-empty.By a generalized Herbrand base of a weighted logic program P we mean the setHg(P) = H(P)� R+;where R+ is the set of non-negative reals, and H(P) is the Herbrand base of u(P). Wecall the elements of Hg(P) resourced atoms, that is, atoms with resources to cover costsof deriving them.A subset M � Hg(P) is called a resourced model of a weighted program P if thefollowing conditions are met1. Whenever C = a s b1; : : : ; bn is a rule from P , � is a ground substitution of allvariables in C and hb1�; x1i 2M , : : :, hbn�; xni 2M , then ha�; x1 + : : :+ xn + si2M .2. Whenever ha; xi 2M and y � x, then ha; yi 2M .The following propositions establish basic properties of resourced models and theirrelationship to the standard notion of a model.Proposition 4.1 Let P be a weighted program. Then there exists a least resourcedmodel of P . 18

Proof. Clearly, Hg(P) is a resourced model of P . Moreover, an intersection of anarbitrary family of resourced models of P is also a resourced model of P . Thus, the leastresourced model of P exists | it is the intersection of all resourced models of P . 2In the remainder of the paper, the least resourced model of a weighted program Pwill be denoted by LM(P).Given a resourced model N of a program P , and an atom a 2 H(P), the weight ofa in N , wN(a), is de�ned by: wN(a) = inffx : ha; xi 2 Ng(in particular, wN(a) =1 if for no x; ha; xi 2 N).Proposition 4.2 For every resourced model N of P and for every atom a 2 H(P),wN(a) � wLM(P)(a).Proof: Clearly, if a resourced atom hp(t); xi 2 LM(P), then hp(t); xi 2 N . Consequently,wN(a) = inffx : ha; xi 2 Ng � inffx : ha; xi 2 LM(P)g = wLM(P)(a). 2The notion of the least resourced model can be characterized by means of the one-stepderivability operator UP . Namely, for every subset A � Hg(P) let us de�neUP (A) = fha�; xi: a s b1; : : : ; bn 2 P; � is a ground substitution, and there are realsx1; : : : ; xn such that hbi�; xii 2 A and s+ x1 + : : :+ xn � xg:Following the analogy with logic programming, de�neU0P (;) = ; and UnP (;) = UP (Un�1P (;)); for n � 1:Finally, de�ne U!P (;) = 1[n=0UnP (;):We have the following characterization of the least resourced model in terms of theoperator UP .Proposition 4.3 Let P be a weighted logic program.1. The operator UP is compact (and, thus, monotone)2. The least resourced model of P is equal to U!P (;). That is, LM(P) = U!P (;).Proof: (1) is obvious. To prove (2), we �rst observe that for every resourced model Mof P and for every n � 0, UnP (;) � M (easy induction on n). Consequently, U!P (;) iscontained in the least resourced model of P .We will now prove that U!P (;) is a resourced model of P . Let C = a s b1; : : : ; bnbe a rule from P and let � be a ground substitution of all variables in C such thathbi�; xii 2 U!P (;), for every i, 1 � i � n. Then there is k such that hbi�; xii 2 UkP (;),19

for every i, 1 � i � n. Consequently, ha�; x1+ : : :+ xn+ si 2 Uk+1P (;) � U!P (;). Hence,condition (1) of the de�nition of a resourced model is satis�ed. A similar argumentshows that condition (2) holds, as well. 2The next result states that if an atom a (in conjunction with some cost) is in the leastresourced model of a weighted program P (that is, at some price it can be derived fromP), then a is entailed by the underlying standard logic program u(P). The conversealso holds. That is, if an atom a is entailed by u(P), then there is a cost for which itcan be derived from P . In the proof and also later in the paper we will refer to theone-step provability operator of van Emden and Kowalski for the program u(P). Wewill denote it by TP the one-step provability operator of van Emden and Kowalski forthe logic program u(P) underlying the weighted program P . Let us also denote byT nP (;) and T !P (;) the nth iteration of TP over the empty set and the least �xpoint of TP ,respectively.Proposition 4.4 Let N be the least Herbrand model of u(P). Then, for every a 2H(P), there is x such that ha; xi 2 LM(P) if and only if a 2 N .Proof: It follows by an easy induction that for every n � 1T nP (;) = fa: ha; xi 2 UnP (;); for some x � 0g:Thus, T !P (;) = fa: ha; xi 2 U!P (;); for some x � 0gand the assertion follows. 2We will now establish a connection between the notions introduced in this sectionand the no-reusability approach to weighted logic programming.Theorem 4.5 Let P be a weighted logic program.1. Let ha; xi 2 Hg(P). There is k such that ha; xi 2 UkP (;) if and only if there is aderivation tree " such that cstnr(") � x and " `nr a.2. For every atom a, wLM(P)(a) = cstnr(a).Proof: Assume that ha; xi 2 UkP (;). We will prove by induction on k that there is aderivation tree " such that cstnr(") � x and " `nr a. This is, clearly, the case for k = 0(U0P (;) = ;).Assume that the claim holds for an integer k � 0. We will show that the claim holdsfor k + 1, as well. Let ha; xi 2 Uk+1P (;). Then, there is a rule C = p s q1; : : : ; qm 2 P ,reals x1; : : : ; xm and a ground substitution � such that1. p� = a2. hqi�; xii 2 UkP (;) 20

