
Propositional satis�ability in answer-setprogrammingDeborah East and Miros law Truszczy�nskiDepartment of Computer Science, University of KentuckyLexington KY 40506-0046, USAfdeast, mirekg@cs.engr.uky.eduAbstract. We show that propositional logic and its extensions can sup-port answer-set programming in the same way stable logic programmingand disjunctive logic programming do. To this end, we introduce a logicbased on the logic of propositional schemata and on a version of theClosed World Assumption. We call it the extended logic of propositionalschemata with CWA (PS+, in symbols). An important feature of the logicPS+ is that it supports explicit modeling of constraints on cardinalitiesof sets. In the paper, we characterize the class of problems that canbe solved by �nite PS+ theories. We implement a programming systembased on the logic PS+ and design and implement a solver for processingtheories in PS+. We present encouraging performance results for our ap-proach | we show it to be competitive with smodels, a state-of-the-artanswer-set programming system based on stable logic programming.1 IntroductionLogic is most commonly used in declarative programming and knowledge rep-resentation as follows. To solve a problem we represent its constraints and therelevant background knowledge as a theory in the language of some logic. Weformulate the goal (the statement of the problem) as a formula of the logic. Wethen use proof techniques to decide whether this formula follows from the theory.A proof of the formula, variable substitutions or both determine a solution.Recently, an alternative way in which logic can be used in computationalknowledge representation has emerged from studies of nonstandard variants oflogic programming such as logic programming with negation and disjunctivelogic programming [MT99,Nie99]. This alternative approach is rooted in seman-tic notions and is based on methods to compute models. To represent a problem,we design a �nite theory so that its models (and not proofs or variable substitu-tions) determine problem solutions (answers). To solve the problem, we computemodels of the corresponding theory1. This model-based approach is now oftenreferred to as answer-set programming (or ASP).1 We commonly restrict the language by disallowing function symbols to guarantee�niteness of models of �nite theories. In the present paper, we also adopt this as-sumption.

Logic programming with stable model semantics [GL88] (stable logic pro-gramming or SLP, in short) is an example of an ASP formalism [MT99]. In SLP,we represent problem constraints by a �xed program (independent of probleminstances). We represent a speci�c instance of the problem (input data) by acollection of ground atoms. To solve the problem, we �nd stable models of theprogram formed jointly by the two components. To this end, we �rst ground it(compute its equivalent propositional representation) and, then, compute sta-ble models of this grounded propositional program. Thanks to the emergenceof fast systems to compute stable models of propositional logic programs, suchas smodels [NS00], SLP is quickly becoming a viable declarative programmingenvironment for computational knowledge representation. Disjunctive logic pro-gramming with the semantics of answer sets [GL91] is another logic programmingformalism that �ts well into the answer-set programming paradigm. An e�ec-tive solver for computing answer sets of disjunctive programs, dlv, is available[ELM+98] and its performance is comparable with that of smodels.Our goal in this paper is to propose answer-set programming formalismsbased on propositional logic and its extensions. Our approach is motivated byrecent improvements in the performance of satis�ability checkers. Researchers de-veloped several new and fast implementations of the basic Davis-Putnam methodsuch as satz [LA97] and relsat [BS97]. A renewed interest in local-search tech-niques resulted in highly e�ective (albeit incomplete) satis�ability checkers suchas WALKSAT [SKC94], capable of handling large CNF theories, consisting ofmillions of clauses. Improvements in the performance resulted in an expandingrange of applications of satis�ability checkers, with planning being one of themost spectacular examples [KMS96,KS99].The way in which propositional satis�ability solvers are used in planning[KMS96] clearly �ts the ASP paradigm. Planning problems are encoded as propo-sitional theories so that models correspond to plans. In our paper, we extendideas proposed in [KMS96] in the domain of planning and show that propo-sitional satis�ability can be used as the foundation of a general purpose ASPsystem. To this end, we propose a logic to serve as a modeling language. Thislogic is a modi�cation of the logic of propositional schemata [KMS96]; we explic-itly separate theories into data and program, and use a version of Closed WorldAssumption (CWA) to de�ne the semantics. This logic is nonmonotonic. We callit the logic of propositional schemata with CWA (or, PS cwa).The logic PS cwa o�ers only basic logical connectives to help model problemconstraints. We extend logic PS cwa to support direct representation of con-straints involving cardinalities. Examples of such constraints are: "at least kelements from the list must be in the model" or "exactly k elements from thelist must be in the model". They appear commonly in statements of constraintsatisfaction problems. We refer to this new logic as extended logic of propositionalschemata with Closed World Assumption and denote it by PS+.In the paper we characterize the class of problems that can be solved by �nitePS+ theories. In other words, we determine the expressive power of the logic

