
The computational complexity of dominance and consistency in CP-nets

Judy Goldsmith
Dept. of Comp. Sci.

University of Kentucky
Lexington, KY

40506-0046, USA
goldsmit@cs.uky.edu
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Abstract

We investigate the computational complexity of
testing dominance and consistency in CP-nets. Up
until now, the complexity of dominance has been
determined only for restricted classes in which the
dependency graph of the CP-net is acyclic. How-
ever, there are preferences of interest that define
cyclic dependency graphs; these are modeled with
general CP-nets. We show here that both domi-
nance and consistency testing for general CP-nets
are PSPACE-complete. The reductions used in the
proofs are from STRIPS planning, and thus estab-
lish strong connections between both areas.

1 Introduction
The problems of eliciting, representing and reasoning with
preferences over a multivariable (or, multiattribute) domain
arise in many fields such as planning, design, and group de-
cision making. An explicit representation of a preference or-
dering of elements (we refer to them asoutcomes) of such
multivariable domains is exponentially large in the number
of attributes. Therefore, AI researchers have developed lan-
guages for representing preference orderings succinctly.The
formalism of CP-nets[Boutilier et al., 1999] is among the
most popular ones. A CP-net provides a succinct represen-
tation of preference ordering on outcomes in terms of local
preference statements of the formp : xi > xj , wherexi, xj

are values of a variableX andp is a logical condition. Infor-
mally, a preference statementp : xi > xj means that given
p, xi is (strictly) preferred toxj ceteris paribus, that is,all
other things being equal. The meaning of a CP-net is given
by a certain ordering relation (dominance) on the set of out-
comes, derived from such reading of preference statements.
If one outcome dominates another, we say that the dominant
one is preferred.

Reasoning about the preference ordering (dominance rela-
tion) expressed by a CP-net is far from easy. The key prob-
lems includedominance testingandconsistency testing. In
the first problem, given a CP-net and two outcomesα andβ,
we want to decide whetherβ dominatesα. The second prob-
lem asks whether there is a dominance cycle in the dominance
ordering defined by an input CP-net, that is, whether there is
an outcome that dominates (is preferred to) itself.

We study the computational complexity of these two prob-
lems. The results obtained so far concerned only restricted
classes of CP-nets, all requiring that the graph of variablede-
pendencies implied by preference statements in the CP-net be
acyclic. Under certain assumptions, the dominance-testing
problem is inNP and, under some additional assumptions,
even inP [Domshlak and Brafman, 2002; Boutilieret al.,
2004a]. Its complexity in the general case has remained until
now an open problem. We show that it is in factPSPACE-
complete, even for the propositional case, by exhibiting in
Section 4 aPSPACE-hardness proof for dominance testing.

We then turn to consistency testing. While acyclic CP-
nets are guaranteed to be consistent, this is not the case
with general CP-nets (see[Domshlak and Brafman, 2002;
Brafman and Dimopoulos, 2004] for detailed examples and
discussions). In Section 5, we show that consistency testing
is as hard as dominance testing.

To prove the hardness part of the results, we first establish
thePSPACE-hardness of some problems related to proposi-
tional STRIPS planning. We then show that these problems
can be reduced to CP-net dominance and consistency testing
by exploiting connections between actions in STRIPS plan-
ning and preference statements in CP-nets.

We assume some familiarity with the complexity class
PSPACE (we refer to[Papadimitriou, 1994] for details). In
particular, we rely later on the equivalencesNPSPACE =
PSPACE = coPSPACE.

The complexity results in this paper address cyclic CP-
nets. Most earlier work has concentrated on the acyclic
model. However, we argue that acyclic CP-nets are not suf-
ficiently expressive to capture human preferences on even
some simple domains. Consider, for instance, a diner who
has to choose either red or white wine, and either fish or meat.
Given red wine, they prefer meat, and conversely, given meat
they prefer red wine. On the other hand, given white wine,
they prefer fish, and conversely, given fish they prefer white
wine. This gives a consistent cyclic CP-net, and there is no
acyclic CP-net giving rise to the same preferences on out-
comes. So, such cyclicity of preference variables does not
necessarily lead to a cyclic order on outcomes.