3. x � s+ x1 + : : :+ xm.By the induction hypothesis, for every i, 1 � i � m, there is a derivation tree "i suchthat cstnr("i) � xi and " `nr qi�. The tree obtained by adding a new vertex v, labeledby C�, and making the roots of "i the children of v, is a derivation tree of a. Moreover,it is easy to see that cstnr(") = s+ mXi=1 cstnr("i) � s+ mXi=1 xi � x:Thus, the inductive step follows.Conversely, assume that " is a derivation tree of a and that cstnr(") � x. We willshow that there is k such that ha; xi 2 UkP (;). The proof will be by induction on thedepth of ". Let v be the root of " and let v1; : : : ; vk be the children of v. Denote by rithe rule that labels vi. Denote by qi the head of ri. Finally, denote by "i the subtree of" rooted in vi.Clearly, "i is a derivation tree for qi. Since its depth is smaller than the depth of ",it follows that there is ki such that hqi; cstnr(ri)i 2 UkiP (;). Hence, there is k such thathqi; cstnr(ri)i 2 UkP (;), for every i, 1 � i � n. Consequently, ha; cstnr(")i and ha; xi arein Uk+1P (;). This completes the proof of part (1). Part (2) is a direct consequence ofpart (1). 2Next, we will describe the resolution procedure for weighted programs. A weightedgoal is a pair hL;wi where L is a list of atoms (possibly with variables) and w � 0. LetG = h(a1; : : : ; ak); wi be a weighted goal. Consider a clauseC = p s b1; : : : ; bmfrom P such that w � s and the most general uni�er of aj and p, say �. The resolventof G and C is the weighted goalh(a1�; : : : ; aj�1�; b1�; : : : ; bm�; aj+1�; : : : ; ak�); w � s:iIf w < s, or if p cannot be uni�ed with any of the atoms in G, G and C are not resolvable.A resolution derivation from P of a weighted goal hL;wi is a sequence of pairshGi; Ciini=0 where G0 = hL;wi, Gn = hnil; ti, each Gj+1 is the resolvent of Gj and Cj,and t � 0. Notice that Cn is not applied in the derivation (any clause can be used forCn). De�neRP = fhp; wi 2 Hg(P): hp; wi has a resolution derivation from Pg:It is easy to see that RP is upward closed, that is, if hp; wi 2 RP then hp; w0i 2 RP forevery w0 � w.Let us observe that since the weights of rules are constant and do not change whenthe variables are instantiated, a lifting lemma obviously holds. Consequently, we obtainthe following useful result. 21

Lemma 4.6 For every ground atom p and nonnegative real w, a resourced atom hp; wipossesses a resolution derivation from P if and only if it possesses a resolution derivationfrom ground(P).We will show that the least resourced model of a weighted program P , LM(P),coincides with RP (soundness and completeness result). To this end we need to de-�ne an operation of combination of resolution sequences. Let D1; D2 be two resolutionderivations:D1 = hhhL11; x11i; C11i; : : : ; hhL1k1; x1k1i; C1k1iiD2 = hhhL21; x21i; C21i; : : : ; hhL2k2; x2k2i; C2k2iiWe de�ne the combination
 of derivations D1; D2 as the sequence D = D1
D2:hhhL11 � L21; x11 + x21i; C11i;hhL12 � L21; x12 + x21i; C12i;: : :hhL1k1 � L21; x1k1 + x21i; C21i;hhL22; x1k1 + x22i; C22i,: : :hhL2k2; x1k1 + x2k2i; C2k2ii,where, � stands for the concatenation of lists. Notice that the clause C1k1 disappearsfrom this de�nition. The operation of combination of resolution derivations is extendedto sequences collections of derivations by settingD1
 : : :
Dm = (: : : ((D1
D2)
D3) : : :)Without a proof we state the following lemma.Lemma 4.7 Let D1; : : : ; Dm be resolution derivations of weighted goals hL1; w1i; : : : ;hLm; wmi. Then D1
 : : :
Dm is a resolution derivation of the weighted goal hL1 � : : : �Lm; w1 + : : :+ wmi.We will use Lemma 4.7 to characterize the least resourced model of a weightedprogram P in terms of resolution derivations.Theorem 4.8 Let P be a weighted logic program. Then, LM(P) = RP .Proof. Let C = p s q1; : : : ; qn 2 ground(P) and assume that hq1; z1i; : : : ; hqn; zni 2 RP .By the de�nition of RP and Lemma 4.6, for every i, 1 � i � k, there exists a resolutionderivation Di of hqi; zii from ground(P).Let D0 = D1
 : : :
Dn. AssumeD0 = hhhL1; u1i; C1i : : : ; hhLk; uki; Ckii22