PS+. Speci�cally, we show that it is equal to the expressive power of function-freelogic programming with the stable-model semantics.For processing, theories in PS+ could be compiled into propositional theoriesand \o�-the-shelf" satis�ability checkers could be used for processing. However,propositional representations of constraints involving cardinalities are usuallyvery large and the sizes of the compiled theories limit the e�ectiveness of sat-is�ability checkers, even the most advanced ones, as processing engines. Thus,we argue against the compilation of the cardinality constraints. Instead, we pro-pose an alternative approach. We design a \target" propositional logic for thelogic PS+ (propositional logic PS+). In this logic, cardinality constraints haveexplicit representations and, therefore, do not need to be compiled any further.We develop a satis�ability checker for the propositional logic PS+ and use it asthe processing back-end for the logic PS+. Our solver is designed along the samelines as most satis�ability solvers implementing the Davis-Putnam algorithm butit takes a direct advantage of the cardinality constraints explicitly present in thelanguage.Experimental results on the performance of the overall system are highly en-couraging. We obtain concise encodings of constraint problems and the perfor-mance of our solver is competitive with the performance of smodels and of state-of-the-art complete satis�ability checkers. Our work demonstrates that buildingpropositional solvers capable of processing of high-level constraints is a promisingresearch direction for the area of propositional satis�ability.Our paper is organized as follows. In the next section we introduce the logicPS cwa | a fragment of the logic PS+ without cardinality constraints. We de-termine the expressive power of the logic PS cwa in Section 3. We discuss the fulllogic PS+ in Section 4. In the subsequent section we discuss implementation de-tails and experimental results. The last section of the paper contains conclusionsand comments on the future work.2 Basic logic PS cwaOur approach is based on the logic of propositional schemata. The syntax of thislogic is that of �rst-order logic without function symbols. The semantics is thatof Herbrand interpretations and models, which we identify with subsets of theHerbrand base. In the paper we consider only those theories in which at least oneconstant symbol appears. Among all formulas in the language, of main interestto us are clauses, that is, expressions of the forma1 ^ : : : ^ am) B1 _ : : : _ Bn; (1)where each ai is an atom and each Bj is an atom or an expression of the form9Y b(s), where b(s) is an atom and Y is a tuple of (not necessarily all) variablesappearing in b(s). Each of m and n (or both) may equal 0. If m = 0, we replacethe conjunct in the antecedent of the clause with a special symbol T (truth).If n = 0, we replace the empty disjunct in the consequent of the clause witha special symbol F (contradiction). We assume that each clause is universally

quanti�ed and drop the universal quanti�ers from the notation. We further sim-plify the notation by replacing each expression 9Y b(s) in the antecedent by b(s0),where in s0 we write a special symbol ` ' for each variable from Y in s.Let T be a �nite theory consisting of clauses. For a formula B = 9Y b(s)appearing in the consequent of a clause in T , we de�ne Be to be the disjunctionBe = b(s1) _ : : : _ b(sk), where si, 1 � i � k, range over all term tuples thatcan be obtained from s by replacing variables in Y with constants appearingin T . Since T is �nite, the disjunction is well de�ned (it has only �nitely manydisjuncts).For a clause C 2 T of the form (1), we de�ne a clause Ce byCe = a1 ^ : : : ^ am) Be1 _ : : : _ Ben; (2)A ground instance of C is any formula obtained from Ce by replacing everyvariable in Ce by a constant appearing in T (di�erent occurrences of the samevariable must be replaced by the same constant). We de�ne the grounding ofT , gr (T) as the collection of all ground instances of clauses in T , except fortautologies; they are not included in gr(T). We have the following well-knownresult.Proposition 1. Let T be a �nite clausal theory. Then a set of ground atoms Mis a Herbrand model of T if and only if M is a (propositional) model of gr(T).The language may contain several prede�ned predicates and function symbolssuch as the equality operator and arithmetic comparators and operations. Weassign to these symbols their standard interpretation. However, we emphasizethat the domains are restricted only to those constants that appear in a theory.We evaluate all expressions involving prede�ned function symbols and allatoms involving prede�ned relation symbols in the grounding process. If anyargument of a prede�ned relation is not of the appropriate type, we interpretthe corresponding atom as false. If a function yields as a result a constant thatdoes not appear in the theory or if one of its arguments is not of the required type,we also interpret the corresponding atom as false. We then eliminate tautologiesand simplify the remaining clauses by removing true \prede�ned" atoms fromthe antecedents and false \prede�ned" atoms from the consequents.Let us consider an example. Let T be a theory consisting of the following twoclauses:C1 = q(b; c)) p(a)C2 = p(X)) (9Y q(X;Y)) _ (X = a).There are three constants, a, b and c, and two predicate symbols, p and q, in thelanguage. Symbols X and Y denote variables. The clause C2 can also be written(using the simpli�ed notation) asC2 = p(X)) q(X;) _ (X = a).To compute gr(T) we need to compute all ground instances of C2 (C1 is itselfits only ground instance). First, we compute the formula Ce2 :Ce2 = p(X)) q(X; a) _ q(X; b) _ q(X; c) _ (X = a):