2 Generalized propositional CP-nets
Let V = {x1, . . . , xn} be a finite set ofvariables. For each
variablex ∈ V , we assume a finitedomainDx of values. An



outcomeis ann-tuple(d1, . . . , dn) of Dx1
× · · · × Dxn

.
In this paper, we focus onpropositionalvariables: vari-

ables withbinary domains. LetV be a finite set of propo-
sitional variables. For everyx ∈ V , we setDx = {x,¬x}
(thus, we overload the notation and writex both for the vari-
able and for one of its values). We refer tox and¬x as liter-
als. Given a literall we write¬l to denote the dual literal tol.
The focus on binary variables makes the presentation clearer
and has no impact on our complexity results.

A conditional preference rule(or, for short, a [preference]
rule) overV is an expressionp : l > ¬l, wherel is a literal
of some atomx ∈ V andp is a propositional formula overV
that does not involve variablex.

Definition 1 (Generalized CP-net) A generalized CP-netC
(for short, aGCP-net) overV is a set of conditional prefer-
ence rules. Forx ∈ V we definep+

C(x) andp−C(x), usually
written just: p+(x) andp−(x), as follows:p+

C(x) is equal to
the disjunction of allp such that there exists a rulep : x > ¬x
in C; p−C(x) is the disjunction of allp such that there exists
a rule p : ¬x > x in C. We define the associated directed
graph GC (the dependency graph) over V to consist of all
pairs (y, x) of variables such thaty appears in eitherp+(x)
or p−(x).

In our complexity results we will also need the following
representation of GCP-nets: a GCP-netC is said to be incon-
junctive formif C only contains rulesp : l > ¬l such thatp
is a (possibly empty) conjunction of literals. In this case all
formulasp−(x), p+(x) are in disjunctive normal form, that
is, a disjunction of conjunctions of literals (including⊤ – the
empty conjunction of literals).

GCP-nets determine a transitive relation on outcomes, in-
terpreted in terms of preference. A preference rulep : l > ¬l
represents the statement “given thatp holds,l is preferred to
¬l ceteris paribus”. Its intended meaning is as follows. If
outcomeβ satisfiesp and l, thenβ is preferred to the out-
comeα which differs fromβ only in that it assigns¬l for
variablex. In this situation we say that there isan improv-
ing flip from α to β sanctioned by the rulep : l > ¬l. If
α0, . . . , αm is a sequence of outcomes withm ≥ 1 and each
next outcome in the sequence is obtained from the previous
one by an improving flip, then we say thatα0, . . . , αm is an
improving sequence(from α0 to αm) for the GCP-net, and
thatαm dominatesα0, writtenα0 ≺ αm.

Finally, A GCP-net isconsistentif there is no outcomeα
which is strictly preferred to itself, i.e., such thatα ≺ α.

The main objective of the paper is to establish the com-
plexity of the following two problems concerning the notion
of dominance associated with GCP-nets (sometimes under re-
strictions on the class of input GCP-nets).

Definition 2
GCP-DOMINANCE: given a GCP-netC and two outcomesα
andβ, decide whetherα ≺ β in C.
GCP-CONSISTENCY: given a GCP-netC, decide whetherC
is consistent.

There are two properties of GCP-nets that are essential in
linking them to the original notion of CP-nets[Boutilier et
al., 1999; 2004a].

Definition 3
A GCP-netC over V is locally consistentif for everyx ∈
V , the formulap−C(x) ∧ p+

C(x) is unsatisfiable. It islocally
completeif for everyx ∈ V , the formulap−C(x) ∨ p+

C(x) is a
tautology.

Definition 4 (Propositional CP-net) A CP-netover the set
V of (propositional) variables is a locally consistent and lo-
cally complete GCP-net overV .

ProblemsCP-DOMINANCE andCP-CONSISTENCYare de-
fined analogously to Definition 2.

