Strong and uniform equivalence of nonmonotonic theories — an algebraic
approach’

Mirostaw Truszczynski
Department of Computer Science
University of Kentucky,
Lexington, KY 40506-0046, USA
mirekcs.uky.edu

Abstract

We show that the concepts of strong and uniform equivalence
of logic programs can be generalized to an abstract algebraic
setting of operators on complete lattices. Our results imply
characterizations of strong and uniform equivalence for sev-
eral nonmonotonic logics including logic programming with
aggregates, default logic and a version of autoepistemic logic.

Introduction

In knowledge representation, as in programming in general,
when building a knowledge base for a large application do-
main one of the key methodological principles is that of
modularity An application domain at hand is partitioned
into smaller fragments and each of these fragments is rep-

have the same stable models (each program{pass its
only stable model). Howeve® U {q} and@ U {¢q} have
differentstable models. The only stable model@b {¢} is
{p, ¢} and the only stable model 6fu{q} is {¢}. Similarly,
PU{q < not(p)} has one stable moddly}, andQU{q —
not(p)} has two stable modeky} and{q}.

Characterizing logic programs that are equivalent for sub-
stitution with respect to the stable-model semantics was
identified as an important research topic in (Lifschitz,
Pearce, & Valverde 2001). That paper used the tgtnong
equivalenceanstead ofequivalence for substitutionSince
the former is prevalent, we use it in our paper, too.

(Lifschitz, Pearce, & Valverde 2001) studied the problem
of strong equivalence in the setting lofjic programs with
nested expressionalso referred to asested logic programs

resented as a separate module. Sometimes it becomes nectLifschitz, Tang, & Turner 1999). Nested logic program-

essary to replace a module with another one, for instance, Ming generalizes disjunctive logic programming with the

to optimize the performance of reasoning algorithms. How- Semantics of answer sets (Gelfond & Lifschitz 1991) and,
ever, it is paramount that the replacement leaves the dveral therefore, also normal logic programming with the seman-
meaning of the knowledge base unchanged. Thus, deciding tics of stable models.

when two modules arequivalent for substitutioemerges (Lifschitz, Pearce, & Valverde 2001) presented a charac-
as a fundamental problem in studies of knowledge represen- terization of strong equivalence of nested logic programs
tation formalisms. by exploiting properties of the logibere-and-thergHeyt-

In some cases, the answer is straightforward. If a knowl- ing 1930). (Turner 2001; Lin 2002; Turner 2003) continued
edge base is represented as a theory in propositional logic, these studies and obtained simple characterizationsoofgstr
equivalence for substitution coincides with the standagd |~ equivalence without explicit references to the loiere-
ical equivalence. Indeed, if two propositional theotizand and-there In particular, (Turner 2001; 2003) introduced the
Q are logically equivalent then for every theory of the form notion of anse-modeldefined as a certain pair of sets of lit-
T = PUR, the theoryl” = QU R, obtained by replacing erals, and proved that two nested logic programs are syong|
with Q in T, is logically equivalent td". The converse state- ~ equivalent if and only if they have the same se-models. In
ment holds, as well and so, theoriBsand(are equivalent addition, (Turner 2001) demonstrated that the approach of
for substitution if and only if they are logically equivaten se-models extends to the case of (nested) default theories.

For knowledge representation formalisms based on non-
monotonic logics, the situation is more complex. In logic
programming with the semantics of stable models (Gelfond
& Lifschitz 1988), having the same stable models is too
weak a requirement to guarantee equivalence for substitu-
tion. For instance, the following two logic programs

P ={p} and Q = {p < not(q)}

*This work was partially supported by the NSF grant IIS-
0325063.
Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

(Eiter & Fink 2003) introduced one more notion of equiv-
alence, theuniform equivalencef disjunctive logic pro-
grams with answer-set semantics. Two disjunctive logie pro
gramsP and(areuniformly equivalenif for every setR of
facts P U R andQ U R have the same answer sets. (Eiter &
Fink 2003) presented a characterizationuofform equiv-
alencein terms of se-models and, for finite programs, in
terms ofue-modelswhich are se-models with some addi-
tional properties.

A comprehensive discussion of strong and uniform equiv-
alence of disjunctive logic programs, including receneext
sions of the two concepts to the setting relativized with re-

spect to a fixed set of atoms can be found in (Eiter, Fink, &
Woltran 2006).

Results from (Lifschitz, Pearce, & Valverde 2001; Turner
2001; Lin 2002; Turner 2003; Eiter & Fink 2003) and their
proofs exhibit common themes and similarities. To a large
degree, itis due to the fact that all characterizationsrofst
and uniform equivalence developed there are rooted, if not
directly then implicitly, in the logichere-and-there In this
paper we point out to an additional reason behind these simi-
larities, related to the fact that semantics of many nonmono
tonic logics can be introduced in abstract algebraic terms.
Our main contribution is an algebraic account of strong and
uniform equivalence in terms of operators on complete lat-
tices. Specifically, in the paper we:

1. extend the definitions of strong and uniform equivalence
of logic programs to the abstract case of operators on lat-
tices.

2. establish characterizations of strong and uniform equiv
alence of operators in terms eé-pairs— objects that
generalize se-models to the setting of lattices.

3. demonstrate that these characterizations yield, ai@ero
ies, characterizations of strong and uniform equivalence
for those nonmonotonic logics whose semantics can be
defined in terms of fixpoints of operators on lattites

Our tool is the approximation theory, which deals with
properties of fixpoints of operators on complete lattices-(D
necker, Marek, & Truszczski 2000). It provides an al-
gebraic account of several nonmonotonic logics including
(normal) logic programming, default logic and autoepis-
temic logic, and allows one to state and prove properties
of these logics in a uniform, general and abstract way (De-
necker, Marek, & TruszcZyski 2003). Recent applications
of the approximation theory include the development of se-
mantics of logic programs with aggregates (Pelov. 2004;
Pelov, Denecker, & Bruynooghe 2004) and an abstract ac-
count of splitting theorems (Vennekens, Gilis, & Denecker
2004b; 2004a).

Preliminaries

We start with an overview of elements of the approxima-
tion theory (Denecker, Marek, & Truszazski 2000). We
assume familiarity with the concepts of a lattice, lattice o
dering <, and lattice operations and V. A lattice L is
completdf every subset of. has both least upper and great-
est lower bounds. In particular, a complete lattice hasst lea
element, denoted by, and a greatest element, denoted by
T.

An operatoron a latticel is any function from/. to L. An
operatorO on L is monotonef for every z, y € L such that
x < y we haveO(x) < O(y). Similarly, an operato© on
L is antimonotonef for every z,y € L such thatr < y we
haveO(y) < O(zx). Constantoperators are both monotone
and antimonotone.

Let O be an operator on a lattice. An elementz € L
is a prefixpoint(a fixpoint respectively) ofO if O(z) < x

1In this paper, we mention only applications to logic program-
ming and default logic.

(O(x) = =z, respectively). If an operat@ has a least fix-
point, we denote this fixpoint byfp(O). The following
theorem by Tarski and Knaster establishes a fundamental
property of monotone operators on complete lattices (Tarsk
1955).

