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Abstract

In this paper we consider constrained and ra-
tional default logics. We provide two charac-
terizations of constrained extensions. One of
them is used to derive complexity results for
decision problems involving constrained exten-
sions. In particular, we show that the problem
of membership of a formula in at least one (in
all) constrained extension(s) of a default theory
is ¥ -complete (IIf'-complete). We establish
the relationship between constrained and ratio-
nal default logics. We prove that rational ex-
tensions determine constrained extensions and
that for seminormal default theories there is a
one-to-one correspondence between these ob-
jects. We also show that the definition of a
constrained extension can be extended to cover
the case of default theories which may contain
justification-free defaults.

1 Introduction

Default logic, introduced by Reiter [1980], is one of the
most extensively studied nonmonotonic systems. Sev-
eral recent research monographs offer a comprehensive
presentation of theoretical and practical aspects of de-
fault logic [Besnard, 1989; Brewka, 1991b; Marek and
Truszczynski, 1993]. Default logic was designed to han-
dle reasoning from incomplete information. It allows us
to draw conclusions on the basis of “the lack of evidence
to the contrary”. This formalism assigns to a default
theory a collection of theories called extensions. They
describe possible belief sets of an agent reasoning with
this theory.

All its desirable properties notwithstanding, there
are situations where default logic of Reiter produces
counterintuitive results. In particular, this logic does
not handle well incomplete information given in the
form of disjunctive clauses [Poole, 1989; Brewka, 1991a;
Gelfond et al., 1991; Mikitiuk and Truszczynski, 1993].
To remedy this, several modifications of default logic

were proposed: disjunctive default logic [Gelfond et al.,
1991], cumulative default logic [Brewka, 1991a), con-
strained default logic [Schaub, 1992] and rational default
logic [Mikitiuk and Truszczytiski, 1993]. The first system
introduces a new disjunction operator to handle ”effec-
tive” disjunction. The latter three take into account, in
one way or another, the requirement that defaults with
mutually inconsistent justifications must not be used in
the construction of the same extension. Not surprisingly
then, they are somewhat related.

Connections between cumulative default logic and
constrained default logic are studied in [Schaub, 1992].
It is shown there that these two systems are, in a certain
sense, equivalent. At the same time, they are quite differ-
ent from default logic of Reiter. Both commit to assump-
tions and have such properties as semi-monotonicity and
orthogonality!. In addition, in each of these two logics
every default theory has an extension. In the logic of Re-
iter all these properties hold for normal default theories
but fail in the general case (in fact, for normal default
theories, Reiter’s default logic is essentially equivalent to
constrained and cumulative default logics).

In this paper, we investigate connections between ra-
tional and constrained (and, consequently, also cumu-
lative) default logics. Rational default logic, similarly
as the logic of Reiter, lacks many of the properties of
constrained default logic. In particular, default theo-
ries may have no rational extensions and rational default
logic does not have the properties of semi-monotonicity
and orthogonality. The reason is that rational default
logic, unlike constrained default logic, does not commit
to assumptions. At the same time, connections between
rational and constrained default logics are quite strong.
We show that every rational extension of a default theory
determines a constrained extension. Moreover, we show
that rational and constrained default logics coincide for
the class of seminormal default theories — a much wider
class of theories than normal ones, for which all four
versions of default logic mentioned here are equivalent.

We also give a useful, proof-theoretic, characteriza-

!Schaub [1992] uses the term weak orthogonality



tion of the operator Y, which was used in [Schaub, 1992]
to define the notion of a constrained extension. Conse-
quently, we get an equivalent definition of constrained
extensions. This result allows us to design an algorithm
for computing constrained extensions and to establish
the complexity of reasoning with constrained extensions.
Since every default theory has a constrained extension,
the problem of existence of a constrained extension is,
clearly, in P. We show that the problem to decide, given
a formula ¢, whether ¢ is in at least one constrained
extension (in all constrained extensions) of a given de-
fault theory, is X£-complete (II¥-complete). In view
of a recent result on the complexity of cumulative de-
fault logic [Gottlob and Mingyi, 1994] and our results
on the complexity of rational default logic [Mikitiuk and
Truszczynski, 1993], it follows that all these modes of
reasoning have the same computational complexity.