To obtain all ground instances of C2 (or Ce2), we replace X with a, b and c.The �rst substitution results in a tautology (due to occurrence of `a = a' inthe consequent of the clause). Two other substitutions yield the following twoground instances of C (we drop atoms `b = a' and `c = a' from the consequents;they are false by the standard interpretation of equality):p(b)) q(b; a) _ q(b; b) _ q(b; c)p(c)) q(c; a) _ q(c; b) _ q(c; c).These two clauses together with C1 form gr(T). The sets of ground atomsfp(a); q(b; c)g and fp(b); p(c); q(b; a); q(c; c)g are two examples of models of T(or gr(T)).In order for the logic of propositional schemata to be useful as a programmingtool, we modify it to separate input data from the program encoding the problemto be solved. We distinguish in the set of predicates Pr of the language a subset,Pr 0. We call its elements data predicates. We assume that prede�ned predicatesare not data predicates. All predicates other than data predicates and prede�nedpredicates are called program predicates. A theory of our logic is a pair (D;P),where D is a �nite collection of ground atoms whose predicate symbols are datapredicates (data), and P is a �nite collection of clauses (a program).To de�ne the semantics for the logic, we use grounding and a form of CWA.We say that a set of ground atoms (built of data and program predicates) is amodel of a theory (D;P) ifM1: M is a model of gr(D [P) (or, equivalently, M is an Herbrand model ofD [P), andM2: for every ground atom p(t) such that p 2 Pr 0 (p is a data predicate),p(t) 2M if and only if p(t) 2 D.We call the logic described above the logic of propositional schemata withCWA and denote it by PS cwa . Due to (M2), not every model of gr (D;P) is amodel of (D;P). Consequently, one can show that our logic is nonmonotonic.This di�erence between the logic of propositional schemata and the logic PS cwa ,while seemingly small, has signi�cant consequences for the expressive power ofthe logic and its applicability as a programming tool.Before addressing these two issues, let us consider an example. Let A and Bbe two disjoint and �nite sets. We de�ne D = fp1(a): a 2 Ag [fp2(b): b 2 Bg.We de�ne P to consist of two clauses:Ex1: q1(X)) p1(X) Ex2: q2(X)) p2(X).The constants are elements of A [B; X is a variable. The predicates are p1,p2, q1 and q2. The �rst two are data predicates.By (M2), each model of a PS cwa theory (D;P) contains D. However, itdoes not contain any ground atom p1(b), where b 2 B, nor any ground atomp2(a), where a 2 A. Each ground instance of the clause (Ex1) is of the formq1(c)) p1(c), where c is a constant (c 2 A [B). Since p1(c) 2 M if andonly if c 2 A, it follows that if q1(c) 2 M , then c 2 A. Similarly, we obtainthat if q1(c) 2 M , then c 2 A. Thus, M is a model of (D;P) if and only ifM = D [fq1(a): a 2 A0g [fq2(b): b 2 B0g, for some A0 � A and B0 � B.

Let us choose an element from A, say a0, and an element from B, say b0. Letus then add to P the clauseEx3: p1(a0)) p1(b0)We denote the new program by P 0. The PS cwa theory (D;P) has no models eventhough gr(D;P) is propositionally consistent. The reason is that all propositionalmodels satisfying gr(D;P) contain p1(b0). Thus, none of these models satis�escondition (M2). This example illustrates that our semantics is di�erent from cir-cumscription as circumscription preserves consistency. Circumscription appliedto p1 would result in models in which the extension of p1 in D would be min-imally extended by one more constant b0. Our (strong) minimization principledoes not allow for any additions to the extension of data predicates. Intuitively,it is exactly as it should be. Data predicates are meant to represent inputdata. The program should not be able to extend it.Logic PScwa is a tool to model problems. To illustrate this use of the logic,we show how to encode the vertex-cover problem for graphs. Let G = (V;E) bea graph. A set W � V is a vertex cover of G if for every edge fx; yg 2 E, x ory (or both) are in W . The vertex-cover problem is de�ned as follows: given agraph G = (V;E) and an integer k, decide whether G has a vertex cover withno more than k vertices.For the vertex-cover problem the input data is described by the following setof ground atoms:Dvc = fvtx(v): v 2 V g[fedge(v; w): fv; wg 2 Eg[fsize(k)g[fpos(i): 1; : : : ; ng.This set speci�es the set of vertices and the set of edges of an input graph. Itprovides the limit on the size of a vertex cover sought. Lastly, it uses a predicatepos to specify a range of integers that will be used to label vertices. The problemitself is described by the program Pvc:VC1: vpos(I;X)) vtx(X)VC2: vpos(I;X)) pos(I)VC3: vtx(X)) vpos(; X)VC4: vpos(I;X) ^ vpos(J;X)) I = JVC5: vpos(I;X) ^ vpos(I; Y)) X = YVC6: edge(X;Y) ^ vpos(I;X) ^ vpos(J; Y) ^ size(K)) (I � K) _ (J � K)(VC1) and (VC2) ensure that vpos(i; x) is false if i is not an integer fromthe set f1; : : : ; ng or if x is not a vertex. (VC3)-(VC5) together enforce that theatoms vpos(i; x) that are true in a model of the PS cwa theory (Dvc; Pvc) de�nea permutation of the vertices in V . Finally, (VC6) ensures that each edge hasat least one vertex assigned by vpos to positions 1; : : : ; k (in other words, thatvertices labeled 1; : : : ; k form a vertex cover). The correctness of this encodingis formally established in the following result.Proposition 2. Let G = (V;E) be an undirected graph and let k be a positiveinteger. A set of vertices fw1; : : : ; wkg � V is a vertex cover of G if and only ifM = Dvc [fvpos(i; wi): i = 1; : : : ; kg is a model of the theory (Dvc; Pvc).