De�ne D = hhhp; s+ u1i; Ci; hhL1; u1i; C1i; : : : ; hhLk; uki; CkiiIt is easy to see that D is a resolution derivation of hp; s + u1i from ground(P). ByLemma 4.6, hp; s+ u1i has a resolution derivation from P . That is, hp; s + u1i belongsto RP . Since u1 = z1 + : : :+ zn, hp; s+ z1 + : : :+ zni 2 RP . Since RP is upward closed,it follows that RP is a model of P . Consequently, LM(P) � RP .It remains to be shown that RP � LM(P). To this end we will prove the followingclaim:(C) If L = (p1; : : : ; pk) is a list of ground atoms, w is a non-negative real and hL;wihas a resolution derivation from ground(P), then there exist non-negative realsx1; : : : ; xk such that hp1; x1i; : : : ; hpk; xki 2 LM(P) and x1 + : : :+ xk � w.We will prove the claim by induction on the length of a resolution derivation of hL;wi.Let D = hhhL1; w1i; C1i; : : : ; hhLm; wmi; Cmiibe a resolution derivation of hL;wi (hence w1 = w). Assume the claim holds for allweighted goals with a resolution derivation shorter than m.The sequence D0 = hhhL2; w2i; C2i; : : : ; hhLm; wmi; Cmiiis a resolution derivation of length m � 1 of the weighted goal hL2; w2i. Let L2 =(q1; : : : ; qn). There is an atom in the list L1 (without loss of generality, we will assumethat it is the last atom in the list, pk) so that for the clauseC1 = pk s h1; : : : ; hl1. w2 = w1 � s2. L2 = (q1; : : : ; qn) = (p1; : : : ; pk�1) � (h1; : : : ; hl):By the induction hypothesis, there exist non-negative reals y1; : : : ; yn such that1. y1 + : : :+ yn � w2, and2. hq1; y1i; : : : ; hqn; yni 2 LM(P).De�ne1. xi = yi, for i < k � 1,2. xk = s+ yk + : : :+ yk+l�1
23

Since hpi; xii = hqi; yii, for i � k � 1, hpi; xii 2 LM(P) for i � k � 1 (by the inductionhypothesis). Since hqj; yji; : : : ; hqj+l�1; yj+l�1i 2 LM(P) (by the induction hypothesis),and C 2 ground(P), hpk; s + yk + : : : + yk+l�1i 2 LM(P). Now, observe that xk =s+yk+ : : :+yk+l�1. Hence, hpk; xki 2 LM(P). Clearly, x1+ : : :+xk = y1+ : : :+yn+s �w2 + s = w1 = w. Hence, the claim follows.Let hp; wi 2 RP . Then, hp; wi has a resolution derivation from ground(P). Now, theclaim implies that for some s � w, hp; si 2 LM(P). Since LM(P) is closed upwards,hp; wi 2 LM(P). This completes the argument. 2The results of this section can be explained by an observation that, under no-reusability approach, every weighted logic program can be interpreted as a constraintlogic program. This interpretation requires a modi�cation of the language and usesconstraints of a special syntactic form.To modify the language, for every predicate p of the original language L we introducea new predicate p0. The predicate p0 has one additional variable (which will be the lastvariable of p0). This variable ranges over non-negative reals. Second, we will use anadditional predicate � for reals, and we will use a symbol + for real addition.Consider a clause C in the language L:C = p(t) x q1(t1); : : : ; qk(tk):We de�ne the corresponding constraint logic programming clause over the domain R+(non-negative reals) by:clp(C) = p0(t; X) (x+X1 + : : :+Xk � X); q01(t1; X1); : : : ; q0k(tk; Xk):Here, x+X1+ : : :+Xk � X is the constraint of the clause clp(C). Then, for a weightedprogram P , we de�ne clp(P) = fclp(C) : C 2 Pg.Given an arbitrary constraint domain D a D-interpretation is a set of atoms in whichevery variable ranging over D is replaced by a constant (denoting an element from D)and all other variables are replaced by ground terms (those terms can contain constantsfor elements from D). By a D-valuation we mean a function that assigns ground termsto variables not ranging over D and constants for elements of D, otherwise. Each suchvaluation uniquely extends to a valuation of all terms and formulas (including those ofthe language of D). The e�ect of a D-valuation v on a constraint c is denoted by v(c) 1.Similarly, a formula v(b) is the e�ect of the valuation v on an atom b. Following [JM94],we can assign to a constraint logic program Q over a domain D an operator TDQ mappingD-interpretations to D-interpretations and de�ned as follows:TDQ (I) = fp(d) : p(X) c; b1; : : : ; bn is a rule of Q; ai 2 I; i = 1; : : : ; n;v is a D-valuation such thatD j= v(c); v(X) = d; and v(bi) = ai; i = 1; : : : ; ngWe have now the following fact.1We follow the terminology of [JM94]. The notation D j= c[v] instead of D j= v(c) is often used.24