Finally, let us note that Schaub did not allow
justification-free defaults in his definition of constrained
default logic. In this paper, we show how to extend con-
strained default logic to cover theories which may con-
tain justification-free defaults.

2 Preliminaries
A default is any expression of the form

a:Mﬂl,...,Mﬁk

v

; (1)

where «, ;, 1 < i < k and ~ are propositional formu-
las. Let d be a default of the form (1). The formula
a is called the prerequisite of d, p(d) in symbols. The
formulas 3;, 1 < i < k, are called the justifications of d.
The set of justifications is denoted by j(d). Finally, the
formula 7 is called the consequent of d and is denoted
¢(d). For a collection D of defaults by p(D), j(D) and
¢(D) we denote, respectively, the sets of all prerequi-
sites, justifications and consequents of the defaults in D.

A default of the form aﬁﬂ (w, resp.) is called

normal (seminormal, resp.).

A default theory is a pair (D, W), where D is a set of
defaults and W is a set of propositional formulas. A de-
fault theory (D, W) is normal (seminormal, resp.) if all
defaults in D are normal (seminormal, resp.). A default
theory (D, W) is finite if both D and W are finite.

For a set D of defaults we define

Mon(p) = { 2% e p .

Given a set of inference rules A, by Cn“(-) we mean
the consequence operator of the formal proof system
PC+ A, consisting of propositional calculus and the rules
in A.

In [Mikitiuk and Truszezynski, 1993] we introduced
the notions of an active set of defaults and a rational
extension of a default theory.

Definition 2.1 A set A of defaults is active with respect
to sets of formulas W and S if it satisfies the following
conditions:

AS1 j(A) =0, or j(A) US is consistent,
AS2 p(A) C CnMen(A) ()2,

The set of all subsets of a set of defaults D which are
active with respect to W and S will be denoted by
A(D,W,S). O
Observe, that @) is active with respect to every W and
S. Hence, A(D,W,S) is always non-empty. An applica-
tion of the Kuratowski-Zorn Lemma gives the following
result.

Proposition 2.1 ([Mikitiuk and Truszczynski, 1993])
Let (D,W) be a default theory and let S be a propo-
sitional theory. Every A € A(D,W,S) is contained in a
mazimal element of A(D,W,S). O

We define MA(D,W,S) to be the set of all maximal
elements in A(D, W, S).
Definition 2.2 A theory S is a rational extension for
a default theory (D, W) if S = Cn™Mo™A) (W) for some
Ae MA(D,W,S). O
Schaub [1992] introduced the notion of a constrained
extension by means of the following definition.

Definition 2.3 ([Schaub, 1992]) Let (D, W) be a de-
fault theory and let 7" be a propositional theory. Then
Y(T) is the pair of smallest sets of formulas (S’,T") such
that

CE1WCS CT,
CE2 S'=Cn(5), and T' = Cn(T"),

CE3 For any default % € D,ifae S and TU{B,~}
is consistent then v € S’ and SAy € T'.

A pair of sets of formulas (E,C) is a constrained exten-
sion of (D, W) if Y(C) = (E,C). |
If (E,C) is a constrained extension, then we will refer
to E as a proper constrained extension.
The following example shows that the notions of an
extension, a rational extension and a proper constrained
extension are different.

Example 2.1 Let us consider the default theory (D, )
[Schaub, 1992], where

{:Mb cM=b :M-c :Mﬂd}

D =
c’ d’ e 7 f

2In [Mikitiuk and Truszczynski, 1993] we used the classical
reduct of A with respect to S, denoted Ag, instead of Mon(A)
both in AS2 and in the definition of a rational extension. If
A satisfies AS1, then As = Mon(A). Since in this paper
we will use a different notion of a reduct (Definition 3.2),
we decided to reformulate the definitions of active sets and
rational extensions to avoid confusion. These definitions are
equivalent to the original ones.