This definition of a CP-net differs from the one given in
[Boutilier et al., 2004a], which uses explicit conditional pref-
erence tables. Our representation is often more compact, but
it is easy to verify that it is equivalent in that it gives riseto
the same definition of dominance.

When defining a decision problem, it is critical to specify
the way to represent its input instances, as the representation
may affect the complexity of the problem. Unless stated oth-
erwise, we assume that GCP-nets (and so, also CP-nets) are
represented as a set of preference rules, as described in Defi-
nition 1. Therefore, the size of a GCP-net is given by the total
size of the formulasp−(x), p+(x), x ∈ V .

3 Propositional STRIPS planning
In this section we derive some technical results on proposi-
tional STRIPS planning which form the basis of our complex-
ity results in Sections 4 and 5. We establish the complexity of
plan existence problems for propositional STRIPS planning,
under restrictions on input instances that make the problem
useful in the studies of dominance and consistency in GCP-
nets.

Let V be a finite set of variables. AstateoverV is a com-
plete and consistent set of literals overV (which we often
view as the conjunction of its members). A state is therefore
equivalent to anoutcome, defined in a CP-nets context.

Definition 5 (Propositional STRIPS planning) A proposi-
tional STRIPS instanceis a tuple〈V, α0, γ,ACT 〉, where

1. V is a finite set of propositional variables;

2. α0 is a state (overV ), called theinitial state;

3. γ is a state called thegoal;

4. ACT is a finite set ofactions, where each actiona ∈
ACT is described by a consistent conjunction of literals
pre(a) (a precondition) and a consistent conjunction of
literals post(a) (a postcondition, or effect).

An actiona is executablein a stateα if α |= pre(a). Theef-
fectof a in stateα is the stateα′ containing the same literals
asα for all variables not mentioned inpost(a), and the liter-
als ofpost(a) otherwise. We assume that an action can beap-
plied to any state, but that it has no effect if its preconditions
do not hold (this assumption has no effect on complexity).
ThePROPOSITIONAL STRIPS PLAN EXISTENCEproblem, or
STRIPS PLAN for short, is to decide whether for a given
propositional STRIPS instance〈V, α0, γ,ACT 〉 there is a
successful plan, that is, sequence of actions leading from the
initial stateα0 to a state satisfying the goalγ.
A plan isirreducibleif its every action changes the state.



We assume, without loss of generality, that for any actiona,
no literal inpost(a) also appears inpre(a); otherwise we can
omit the literal frompost(a) without changing the effect of
the action; (ifpost(a) then becomes an empty conjunction,
the actiona can be omitted fromACT as it has no effect).

We have the following result, proved in[Bylander, 1994] :

Proposition 1 ([Bylander, 1994] )
STRIPS PLANis PSPACE-complete.

Typically, propositional STRIPS instances do not require
that goals be complete. We restrict consideration to com-
plete goals. This restriction has no effect on the complex-
ity: the plan existence problem remainsPSPACE-complete
under the goal-completeness restriction[Lang, 2004].

3.1 Acyclic STRIPS
Definition 6 (Acyclic sets of actions)A set of actionsACT
is acyclic if there is no stateα such that〈V, α, α,ACT 〉 has
a non-empty irreducible plan (informally, if there are no non-
trivial directed cycles in the space of states induced byACT ).

We will now consider the following two problems:

1. ACYCLIC STRIPS PLAN: given a propositional STRIPS
instance〈V, α0, γ,ACT 〉 such thatACT is acyclic
and α0 6= γ, decide whether there is a plan for
〈V, α0, γ,ACT 〉.

2. ACTION-SET ACYCLICITY: given a setACT of actions,
decide whetherACT is acyclic.

We will show that both problems arePSPACE-complete.

Proposition 2
ACYCLIC STRIPS PLANis PSPACE-complete.

Proof: Membership inPSPACE is evident as the problem is a
restriction ofSTRIPS PLAN. To provePSPACE-hardness, we
exhibit a polynomial-time reduction fromSTRIPS PLAN. Let
PE = 〈V, α0, γ,ACT 〉 be an instance ofSTRIPS PLAN. The
idea behind the reduction is to introduce acounter, so that
each time an action is executed, the counter is incremented.
The counter may count up to2n, wheren = |V |, making
use ofn additional variables. The counter is initialized to 0.
Once it reaches2n − 1 it can no longer be incremented and
no action can be executed. Hence, the set of actions in the
resulting instance ofSTRIPS PLANis acyclic.