Theorem 4.9 Let P be a weighted logic program and let x be a real number. Let p(t)be a ground atom. Then, hp(t); xi belongs to the least resourced model of P if and onlyif p0(t; x) belongs to TR+clp(P) " !(;).Proof: We show by induction on n that hp(t); xi 2 UnP (;) if and only if p0(t; x) 2 TR+clp(P) "n(;). The case of n = 0 is evident. To deal with the induction step, we will assumethat n = 1. The general case is similar. Assume that for a sequence of ground terms t,hp(t); xi 2 U1P (;). It follows that there is a rule p(u) s 2 P and a substitution � suchthat u� = t and s � x. Then, p0(u;X) s � X 2 clp(P). De�ne a R+-valuationv by setting v(X) = x and using � to de�ne all other variable assignments. Thenv(s � X) = s � x is true in R+. Thus p0(t; x) belongs to TR+clp(P) " 1(;).Conversely, if p0(t; x) 2 TR+clp(P) " 1(;) then there is a rule p0(u;X) (s � X) 2clp(P) and a D-valuation v such that v(X) = x and s � x. De�ne � by assigning tovariables not ranging over R+ ground terms assigned to those variables by v. It followsthat p(u) s is in P . Moreover, since s � x and u� = t, hp(t); xi 2 U1P (;). 2Our results imply that there is a class of constraint logic programs for which there arepolynomial algorithms that decide whether a ground atom is entailed by the program.Speci�cally, let K1 be the class of constraint logic programs built of clauses of thefollowing two types:1. p(X) s � X2. p(X) s+X1 + : : :+Xk � X; p1(X1); : : : ; pk(Xk)where p and pi, 1 � i � k, are unary predicate symbols over non-negative reals and s isa non-negative real. Our results on the complexity of a single-atom-derivation problemfrom Section 3 and Theorem 4.9 yield the following result.Theorem 4.10 There is an algorithm that decides whether a �nite constraint programfrom class K1 entails a ground atom and that runs in time O(m + n logn), where m isthe size of the program and n is the number of atoms appearing in the program.There are counterparts to the notions of generalized Herbrand base and one-stepprovability operator that lead to the reusability approach. However, an important mod-i�cation seems to be necessary. Rather than to assign costs only to single atoms (aswas su�cient for the no-reusability case), costs need to be assigned to �nite collectionsof atoms under the reusability interpretation of costs. (This may explain, in particular,di�erences in the complexity of reasoning under the two models.)Let At be a set of ground atoms of some �rst-order language. De�ne Hgfin(P) =fhX;wi:X � At; jXj < !; w � 0g. This set will be referred to as power Herbrand basefor a weighted logic program P . The elements of this set will be called ground poweratoms. By a power model of a weighted logic program P we mean each setM � Hgfin(P)such that: 25

for every hX;wi 2 M and for every rule a s b1; : : : ; bk 2 ground(P), iffb1; : : : ; bkg � X, then hX [fag; xi 2M , for every x � w + s.It is easy to see that Hgfin(P) is a power model of P and that the intersection of powermodels is a power model. Hence, the least power model of a weighted logic programexists. We will denote it by LMp(P).We say that weighted program P and a ground power atom hX;wi 2 Hgfin(P) implya ground power atom hX 0; w0i if there is a rule a s b1; : : : ; bk 2 ground(P) such thatfb1; : : : ; bkg � X, X 0 = X [fag and w0 � w+ s. In such case, we will write P; hX;wi `hX 0; w0i.We will de�ne now a generalization of the one-step provability operator. Speci�cally,for any set M � Hgfin(P) de�neSP (M) = fhX 0; w0i: there is hX;wi 2M such that P; hX;wi ` hX 0; w0ig:Several classic results from logic programming can be extended to the setting of powerHerbrand base and related notions. The proofs are not di�cult and we omit them. Inparticular, it is easy to show that M � Hgfin(P) is a power model of a weighted logicprogram P if and only if SP (M) � M . It is also easy to see that SP is compact and,thus, monotone. Hence, SP has a unique least �xpoint over ;. This �xpoint coincideswith the least power model of P . The connection to weighted logic programming underthe reusability interpretation is given by the following result.Theorem 4.11 Let P be a weighted program. The least �xpoint of SP exists and consistsof precisely those pairs hX; ti for which cstreu(X) � t. This least �xpoint coincides withthe least power model of P .We will now introduce an appropriate notion of resolution. By a power goal wemean a pair hX;wi, where X is a �nite set of atoms of the language and w is a non-negative real. Consider an atom q 2 X and a rule C = a s b1; : : : ; bk from P suchthat w � s. Assume that � is a most general uni�er for q and a. Then the power goalh(X� n fq�g) [fb1�; : : : ; bk�g; w � si is called a resolvent of hX;wi and C. Observethat, unlike in the previous case, here the �rst component of the resolvent is a set ofatoms | repetitive occurrences are ignored.A power resolution derivation of a power goal hX;wi from P is a sequence of pairshGi; Ciini=0 where G0 = hX;wi, Gn = h;; ti, each Gj+1 is the resolvent of Gj and Cj, andt � 0. De�neR0P = fhX;wi 2 Hgfin(P): hX;wi has a power resolution derivation from Pg:The following result establishes soundness and completeness of power resolutionmethod.Theorem 4.12 Let P be a weighted logic program. Then, LMp(P) = R0P .26