This theory has one extension Cn({c,d}), two rational
extensions: S; = Cn({c, f}), S2 = Cn({d,e}), and three
constrained extensions: (Cn({e, f}),Cn({e, ¢, f,~d})),
(Sl,C’n({c, b, f, _'d}))a (5270n({da _'baea_'c}))' o

Schaub [1992] does not consider justification-free de-
faults, so in this paper we do not consider them either.
Hence, j(A) = 0 only if A = (). Moreover, in both ra-
tional and constrained default logic one can replace all
justifications of a default by their conjunction. Thus, we
assume that every default has exactly one justification.
In Section 6 we will show how Schaub’s definition can be
extended to cover the case of justification-free defaults.

3 Characterizations of constrained
extensions

In this section we will give two useful characterizations of
constrained extensions. The first of them will be based
on a proof-theoretic description of the operator Y(T').
We will use it in the next section to derive complexity
results on reasoning with constrained default logic. The
characterization requires the notion of a generating de-
fault introduced in [Schaub, 1992]3.

Definition 3.1 ([Schaub, 1992]) Let (D, W) be a de-
fault theory and S and T sets of formulas. The set of
generating defaults for (S,T") with respect to D is defined
as

a:Mp

O

Schaub [1992] proved the following properties of gen-
erating defaults.

Theorem 3.1 Let (S,T) be a constrained extension of
a default theory (D,W). Then

1. S =Cn(WucGDE™MY).
2. T = Cn(W Uce(@DS YU j(GDi™)).

3. There is an enumeration 41,02, . .. of the defaults in
GDSDS’T) such that for everyi=1,2,...,
WUC({(Sl,...,(Si_l}) "p((;z) O

This theorem implies the following useful corollary.

Corollary 3.2 Let (S,T) be a constrained extension of

a default theory (D,W). Then S = CnM""(GDEJS’T))(W).
O

To present our characterization of the operator Y(T'),
we will need two more notions.

3The notions of a generating default and a reduct used in
this paper are different from the standard ones [Reiter, 1980;
Gelfond and Lifschitz, 1988]. They are tailored specifically
to the needs of constrained default logic.

Definition 3.2 We define the reduct of a set of defaults
D with respect to a theory T as

DTz{g:MeD,TU{,B,y}IfJ_}.
Y Y

We define the operator C' by letting

M
Cc(D,S,T) = {ﬁM:O‘Tﬂ € GD%S’T)}.
O

These concepts allow us to give a constructive descrip-
tion of the operator Y(T').

Theorem 3.3 Let (D,W) be a default theory and let T
be a propositional theory. Then

Y(T) = (CnP* (W), Cn(W U C(D,CnPr (W), T))).
Proof. According to Definition 2.3, T(7') is the pair of
smallest sets of formulas (S’,T") satisfying CE1-CE3.
It follows from CE3 that S’ is closed under inference
rules from Dy. Thus, by the definition of the operator
CnA(-), " = CnPT (W) satisfies CE1-CE3. We need
to prove that 7" = Cn(WUC(D, CnPT (W), T)) together
with S’ = Cn?* (W) satisfies CE1-CE3.

We will first prove that CnPr(W) C Cn(W U
C(D,CnPr(W),T)). Let ¢ € CnPr(W). Then ¢ has a
proof from W in PC + D7, that is, there is a finite se-
quence 1, ...,p, = p such that for every ¢, 1 < ¢ < mn,
at least one of the following conditions holds:

1. p; € W or ; is a substitution instance of an axiom
of propositional logic.