For another example, we will consider the n-queens problem, that is, theproblem of placing n queens on a n � n chess board so that no queen attacksanother.In this case, the representation of input data describes the set of row andcolumn indices:Dnq = fpos(i): 1; : : : ; ng.The problem itself is described by the program Pnq . The predicate q describesa distribution of queens on the board: q(x; y) is true precisely when there is aqueen in the position (x; y).nQ1: q(R;C)) pos(R)nQ2: q(R;C)) pos(C)nQ3: q(R;C1) ^ q(R;C2)) C1 = C2nQ4: q(R1; C) ^ q(R2; C)) R1 = R2nQ5: q(R;C); q(R + I; C + I)) FnQ6: q(R;C); q(R + I; C � I)) FThe �rst two clauses ensure that if q(r; c) is true in a model of (Dnq ; Pnq) thenr and c are integers from the set f1; : : : ; ng. The following two clauses enforce theconstraint that no two queens are placed in the same row or the same column.Finally, the last two clauses guarantee that no two queens are placed on thesame diagonal. As in the case of the vertex cover problem, also in this case wecan formally show the correctness of this encoding.These examples demonstrate that PScwa programs can serve as represen-tations of computational problems. Two key questions arise: (1) what is theexpressive power of the logic PS cwa , and (2) how to use the logic PS cwa as apractical computational tool. We address both questions in the remainder of thepaper.3 Expressive power of PS cwaA search problem, � , is given by a set of �nite instances, D� , such that for eachinstance I 2 D� , there is a �nite set S�(I) of all solutions to � for the instanceI [GJ79]. The graph-coloring, vertex-cover and n-queens problems considered inthe previous section are search problems. More generally, all constraint satis-faction problems including basic AI problems such as planning, scheduling andproduct con�guration can be cast as search problems.We say that a PS cwa program P solves a search problem � if there exist:1. A mapping d that can be computed in polynomial time and that encodesinstances to � as sets of ground atoms built of data predicates2. A partial mapping sol , computable in polynomial time, that assigns to (some)sets of ground atoms solutions to � (elements of SI2D� S�(I))such that for every instance I 2 D� , s 2 S�(I) if and only if there exists amodel M of the PS cwa theory (d(I); P) such that M is in the domain of themapping sol and sol(M) = s.