5 Cost as time under unlimited parallelismIn this section we will discuss yet another interpretation of cost in weighted logic pro-grams. Despite the di�erence in the way the cost is interpreted, all of the results ofSection 4 (or their appropriate modi�cations) can be established for this new system, aswell. This indicates that even more general treatment of costs in logic programming ispossible. We will outline some of the possible directions in the last section of the paper.The interpretation discussed in this section leads to a system that is closely relatedto the logic programming for con�dence factors that was proposed by van Emden [vE86].The system by van Emden and the connection will be discussed in the next section.Let us start again with the \production" intuition behind no-reusability. A rulea s b1; : : : ; bnencodes a piece of knowledge that an item a can be obtained from items b1; : : : ; bn at costs. Let us interpret s not as the cost of assembling b1; : : : ; bn into a but as the time thatis required. Assuming that no two tasks can be done in parallel, our no-reusability costcstnr, de�ned in Section 2, measures the total time required for the derivation. What wewill study in this section is a parallel version of this measure. Namely, we will assumethat we have enough resources to \produce" b1; : : : ; bn in parallel. Moreover, every rulenecessary in the \production" of each bi will also be assumed to be executed in parallel.Let " be a derivation tree. We de�ne the parallel cost of a vertex v in " by induction.We will denote this cost by cstp(v). Assume that v is labeled by a rule r and that theparallel costs of all children v1; : : : ; vk of a vertex v have been already computed. Then,the parallel cost of v is de�ned bycstp(v) = wt(r) + maxfcstp(vi): i = 1; : : : ; kg:The parallel cost of the derivation tree ", cstp("), is now de�ned as the cost of the rootof ". This implicitly assumes a no-reusability model. All atoms proved \on the way"to deriving the root of " are used up in the \production" process and only the head ofthe rule that labels the root of the derivation remains. It is easy to see that the cost ofa derivation forest under the parallel interpretation can be equivalently de�ned as thelargest sum of weights of rules used to label the nodes of a path in the derivation forest(counting the cost of each rule as many times as it appears as a label on the path).For a derivation forest ", its parallel cost cstp(") is de�ned as the maximum of thecosts of all its trees. This implies that the set-of-atoms-derivation problem and the all-atoms-derivation problem can be reduced to the single-atom-derivation problem. Fromnow on we will focus on this last problem only. Given a ground atom a, we de�necstp(a) = inffcstp("): " is a derivation tree for ag:In this section, we will study techniques to compute this measure.Let us consider an example. De�ne P to be a weighted logic program consisting ofthe following rules: 27

(1) s 3 q; r(2) q 2 (3) r 1 .Clearly, there is a derivation tree for s (consisting of the root and two children, theroot being labeled with rule (1) and the children with rules (2) and (3)). Under bothreusability and no-reusability interpretations, the cost of this derivation tree is 6. Onthe other hand, under the parallel interpretation, the cost of this derivation tree is 5. Itis also easy to see that this is an optimal derivation of s. Hence, cstp(s) = 5.The results of Section 4 can be extended to the case of this new interpretation of costs.In particular, there is a corresponding notion of a p-model, and a sound and completeresolution procedure. We will now de�ne these notions and state the appropriate results.The proofs are similar to those in Section 4 and are omitted.A subset M � Hg(P) is called a p-model of a weighted program P if the followingconditions are met1. Whenever C = a s b1; : : : ; bn is a rule from P , � a ground substitution of allvariables in C, hb1�; x1i 2 M, : : :, hbn�; xni 2M , then ha�; s+maxfx1; : : : ; xngi2M .2. Whenever ha; xi 2M , y � x, then ha; yi 2MFor a p-model M of a weighted logic program P , we de�newpM(a) = inffx: ha; xi 2Mg:Reasoning as in Section 4, one can prove that a least p-model exists.Proposition 5.1 Let P be a weighted logic program. Then P has a least p-model.Let us brie
y note that in the case of bi-horn programs there is no parallelism withinthe clauses. Consequently, we have the following result.Proposition 5.2 If P is bi-horn, then the least resourced model and the least p-modelcoincide.The least p-model of P can be characterized by means of the appropriate one-stepprovability operator. Speci�cally, for every subset A � Hg(P) let us de�neUpP (A) = fha�; xi: a s b1; : : : ; bn 2 P; � is a ground substitution, and there are realsx1; : : : ; xn such that hbi�; xii 2 A and s+maxfx1; : : : ; xng � xg:Proposition 5.3 Let P be a weighted logic program.1. The operator UpP is compact (and, thus, monotone)28