Theorem 1 Let O be a monotone operator on a complete
lattice L. Then,O has a least fixpoint and this least fixpoint
is also the least prefixpoint @?.

The approximation theory (Denecker, Marek, &
Truszczyiski 2000) is concerned with operators on lattices
and mappings fromL? to L. We emphasize that we
consistently use the terrmappingfor functions from L2
to L, and reserve the termoperator for functions whose
domains and co-domains coincide.

Definition 1 Let L be a complete lattice. A mapping
A: L? — L is an approximating mappingf for every
x € L, the operatorA(-,z) is monotone and the operator
A(z,-) is antimonotoné.

If O is an operator onL such thatO(z) = A(z, z), then
A is anapproximating mapping faD.

If x,y, 2z € L satisfyz < z < y, then we say that the pair
(z,y) is anapproximationof z. If A is an approximating
mapping for an operatap on L and(z, y) is an approxima-
tion to z then

Az, 2) < A(z,2) < A(y, 2)

and
Alz,y) < Alz,2) < Az, 2).

The first group of inequalities follows by the monotonicity
of A(-, z), the other one by the antimonotonicity &fz, -).
Consequently, we have

Az, z) < 0(z) < Ay, 2)

and
A(z,y) < O(z) < A(z,x),

that is, pairs(A(z, 2), Ay, z)) and (A(z,y), A(z,z)) ap-
proximateO(z). This property motivates the name “approx-
imating mapping” forA.

Every operatorO on a latticeL has an approximating
mapping. Indeed, leti: L? — L be a mapping defined
by:

€ if v <y
A(z,y) = { O(x) if v = y
T otherwise.

Clearly, for everyx € L, A(z,z) = O(z). Next, let
z1,29,y € L and letz; < xo. If 21 < gy, A(z1,y) = L.
If it is not the case thats < y, A(x2,y) = T. If nei-
ther of these two cases holds, = x5 = y. In all cases,
A(z1,y) < A(ze,y), that is, for everyy € L, A(-,y) is

2The setL? with the precisionordering is a complete lattice
(Ginsberg 1988; Fitting 2002). (Denecker, Marek, & Truszty
2000) developed the approximation theory in terms of the so-called
approximatingoperatorson the latticeL?. Approximatingmap-
pingslead to a simpler notation and so, we chose to use them in
this paper.

monotone. In a similar way we verify that for everye L,
A(z,-) is antimonotone. Thusd is an approximating map-
ping for O.

In general, approximating mappings are not unique. For
monotone and antimonotone operators we distinguish spe-
cial approximating mappings. Namely, @ is monotone,
we setCo(z,y) = O(z), for z,y € L. If O is antimono-
tone, we seCo(z,y) = O(y), for x,y € L. In each case,
one can verify thaCy is an approximating mapping fa@p
— we call itcanonical

If A is an approximating mapping for some operator
on a complete lattice, then Theorem 1 ensures that for every
y € L, Ifp(A(+,y)) is well defined. This property makes the
following definition sound.

Definition 2 (Denecker, Marek, & Truszczyhski 2000)
Let O be an operator on a complete lattideand let A be
an approximating mapping fad. An A-stableoperator for
O on L is an operatorS 4 on L such that for every € L:

Say) = lfp(A(-,y)).

An element € L is an A-stable fixpoint 0D if © = S (z).
We denote the set agf-stable fixpoints 00 by St(O, Ao).

We will now discuss the relevance of the approximation
theory to nonmonotonic logics. We focus on logic program-

related toT» and ¥ p. The key point is that semantics of
logic programs are special cases of a general algebraic the-
ory of operators and their fixpoints (Denecker, Marek, &
Truszczyski 2000).

Equivalence of lattice operators

Our goal is to show that the concepts of strong and uniform
equivalence can be cast in the abstract algebraic setting of
the approximation theory. We start by defining the concept
of anextensiorof an operator. LeP and R be operators on

a lattice L. An extensiorof P with R is an operato” v R
defined onL by setting

(PV R)(z) = P(x) V R(x),

for everyx € L. We call R anextendingoperator and® v

R an extensionof P with R. If we consider programs in
terms of their one-step provability operators, the extamsi
of operators is a direct generalization of the union of two
logic programs. Indeed, i andR are logic programs, then
Tpur =Tp UTR.

As in the case of logic programs, strong and uniform
equivalence of operators concerns stable fixpoints of their
extensions. However, the notion of a stable fixpoint depends
on the choice of an approximating mapping. Thus, when-
ever we consider the equivalence of two operatBrand

ming, consider the propositional case only, and assume that @), we select for each of them one of their approximating

an underlying language is generated by a4ebdf proposi-
tional variables. We represent 2-valued interpretatidnsto
as subsets afit. With the inclusion relation as an ordering
relation, the set of 2-valued interpretations Af, denoted
by L 4:, forms a complete latticéL 4., C). The set union
operatorJ is the join operator in this lattice.

Each logic programP determines a one-input one-step
provability operatorT’s on the latticeL 4; (van Emden &
Kowalski 1976). Letl C At¢. We recall thatl's(1) is the
set of the heads of all rules iR whose body holds ir.
Another operator associated withis a two-input one-step
provability operatorl p (Fitting 1985; 1991). Iff, J C At
then¥p(7,J) consists of the heads of those rules whose
positive body holds in and negative body holds ih. One
can check that for every C At, ¥p(-,I) is monotone,
Up(1,-)is antimonotone an® p(1,1) = Tp(I). It follows
that U » is an approximating mapping far». Thus, as long
as we view logic programming as a study of properties of
Tp and¥p, it is a special case of the approximation theory.

The operatord’» and ¥ p are fundamental to the study
of semantics of logic programs. Fixpoints &f are pre-
cisely supported models @t, and 4-valued supported mod-
els of P (including the Kripke-Kleene model df) are deter-
mined by pairg(Z, J) of interpretations such thaf, J) =
(Tp(I,J),¥p(J,I)). Next, the Gelfond-Lifschitz opera-
tor GLp (Gelfond & Lifschitz 1988), satisfie&Lp(I)
Ifp(¥p(-,I)). Thus,GLp is theV p-stable operator fof p
and so, stable models &fcoincide with¥ p-stable fixpoints
of Tp. Since, 4-valued stable models (including the well-
founded model ofP) can be characterized by paifs, J)
of interpretations such thdt, J) = (GLp(J),GLp(I)),
it follows that all major 2-valued and 4-valued semantics of
logic programs can be expressed as fixpoints of operators

mappings, saylp and Ag respectively. In this way, we de-
termine a specific notion of stability for the operatétaind

Q.

The equivalence of? and @ will depend on stable fix-
points of the operator® v R and@ Vv R. Informally, we
will require thatP v R and@ V R have the same stable
fixpoints. However, the concept of stability becomes un-
ambiguous only ifP v R and @ V R are assigned some
approximating mappings. These approximating mappings
should depend in some way on the approximating mappings
of P (Q, respectively) andr, as otherwise there would be
no connection between the concepts of stability foand
PV R (Qand@ V R, respectively).