2. For some j,k < i, ¢; follows from ¢; and ¢ by
modus ponens.

3. For some j < i, the rule 22 belongs to Dr.

We will prove by induction on the length of this proof
that ¢ € Cn(W U C(D,CnPr(W),T)). If p € W
or ¢ is a substitution instance of an axiom of propo-
sitional logic then it is clear that ¢ € Cn(W U
C(D,CnPT(W),T)). If ¢ follows from ¢; and @y
by modus ponens then, by the inductive hypothesis,
vj,or € Cn(W U C(D,CnPr(W),T)). It follows that
¢ € Cn(WUC(D,CnPr(W),T)). If p was obtained
by applying an inference rule % from Dy then ¢ €

CnPr(W). Hence, there is a default wi—i\f’g € D such

that ¢» € CnPT (W) and T U {B,¢} I/ L. It follows
that 3 A @ € C(D,CnPT(W),T) and, consequently,
@ € Cn(WUC(D,CnPr(W),T)). Thus, CnPr (W) C
Cn(W U C(D,CnPr(W),T)) and CE1 holds.

The theory Cn(W UC (D, CnPr (W), T)) is closed un-
der propositional provability, so CE2 holds. To prove
CE3, let us consider a default “Wﬂ such that « € §" =
CnPT (W) and T U {B,7} I/ L. It follows from the defi-
nition of C(D,S,T) that BA vy € C(D,CnPr (W), T) C



Cn(W U C(D,CnPr(W),T)). Hence, the pair
(CnPr (W), Cn(WUC(D,CnPT (W), T))) satisfies CE1
-CE3.

Let us assume now that a pair of theories (S', T") satis-
fies CE1-CE3. Then it is easy to see that CnPT (W) C
S'. By CE1, W C T'. Let us consider a formula
B Ay € C(D,CnPr(W),T). Then there is a de-
fault D‘TMﬁ € D such that @ € CnPr (W) C S and
TU{B,v} ¥ L. It follows from CE3 that S Ay € T'.
Hence, C(D,CnPt (W),T) C T'. Since, by CE2, T' =
Cn(T"), then Cn(WUC(D,CnPr(W),T)) C T' and we
are done. a

As a corollary, we get a characterization of constrained
extensions.

Corollary 3.4 (S,T) is a constrained extension of a de-
fault theory (D, W) if and only if

T = Cn(W U C(D,CnPr (W), T)) 2)

and S = CnPr(W). O

This corollary makes it explicit that constrained de-
fault logic works in two stages. In the first stage, pos-
sible sets of assumptions (constraints, as referred to in
[Schaub, 1992]) are established as solutions of the fix-
point equation (2). Then, each of them uniquely deter-
mines the corresponding proper constrained extention.

The fixpoint equation (2) implies that all assumptions
(theory T') needed to support a proper constrained ex-
tension S in constrained default logic must be “reprov-
able”. This might be regarded as a weakness of con-
strained default logic. In all versions of default logic it is
required that formulas in the extensions have justifica-
tions (in terms of proofs from W by means of applicable
defaults). But it is arguable whether the same should
be required of assumptions “{ is possible” which make
defaults applicable.

Corollary 3.4 allows us to strengthen a result by
Schaub on pairwise maximality of constrained extensions
of a default theory.

Theorem 3.5 If (S,T) and (S',T") are constrained ex-
tensions of a default theory (D,W) and T C T', then
T =T and S = S (in particular, “I'-parts” of con-
strained extensions form an antichain).
Proof. First, observe that if (S',7") is a constrained
extension of (D, W), then T" is inconsistent if and only
if W is inconsistent. Hence, if 177 is inconsistent then
T is inconsistent as well and, consequently, 7' = T" and
S = S’. Assume then that T is consistent.