2. The least p-model of P is equal to the least �xpoint of UpP over the empty set.Least resourced models and costs of derivations under the parallel interpretation ofthe cost are related.Proposition 5.4 Let P be a weighted logic program and let M be its least p-model. Forevery atom a 2 LM(P), we have wpM(a) = cstp(a).The parallel interpretation of weighted programs has also a complete resolutionprocedure. This procedure is similar to the resolution procedure described in Sec-tion 4. However, there are some important di�erences. First, instead of weightingentire goal we weight individual atoms. Speci�cally, a p-weighted goal is a list L =hhp1; s1i; : : : ; hpm; smii, where for all i, 1 � i � m, pi is a ground atom and si is anon-negative real. Now, given such p-weighted goal L and a clause C = p s q1; : : : ; qmsuch that pi and p are uni�able by a most general uni�er �, the resolvent of L and C ishhp1�; s1i; : : : ; hpi�1�; si�1i; hq1�; si � si; : : : ; hqn�; si � si; hpi+1�; si+1i; : : : ; hpm�; smiiproviding si � s (otherwise resolution cannot be performed). The notion of a p-resolution derivation of a weighted goal is analogous to the one from Section 4.With this form of the resolution we have the following result characterizing the leastp-model of P .Proposition 5.5 The least p-model of P consists precisely of those resourced atoms forwhich the p-resolution derivation exists.Next, we show that we can interpret the weighted logic programs with the parallelinterpretation of the cost as constraint logic programs (cf. a similar result, Theorem 4.9in Section 4). However, although the constraint domain remains the same (the set R+of non-negative reals), the max operation is needed (together with the + operation andthe � relation).The interpretation of a clause C = p(t) s q1(t1); : : : ; qn(tn) isclpp(C) = p0(t; X) (X � s+maxfX1; : : : ; Xng); q01(t1; X1); : : : ; q0n(tn; Xn):Given a weighted logic program P , let us denote by clpp(P) the constraint logic programobtained by replacing each rule C by its constraint logic programming interpretationclpp(C). We now have the following theorem.Theorem 5.6 Let P be a weighted logic program. Let p(t) be a ground atom. Then,hp(t); xi belongs to the least p-model of P if and only if p0(t; x) belongs to TR+clpp(P) " !(;).It is well known that the shortest-path problem remains in P if the length of a pathis computed as the maximum of the weights of its edges rather then the sum. In fact, aminor modi�cation of the Dijkstra algorithm can be used to solve it. The same is truewhen we switch from the no-reusability interpretation to the parallel interpretation ofcosts. We have the following result. 29

Theorem 5.7 The problems of single atoms derivation, set-of-atoms-derivation and all-atom-derivation for parallel interpretation of weighted programs are all in the class P.In fact, as in Section 3, one can show that the all these problems can be solved intime O(m+ n logn), where m is the size of the program and n is the number of atomsappearing in the program.The results of this section allow us to introduce yet another class of constraint logicprograms for which the entailment problem can be decided in polynomial time. Let K2be the class of constraint logic programs built of clauses of the following two types:1. p(X) s � X2. p(X) s+maxfX1; : : : ; Xkg � X; p1(X1); : : : ; pk(Xk)where p and pi, 1 � i � k, are unary predicate symbols over non-negative reals and sis a non-negative real. Theorems 5.6, together with our comments on the complexity ofsolving derivation problems under the parallel interpretation of costs, yield the followingresult.Theorem 5.8 There is an algorithm that decides whether a �nite constraint programfrom class K2 entails a ground atom and that runs in time O(m + n logn), where m isthe size of the program and n is the number of atoms appearing in the program.6 Logic programming for con�dence factorsWeighted logic programs, with weights restricted to the interval (0; 1], were consideredby van Emden [vE86] as a way to incorporate con�dence factors into logic programming.In that work, a rule p s q1; : : : ; qnis assigned the following intuitive interpretation: if the con�dence factors of q1; : : : ; qnare at least x1; : : : ; xn, then the con�dence factor of p is at least s�minfx1; : : : ; xng. Wewill refer to weighted rules with weights from (0; 1] as cf-rules and to weighted programsbuilt of cf-rules as cf-programs.The results obtained by van Emden are quite similar to those in Sections 4 and 5. Inparticular, van Emden de�nes an appropriate generalization of the Herbrand base of aprogram P by settingHcf(P) = H(P)�(0; 1]. He then de�nes the notion of a model of acf-program appropriate for the con�dence factor interpretation. A subset M � Hcf(P)is called a cf-model of a weighted program P if the following conditions hold:1. Whenever C = a s b1; : : : ; bn is a rule from P , � a ground substitution of allvariables in C, hb1�; x1i 2 M, : : :, hbn�; xni 2M , then ha�; s�minfx1; : : : ; xngi2M .2. Whenever ha; xi 2M and 0 < y � x, then ha; yi 2M .30