To describe the reduction, we writeV as{x1, . . . , xn}. We
definePE′ = 〈V ′, α′

0, γ
′,ACT ′〉 as follows:

• V ′ = {x1, . . . , xn, z1, . . . , zn}, wherezi are new vari-
ables we will use to implement the counter;

• α′
0 = α0 ∧ ¬z1 ∧ · · · ∧ ¬zn;

• γ′ = γ ∧ z1 ∧ · · · ∧ zn;

• for each actiona ∈ ACT , we include inACT ′ n actions
ai, 1 ≤ i ≤ n, such that
pre(ai) = pre(a) ∧ ¬zi ∧ zi+1 ∧ · · · ∧ zn

post(ai) = post(a) ∧ zi ∧ ¬zi+1 ∧ · · · ∧ ¬zn

• Furthermore, we include inACT ′ n actionsbi, 1 ≤ i ≤
n, such that
pre(bi) = ¬zi ∧ zi+1 ∧ · · · ∧ zn

post(bi) = zi ∧ ¬zi+1 ∧ · · · ∧ ¬zn

We will denote states overV ′ by pairs(α, k), whereα is
a state overV andk is an integer,0 ≤ k ≤ 2n − 1. We
view k as a compact representation of a state over variables
z1, . . . , zn: assuming that the binary representation ofk is
d1 . . . dn (with dn being the least significant digit),k repre-
sents the state which containszi if di = 1 and¬zi, otherwise.

PE′ is acyclic, since executing any action inACT ′ incre-
ments the counterk and no action can be executed once the
counter has reached the value2n − 1.

We claim that there is a plan forPE if and only if there is
a plan forPE′. First, assume that there is a plan inPE. Let
π be a shortest plan inPE and letm be its length. We have
m ≤ 2n−1, since no state alongπ repeats (otherwise, shorter
plans thanπ for PE would exist). Letα0, α1, . . . , αm =
γ be the sequence of states obtained by executingπ. Let a
be the action used in the transition fromαk to αk+1. Since
k < 2n − 1, there is exactly onei, 1 ≤ i ≤ n, such that
the actionai applies at the state(α, k) overV ′. Replacinga
with ai in π yields a plan that when started at(α0, 0) leads
to (αm,m) = (γ,m). Appending that plan with appropriate
actionsbi to increment the counter to2n − 1 yields a plan for
PE′. Conversely, ifτ is a plan forPE′, the plan obtained from
τ by removing all actions of the formbj and replacing each
actionai with a is a plan forPE.

Thus, the claim and the assertion follow. �

Proposition 3
ACTION-SET ACYCLICITY is PSPACE-complete.

Proof: The argument for the membership inPSPACE is
standard. To provePSPACE-hardness, we proceed as
follows. Let PE = 〈V, α0, γ,ACT 〉 be a STRIPS instance
such thatACT is acyclic andα0 6= γ. Let a be a new action
defined bypre(a) = γ andpost(a) = α0. It is easy to see
that ACT ∪ {a} is not acyclic if and only if there exists a
plan forPE. Thus, thePSPACE-hardness of thecomplement
of the ACTION-SET ACYCLICITY problem follows from
Proposition 2. SincePSPACE = coPSPACE, this suffices
to prove the hardness part of the assertion. �

3.2 Mapping STRIPS plans to single-effect
STRIPS plans

Versions of theSTRIPS PLAN and ACYCLIC STRIPS PLAN
problems that are important for us allow only single-effectac-
tions (actions with exactly one literal in their postconditions)
in input propositionalSTRIPSinstances. We refer to these re-
strictions asSE STRIPS PLANandACYCLIC SE STRIPS PLAN.