Since (S,T') is a constrained extension of (D, W), by

Corollary 3.2 we have S = CrnMoGPE"™) (). More-
over, for every default QTMB € GDE)S’T), BAveT and,
since T CT', BAy € T'. Since T" is consistent, it follows
that Mon(GDE)S’T)) C Dyv. Hence,

S = CnMenGDE ) (W) € onPr (W) = S,

Schaub [1992] proved that if (S,T') and (S’,T") are con-
strained extensions of a default theory and S C S’ and
TCT' thenS=S5 and T =1". a

Theorem 3.5 implies bounds on the number of con-
strained extensions of a default theory.

Corollary 3.6 Let D be a set consisting of n defaults.
Then for every W C L, the default theory (D, W) has at

most
(ot )

constrained extensions.

Proof. Theorem 3.5 implies that the family 7 =
{T:(S,T) is a constrained extension of (D,W)} is an
antichain. By Theorem 3.1, each set T' € T is deter-
mined by the set GDSDS’T). Since 7 is an antichain, the

family {GD\}""):T € T} is also an antichain. It is well
known that the size of the largest antichain in the alge-

bra of subsets of an n-element set has at most ( [n72] )

elements. Hence, the assertion follows. a
The second characterization of constrained extensions
that we present in this section is closely related to the
property of semi-monotonicity of constrained default
logic. It exploits the fact that constrained extensions
can be produced by processing defaults according to any
well-ordering. This is very similar to the corresponding
property of normal default theories in the logic of Reiter
(Theorem 4.3, [Marek and Truszczynski, 1993]). In fact,
our characterization of constrained default logic provides
an alternative argument that for normal default theories
constrained and standard default logics coincide.

We assume that the set of the atoms of our language
L is denumerable. Consequently, the set of all defaults
over the language £ is denumerable.

Let (D, W) be a default theory and < a well-ordering
of D. We define an ordinal r4. For every ordinal ¢ < 7«
we define a set of defaults AD; and a default d¢. We also
define a set of defaults AD_. We proceed as follows:

If the sets AD¢, £ < «, have been defined but < has not
been defined then

1. If there is no default d € D \ U, AD¢ such that:

(a) WUCc(Ugco ADe)Uj(Ugcq ADe) Vs (d)U{c(d)}
is consistent, and

(b) W U C(U§<a A‘DE) l_ p(d);
then - = a.

2. Otherwise, define d, to be the <-least default d €
D\Ug <, AD¢ such that the conditions (a) and (b)
above hold. Then set ADq = e, AD¢ U{da}-

When the construction terminates, put AD., =
Uecn. AD¢, S< = Cn(WUc(ADL)) and T = Cn(WU
c(AD%) U j(AD-)).

This construction has the following property.



Theorem 3.7 Let (D, W) be a default theory and < a
well-ordering of D. Then (S<,T<) is a constrained ex-

tension of (D,W) and AD, = GDE)S<’T<),

Proof. It is easy to see that if W is inconsistent then
AD., =0 and S; =T< = Cn(W) = L. Thus, the asser-
tion follows. Assume now that W is consistent. Then for
every £ <n<, WUc(AD¢) U j(AD;) is consistent. Con-
sequently, W U ¢(AD<) U j(ADL) is consistent. Thus,
T is consistent.

Let us consider a default d = O‘TMB € AD,. We
have 8 € j(AD<) and v € ¢(AD<). Thus, {8,7} C
T and, since T is consistent, T« U {8,v} is consis-
tent. Moreover, since d € AD., for some £ < 7y,
W u c(U)\<£ ADy) F a. Consequently, a € S<. Hence,
de GDE-1).

Consider now a default d = QTMﬁ € D\ AD.. Then
one of the conditions (a), (b) above fails for d, that is,
either T4 U {8,~} is inconsistent or Sy I «. Hence,
d¢ GD<"). Thus, AD = GD\J=").

The last equality implies that

Cn(W U e(GDS Ty uj(GD<T+)))
a:Mp

T
= Cn(WU{BA~: € GDSDS*’T*)})

Cn(W U C(D,S<,T<)).