For a cf-model M of a cf-program P , we de�newcfM(a) = supfx: ha; xi 2Mg:As de�ned by van Emden, cf-models are closed downward rather than upward. It isnatural as if we believe an atom with con�dence x, then we should believe in the atomwith any con�dence y, where 0 < y � x. van Emden shows that the least cf-model ofweighted program exists. He also describes a complete resolution procedure for decidingthe membership of an atom from Hcf(P) in the least cf-model of P . This procedure issimilar to the one described above for the parallel interpretation, except that one dividesby s rather than subtracts it. These similarities are not accidental. It turns out thatparallel interpretation and con�dence factor interpretation of costs are isomorphic.Indeed, let C = p s q1; : : : ; qnbe a cf-rule. De�ne ve(C) = p � log s q1; : : : ; qn:For a cf-program P , de�ne ve(P) = fve(C) : C 2 Pg. Finally, de�ne a map ve :Hcf(P) 7! Hg(P) by ve(hp; si) = hp;� log si:This mapping is one-to-one and onto. It induces a one-to-one and onto mapping (over-loading the notation, we will also refer to it as ve) between the subsets of Hcf(P) andthe subsets of Hg(P). This induced mapping transforms downward closed subsets ofHcf(P) into upward closed subsets of Hg(P). We then have the following result es-tablishing a precise relationship between cf-programs and weighted programs with theparallel interpretation of costs.Theorem 6.1 Let P be a cf-program and let M be a subset of Hcf(P). Then, M isa cf-model of P if and only if ve(M) is a p-model of the weighted program ve(P). Inparticular, M is the least cf-model of P if and only if ve(M) is the least p-model of P .Using this relationship we can extend the remaining results from Section 5 to thecase of cf-programs. In particular, one can de�ne an appropriate measure of the cost ofa derivation tree and derive the following characterization of the least cf-model. Speci�-cally, let " be a derivation tree. We de�ne the con�dence factor cost (cf-cost) of a vertexv in " by induction. We will denote this cost by cstcf(v). Assume that v is labeled bya rule r and that the cf-costs of all children v1; : : : ; vk of a vertex v have been alreadycomputed. Then, the cf-cost of v is de�ned bycstcf(v) = wt(r)�minfcstcf(vi): i = 1; : : : ; kg:The cf-cost of the derivation tree ", cstcf ("), is now de�ned as the cost of the root of ".Given a ground atom a, de�necstcf(a) = supfcstcf("): " is a derivation tree for ag:31

Proposition 6.2 Let P be a cf-program and let M be its least cf-model. For every atoma, we have wcfM(a) = cstcf(a).We can also construct an embedding of cf-programs into constraint logic program-ming over the domain h(0; 1];�;min;�i. Indeed, consider a cf-ruleC = p(t) s q1(t1); : : : ; qm(tm)and assign to it the ruleclpcf(C) = p0(t; X) (X � s�minfX1; : : : ; Xmg); q01(t1; X1); : : : ; q0m(tm:Xm):Now, de�ne clpcf(P) = fclpcf(C) : C 2 Pg. We then have the following result estab-lishing a correspondence between cf-programs and constraint logic programming.Theorem 6.3 Let P be a cf-program. Let M � Hg(P) be the least cf-model of P . Thenfor every hp(t); si 2 Hcf(P), hp(t); si 2M if and only if p0(t; s) 2 T (0;1]clpcf (P)"!(;).Complexity results for computing con�dence factors of atoms and sets of atoms canbe derived from Theorems 5.7 and 6.1 (the con�dence factor of a set of atoms is de�nedas the minimum of con�dence factors of its elements).7 Conclusions and further researchThe results of the paper point to several interesting directions for further work on logicprogramming with costs. There is close similarity in the type of results we were ableto obtain for weighted logic programs under the no-reusability, parallel and con�dencefactor interpretations of costs. In addition, in each case the methods needed for proofswere very similar, too. It is of interest to �nd a general class of interpretations of costswith properties analogous to those we obtained for the no-reusability interpretation.Speci�cally, it is of interest to �nd a characterization of a class of interpretations forwhich there are polynomial algorithms for computing costs in the propositional case,and a sound and complete resolution procedure in the predicate case (without the needto resort to the notion of the power Herbrand base).In particular, notice that all these interpretations (no-reusability, parallel and con-�dence factor) can be viewed as special cases of the following scheme. Let ' be anoperation acting on �nite lists of non-negative reals. Assign to a clause p s q1; : : : ; qnthis interpretation: \If the atoms q1; : : : ; qn can be computed with the costs s1; : : : ; snrespectively, then p can be computed with the cost '(s; s1; : : : ; sn). Our results showthat for some operations ' ('(s; s1; : : : ; sk) = s + s1 + : : : + sk, or '(s; s1; : : : ; sk) =s + max(s1; : : : ; sk)) there is a natural notion of a model and a corresponding \resolu-tion" technique. Similarly, van Emden results show the same for '(s; s1; : : : ; sn) = s�min(s1; : : : ; sn). In addition, one can easily see that the same holds for '(s; s1; : : : ; sn) =32