To prove PSPACE-hardness of both problems, we de-
scribe a mapping fromSTRIPS instances to single-effect
STRIPSinstances.

Consider an instancePE = 〈V, α0, γ,ACT 〉 of theSTRIPS
PLAN problem (whereACT is not necessarily acyclic). For
each actiona ∈ ACT we introduce anewvariablexa. We
set X =

∧
a∈ACT ¬xa. That is, X is the conjunction of

negative literals of all the additional variables. In addition,
for eacha ∈ ACT we setXa = xa ∧

∧
b∈ACT−{a} ¬xb. We

now define an instancePE′ = 〈V ′, α′
0, γ

′, S(ACT )〉 of the
SE STRIPS PLANproblem as follows:



• Set of variables:V ′ = V ∪ {xa : a ∈ ACT};

• Initial state:α′
0 = α0 ∧ X;

• Goal state:γ′ = γ ∧ X;

• Set of actions:S(ACT ) = {ai : a ∈ ACT , i =
1, . . . , 2|post(a)| + 1}.
Let a ∈ ACT and post(a) = l1 ∧ · · · ∧ lq. For
i = 1, . . . , q, we define:
pre(ai) = pre(a) ∧ X ∧ ¬li; post(ai) = xa;
pre(aq+i) = Xa; post(aq+i) = li.
We also define:
pre(a2q+1) = Xa ∧ l1 ∧ · · · ∧ lq; post(a2q+1) = ¬xa.

Let π be a sequence of actions inACT . We defineS(π) to
be the sequence of actions inS(ACT ) obtained by replacing
each actiona in π by a1, . . . , a2q+1 (whereq = |post(a)|).
Now consider a sequenceτ of actions fromS(ACT ). Re-
move fromτ any actionai such thati 6= 2|post(a)| + 1, and
replace actions of the forma2|post(a)|+1 by a. We denote the
resulting sequence of actions fromACT by S′(τ). The fol-
lowing properties are easy to check (details are omitted):

Lemma 1 With the above definitions,

(i) if π is a plan for PE thenS(π) is a plan for PE′;

(ii) if τ is an irreducible plan for PE′ thenS′(τ) is a plan
for PE;

(iii) ACT is acyclic if and only ifS(ACT ) is acyclic.

Proposition 4
SE STRIPS PLAN and ACYCLIC SE STRIPS PLAN are
PSPACE-complete.

Proof: SE STRIPS PLAN and ACYCLIC SE STRIPS PLAN
problems are restrictions ofSTRIPS PLAN, from which
membership inPSPACE follows. PSPACE-hardness of
ACYCLIC SE STRIPS PLAN(and so, also of the other prob-
lem) is shown by reduction fromACYCLIC STRIPS PLAN.
Consider an instancePE = 〈V, α0, γ,ACT 〉 of ACYCLIC
STRIPS PLAN. DefinePE′ = 〈V ′, α′

0, γ
′, S(ACT )〉, which

by Lemma 1(iii) is an instance of theACYCLIC SE STRIPS
PLAN problem. By Lemma 1(i) and (ii) there exists a plan
for PE if and only if there exists a plan forPE′. �

4 Dominance
The goal of this section is to prove that theGCP-DOMINANCE
problem isPSPACE-complete, and that the complexity does
not go down even when we restrict the class of inputs to CP-
nets. We use the results on propositional STRIPS planning
from Section 3 to prove that the generalGCP-DOMINANCE
problem isPSPACE-complete. We then show that the com-
plexity does not change if we impose the requirements of lo-
cal consistency and local completeness on input GCP-nets.

The similarities between dominance testing in CP-nets and
propositional STRIPS planning were first noted in[Boutilier
et al., 1999], where a reduction (presented in more detail
in [Boutilier et al., 2004a]) was given from the dominance
problem to the plan existence problem for a class of propo-
sitional STRIPS planning specifications consisting ofunary
actions (actions with single effects). We prove our resultsfor

the GCP-DOMINANCE andGCP-CONSISTENCYproblems by
constructing a reduction in the other direction.

