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AbstractIn this paper we consider constrained and ra-tional default logics. We provide two charac-terizations of constrained extensions. One ofthem is used to derive complexity results fordecision problems involving constrained exten-sions. In particular, we show that the problemof membership of a formula in at least one (inall) constrained extension(s) of a default theoryis �P2 -complete (�P2 -complete). We establishthe relationship between constrained and ratio-nal default logics. We prove that rational ex-tensions determine constrained extensions andthat for seminormal default theories there is aone-to-one correspondence between these ob-jects. We also show that the de�nition of aconstrained extension can be extended to coverthe case of default theories which may containjusti�cation-free defaults.1 IntroductionDefault logic, introduced by Reiter [1980], is one of themost extensively studied nonmonotonic systems. Sev-eral recent research monographs o�er a comprehensivepresentation of theoretical and practical aspects of de-fault logic [Besnard, 1989; Brewka, 1991b; Marek andTruszczy�nski, 1993]. Default logic was designed to han-dle reasoning from incomplete information. It allows usto draw conclusions on the basis of \the lack of evidenceto the contrary". This formalism assigns to a defaulttheory a collection of theories called extensions. Theydescribe possible belief sets of an agent reasoning withthis theory.All its desirable properties notwithstanding, thereare situations where default logic of Reiter producescounterintuitive results. In particular, this logic doesnot handle well incomplete information given in theform of disjunctive clauses [Poole, 1989; Brewka, 1991a;Gelfond et al., 1991; Mikitiuk and Truszczy�nski, 1993].To remedy this, several modi�cations of default logic

were proposed: disjunctive default logic [Gelfond et al.,1991], cumulative default logic [Brewka, 1991a], con-strained default logic [Schaub, 1992] and rational defaultlogic [Mikitiuk and Truszczy�nski, 1993]. The �rst systemintroduces a new disjunction operator to handle "e�ec-tive" disjunction. The latter three take into account, inone way or another, the requirement that defaults withmutually inconsistent justi�cations must not be used inthe construction of the same extension. Not surprisinglythen, they are somewhat related.Connections between cumulative default logic andconstrained default logic are studied in [Schaub, 1992].It is shown there that these two systems are, in a certainsense, equivalent. At the same time, they are quite di�er-ent from default logic of Reiter. Both commit to assump-tions and have such properties as semi-monotonicity andorthogonality1. In addition, in each of these two logicsevery default theory has an extension. In the logic of Re-iter all these properties hold for normal default theoriesbut fail in the general case (in fact, for normal defaulttheories, Reiter's default logic is essentially equivalent toconstrained and cumulative default logics).In this paper, we investigate connections between ra-tional and constrained (and, consequently, also cumu-lative) default logics. Rational default logic, similarlyas the logic of Reiter, lacks many of the properties ofconstrained default logic. In particular, default theo-ries may have no rational extensions and rational defaultlogic does not have the properties of semi-monotonicityand orthogonality. The reason is that rational defaultlogic, unlike constrained default logic, does not committo assumptions. At the same time, connections betweenrational and constrained default logics are quite strong.We show that every rational extension of a default theorydetermines a constrained extension. Moreover, we showthat rational and constrained default logics coincide forthe class of seminormal default theories | a much widerclass of theories than normal ones, for which all fourversions of default logic mentioned here are equivalent.We also give a useful, proof-theoretic, characteriza-1Schaub [1992] uses the term weak orthogonality