We will now consider this issue. Ld? and R be oper-
ators on a latticd., and letAp and Ar be approximating
mappings forP and R, respectively. It is straightforward
to check that the operatodp VvV Ag is an approximating
mapping for the operataP Vv R. Thus, when considering
operatorsP V R and @ VvV R, we will use Ap vV Ar and
Ag Vv Ap as their approximating mappings. In particular,
we will compare(Ap vV Ag)-stable fixpoints of? VV R with
(Ag Vv Ag)-stable fixpoints of) v R.

Another point concerns operators to use to exterahd
Q@ with. As in logic programming, we impose no restrictions
when defining strong equivalence. To properly generalize
the concept of uniform equivalence, we note that logic pro-
grams consisting of facts (this class of programs was used to
define the uniform equivalence in the case of logic program-
ming), have constant one-step provability operators. dher
fore, we define uniform equivalence of operators with re-
spect to extensions by constant operators only. Moreover,
we consider them only together with their canonical approx-
imations (we recall that constant operators are monotode an

have canonical approximating mappings). We formalize this
discussion in the following definition.

Definition 3 Let P and@ be operators on a lattic& and let
Ap and Ag be their approximating mappings, respectively.

1. P and @ are strongly equivalentwith respect to
(Ap,Ag), written P =, @ mod (Ap, Ag), if for ev-
ery operatorRk and for every approximating mappingz
of R,

St(P\/ R, ApV AR) = St(Q \ R,AQ \Y AR)

2. P and @ are uniformly equivalentwith respect to
(Ap,Ag), writtenP =, Q mod (Ap, Ag), if for every
constanbperatorR

St(P VR,ApV CR) = St(Q VR, AQ vV CR),

whereC’, is the canonical approximating mapping fér
(constant operators are monotone and have canonical ap-
proximating mappings).

Thus, givenP and(@ and their approximating mappings
Ap andAg, P andQ are strongly equivalent with respect to
(Ap, Ag) if for an arbitrary operatoR and for an arbitrary
approximating mapping foR, extensiong® v R and@Q v R
of P and@ with R have the same stable fixpoints (4 p Vv
Apr)-stable fixpoints on the one side afd, v Ag)-stable
fixpoints on the other. SimilarlyP and @@ are uniformly
equivalent with respect ttAp, Ag) if extensions ofP and
Q@ with an arbitrary constant operatirhave the same stable
fixpoints —(Ap v Cg)-stable fixpoints in the case &fv R
and(Ag Vv Cr)-stable fixpoints in the case 6f V R.

Let us consider these definitions from the perspective of
normal logic programs. LeP be a program. As we noted,

equivalence is a direct generalization of the definition in
(Eiter & Fink 2003).

Se-pairs
In this section, we generalize the notion of an se-model
(Turner 2001; 2003) to the case of operators.
A pair (z,y) € L? is anse-pairfor P with respect to an
approximating mappingl p for P if

(SEl)z <y
(SE2) P(y) <y
(SE3) Ap(x,y) <=

We will denote the set ofe-pairfor P with respect toA p
by SE(P, Ap).

Let us consider this definition from the logic program-
ming perspective. LeP be a logic program. We observed
earlier that semantics d? are captured by the operatdrs
and¥p. The following two properties are well known: a
set of atomsY is a model of a progran® if and only if
Tp(Y) C Y; and a set of atomX is a model of the pro-
gramPY ifand only if Up(X,Y) C X.

We now recall that an se-model of a prograhis a pair
(X,Y) of sets of atoms (interpretations) such thatC Y,

Y is a model ofP and X is a model ofP¥ (Turner 2001).
Thus, our comments above imply that a palf,Y") is an
se-model according to (Turner 2001) if and only X, Y") is
an se-pair fofl ' with respect tol p. Consequently, se-pairs
generalize se-models.

In the next two sections we will develop characterizations
of strong and uniform equivalence in terms of se-pairs and
we will show that our characterizations generalize theltesu

P can be represented in algebraic terms by means of the from (Turner 2001) and (Eiter & Fink 2003).

operatorT> and its approximating mapping». Strong
equivalence of programB and @ as defined in (Lifschitz,
Pearce, & Valverde 2001) requires that for every program
R stable models of” U R and@ U R be the same. In the

Strong equivalence

In this section we study the case of strong equivalence, ob-
tain a characterization of this concept, and show that one ca

language of operators, that condition can be expressed assubstantially weaken the defining condition of strong equiv

follows: for every programR®, St(Tp U TR, ¥p U ¥R)
St(To UTg,¥g U Pg). Itis now clear that our definition

of strong equivalence requires more, namely it requires tha
we consider an arbitrary operatBras an extending operator
and,in addition, an arbitrary approximating mappinty; for

R, while in the case of logic programming we only need to
consider one approximating mapping ¥. Nevertheless,
later in the paper we will show that our definition of strong

equivalence, when applied to logic programs yields the same

concept of the strong equivalence as the one defined in (Lif-
schitz, Pearce, & Valverde 2001).

As concerns the concept of uniform equivalence, the sit-
uation is simpler. Uniform equivalence of two programs
P and @, as introduced by (Eiter & Fink 2003), requires
that for every sef? of atoms, stable models @ U R co-
incide with stable models of) U R. In the language of

operators, this defining condition can be expressed as fol-

lows: for every set of fact®, St(Tp UTgr,Up U UR) =
St(Tg UTg,¥g U ¥g). We now note that iR is a set of
facts, T is a constant operator anblz(X,Y) = Tr(X).
Thus,¥r = Cr. Consequently, our definition of uniform

alence.

Theorem 2 Let P and @ be operators on a latticd. and
let Ap and A be approximating mapping faP and Q) re-
spectively. IfSE(P,Ap) = SE(Q,Ag) thenP =, Q
mod (Ap, AQ)

To prove Theorem 2 we will first state and prove some
auxiliary results.

Lemma 1 Let P be an operator on a latticé and letAp be
an approximating mapping faP. If P(y) < ythen(y,y) €
SE(P’ AP) and(lfp(AP(a y))a y) € SE(P7 AP)

Proof: The pair(y,y) satisfies the conditions (SE1) and
(SE2). SinceAp is an approximating mapping foP,
Ap(y,y) = P(y). Thus, the paify,y) satisfies the con-
dition (3), as well. It follows thaty,y) € SE(P, Ap).

Let us denote/ = Ifp(Ap(-,y)) (we recall thatdp (-, y)
is monotone and so, it has a least fixpoint). Since
Ap(y,y) P(y) < y, y is a prefixpoint of the opera-
tor Ap(-,y). By Theorem 1y’ is also the least prefixpoint
of Ap(-,y). Thus,y’ < y and the pair(y’,y) satisfies the

condition (SE1). The condition (SE2) holds by the assump- the formula given above). #; < z; andR(z2) = y, then

tion. Finally, sincey’ is a fixpoint of Ap(-,y), we have
Ap(y',y) = v'. Thus, the condition (SE3) holds f¢y', y),
as well. Consequentlyy’,y) € SE(P, Ap). O

Lemma 2 Let P and @ be operators on a latticé and let
Ap and A be approximating mapping faP and @, re-
spectively. iSE(P, Ap) = SE(Q, Ag), thenSt(P, Ap) =
St(Q, Ag).