This reduction is much more complex than the one used in
[Boutilier et al., 1999], due to the fact that CP-nets impose
more restrictions than STRIPS planning. Firstly, STRIPS
planning allows multiple effects, but GCP-nets only allow
flips x > ¬x or ¬x > x that change the value of one vari-
able; this is why we constructed the reduction from STRIPS
planning to single-effect STRIPS planning in the last section.
Secondly, CP-nets impose two more restrictions, local con-
sistency and local completeness, which do not have natural
counterparts in the context of STRIPS planning.

For all dominance and consistency problems considered in
the paper, the membership inPSPACE can be demonstrated
by considering nondeterministic algorithms consisting ofre-
peatedly guessing appropriate improving flips. Such algo-
rithms work in polynomial space and show the membership
of problems they solve inNPSPACE and consequently in
PSPACE, sinceNPSPACE = PSPACE. Therefore, due to
space restrictions, from now on we only provide arguments
for thePSPACE-hardness of problems we consider.

4.1 Dominance for generalized CP-nets
We will prove that the GCP-DOMINANCE problem is
PSPACE-complete by a reduction from the problemSE
STRIPS PLAN, which we now know to bePSPACE-complete.

Mapping single-effect STRIPS problems to GCP-nets
dominance problems
Let 〈V, α0, γ,ACT 〉 be an instance of theSE STRIPS PLAN
problem. For every actiona ∈ ACT we denote byla the
unique literal in the postcondition ofa, that is,post(a) = la.
We denote bypre′(a) the conjunction of all literals inpre(a)
different from¬la (we recall that by a convention we adopted
earlier,pre′(a) does not containla either). We then defineca

to be the conditional preference rulepre′(a) : la > ¬la and
defineM(ACT ) to be the GCP-netC = {ca: a ∈ ACT}.

A sequence of states in a plan corresponds to an improving
sequence fromα0 to γ, which leads to the following result.

Lemma 2 With the above notation,

(i) there is a non-empty irreducible plan for
〈V, α0, γ,ACT 〉 if and only if γ dominatesα0 in
C;

(ii) ACT is acyclic if and only ifM(ACT ) is consistent.

Theorem 1 The GCP-DOMINANCE problem is PSPACE-
complete. Moreover, this remains so under the restrictions
that the GCP-net is consistent and is in conjunctive form.

Proof: PSPACE-hardness is shown by reduction
from ACYCLIC SE STRIPS PLAN (Proposition 4). Let
〈V, α0, γ,ACT 〉 be an instance of theACYCLIC SE STRIPS
PLAN problem. By Lemma 2(ii),M(ACT ) is a consistent
GCP-net in conjunctive form. Sinceα0 6= γ, there is a
plan for 〈V, α0, γ,ACT 〉 if and only if there is a non-empty
irreducible plan for〈V, α0, γ,ACT 〉, which, by Lemma 2(i),
is if and only ifγ dominatesα0 in C. �



4.2 Dominance in CP-nets
In this section we show thatGCP-DOMINANCE remains
PSPACE-complete under the restriction to locally-consistent
and locally-complete GCP-nets, i.e., CP-nets. We refer to this
restriction ofGCP-DOMINANCE asCP-DOMINANCE.

We will showPSPACE-hardness forCP-DOMINANCE by
a reduction fromGCP-DOMINANCE for consistent GCP-nets.

Mapping locally-consistent GCP-nets to CP-nets
Let C be a locally-consistent GCP-net. LetV =
{x1, . . . , xn} be the set of variables ofC. We defineV ′ =
V ∪ {y1, . . . , yn}, where{y1, . . . , yn} ∩ V = ∅. We define a
GCP-netC ′ overV ′, which we will show is a CP-net. To this
end, for everyz ∈ V ′ we will define conditional preference
rulesq+(z) : z > ¬z andq−(z) : ¬z > z to be included in
C ′ by specifying formulasq+(z) andq−(z).

First, for each variablexi ∈ V , we set

q+(xi) = yi and q−(xi) = ¬yi.

Thus, xi depends only onyi. We also note that the for-
mulasq+(xi) andq−(xi) satisfy local-consistency and local-
completeness requirements.