A search problem � is in the class NP-search if there is a nondeterministicTuring Machine TM such that (1) TM runs in polynomial time; (2) for everyinstance I 2 D� , the set of strings left on the tape when accepting computationsfor I terminate is precisely the set of solutions S�(I).We now have the following theorem that determines the expressive power ofthe logic PS cwa . Its proof is provided in the appendix.Theorem 1. A search problem � can be solved by a PS cwa program if and onlyif � 2 NP-search.Decision problems can be viewed as special search problems. For the class ofdecision problems, Theorem 1 implies the following corollary (a counterpart tothe result on the expressive power of DATALOG: [Sch95]).Corollary 1. A decision problem � can be solved by a PS cwa program if andonly if � is in NP.4 Extending PS cwa | the logic PS+We will now discuss ways to enhance e�ectiveness of logic PScwa as a modelingformalism and propose ways to improve computational performance. When con-sidering the PS cwa theories developed for the n-queens and vertex-cover prob-lems one observes that these theories could be simpli�ed if the language of thelogic PS cwa contained direct means to model constraints such as: \exactly oneelement is selected" or \at most k elements are selected".With this motivation, we extend the language of the logic PS cwa . We de�nea c-atom (cardinality atom) as an expression mfp(X; ; Y)gn, where m and nare non-negative integers, X and Y are tuples of variables and p is a programpredicate2.The interpretation of a c-atom is that for every ground tuples x and y thatcan be substituted for X and Y , at least m and at most n atoms from the setfp(x; c; y): c is a constant appearing in the theorygare true. One of m and n may be missing from the expression. If m is missing,there is no lower-bound constraint on the number of atoms that are true. Ifm is missing, there is no upper-bound constraint on the number of atoms thatare true. It is also possible to have more \underscore" symbols in c-atoms. Insuch case, when forming the set of atoms on which cardinality constraints areimposed, all possible ways to replace the \underscore" symbols by constants areused.An extended clause is a clause built of c-atoms. The notions of a program andtheory are de�ned as in the case of the logic PS cwa .A theory in the extended syntax can be grounded, that is, represented as aset of propositional clauses, in a similar way as before. In particular, data and2 In our implementation, we support a somewhat more general form of c-atoms.

prede�ned predicates are treated in the same way and are subject to the sameversion of CWA that was used for the logic PS cwa . While grounding, c-atomsare interpreted as explained earlier. Grounding allows us to lift the semantics ofpropositional logic to the theories in the extended syntax. We call the resultinglogic the extended logic PS cwa and denote it by PS+.In the logic PS+ we can encode the vertex cover problem in a more straight-forward and more concise way. Namely, the problem can be represented withoutthe need for integers to label the vertices of an input graph! This new represen-tation (D0vc ; P 0vc) is given by:D0vc = fvtx(v): v 2 V g [fedge(v; w): fv; wg 2 Eg,and P 0vc =VC01: invc(X)) vtx (X)VC02: finvc()gkVC03: edge(X;Y)) invc(X) _ invc(Y).Atoms invc(x) that are true in a model of the PScwa theory (D0vc ; P 0vc) de�nea set of vertices that is a candidate for a vertex cover. (VC02) guarantees that nomore than k vertices are included. (VC03) enforces the vertex-cover constraint.We close this section with an observation on the expressive power of the logicPS+. Since it is a generalization of the logic PS cwa , it can capture all problemsthat are in the class NP-search. On the other hand, the problem of computingmodels of a PS+ theory with a �xed program part is an NP-search problem, itfollows that the expressive power of the logics PS+ does not extend beyond theclass NP-search. In other words, the logic PS+ also captures the class NP-search.5 Computing with PS+ theoriesTo process PS+ theories, one approach is to ground them into collections ofpropositional clauses. However, CNF representations of c-atoms may be quitelarge; the constraint \at most n atoms in the set fp1; : : : ; pkg are true", is cap-tured by �(kn+1) clauses pi1 ; : : : ; pin+1) F, one for each (n+ 1)-element subsetfpi1 ; : : : ; pin+1g of fp1; : : : ; pkg.Thus, we propose another approach. The idea is to develop an extension ofpropositional logic representing c-atoms directly. Let At be a set of proposi-tional variables. By a propositional c-atom we mean any expression of the formmfp1; : : : ; pkgn, where m and n are non-negative integers and p1; : : : ; pk areatoms in At (one of m and n may be missing). By an extended propositionalclause we mean an expression of the formC = A1 ^ : : : ^ As) B1 _ : : : _ Bt;where all Ai and Bi are propositional c-atoms.Let M � At be a set of atoms. We say that M satis�es a generalized atommfp1; : : : ; pkgn if m � jM \ fp1; : : : ; pkgj � n:

Further, M satis�es a generalized clause C if M satis�es at least one atom Bj ordoes not satisfy at least one atom Ai. We call the resulting logic the propositionallogic PS+. Clearly, M satis�es an atom 1fpg1 if and only if p 2 M . Thus, thepropositional logic PS+ extends the (clausal) propositional logic.Theories of the logic PS+ can be grounded in the extended propositionallogic by generalizing the approach described in Section 2. We represent c-atomsas propositional c-atoms and avoid a blow-up in the size of the representation.The problem is that SAT checkers cannot now be used to resolve the satis�abilityof the extended propositional logic as they are not designed to work with theextended syntax.It is clear, however, that the techniques developed in the area of SAT checkerscan be extended to the propositional logic PS+. We have developed a Davis-Putnam like procedure, aspps, that �nds models of propositional PS+. We alsodeveloped a program psgrnd that accepts theories in the syntax of the logic PS+and grounds them into propositional PS+ theories. Thus, the two programstogether can be used as a processing mechanism for an answer-set programmingsystem based on the logic PS+. The programs psgrnd and aspps are available athttp://www.cs.uky.edu/ai/aspps/.In our experiments we considered the vertex-cover problem and several com-binatorial problems including n-queens problem, pigeonhole problem and theproblem to compute Schur numbers. All our experiments were performed on aPentium III 500MHz machine running linux.We were mostly interested in comparing the performance of our system ps-grnd/aspps with that of smodels. The reason is that both programs accept similarsyntax and allow for very similar modeling of constraints. We also experimentedwith a satis�ability checker satz.In the case of vertex cover, for each n = 50, 60, 70 and 80, we randomly gen-erated 100 graphs with n vertices and 2n edges. For each graph G, we computedthe minimum size kG for which the vertex cover can be found. We then testedaspps, smodels and satz on all the instances (G; kG). The results represent theaverage execution times Encodings we used for testing aspps and smodels wherebased on the clauses (VC01) - (VC03). For satz we used encodings based on theclauses (VC1) - (VC6) (cardinality constraints cannot be handled by satz).A propositional CNF theory obtained by grounding the program (VC1) -(VC6), has �(n2) atoms, �(mn2) clauses and its total size is also �(mn2). Forinput instances we used in our experiments, these theories were of such largesizes (over one million rules in the case of graphs with 80 vertices) that satzdid not terminate in the time we allocated (5 minutes). Thus, no times for satzare reported. On the other hand, since the propositional PS+ theory obtainedby grounding the PS+ program (VC01) - (VC03) has only �(m + n) clauses (afew hundred clauses for graphs with 80 vertices) and its total size has the sameasymptotic estimate. This is dramatically less than in the case of theories satzhad to process. Both aspps and smodels performed very well, with aspps beingabout three times faster than smodels. The timing results are summarized inTable 1.

n 50 60 70 80aspps 0.04 0.22 1.26 6.45smodels 0.12 0.76 4.14 22.35Table 1. Timing results (in seconds) for the vertex-cover problem.For the n-queens problem, our solver performed exceptionally well. It scaledup much better than smodels both in the case when we were looking for onesolution and when we wanted to compute all solutions. In particular, our programfound a solution to the 36 queens problem in 0.97 sec. It also outperformed satz.# of queens 18 19 20 21 22 23aspps 0.02 0.02 0.07 0.07 0.11 0.12smodels 2.35 1.28 13.25 19.31 167.1 380.35satz 1.16 0.61 4.35 0.95 28.64 1.42Table 2. Timing results (in seconds) for the n-queen problem.The pigeonhole problem consists of showing that it is not possible to place ppigeons in h holes if p > h. For this problem aspps showed the best performance| about three times faster than the other two solvers (all programs showed asimilar rate of growth in the execution time).(p; h) (9,8) (10,9) (11,10) (12,11)aspps 0.59 5.63 60.08 702.02smodels 2.7 21.56 219.99 2469.97satz 1.87 17.28 178.20 2044.42Table 3. Timing results (in seconds) for the pigeonhole problemThe Schur problem consists of placing n numbers 1; 2; : : : ; n in k bins so thatthe set of numbers assigned to a bin is not closed under sums. That is, for allnumbers x, y, z, 1 � x; y; z � n, if x and y are in a bin b, then z is not in b (xand y need not be distinct). The Schur number S(k) is the maximum number nfor which such a placement is still possible.We considered the problem of the existence of the placement for k = 4 andvalues of n ranging from 40 to 45. For n � 44 all programs found a \Schur"placement. However, no \Schur" placement exists for n = 45 (and higher valuesof n). All programs were able to establish the non-existence of solutions for n =45 (but the times grew signi�cantly). Our results summarizing the performanceof our system and smodels on the theories encoding the constraints of the problemare shown in Table 4. aspps and satz seem to performed better than smodels,with satz being slightly faster for values of n closer to the Schur number.n 40 41 42 43 44 45aspps 0.03 0.03 0.03 0.03 1.83 54.5smodels 0.3 0.38 0.32 0.36 35.8 >1500satz 0.21 0.23 0.24 0.25 0.96 20.4Table 4. Timing results (in seconds) for the Schur-number problem.