Proof: Lety € St(P, Ap). By the definition, we havg =
Ifp(Ap(-,y)). Itfollows thatAp(y,y) = y and so,P(y) =
Ap(y,y) = y. Thus, by Lemma 1(y,y) € SE(P, Ap)
and so,(y,y) € SE(Q,Ag). In particular, it follows that
Qly) <y.

Lety' = ifp(Ag(-,y)). SinceQ(y) < y, Lemma 1 im-
pliesthat(y’,y) € SE(Q, Ag). Thus,(y',y) € SE(P, Ap)
and, by (SE3)y’ is a prefixpoint of the operatod p(-,y).
Consequentlyy < ¢’ (by Theorem 1, being the least fix-
pointof Ap(-,y), y is also the least prefixpoint ofp (-, v)).

Since(y',y) € SE(Q,Aq), ¥y < y. Consequentlyy =
y and soy = Ifp(Ag(-,y)). Thereforey € St(Q, Ag). It
follows thatSt(P, Ap) C St(Q, Ag). The converse inclu-
sion follows by the symmetry. |

Lemma 3 Let P be an operator on a latticé and letAp be
an approximating mapping faP. For every operatoi? on

a complete latticd. and for every approximating mapping
Apg for R,

SE(P\/R7AP \/AR) = SE(P, Ap) N SE(R,AR)

Proof: If (x,y) € SE(P V R,Ap V Ag) or (z,y) €
SE(P,Ap) N SE(R, AR) thenz < y. Moreover, (P Vv
R)(y) < yifandonly if P(y) < y andR(y) < y. Fi-
nally, (Ap V Ag)(z,y) < zifand only if Ap(z,y) <
andAg(z,y) < x. Thus,(z,y) € SE(PV R,Ap V AR) i
andonly if(z,y) € SE(P,Ap) N SE(R, AR).

8

0=

Proof of Theorem 2.Let R be an operator ofh and letAg
be an approximating mapping f@. SinceSE(P, Ap) =
SE(Q, Ag), by Lemma 3 it follows thalSE(P V R, Ap V
Agr)=SE(QV R, Ag V Ag). Thus, by Lemma 2§t(P Vv
R,Ap Vv ARr) = St(Q V R,Ag V Ag), and the assertion
follows. |

We will now prove the converse statement to Theorem
2. In fact, we will prove a stronger statement by restricting

R(z1) < R(22) (asR(z1) = z ory, andx < g). If, on the
other handR(z2) = x thenze < z. Thus,z; < z, too, and
R(z1) = . In each caseR(z1) < R(z2).

In particular,R has thecanonicalapproximating mapping
Cr which, we recall, satisfie€'r(x,y) = R(x).

Theorem 3 Let P and(@ be operators on a complete lattice
L and let Ap and Ag be approximating mappings faP
and @, respectively. If for every simple operat8ron L we
haveSt(PV R, Ap V Cgr) = St(Q V R, AQ vV Cg), then
SE(P, Ap) = SE(Q, Aq).

As before, we will first state and prove an auxiliary result.

Lemma 4 If for every constant operatoR on a complete
lattice L we haveSt(PV R, ApV Cgr) = St(QV R, Ag V
Cr), thenforevery € L, P(y) < yifand only ifQ(y) <
Y.

Proof: Lety € L and let us assume th#t(y) < y. We
defineR by settingR(z) = y, for everyz € L. Thus,Ris a
constant operator oh.

We note thatAp(y,y) = P(y) < y. Moreover,
Cr(y,y) = R(y) = y. Thus,y = Ap(y,y) vV Cr(y,y)
or, in other wordsy is a fixpoint of Ap (-, y) V Cr(-, y).

Let z € L be an arbitrary fixpoint ofip (-, y) V Cr(-, y).
Then

z = Ap(z,y) VCr(z,y) = Ap(z,y) V R(2)
Ap(z,y)Vy > y.

It follows thaty = Ifp(Ap(-,y) V Cgr(-,y)) and so,y €
St(PV R, Ap vV Cg). By the assumption of Lemma 4,
St(QV R, AQ VvV Cgr), thatis,y = lfp(AQ(~, y)VCr(-y)).
In particular, it follows thaty = Ag(y,y) V Cr(y,y) =
Q(y)Vy. Thus,Q(y) < y. The converse implication follows
by the symmetry argument. O

Proof of Theorem 3. Let (z,y) € SE(P, Ap). It follows
thatz < y andP(y) < y. By Lemma4Q(y) <y.

If x = y then, by Lemma 1(x,y) € SE(Q, Ag). So,
let us assume that < y. Let R be an simple operator ah
given by

x if z<ux
R(z) = { Y otherwise.

We observe thatlg(y,y) = Q(y) < y and, asr < y,

the class of operators one needs to consider as expanding[hatCR(y y) = R(y) = y. It follows that

operators.
An operatorR on a complete latticd. is simpleif for
somez, y € L such thatr < y, we have

T if 2<z
R(z) = { y otherwise

for everyz € L.

We note that constant operators are simple. Indeed, if
is the only value taken by an operatBr R is simple with
r=9Yy=w.

Moreover, every simple operatét is monotone. Indeed,
let x < y be two elements it that defineR (according to

y=Aq(y,y) Vv Cr(y,y).

That is,y is a fixpoint of the operatadg (-, y) V Cr(-,y).
Let z be an arbitrary fixpoint ol (-, y) V Cr(-,y), that
is,
It follows that Ag(z,y) < z. In addition,z < R(z) =
CR(Z,Z/) <z
Let us assume that < z. By the definition ofR, R(z) =
y and so,

y=R(z) = Cgr(z,y) < 2.

Thus,y = Ifp(Aq(-y) V Cr(-y)) and so,y € St(Q Vv
R, Ag VvV CR). By the assumptiony € St(PV R, ApV Cpg)
and SOy = lfp(AP(a y) \ CR('7 y))

Sincedp(z,y) < x andCg(z,y) = R(z) = =, we have

Ap(x,y)V Cgr(z,y) = z.

Thus, we have that is a fixpoint of Ap (-, y) V Cr(-, y) and
y Is the least fixpoint oA p (-, y) V Cr(-,y). It follows that
y < x, a contradiction.
Asz < z, we have then that = 2. Thus,Ag(z,y) <z
and soz,y) € SE(Q,Ag). ConsequentlySE (P, Ap) C
SE(Q, Ag). The converse inclusion follows by the symme-
try argument. a
Theorems 2 and 3 yield a complete characterization of the
strong equivalence of operators.

Corollary 4 Let P and Q be operators on a latticé and
let Ap and Ag be approximating mappings faP and @
respectively. The®® =, @ mod (Ap, Ag) if and only if

Theorems 2 and 3 also imply a result stating that when
establishing strong equivalence it suffices to considesrext
sions by simple operators, and for each simple operator —to
consider its canonical approximating mapping only. Thus,
the defining condition of strong equivalence can be weak-
ened significantly.

Theorem 5 Let P and Q be operators on a latticd and
let Ap and Ag be approximating mappings faP and @
respectively. The? =, @ mod (Ap, Ag) if and only
if for every simple operatoR?, St(P V R,Ap V Cr) =
St(QV R,Ag V Cr).