Next, for each variableyi, 1 ≤ i ≤ n, we define

ei = (x1 ↔ y1) ∧ · · · ∧ (xi−1 ↔ yi−1)

∧(xi+1 ↔ yi+1) ∧ · · · ∧ (xn ↔ yn),

f+
i = ei ∧ p+(xi) and f−

i = ei ∧ p−(xi).

Finally, we define

q+(yi) = f+
i ∨ (¬f−

i ∧ xi)

and
q−(yi) = f−

i ∨ (¬f+
i ∧ ¬xi)

Thus,yi depends on every variable inV ′ but itself.
We note that by the local consistency ofC, formulasf+

i ∧
f−

i , 1 ≤ i ≤ n, are unsatisfiable. Consequently, formulas
q+(yi) ∧ q−(yi), 1 ≤ i ≤ n, are unsatisfiable. Thus,C ′ is
locally consistent. Finally,q+(yi) ∨ q−(yi) is equivalent to
f+

i ∨ ¬xi ∨ f−
i ∨ xi, so is a tautology. Thus,C ′ is locally

complete and hence a CP-net overV ′.
Let α and β be outcomes over{x1, . . . , xn} and

{y1, . . . , yn}, respectively. Byαβ we denote the outcome
over V ′ obtained by concatenatingn-tuplesα andβ. Con-
versely, every outcome forC ′ can be written in this way.

Let α be an outcome overV . We defineᾱ to be the out-
come over{y1, . . . , yn} obtained by replacing inα every
component of the formxi with yi and every component¬xi

with ¬yi. Then for everyi, 1 ≤ i ≤ n, αᾱ |= ei.
Let s be a sequenceα0, . . . , αm of outcomes over

V . Define L(s) to be the sequence ofV ′-outcomes:
α0α0, α0α1, α1α1, α1α2, . . . , αmαm. Further, lett be a se-
quenceǫ0, ǫ1, . . . , ǫm of V ′-outcomes withǫ0 = αᾱ and
ǫm = ββ̄. DefineL′(t) to be the sequence obtained fromt
by projecting each element int to V and iteratively removing
elements in the sequence which are the same as their prede-
cessor (until any two consecutive outcomes are different).

Lemma 3 With the above definitions,

(i) if s is an improving sequence forC from α to β then
L(s) is an improving sequence forC ′ fromαᾱ to ββ̄;

(ii) if t is an improving sequence fromαᾱ to ββ̄ thenL′(t)
is an improving sequence fromα to β;

(iii) C is consistent if and only ifC ′ is consistent

Sketch of proof:Let e =
∧n

i=1(xi ↔ yi). The definitions
have been arranged to ensure the following for CP-netC ′ :

(a) Supposee holds in an outcome, so the outcome can
be written asαᾱ for someα; then no improving flip
changes any variablexi; furthermore, there is an im-
proving flip changing variableyi if and only if there is
an improving flip for the GCP-netC from outcomeα
changing variablexi. After applying this flip changing
variableyi, there is exactly one improving flip possible,
changingxi, after whiche holds again (this follows us-
ing (b), asyi cannot be immediately flipped back again,
becauseC ′ is locally consistent).

(b) If e does not hold in an outcome then the only improving
flips possible change the value of some variable (xi or
yi) to makexi ↔ yi hold for somei.

(a) implies (i) and (ii). Also, (i) implies half of (iii), that
if C is inconsistent thenC ′ is inconsistent. Conversely,
suppose thatC ′ is inconsistent, so there exists an improving
sequencet for C ′ from some outcome to itself. By (b), any
improving flip applied to an outcome in whiche does not
hold increases (by one) the number ofi such thatxi ↔ yi

holds. This implies thate must hold in some outcome in
t, becauset is cyclic. Write this outcome asαᾱ. We can
cyclically permutet to form an improving sequence fromαᾱ
to itself. Part (ii) then implies that there exists an improving
flipping sequence forC from α to itself, showing thatC is
inconsistent. �

Theorem 2 CP-DOMINANCE is PSPACE-complete. This
holds even if we restrict the CP-nets to being consistent.