tion of the operator �, which was used in [Schaub, 1992]to de�ne the notion of a constrained extension. Conse-quently, we get an equivalent de�nition of constrainedextensions. This result allows us to design an algorithmfor computing constrained extensions and to establishthe complexity of reasoning with constrained extensions.Since every default theory has a constrained extension,the problem of existence of a constrained extension is,clearly, in P. We show that the problem to decide, givena formula ', whether ' is in at least one constrainedextension (in all constrained extensions) of a given de-fault theory, is �P2 -complete (�P2 -complete). In viewof a recent result on the complexity of cumulative de-fault logic [Gottlob and Mingyi, 1994] and our resultson the complexity of rational default logic [Mikitiuk andTruszczy�nski, 1993], it follows that all these modes ofreasoning have the same computational complexity.Finally, let us note that Schaub did not allowjusti�cation-free defaults in his de�nition of constraineddefault logic. In this paper, we show how to extend con-strained default logic to cover theories which may con-tain justi�cation-free defaults.2 PreliminariesA default is any expression of the form�:M�1; : : : ;M�k
 ; (1)where �, �i, 1 � i � k and 
 are propositional formu-las. Let d be a default of the form (1). The formula� is called the prerequisite of d, p(d) in symbols. Theformulas �i, 1 � i � k, are called the justi�cations of d.The set of justi�cations is denoted by j(d). Finally, theformula 
 is called the consequent of d and is denotedc(d). For a collection D of defaults by p(D), j(D) andc(D) we denote, respectively, the sets of all prerequi-sites, justi�cations and consequents of the defaults in D.A default of the form �:M�� (�:M(�^
)
 , resp.) is callednormal (seminormal, resp.).A default theory is a pair (D;W ), where D is a set ofdefaults and W is a set of propositional formulas. A de-fault theory (D;W ) is normal (seminormal, resp.) if alldefaults in D are normal (seminormal, resp.). A defaulttheory (D;W ) is �nite if both D and W are �nite.For a set D of defaults we de�neMon(D) = �p(d)c(d) : d 2 D� :Given a set of inference rules A, by CnA(�) we meanthe consequence operator of the formal proof systemPC+A, consisting of propositional calculus and the rulesin A.In [Mikitiuk and Truszczy�nski, 1993] we introducedthe notions of an active set of defaults and a rationalextension of a default theory.

De�nition 2.1 A set A of defaults is active with respectto sets of formulas W and S if it satis�es the followingconditions:AS1 j(A) = ;, or j(A) [ S is consistent,AS2 p(A) � CnMon(A)(W )2.The set of all subsets of a set of defaults D which areactive with respect to W and S will be denoted byA(D;W;S). 2Observe, that ; is active with respect to every W andS. Hence, A(D;W;S) is always non-empty. An applica-tion of the Kuratowski-Zorn Lemma gives the followingresult.Proposition 2.1 ([Mikitiuk and Truszczy�nski, 1993])Let (D;W ) be a default theory and let S be a propo-sitional theory. Every A 2 A(D;W;S) is contained in amaximal element of A(D;W;S). 2We de�ne MA(D;W;S) to be the set of all maximalelements in A(D;W;S).De�nition 2.2 A theory S is a rational extension fora default theory (D;W ) if S = CnMon(A)(W ) for someA 2 MA(D;W;S). 2Schaub [1992] introduced the notion of a constrainedextension by means of the following de�nition.De�nition 2.3 ([Schaub, 1992]) Let (D;W ) be a de-fault theory and let T be a propositional theory. Then�(T ) is the pair of smallest sets of formulas (S0; T 0) suchthatCE1 W � S0 � T 0,CE2 S0 = Cn(S0), and T 0 = Cn(T 0),CE3 For any default �:M�
 2 D, if � 2 S0 and T [f�; 
gis consistent then 
 2 S0 and � ^ 
 2 T 0.A pair of sets of formulas (E;C) is a constrained exten-sion of (D;W ) if �(C) = (E;C). 2If (E;C) is a constrained extension, then we will referto E as a proper constrained extension.The following example shows that the notions of anextension, a rational extension and a proper constrainedextension are di�erent.Example 2.1 Let us consider the default theory (D; ;)[Schaub, 1992], whereD = � :Mbc ; :M:bd ; :M:ce ; :M:df � :2In [Mikitiuk and Truszczy�nski, 1993] we used the classicalreduct of A with respect to S, denoted AS, instead of Mon(A)both in AS2 and in the de�nition of a rational extension. IfA satis�es AS1, then AS = Mon(A). Since in this paperwe will use a di�erent notion of a reduct (De�nition 3.2),we decided to reformulate the de�nitions of active sets andrational extensions to avoid confusion. These de�nitions areequivalent to the original ones.