We will now show formally that in the case of normal
logic programs our approach to strong equivalence gener-
alizes the one developed in (Lifschitz, Pearce, & Valverde
2001).

Theorem 6 Normal logic programsP and Q are strongly
equivalent in the sense of (Lifschitz, Pearce, & Valverde
2001) if and only if the operator$p and T, are strongly
equivalent with respect tol p, ¥) according to Definition

3.

Proof: The lattice of interest here {£ 4;, C), in which the
join operator isJ.

(<) Let R be an arbitrary logic program. Sinéeand(are
strongly equivalent according to Definition 3,

St(Tp UTgr,¥pU \I/R) = St(TQ UTg, \IJQ U \DR).

As we noted earlier, the sets of stable model®af R and
@ U R are given by the left-hand side and the right-hand
side, respectively, of the equality above. ThEsand@ are
strongly equivalent according to the definition in (Lifszhi
Pearce, & Valverde 2001).
(=) Let S be an arbitrary simple operator on the latticg; .
Then there are set&,Y C At such thatX C Y and, for
everyZ C At,

$(2) = { if ZCX

X
Y otherwise.

Let R be a logic program defined as follows:
R=XU{a<—b:a€Y, be At\ X}.

Itis easy to check thaf = T'.

SinceP and(are strongly equivalent in the sense of (Lif-
schitz, Pearce, & Valverde 20017,U R and@ U R have the
same stable models. In the language of operators, it means
that St(TP UTgr,¥p U \I/R) = St(TQ U Tg, \I’Q U \I/R)

The programR is a Horn program. ThusPg(V, W) =
Up(V,V)=Tg(V) = S(V) = Cs(V,W). Itfollows that
St(TpUS,¥pUCs) = St(TouS, ¥oUCs). By Theorem
5, P and(@ are strongly equivalent according to Definition
3. O

Uniform equivalence

Se-pairs can also be used to characterize uniform equiva-
lence. We have the following theorem.

Theorem 7 Let P and(@ be operators on a complete lattice

L and letAp and A be approximating mappings fét and

Q respectively. The® Q mod (Ap,Ag) if and only

if

1. foreveryy € L, P(y) < yifandonly ifQ(y) <y

2. for everyx,y € L such thatz < y and (z,y) €
SE(P,Ap), there isu € L such thatz < u < y and
(u,y) € SE(Q, Aq)

3. for everyz,y € L such thatz < y and (z,y) €
SE(Q, Ag), there isu € L such thatr < v < y and
(u,y) € SE(P, Ap)

Proof: (<) Let R be a constant operator, s@(z) = «
for everyz € L. Lety € St(PV R,Ap VvV Cgr). Then
y=Ifp(Ap(-,y) V Cr(-,y)). It follows that

Cr(y,y) <y and P(y) = Ap(y,y) < .

Since P(y) < y, the condition (1) implies tha®(y) < v.
Thus, Ag(y,y) = Qy) < y. SinceCgr(y,y) < y, we
obtain thaty is a prefixpoint ofAq (-, y) vV Cr(-,y).

Lety = ifp(Ag(-,y) V Cr(-,y)). Therefore, we have

=u

y <y
and
x=R(Y)=Cr(y,y) <y

Let us assume thay’ < y. Sincey = Ag(y,y) V
Cr(y,y), Aoy, y) < y'. Thus,(y,y) € SE(Q,Aq)
(we already proved thay’ < y andQ(y) < y). By the
condition (3), there ig/” such thaty’ < y” < y and
(y"',y) € SE(P,Ap). In particular,Ap(y",y) < y”. In

addition, we have
Cry",y)=RY") =z <y <y"

It follows thaty” is a prefixpoint of the operatotp (-, y) Vv
Cr(-,y) and soy < y”, a contradiction (we recall thatis
the least fixpoint ofAp (-, y) V Cr(-,y)).

Thus,y’ = y and so,y = Ifp(Aq(-y) V Cr(-,y)). It
follows thaty € St(Q V R, Ag V Cr). We conclude that
St(PVR,ApVCr) C St(QV R, AgV Ar). The converse

inclusion follows by the symmetry argument. Thu3,=,
@ mod (Ap,Ag).

(=) The condition (1) follows from Lemma 4. We will now
show that the condition (2) holds. Lety € L be such
thatz < y and(z,y) € SE(P, Ap). The latter assumption
implies thatP(y) < y. By the condition (1)Q(y) < y.

Let R be an operator o, such that for every € L,
z. Lety = Ifp(Ag(-,y) V Cr(-,y)). Since
y,y) = Qy) < yandCr(y,y) = R(y) = = < v,

(y,y) V Cr(y,y) < y. Thus,y is a prefixpoint of
Aq(-,y) V Cr(-,y) and soy’ < y.

If y" = ythen,y = Ufp(Aq(,y) v Cr(,y)) and, con-
sequently,y = Ifp(Ap(-,y) V Cr(-y)). Since(z,y) €
SE(P,Ap), Ap(z,y) <xandsoAp(z,y)VCr(z,y) <z
(asCgr(z,y) = R(z) = x). Thus,z is a prefixpoint of
Ap(-,y) V Cr(-,y). Consequentlyy < z, a contradiction.
Thus,y’ < .

By the definition ofy’, Ag(y',y) < v'. Thus,(y',y) €
SE(Q,Ag). The definition ofy’ also implies thatr =
R(y') = Cr(y',y) < y'. Thus, the condition (2) holds
(for u = g/). The condition (3) follows by the symmetry
argument. O

In the case, when a lattick has the property that its ev-
ery nonempty subset has maximal elements (in particular,
every finite lattice has this property) we have a more elegant
characterization of uniform equivalence.

An se-pair(x,y) € SE(P, Ap) is aue-pairfor P with
respect todp if for every (z/,y) € SE(P, Ap) such that
x < 2’, we haver’ = y. We writeUE(P, Ap) for the set
of all ue-pairs forP with respect tod p.

Theorem 8 Let L be a complete lattice with the property
that its every subset has a maximal element. Peand
() be operators onl and letAp and Ay be approximat-
ing mappings forP and @ respectively. The® =, Q
mod (Ap,Ag) ifand only ifUE(P, Ap) = UE(Q, Ag).

Proof: First, it is easy to show théy,y) € UE(P, Ap) if
and only if(y,y) € UE(Q, Ag).

(=) Letus assume thatE (P, Ap) # UE(Q, Ag), that s,

U(UE(P, Ap) \ UE(Q, Ag)) # 0.

Let X consist of all elements € L such that for some
y € L, (z,y) € U. SinceX # 0, X has a maxi-
mal element, say,. Lety, be an element of. such that
(zo,y0) € U. Without the loss of generality, we may as-
sume that(xg,y0) € UE(P,Ap) \ UE(Q, Ag). By our
observation above;y # yo and soxy < yo.