In the case of the last three problems, it was possible to eliminate cardinalityconstraints without signi�cant increase in the size of grounded theories. As aresult, satz performed well.6 ConclusionsOur work demonstrates that propositional logic and its extensions can supportanswer-set programming systems in a way in which stable logic programmingand disjunctive logic programming do3. In the paper we described logic PS+that can be used to this end. We presented an e�ective implementation of agrounder, psgrnd, and a solver, aspps, for processing theories in the logic PS+.Our experimental results are encouraging. Our system is competitive with smod-els, and in many cases outperforms it. It is also competitive with satis�abilitysolvers such as satz.The results of the paper show that programming front-ends for constraintsatisfaction problems that support explicit coding of complex constraints facili-tate modeling and result in concise representations. They also show that solverssuch as aspps that take advantage of those concise encodings and process high-level constraints directly, without compiling them to simpler representations,exhibit very good computational performance. These two aspects are impor-tant. Satis�ability checkers often cannot e�ectively solve problems simply dueto the fact that encodings they have to work with are large. For instance, forthe vertex-cover problem for graphs with 80 vertices and 160 edges, aspps hasto deal with theories that consist of a few hundred of rules only. In the sametime pure propositional encodings of the same problem contain over one millionclauses | a factor that undoubtedly is behind much poorer performance of satzon this problem.Our work raises new questions. Further extensions of logic PS+ are possible.For instance, constraints that impose other conditions on set cardinalities thanthose considered here (such as, the parity constraint) might be included. Wewill pursue this direction. Similarly, there is much room for improvement in thearea of solvers for the propositional logic PS+. In particular, we will study localsearch algorithms as possible satis�ability solvers for propositional PS+ theories.Finally, we note that the experimental results presented here are meant toshow that aspps is competitive with other solvers and, we think, they demon-strate this. However, these results are still too fragmentary to provide basis forany conclusive comparison between the three solvers tested. Such a comparison isfurther complicated by the fact that the same problem may have several di�erentencodings with di�erent computational properties. Developing the methodologyfor comparing solvers designed to work with di�erent formal systems is a chal-3 We point out, though, that stable logic programming and disjunctive logic pro-gramming directly support negation-as-failure and, consequently, yield more directsolutions to some knowledge representation problems such as, for example, the frameproblem.

lenging problem for builders of constraint solvers and declarative programmingsystems.AcknowledgmentsThis work was partially supported by the NSF grants CDA-9502645, IRI-9619233and EPS-9874764.References[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theo-retical computer science, pages 493{574. Elsevier, Amsterdam, 1990.[BS97] R.J. Bayardo, Jr and R.C. Schrag. Using CSP look-back techniques tosolve real-world SAT instances. In Proceedings of the Fourteenth NationalConference on Arti�cial Intelligence (AAAI-97). MIT Press, 1997.[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logicand data bases, pages 293{322. Plenum Press, New York-London, 1978.[ELM+98] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A KR systemdlv: Progress report, comparisons and benchmarks. In Proceeding of theSixth International Conference on Knowledge Representation and Reasoning(KR '98), pages 406{417. Morgan Kaufmann, 1998.[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability. A guide to thetheory of NP-completeness. W.H. Freeman and Co., San Francisco, Calif.,1979.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InR. Kowalski and K. Bowen, editors, Proceedings of the 5th InternationalConference on Logic Programming, pages 1070{1080. MIT Press, 1988.[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and dis-junctive databases. New Generation Computing, 9:365{385, 1991.[KMS96] H.A. Kautz, D. McAllester, and B. Selman. Encoding plans in propositionallogic. In Proceedings of KR-96, pages 374{384. Morgan Kaufmann, 1996.[KS99] H.A. Kautz and B. Selman. Unifying sat-based and graph-based planning.In Proceedings of IJCAI-99, San Mateo, CA, 1999. Morgan Kaufmann.[LA97] C.M. Li and M. Anbulagan. Look-ahead versus look-back for satis�abilityproblems. In Proceedings of the Third International Conference on Princi-ples and Practice of Constraint Programming, 1997.[Llo84] J. W. Lloyd. Foundations of logic programming. Symbolic Computation.Arti�cial Intelligence. Springer-Verlag, Berlin-New York, 1984.[MR01] W. Marek and J.B. Remmel. On the foundations of answer-set program-ming. In Answer-Set Programming: Towards E�cient and Scalable Knowl-edge Representation and Reasoning. AAAI Press, 2001. Papers from the2001 AAAI Spring Symposium, Technical Report SS-01-01.[MT99] V.W. Marek and M. Truszczy�nski. Stable models and an alternative logicprogramming paradigm. In K.R. Apt, W. Marek, M. Truszczy�nski, and D.S.Warren, editors, The Logic Programming Paradigm: a 25-Year Perspective,pages 375{398. Springer Verlag, 1999.[Nie99] I. Niemel�a. Logic programming with stable model semantics as a constraintprogramming paradigm. Annals of Mathematics and Arti�cial Intelligence,25(3-4):241{273, 1999.