Thus, to end the proof we need to show that S, =
CnPr<(W). Let us notice that the condition (b) above
implies that CnMeMAP<) (W) = Cn(WUc(ADZ)) = S<.
Thus, S« = CnonGPE ") (7). Let A = {2242 ¢
D :T,U{B,v} ¥ L}. Then Dy, = Mon(A) and
GD%S*’T*) ={de€ A:p(d) € S<}. Hence, GD},S*’T*) -
A and

S, = CnMon(GDf*'T*))(W)

c CpMer (W) = CnPr< (W).

Thus, to show that S» = CnP7< (W), we need to prove
that CnP1< (W) C CnM""(GDE:’S<'T<))(W). To this end,
let us consider a formula ¢ € CnP7<(W). The for-
mula ¢ has a proof from W in PC' + Dy,. One can
prove by induction on the length of this proof that
(5<,T<) ..
@ € CnMoGD )(W) (due to space restrictions, we
omit the details of the argument). O
The converse result is also true.

Theorem 3.8 Let (S,T) be a constrained extension of
a default theory (D,W). Then for any well-ordering <

of D such that defaults from GDE)SJ) precede all other
defaults, AD, = GDY"), S, =85 and T, =T. O

This result will be proved in a full version of the paper.

4 Computational aspects of constrained
default logic

Corollary 3.4 allows us to design an algorithm for com-
puting all constrained extensions for a finite default the-
ory (D,W). Let us consider a set of defaults A C D.
Let S = CnM™ (W), B = {d € A : p(d) € S},
C={ry2 e€B}, T =Cn(WUC) and E =
{O‘Tm € D:TU{B,v} I/ L}. It is easy to see that
if E = A then (S,T) is a constrained extension for
(D,W). Indeed, Dy = Mon(E). Thus, if E = A then
Mon(A) = Dr and S = CnP7(W). Moreover, B =
GDY) . Hence, C = C(D,S,T) = C(D,CnPr (W), T)
and T = Cn(W UC) = Cn(W U C(D,CnPr (W), T)).
Thus, (S,T) is a constrained extension for (D, W). Con-
sidering all sets A C D, we will get all constrained exten-
sions of (D, W). Indeed, if (S,T) is a constrained exten-
sion then it will be found by considering A = {% €
D:TU{B,v} ¥ L}. Thus, we have the following algo-
rithm:

For every A C D

1. compute U such that Cn(U) = Cn™™A) (W) (the
theory Cn™M°™(4) (1) is infinite, however U is finite
— see [Marek and Truszezynski, 1993]),

2. compute B = {d € A:U F p(d)}, and let C =
{BAy: 222 € BY,

3. compute E = {&TMﬁ €ED:WUCU{B,v} V¥ 1},

4. if E = A then output (Cn(U),Cn(W U (C)) as a
constrained extension of (D, W).

The complexity of the above algorithm is determined
by the number of calls to a propositional consistency
checking procedure. Assume that the number of defaults
in D isn. Given A C D, we need at most n? calls to such
a procedure to compute U, at most n calls to compute B
and n calls to compute E. Hence, for every A C D, we
need O(n?) calls to a propositional consistency checking
procedure, and O(n?2") calls to such a procedure for the
whole algorithm.

We have the following complexity result (see [Garey
and Johnson, 1979] for a discussion of complexity
classes).

Theorem 4.1 The following problems:

IN-SOME Given a finite default theory (D, W) and a
formula ¢, decide if ¢ is in some constrained exten-
sion for (D, W),

NOT-IN-ALL Given a finite default theory (D,W)
and a formula ¢, decide if there is a constrained
extension for (D, W) not containing ¢,

are X -complete. The problem



IN-ALL Given a finite default theory (D, W) and a for-
mula @, decide if ¢ is in all constrained extensions

of (D, W),
is II¥ -complete.