SinceP =, @ mod (Ap, Ag) and since(zg,yo) €
UE(P,Ap) C SE(P,AP), by Theorem 7 there is € L
such thatzy < u < yo and (u,y0) € SE(Q,Aq).
Let v’ be a maximal such element(its existence follows
from our assumption about the lattidg. Then(u’,yy) €
UE(Q,AQ) Since (xo,yo) §é UE(Q,AQ), u 7é Zo.
Thus,zo < u/. From the way we chose, it follows that
(v, y0) € UE(P,Ap) and so(v',yo) € SE(P, Ap). Since
o < u' < yo, this is a contradiction with the property that
(Io,yo) S UE(P, Ap)

(<) We first show that the condition (1) of Theorem 7 holds.
If P(y) < y then, by Lemma 1(y,y) € SE(P, Ap).

It follows that (y,y) € UE(P,Ap) and so, (y,y) €
UE(Q,Ag). In particular, we have thaD(y) < y. The
proof of the converse implication is symmetric.

To prove the condition (2) of Theorem 7, let us con-
sider (z,y) € SE(P,Ap) and such that: < y. Lety/
be a maximal element such that,y) € SE(P, Ap) and
z <y <y. Itfollows that(y',y) € UE(P, Ap). Conse-
quently,(y',y) € UE(Q, Aq) € SE(Q, Ag).

The condition (3) of Theorem 7 follows by symmetry.
Thus, by Theorem 7P =, Q mod (Ap, Ag).

We conclude this section by a result showing that in the
case of normal logic programs, our notion of uniform equiv-
alence generalizes that of (Eiter & Fink 2003). The re-
sult follows directly from the two corresponding definitmn
when we (1) connect programs with their one-step provabil-
ity operators, (2) take into account that every constant-ope
ator S on the latticeL 4, is of the formTr, whereR is a set
of atoms (facts) fromit, and (3) observe thaltp = Cs.

Theorem 9 Normal logic programs? and @ are uniformly
equivalent in the sense of (Eiter & Fink 2003) if and only
if the operatorsT’» and T, are uniformly equivalent with
respect to ¥ p, ¥) according to Definition 3.

Other results

In this section, we present results on strong and uniform
equivalence of monotone and antimonotone operators. We
start with a lemma that characterizes se-pairs of a monotone
operator with respect to its canonical approximating map-
ping.

Lemma5 Let P be a monotone operator on a complete lat-
tice L. ThenSE(P,Cp) = {(z,y) € L?: x <y, P(y) <

y, and P(x) < x}.

Proof. By the definition,
SE(P,Cp) {(z,y) € L*:

x <y, Ply) <y, andCp(z,y) < z}.
We haveCp(z,y) = P(z). Thus, the assertion followsD

Theorem 10 Let P and@ be monotone operators on lattice
L. ThenP =, @ mod (Cp,Cy) if and only if P and Q
have the same prefixpoints.

Proof: From Lemma 5 it follows that iP and@ have the
same prefixpoints theSE(P,Cp) = SE(Q,Cg) and so,
P=,@Q mod (Cp,Cq).

For the converse implication, let us assume Rat, Q
mod (Cp,Cg). It follows that SE(P,Cp) = SE(Q,Cqg).
Since(y,y) € SE(P,Cp) ((y.y) € SE(Q.Cq), respec-
tively) if and only if P(y) < y (Q(y) < y, respectively), the
assertion follows. O

Corollary 11 Let P and @ be monotone operators on a
complete latticel.. ThenP =, @ mod (Cp,Cyp) if and
onlyif P=,Q mod (Cp,Cq).

Proof: Strong equivalence implies uniform equivalence.
Thus, letus assume thBt=,, @ mod (Cp,Cg). By The-
orem 7, forevery € L, P(z) < zifand only if Q(z) < z.

That is, P and @ have the same prefixpoints. By Theorem
10,P =, Q mod (Cp,Cq). O

If P is a Horn program theff'’» is monotone and’'p =
Cp. Moreover, prefixpoints if » are precisely models a?.
Thus, Theorem 10 and Corollary 11 imply results on strong
and uniform equivalence of Horn programs (cf. (Eiter, Fink,
& Woltran 2006)).

Corollary 12 Let P and @ be Horn programs. Then the
following conditions are equivalent:

1. P andQ are strongly equivalent
2. P and(are uniformly equivalent
3. P and@ have the same models.

For antimonotone operators we only have a simple char-
acterization of strong equivalence.

Theorem 13 Let P and @ be antimonotone operators on a
complete latticeL. ThenP =, Q mod (Cp,Cyp) if and
only if P and @ have the same prefixpoints and for every
prefixpointy of bothP and @, P(y) = Q(y).

(P(y),y) € SE(P,Ap). Thus,(P(y),y)
That is, Q(y) = Cqo(P(y),y) < P(y) <
that y is a prefixpoint of@ and thatQ(y)
the symmetry argument, ®(y) < y, thenP(y
P(y) < Q(y). Thus, the assertion follows.

(<) We have thatz, y) € SE(P,Cp)ifand only if P(y) <
x < y. This is equivalent t@)(y) < = < y and, further, to
(z,y) € SE(Q,Cq). Thus,SE(P,Cp) = SE(Q,Cq) and
so, P and@ are strongly equivalent. |
This result implies a corollary for logic programs that are
purely negative (no rule has a positive literal in the body).

Corollary 14 Let P and @ be purely negative logic pro-
grams. ThenP and @ are strongly equivalent if and only
if P and@ have the same models and for every mddebf
both P and @, the sets of heads aff-applicable rules inP
and@ are the same.

Default logic

We will now apply the results of this paper to default logic
(Reiter 1980). LetAt be a set of propositional variables. By
Fa; we denote the set of all propositional formulas over
and byP(F 4;) — the family of all subsets af 4;. Together
with the inclusion relationP (F 4,) forms a complete lattice.
The operatou is the join in this lattice.

In our presentation, we will assume familiarity with basic
concepts of default logic and refer to (Marek & Truszogki
1993) for details. We recall thatdefaultis an expressiod
of the form

a: ﬂla o 7ﬂn
,y)

whereq, 3;, 1 < i < n, andy are formulas fron¥ 4, called
the prerequisite the justificationsand theconsequenof d,
respectively. We setre(d) = «, just(d) = {f1,...,0n}
andcons(d) = ~.

A default theoryis a pair(D, W), whereD is a set of
defaults andV C F ;. A key notion associated with default

d:

theories is that of aextension(Reiter 1980). We will now
present a definition of an extension. It is a reformulation
of the original definition to make it better aligned with the
abstract theory of equivalence.

LetU,V C F4: and letd be a default. We say th&l/, V)
enablesi, written (U, V') > d, if U = pre(d) and, for every
B € just(d), V = 8. LetA = (D, W) be a default theory.
We now define 2-input one-step provabilitynapping

\I/A: 73(.7:,4,5) X P(fAt) — P(fAt)
by setting for every pair of selg, V' € P(Fa;)
VAU, V) =W U{cons(d): d € D, (U, V) >d}.

It is easy to check that the operatén (-, V') is monotone.
Thus, it has a least fixpoint and we define

La(V) = Cn(lfp(Ya(- V).

The choice of the notation is not accidental. The operator
I' A is indeed the operatdrintroduced in (Reiter 1980). We
call a settl € P(F4:) anextensiorof A if

E=Txa(E).