Proof: We use a reduction fromPSPACE-hardness of the
GCP-DOMINANCE problem when the GCP-nets are restricted
to being consistent (Theorem 1). LetC be a consistent
(and hence locally consistent) GCP-net overV , and letα
and β be outcomes overV . Consider the CP-netC ′ over
variablesV ′ constructed above. Lemma 3(i) and (ii) imply
thatβ dominatesα in C if and only if ββ̄ dominatesαᾱ in
C ′. Moreover,C ′ is consistent by Lemma 3(iii). Thus, the
hardness part of the assertion follows. �

5 Consistency of GCP-nets
In this section we show that theGCP-CONSISTENCYproblem
is PSPACE-complete, using results from Sections 3 and 4.

Theorem 3
GCP-CONSISTENCYis PSPACE-complete. This holds even
under the restriction to GCP-nets in conjunctive form.

Proof: PSPACE-hardness is shown by reduction from
ACTION-SET ACYCLICITY. We apply functionS from
Section 3.2 followed byM from Section 4.1. This maps



instances of ACTION-SET ACYCLICITY to instances of
GCP-CONSISTENCY in conjunctive form. By Lemma 1(iii)
and Lemma 2 (ii), an instance ofACTION-SET ACYCLICITY
is acyclic if and only if the corresponding instance of
GCP-CONSISTENCYis consistent, proving the result. �

We now show that consistency testing remainsPSPACE-
complete for CP-nets.

Theorem 4 CP-CONSISTENCYis PSPACE-complete.

Proof: Let C be a GCP-net in conjunctive form. We define
a CP-netC ′ as follows. If C is locally inconsistent (the
property can be decided in polynomial time), we setC ′ to
be any fixed (independent ofC) inconsistent but locally
consistent CP-net. (Such CP-nets exist.) Otherwise,C
is locally-consistent and forC ′ we take the CP-net we
constructed in Section 4.2. The mapping from locally
consistent GCP-nets to CP-nets, described in Section 4.2,
preserves consistency (Lemma 3 (iii)). Since local incon-
sistency implies inconsistency, we have that the GCP-net
C is consistent if and only if the CP-netC ′ is consistent.
Thus,PSPACE-hardness of theCP-CONSISTENCYproblem
follows from Theorem 3. �

Notice the huge complexity gap with the problem of de-
ciding whether there exists a nondominated outcome, which
is “only” NP-complete[Domshlaket al., 2003].

6 Concluding remarks
We have shown that dominance and consistency testing in
CP-nets isPSPACE-complete. The repeated use of reduc-
tions from planning problems confirms the importance of the
structural similarity between STRIPS planning and reasoning
with CP-nets. This suggests that the well-developed field of
planning algorithms for STRIPS representations, especially
for unary operators[Brafman and Domshlak, 2003], could be
useful for implementing algorithms for dominance and con-
sistency in CP-nets.

Our theorems extend to CP-nets with non-binary domains,
and to extensions and variations of CP-nets, such as TCP-
nets[Brafman and Domshlak, 2002] that allows for explicit
priority of some variables over others, and the more general
preference language described in[Wilson, 2004b; 2004a].

The complexity result for dominance is also relevant
for constrained optimisation, where a complete algorithm
[Boutilier et al., 2004b] involves many dominance checks.
Our results reinforce the need for work on finding special
classes of problems where dominance and consistency can
be tested efficiently[Domshlak and Brafman, 2002; Boutilier
et al., 2004a], and for incomplete methods for checking con-
sistency and constrained optimisation[Wilson, 2004a].

Several open problems remain. We do not know whether
dominance and consistency testing remainPSPACE-
complete when the number of parents in the dependency
graph is bounded by a constant. We also do not know whether
these two problems remainPSPACE-complete for CP-nets
in conjunctive form (the reduction used to prove Theorems
2 and 4 yields CP-nets that are not in conjunctive form). Fi-

nally, we do not know the complexity of deciding whether the
preference relation induced by a CP-net is complete.
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