maxfs; s1; : : : ; sng. The question which other operations ' lead to the same results re-mains open.In the paper we found substantial di�erences between no-reusability and reusabilityinterpretations. Interestingly, for the \parallel" (time) interpretation of weighted logicprograms reusability and non-reusability lead to the same lowest costs. The same holdsfor regeneration interpretation. Is there a characterization of interpretations for whichthese two approaches coincide?It is possible to extend the formalism presented in this paper to the situation whenthe bodies of program rules may also contain negated atoms. Such rules admit severalinterpretations. We will mention here only one. We will restrict now to the case ofpropositional programs. Speci�cally, we interpret a rule C:p s q1; : : : ; qm;:r1; : : : ;:rnas follows: \ If q1; : : : ; qm have been derived, and r1; : : : ; rn are not and will not bederived, then derive p and decrease the amount of available resource by s".It is easy to de�ne a corresponding notion of a model. Namely, M � Hg(P) is amodel of C if for all reals s1; : : : ; sm, whenever hq1; s1i 2 M; : : : ; hqm; smi 2 M , and forall non-negative reals t1; : : : ; tn,hr1; t1i =2M; : : : ; hrn; tni 2M;then hp; s+ s1 + : : :+ smi 2M .We can now generalize the concept of a stable model. To illustrate the approach,assume the no-reusability interpretation of costs. Namely, M � Hg(P) is a nr-stablemodel for a weighted logic program P if it coincides with the least (resourced) model ofthe reduct of P with respect to M (the reduct is computed according to the Gelfond-Lifschitz de�nition | the costs are disregarded). Similar de�nitions can be given forother ways to interpret costs of the rules. This yields the notions of reu-stable andp-stable models.An interesting observation is that the complexity of the existence problem for nr-stable models of cost at most k grows to NP-complete (from polynomial, in the Horncase), while it stays the same as in the Horn case (NP-complete) for reu-stable models.Next, let us observe that clauses of logic programs can be assigned more than oneweight. For instance, consider a clause:p s;t q1; : : : ; qn:It might be interpreted as \if q1; : : : ; qn can be computed with cost s1; : : : ; sn respectively,then p can be obtained with cost t� (s+ s1+ : : :+ sn)". Such 2-parameter clauses couldmodel situations where not only we apply a rule at some cost, but we also apply adiscount (or premium, depending on the magnitude of t) when the rule is applied. Ourresults on no-reusability and parallel interpretations can be repeated in this case. Inparticular, the notion of a model, a derivation, an appropriate resolution algorithm, andan embedding into some version of CLP can easily be constructed.33

Finally, let us note that resolution procedures given in this paper together withour results on embeddings of weighted logic programming into CLP indicate that someclasses of CLP programs have a particularly simple resolution procedure.References[BBS92] H. Blair, A. Brown, and V.S. Subrahmanian. Intentional Logics for Program-ming, chapter Monotone Logic Programming, pages 1{22. Oxford UniversityPress, 1992.[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the sat-is�ability of propositional Horn formulae. Journal of Logic Programming,3:267{284, 1984.[GGST86] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. E�cient algorithms for�nding minimum spanning trees in undirected and directed graphs. Combi-natorica, 6:109{122, 1986.[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability; a guide to thetheory of NP-completeness. W.H. Freeman, 1979.[JM94] J. Ja�ar and M. Maher. Constraint logic programming: A survey. Journalof Logic Programming, 19-20:503{581, 1994.[Llo84] J. Lloyd. Foundations of logic programming. Berlin: Springer-Verlag, 1984.[LNS97] J. Lu, A. Nerode, and V.S. Subrahmanian. Hybrid knowledge bases. IEEETransactions on Knowledge and Data Engineering, 1997. to appear.[NS94] R. Ng and V.S. Subrahmanian. Stable semantics for probabilistic seductivedatabases. Information and Computation, 110:42{83, 1994.[RRS+95] P. Rao, I.V. Ramskrishnan, K. Sagonas, T. Swift, and D. S. Warren. E�cienttabling mechanisms for logic programs. In Proceedings of the 12th Interna-tional Conference on Logic Programming, Cambridge, MA, 1995. MIT Press.[Sub89] V.S. Subrahmanian. Computational Reasoning with Nonclassical and Para-consistent Logics. PhD thesis, University of Syracuse, 1989.[Tar77] R.E. Tarjan. Finding optimum branchings. Networks, 7:25{35, 1977.[vE86] M.H. van Emden. Quantitative deduction and its �xpoint theory. Journal ofLogic Programming, 4:37{53, 1986.
34