Given extensions as basic semantic objects, we now de-
fine the concepts of strong and uniform equivalence of de-
fault theories (the notion of strong equivalence was intro-
duced in (Turner 2001), in a slightly more general setting
of nested default theories). We will use the following no-
tation: for default theories\’ = (D', W’) and A” =
(D", W), we will write A" U A” for the default theory
(D'UD" WUWwW").

Definition 4 Let A’ and A’ be default theories.

1. A’ andA” arestrongly equivalenif for every default the-
ory A, the default theoried’ U A andA” U A have the
same extensions

. A’ and A” are uniformly equivalentf for every default
theoryA = (0, W), the default theoried’ UA and A” U
A have the same extensions.

We will now show that these two concepts fall into the
general algebraic scheme discussed in the paper.

We observed earlier that for evely € P(Fa4;), the op-
erator? A (-, V) is monotone. It is also easy to see that for
everyU € P(Fa¢), the operato 5 (U, -) is antimonotone.

It follows that W A is an approximating mapping for the op-
eratorGa onP(F ;) such that for every/ € P(F:),

GA(U) = \IJA(Uv U)

The following property of extensions is a direct conse-
guence of the corresponding definitions.

Theorem 15 Let A = (D, W) be a default theory. Then a
setE € P(Fa:) is an extension o if and only if there
isV € P(Fa:) such thatV is a ¥ 5-stable fixpoint of7 A
(thatis,V = ifp(¥a(-,V)))andE = Cn(V).

Proof: (=) Let E be an extension oA, that is,
E=TaA(E) = Cn(lfp(¥a(-, E))).

Let us defineV = Ifp(¥a(-, E)). It follows that E = on P (F4:) are precisely the operators of the for#n, for

Cn(V). Moreover, sinceE = Cn(V), for everyU € some default theorh = (0, V). O
P(Far), we havela (U, V) = U (U, E). Consequently, Theorem 16 allows us to apply the results of this paper to
V =1fp(Ta(-,V)). characterize the strong and uniform equivalence of default
(<) If E = Cn(V) then for everyU € P(F4:) we have theories.
UA(U, V) =UA(U, E). Thus, A pair (U, V), whereU, V' € P(F) is adefault se-pair

E = On(V)=Cn(lfp(Ta(-V))) (or, dse-pai) for a default theonA = (D, W) if

= Cnlfp(¥a(, E))) =Ta(B). (SEDLL WEeveV |

Thus, is an extension oA. - (SICEO-SSL(Z)) feorvevery defaultd € D, if (V,V) > d then

Theorem 15 implies that extensions of a default thetry)
are precisely the closures under propositional conseguenc (SE-DL3) for every defaultd € D, if (U,V) > d, then

of W -stable fixpoints ofGa. Consequently, we have the cons(d) € U.

following result establishing a connection between strong One can check thdt/, V) is a dse-pair for a default the-
(uniform) equivalence of default theories’ and A”, and ory A if and only if (U, V) is anse-pairfor the operatoi
strong (uniform) equivalence of operat@is, andGa . with respect tol o . Thus, Corollary 4 implies the following
Theorem 16 Let A’ and A” be default theories. Thef’ result.

and A" are strongly (respectively, uniformly) equivalent if Theorem 17 Default theoriesA’ and A” are strongly
and only if the operator&/a andG a~ are strongly (respec- equivalent if and only if they have the same dse-pairs.

tively, uniformly) equivalent with respect (& A+, U o). .) ,
This result in turn has a corollary, which allows one to

Proof: We recall that the lattice of interest here is thadatt restrict the class of se-pairs that one needs to inspect when
(P(Fat), C), and that the corresponding join operatouis testing strong equivalence.

We also note that for every two default theori®sand A",

we have Corollary 18 Default theoriesA’ and A” are strongly
Gauar = GarUGar, equivalent if and only if they have the same dse-p@itd/),
and whereU,V C W/ UW" U {cons(d): d € D" UD"}.
Uarpar = Uar UWan. Our general results also imply characterizations of the
We will now deal with the case of strong equivalence. uniform equivalence of default theories. We say that a set
(<) Let A be an arbitrary default theory. Sincgx, and V C Fa. is closedunder a setD of defaults if for every
G are strongly equivalent with respect (&, Uar), d € Asuchtha(V,V) > d, cons(d) € V.
Uar U Wa-stable fixpoints ofGar U G are the same as Theorem 19 Default theoriesA’ and A” are uniformly
WA U Wa-stable fixpoints oflGar U Ga. By our obser- equivalent if and only if

vations aboveW A, a-stable fixpoints ofGarua are the . , .
same asl o ,A-stable fixpoints oG~ x. By Theorem 1. for everyV C Fyq, V is closed undeD’ if and only if

15. A’ U A andA” U A have the same extensions and so V is closed undeD”, where D’ and D" are the sets of
A’and A" are strongly equivalent. ' defaults ofA” and A", respectively

(=) Let S be an arbitrary simple operator on the lattice 2. for every dse-paitU, V) for A', if U ¢ V' then there is
P(Fa:) (with the inclusion as the ordering relation). Then, U’ suchthaty C U’ ¢ V and(U", V) is a dse-pair for
there are setX,Y € P(F4,) such thatX C Y and A

, 3. for every dse-paifU, V) for A", if U ¢ V then there is
S(Z) = { X if 7 C X U’ suchthaty C U’ ¢ V and (U’,V) is a dse-pair for
Y otherwise Al
foreveryZ € P(Fa;). Let us define In the case of finite default theories, the characterization
a: can be restated in terms of default ue-pairs. A default ge-pa
D = {71 a€cY,BeFa\X} for a default theoryA, say(U, V), is adefault ue-pair(or,
due-paip for A if for every default se-paifU’, V) for A
and setA = (D, X). Clearly,Ga = S such thatV ¢ U’, we havell’ = V.

Since A’ and A” are strongly equivalent’ U A and
A" U A have the same extensions. In the language of oper-
ators, it means thatt(Ga UG, Pa- UTA) = St(Gar U
Ga,Uar UTA). As all defaults ofA are justification-free,
YA(U,V) = Ua(U,U) = Ga(U) = S(U) = Cs(U, V).

Theorem 20 Let A’ and A" be finite default theories. Then
A’ and A” are uniformly equivalent if and only if they have
the same due-pairs.

It follows that St (G as US, ¥ s/ UCs) = SH(GanUS, U anU Discussion
Cs). By Theorem 5(GA» andG A~ are strongly equivalent We showed in the paper that our approach yields as corollar-
with respect tqWa,, U ar). ies results on strong and uniform equivalence of logic pro-

For the case of uniform equivalence the argument is sim- grams and default theories. In a similar way, we can char-
ilar but it requires an observation that constant operators acterize strong and uniform equivalence of logic programs

with aggregates as studied in (Pelov. 2004; Pelov, Dengcker
& Bruynooghe 2004), and of modal theories with the seman-
tics of extensions (Denecker, Marek, & Truszigii 2000),
which yields a version of autoepistemic logic forming a pre-
cise modal match to the default logic. The reason is that in
each case the semantics (stable models, extensions) iis give
in terms of an operator on a complete lattice and its approx-
imating mapping.