Proof. To verify that a formula ¢ belongs to some
(does not belong to all, resp.) constrained extensions
of (D,W), we can nondeterministically guess a set of
defaults A C D, verify that (Cn(U),Cn(W U C)) is a
constrained extension for (D, W) (U and C are as de-
fined in the above algorithm) and verify that U F ¢
(U ¥ ¢, resp.), what requires one more call to a propo-
sitional consistency checking procedure. It follows that
the problems IN-SOME and NOT-IN-ALL are in ¥
Since the problem NOT-IN-ALL is in ¥, the problem
IN-ALL is in II¥'. Observe next that S is an extension
for a normal default theory if and only if (5,.5) is a con-
strained extension for this theory (see [Schaub, 1992]).
Hence, the hardness of all three problems in their re-
spective complexity classes follows from the fact that
the problems IN-SOME, NOT-IN-ALL and IN-ALL for
extensions of normal default theories are ¥4-hard and
1 -hard, respectively (see [Gottlob, 1992]). a

5 Connections between constrained and
rational default logics

First, we will show that rational extensions determine
constrained extensions. That is, we will show that for
every rational extension S of a default theory, there is T'
such that (S, T) is a constrained extension of this theory.

Theorem 5.1 Let E be a rational extension for a de-
fault theory (D, W) and let A € MA(D,W,E) be such
that E = Cn™Mo™ A (W) (= Cn(W U ¢(A))). Let C =
Cn(EUj(A)) (=Cn(WuUc(A)Uj(A))). Then (E,C) is
a constrained extension of (D, W).

Proof. We need to show that Y(C) = (E,C). We will
prove first that pair (E,C) satisfies CE1-CE3 with re-
spect to C. The conditions CE1 and CE2 are obviously
satisfied. Now, let a default d = aMB 16 such that « €
E and CU{B,~} is consistent. Since C'U{,~} is consis-
tent, then EUj(AU{d}) = EUj(A)U{S} is consistent.
Moreover, since p(A) C CnMoM4) (W) = E and a € E,
we have p(AU{d}) = p(A)U{a} C E = CnMmA) (W) C
CnMomAVdh) (W), Thus, (AU {d}) € A(D,W,E). By
the maximality of A, d € A. Hence, v € ¢c(4) C E and
{B,7} C c(A) Uj(A) C C. It follows that v € E and
BAvy € Cn(C)=C and CE3 holds.

Now, we need to prove that if a pair (S,T) satis-
fies CE1-CE3 with respect to C then E C S and
C C T. Let us notice that, since ¢(A) U j(4) C C,
for d = 22 e 4, CU{B,7} = C. By ASI,
j(A) =0 or j(A)UE is consistent. Thus, we have either
C = Cn(EUj(A)) is consistent or A = () (let us recall
that we do not consider justification-free defaults). In

both cases for d = a:],;m € A, CU{B,v} is consistent.

Thus, CE3 implies that S is closed under inference rules
from Mon(A). Moreover, by CE1, W C S and, by CE2,
S is closed under propositional provability. It follows
that £ = CnMe™A) (W) C S. We have p(A) C E C S.
So, it follows from CE3 and CE2 that j(A)Uc(A) C T.
Since, by CE1, W C T and, by CE2, T' = Cn(T), then
C C T and we are done. O

The converse statement is not true. Every default the-
ory has at least one constrained extension [Schaub, 1992]
and there are default theories that do not have rational
extensions [Mikitiuk and Truszczynski, 1993]. We will
show that for seminormal default theories an exact one-
to-one correspondence between rational and constrained
extensions can be established. But first we will prove an
auxiliary result.

Theorem 5.2 Let (S,T) be a constrained extension of
a default theory (D, W). Then GDE:,&T) € A(D,W,S).

Proof. It follows from Theorem 3.1 that 7' = Cn(S U
j(GDg’T))). If T'is consistent then j(GDE)S’T))US is also
consistent. If T is inconsistent then it follows from the
definition of GDE:,S’T) that GDSDS’T) =0,s0 j(GDg’T)) =
(). Thus, in both cases AS1 holds.