[NS00] I. Niemel�a and P. Simons. Extending the smodels system with cardinalityand weight constraints. In J. Minker, editor, Logic-Based Arti�cial Intelli-gence, pages 491{521. Kluwer Academic Publishers, 2000.[Sch95] J. Schlipf. The expressive powers of the logic programming semantics. Jour-nal of the Computer Systems and Science, 51(1):64{86, 1995.[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving lo-cal search. In Proceedings of the Twelfth National Conference on Arti�cialIntelligence (AAAI-94), Seattle, USA, 1994.AppendixWe will present here a sketch of a proof of our main result concerning the ex-pressive power of the logic PS cwa . The proof relies on some basic notions fromlogic programming (we refer the reader to [Apt90,Llo84] for details).We restrict our discussion to function-free languages (the case relevant toour logic PS cwa). Given a predicate language L (as de�ned in Section 2), a logicprogram clause over this language is an expression r of the formr = p(t) q1(t1); : : : ; qm(tm);not(qm+1(tm+1)); : : : ;not(qm+n(tm+n))where p; q1; : : : ; qm+n 2 Pr , (we assume that p is not a prede�ned predicate),and t; t1; : : : ; tm+n are term tuples with the arity matching the arity of thecorresponding predicate symbol. We call the atom p(t) the head of the rule rand denote it by h(r). For a rule r we also de�neB(r) = q1(t1) ^ : : : qm(tm) ^ :qm+1(tm+1) ^ : : : ^ :qn(tn)We will be interested in supported models of logic programs. Without loss ofgenerality, we will restrict our attention to programs in the normal form. Thatis, we assume that (1) the head of each rule is of the form p(t), where t is a tupleof variables, and (2) if p appears in the head of two rules, the heads of these tworules are exactly the same (the same tuple of variables appear in both of them)[Cla78,Apt90].Let P be a program in the normal form. For each predicate symbol p 2 Pr(P),we de�ne a formula cc(p) by:cc(p) = p(X),_f9YrB(r): r 2 P 0; h(r) = p(X)g;where X is a tuple of variables and Yr is the tuple of variables occurring in thebody of r but not in the head of r (we exploit the normal form of P here). Wede�ne the completion of P , CC(P), by setting CC(P) = fcc(p): p 2 Prg.The Clark's completion is important as it allows us to characterize supportedmodels of a logic program [Apt90]. Namely, we have the following result.Theorem 2. Let P be a logic program. A set of ground atoms M is a supportedmodel of P if and only if it is a Herbrand model of CC(P).We now have the following theorem.

Theorem 3. Let P be a logic program in the normal form. Let Pr be the set ofpredicates appearing in P and let Pr 0 be the set of predicates of P that do notappear in the heads of rules in P . There is a PS cwa theory T (P) such that forevery set of ground atoms D over predicates from Pr 0, a set of ground atoms Mis a supported model of D [P if and only if M = M 0 \HB(P) for some modelM 0 of the PS cwa theory (D;T (P)).Proof: (Sketch) To de�ne T (P), we consider the completion CC(P) of P . Theidea is to take for T (P) an equivalent clausal representation of CC(P).We build such representation as follows. Let p be a predicate symbol inPr n Pr 0. The completion CC(P) contains the formulacc(p) = p(X),_f9YrB(r): r 2 P; h(r) = p(X)g;where X is a tuple of variables and Yr is the tuple of variables occurring in thebody of r but not in the head of r. For each rule r 2 P such that p occurs inh(r), we introduce a new predicate symbol dr, of the same arity jX j+ jYrj. Wede�ne a theory T 0(P) to consist of the following formulas (we recall that B(r)stands for the conjunction of the literals from the body of r): (r) = dr(X;Yr), B(r);where p 2 Pr n Pr 0, r 2 P and p occurs in the head of r, andcc0(p) = p(X),_f9Yrdr(X;Yr): r 2 P; h(r) = p(X)g;where p 2 Pr n Pr 0.It is clear that the theory T 0(P) is equivalent to CC(P) (modulo new groundatoms). That is, M � HB(P) is a model of CC(P) if and only if M = M 0 \HB(P), for some model M 0 of T 0(P).One can show that T 0(P) can be rewritten (in polynomial time) into an equiv-alent clausal form, T (P). Consequently, T (P) is equivalent to CC(P) (moduloground atoms dr(t)). It is now a routine task to verify that the theory T (P)satis�es all the requirements of the statement of the theorem. 2Using the terminology introduced here we will now prove Theorem 1 fromSection 3.Theorem 4. A search problem � can be solved by a �nite PS cwa program ifand only if � 2 NP-search.Proof: (Sketch) In [MR01] it is proved that every NP-search problem can besolved uniformly by a �nite logic program under the supported-model seman-tics. Since the theory T (P) can be constructed in polynomial time, it followsby Theorem 3 that every search problem in NP-search can be solved by a �nitePS cwa program. Conversely, for every �xed program P , the problem of com-puting models of a PS cwa theory (D;P) (D is the input) is clearly in the classNP-search. Thus, only search problem in the class NP-search can be solved by�nite PS cwa programs. Hence, the assertion follows. 2