Our approach, as presented here, it does not apply to
nested logic programs and nested default theories. We con-
jecture that it can be extended to cover these formalisms by
building on the algebraic approach to disjunctive logic-pro
gramming proposed in (Pelov & Truszéwki 2004). This
is a topic of our ongoing research.

A fundamental research question is whether there are
other versions of equivalence of operators on complete lat-
tices. (Pearce & Valverde 2004) argued that in the context
of answer-set programming strong and uniform equivalence
are the only two concepts of this type. Our results suggest
that the two concepts are close to each other also in a more
general algebraic setting we considered here. Namely, as
long as we define equivalence in terms of extending opera-
tors defined non-trivially on thentire lattice L, they essen-
tially exhaust all possibilities. Considering constanei@
tors (with their canonical approximations) as extending op
erators characterizes uniform equivalence. Considetsy |
a slightly larger class of simple operators (moreover, also
with their canonical approximations only) already yields t
notion of strong equivalence.

To get a new notion of equivalence, we would need a class
of operators containing constant operators but not simple
ones. One candidate is the class of antimonotone operators.
This class, however, does not seem to correspond to any sit-
uations of practical relevance. Another possibility is ¢m€
sider constant operators only, as in uniform equivalence, b
allow arbitrary approximating mappings. We note however,
that in the context of logic programming (and most likely
also other nonmonotonic logics) this is not a promising di-
rection. The reason is that if a progrdPis a set of facts, no
natural approximating mappings emergedferother than
the two-input operato¥ p.

On the other hand, an interesting and important extension
of strong and uniform equivalence of programs can be ob-
tained by restricting the class of extending programs teg¢ho
built only of atoms from some fixed sdt C At (Eiter, Fink,

& Woltran 2006). This approach results in strong and uni-
form equivalence of programslativizedwith respect to4.

We observe that the relativized equivalence can be consid-
ered in our algebraic setting. Lét be a complete lattice
and lety € L. An operatorR on L is ay-operatorif (1)

for everyz € L, R(z) < y, and (2) for every:, 2z, € L,
R(z1 ANy) = R(z2 A y); thatis, if R is determined by an
operator on the complete lattides € L: < y}. By al-
lowing only y-operators as extending operators, we obtain
strong and uniformy-equivalence which generalizes the
corresponding notions from (Eiter, Fink, & Woltran 2006)
proposed there for programs. We are presently studying al-
gebraic properties of strong and unifogrequivalence.

References

Denecker, M.; Marek, V.; and Truszdzski, M. 2000.
Approximations, stable operators, well-founded fixpoints
and applications in nonmonotonic reasoning. In Minker, J.,
ed.,Logic-Based Artificial IntelligenceKluwer Academic
Publishers. 127-144.

Denecker, M.; Marek, V.; and Truszazski, M. 2003. Uni-
form semantic treatment of default and autoepistemic log-
ics. Artificial Intelligence Journall43:79-122.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semanticsPrioceed-
ings of the 2003 International Conference on Logic Pro-
gramming volume 2916 of ecture Notes in Computer Sci-
ence 224-238. Berlin: Springer.

Eiter, T.; Fink, M.; and Woltran, S. 2006. Semantical
characterizations and complexity of equivalences in answe
set programming. ACM Transactions on Computational
Logic. To appear.

Fitting, M. C. 1985. A Kripke-Kleene semantics for logic
programs.Journal of Logic Programming(4):295-312.

Fitting, M. 1991. Bilattices and the semantics of logic
programming.Journal of Logic Programming1:91-116.

Fitting, M. C. 2002. Fixpoint semantics for logic program-
ming — a surveyTheoretical Computer Scien2&8:25-51.

Gelfond, M., and Lifschitz, V. 1988. The stable seman-
tics for logic programs. IfProceedings of the 5th Inter-
national Conference on Logic Programmint070-1080.
MIT Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databaddsw Generation
Computing9:365-385.

Ginsberg, M. 1988. Multivalued logics: a uniform ap-
proach to reasoning in artificial intelligenceComputa-
tional Intelligence4:265-316.

Heyting, A. 1930. Die formalen regeln der intuitionistis-
chen logik. Sitzungsberichte der Preussischen Akademie
von Wissenschaften. Physikalisch-mathematische Klasse
42-56.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programsACM Transactions on Compu-
tational Logic2(4):526-541.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programénnals of Mathematics and
Artificial Intelligence369-389.

Lin, F. 2002. Reducing strong equivalence of logic pro-

grams to entailment in classical propositional logic. In

Principles of Knowledge Representation and Reasoning,
Proceedings of the 8th International Conference (KR2002)

Morgan Kaufmann Publishers.

Marek, W., and TruszcZyski, M. 1993. Nonmonotonic
Logic; Context-Dependent Reasonirgerlin: Springer.

Pearce, D., and Valverde, A. 2004. Uniform equivalence
for equilibrium logic and logic programs. IRroceedings
of the 7th International Conference on Logic Programming

and Nonmonotonic Reasoningolume 2923 ofLecture
Notes in Artificial Intelligencgl94—206. Springer.

Pelov, N., and Truszchgki, M. 2004. Semantics of
disjunctive programs with monotone aggregates — an
operator-based approach. In Delgrande, J., and Schaub,
T., eds.,Proceedings of the 10th International Workshop
on Non-Monotonic Reasoning, NMR;@27-334.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Par-
tial stable models for logic programs with aggregates. In
Lifschitz, V., and Niemd, I., eds.Logic programming and
Nonmonotonic Reasoning, Proceedings oftfelnterna-
tional Conferencevolume 2923, 207-219. Springer.

Pelov., N. 2004. Semantics of logic programs with ag-
gregates.PhD Thesis. Department of Computer Science,
K.U.Leuven, Leuven, Belgium

Reiter, R. 1980. A logic for default reasoningtificial
Intelligencel3(1-2):81-132.

Tarski, A. 1955. Lattice-theoretic fixpoint theorem and its
applications.Pacific Journal of Mathematics:285-309.

Turner, H. 2001. Strong equivalence for logic programs
and default theories (made easy).Aroceedings of Logic
Programming and Nonmonotonic Reasoning Conference,
LPNMR 2001 volume 2173, 81-92. Lecture Notes in Ar-
tificial Intelligence, Springer.

Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraintBheory and Practice
of Logic Programmingg, (4&5):609-622.

van Emden, M., and Kowalski, R. 1976. The semantics of
predicate logic as a programming languageurnal of the
ACM23(4):733-742.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004a. Splitting
an operator: An algebraic modularity result and its applica

tion to auto-epistemic logic. In Delgrande, J., and Schaub,
T., eds.,Proceedings of the 10th International Workshop

on Non-Monotonic Reasoning00-408.

Vennekens, J.; Gilis, D.; and Denecker, M. 2004b. Splitting
an operator: an algebraic modularity result and its applica
tions to logic programming. In Lifschitz, V., and Demoen,

B., eds.,Logic programming, Proceedings of the 20th In-

ternational Conference on Logic Programming, ICLP-04

195-209.