According to the definition of GDE)S’T), p(GDE)S’T)) C
S. By Corollary 3.2, S = CnM"”(GDEJS’T))(W). Hence,
AS2 also holds. m|

Theorem 5.3 Let (S,T) be a constrained extension of a
seminormal default theory (D,W). Then S is a rational

extension of (D, W) and GDE:,S’T) € MA(D,W,S).

Proof. By Theorem 5.2, GDSDS’T) € A(D,W,S) and, by
Corollary 3.2, S = CnM‘m(GDg'T))(W). Thus, we need
to prove the maximality of GDE:,S’T) in A(D,W,S) only.
Since every default in D is seminormal, we can rewrite
the definitions of GD%S’T), Dy and C(D, S,T) as

SO {QTMﬂ ED:QESaTU{ﬂ}w},
Dy = {% , o MB eD,Tu{ﬁWL},

Let us denote GD%S’T) by A. Since, by Corollary 3.4,
S = CnPr(W) and T = Cn(W U C(D,CnPr (W), T)),
we get T'= Cn(IW U j(A4)).

Let us consider now a default d = % € D\ A. We
have either a ¢ S = Cn™™A) (W) or T U {f} is incon-
sistent. If T"U {3} is inconsistent then WU j(A)U{s} =
WuUj(Au{d}) is inconsistent and the set AU{d} does not
satisfy AS1 (since d is seminormal, j({d}) # 0). If a ¢
CnMon(A) (W) then CnMon(AU{d}) (W) — CnMon(A)(w)
and p(A U {d}) = p(4) U {a} ¢ CnMonAUd) (W) so
AU{d} does not satisty AS2. By Proposition 4.2 from an



extended version of [Mikitiuk and Truszczynski, 1993],
A e MA(D,W,S) and we are done. O

Schaub ([1992]) proved that every default theory has a
constrained extension, so we have the following corollary
(proved first by other methods in an extended version of
[Mikitiuk and Truszczyniski, 1993]).

Corollary 5.4 Every seminormal default theory has a
rational extension. O

6 The case of justification-free defaults

We close this paper with a remark that constrained de-
fault logic can be extended to cover the case of default
theories that may contain justification-free defaults. To
this end, one has to replace CE3 by the following two
conditions:

CE3; For any default % e D, ifae S and TU
{B,~} is consistent then v € S" and SAy e T'.

CE3; For any default <~ € D, if « € " and TU {7} is
counsistent then v € S’.

The definitions of GD;"") | Dy and C(D, S, T') must
be modified in the same way. Under such modifications
all results presented in this paper, except for Theorem
5.1, remain true. Moreover, the following, slightly mod-
ified version of Theorem 5.1 holds (the assumption of
consistency of a rational extension is added).

Theorem 6.1 Let E be a consistent rational extension
for a default theory (D,W) and let A € MA(D,W, E)
be such that E = CnMo™A) (W) (= Cn(W Uc(A))). Let
C = Cn(EUjA) (= Cn(W Uc(A) Uj(A)). Then
(E,C) is a constrained extension of (D, W).

Proofs of these results will be included in a full version
of the paper.

7 Conclusions

In this paper we showed that constrained and rational
default logics are closely related. While Reiter’s default
logic and constrained default logic coincide on the class
of normal default theories, rational and constrained de-
fault logics coincide on a much wider class of seminormal
default theories.

We showed that basic problems of reasoning with con-
strained extensions are complete for the second level of
the polynomial hierarchy (with the exception of the ex-
istence of an extension problem, which is trivially in P).
We also proposed algorithms to compute constrained ex-
tensions.

Constrained default logic was originally introduced
only for default theories without justification-free de-
faults. In the paper, we proposed a modification of the
original definition of Schaub, which allows for defaults
to be justification-free. Under our definition, all major
properties of constrained default logic remain true.
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