This theory has one extension Cn(fc; dg), two rationalextensions: S1 = Cn(fc; fg), S2 = Cn(fd; eg), and threeconstrained extensions: (Cn(fe; fg); Cn(fe;:c; f;:dg)),(S1; Cn(fc; b; f;:dg)), (S2; Cn(fd;:b; e;:cg)). 2Schaub [1992] does not consider justi�cation-free de-faults, so in this paper we do not consider them either.Hence, j(A) = ; only if A = ;. Moreover, in both ra-tional and constrained default logic one can replace alljusti�cations of a default by their conjunction. Thus, weassume that every default has exactly one justi�cation.In Section 6 we will show how Schaub's de�nition can beextended to cover the case of justi�cation-free defaults.3 Characterizations of constrainedextensionsIn this section we will give two useful characterizations ofconstrained extensions. The �rst of them will be basedon a proof-theoretic description of the operator �(T ).We will use it in the next section to derive complexityresults on reasoning with constrained default logic. Thecharacterization requires the notion of a generating de-fault introduced in [Schaub, 1992]3.De�nition 3.1 ([Schaub, 1992]) Let (D;W ) be a de-fault theory and S and T sets of formulas. The set ofgenerating defaults for (S; T ) with respect to D is de�nedasGD(S;T )D = ��:M�
 2 D : � 2 S; T [ f�; 
g 6` ?� : 2Schaub [1992] proved the following properties of gen-erating defaults.Theorem 3.1 Let (S; T ) be a constrained extension ofa default theory (D;W ). Then1. S = Cn(W [ c(GD(S;T )D )).2. T = Cn(W [ c(GD(S;T )D ) [ j(GD(S;T )D )).3. There is an enumeration �1; �2; : : : of the defaults inGD(S;T )D such that for every i = 1; 2; : : :,W [ c(f�1; : : : ; �i�1g) ` p(�i). 2This theorem implies the following useful corollary.Corollary 3.2 Let (S; T ) be a constrained extension ofa default theory (D;W ). Then S = CnMon(GD(S;T)D )(W ).2To present our characterization of the operator �(T ),we will need two more notions.3The notions of a generating default and a reduct used inthis paper are di�erent from the standard ones [Reiter, 1980;Gelfond and Lifschitz, 1988]. They are tailored speci�callyto the needs of constrained default logic.

De�nition 3.2 We de�ne the reduct of a set of defaultsD with respect to a theory T asDT = ��
 : �:M�
 2 D;T [ f�; 
g 6` ?� :We de�ne the operator C by lettingC(D;S; T ) = �� ^ 
 : �:M�
 2 GD(S;T )D � : 2These concepts allow us to give a constructive descrip-tion of the operator �(T ).Theorem 3.3 Let (D;W ) be a default theory and let Tbe a propositional theory. Then�(T ) = (CnDT (W ); Cn(W [ C(D;CnDT (W ); T ))):Proof. According to De�nition 2.3, �(T ) is the pair ofsmallest sets of formulas (S0; T 0) satisfying CE1{CE3.It follows from CE3 that S0 is closed under inferencerules from DT . Thus, by the de�nition of the operatorCnA(�), S0 = CnDT (W ) satis�es CE1{CE3. We needto prove that T 0 = Cn(W[C(D;CnDT (W ); T )) togetherwith S0 = CnDT (W ) satis�es CE1{CE3.We will �rst prove that CnDT (W ) � Cn(W [C(D;CnDT (W ); T )). Let ' 2 CnDT (W ). Then ' has aproof from W in PC +DT , that is, there is a �nite se-quence '1; : : : ; 'n = ' such that for every i, 1 � i � n,at least one of the following conditions holds:1. 'i 2W or 'i is a substitution instance of an axiomof propositional logic.2. For some j; k < i, 'i follows from 'j and 'k bymodus ponens.3. For some j < i, the rule 'j'i belongs to DT .We will prove by induction on the length of this proofthat ' 2 Cn(W [ C(D;CnDT (W ); T )). If ' 2 Wor ' is a substitution instance of an axiom of propo-sitional logic then it is clear that ' 2 Cn(W [C(D;CnDT (W ); T )). If ' follows from 'j and 'kby modus ponens then, by the inductive hypothesis,'j ; 'k 2 Cn(W [ C(D;CnDT (W ); T )). It follows that' 2 Cn(W [ C(D;CnDT (W ); T )). If ' was obtainedby applying an inference rule  ' from DT then  2CnDT (W ). Hence, there is a default  :M�' 2 D suchthat  2 CnDT (W ) and T [ f�; 'g 6` ?. It followsthat � ^ ' 2 C(D;CnDT (W ); T ) and, consequently,' 2 Cn(W [ C(D;CnDT (W ); T )). Thus, CnDT (W ) �Cn(W [ C(D;CnDT (W ); T )) and CE1 holds.The theory Cn(W [C(D;CnDT (W ); T )) is closed un-der propositional provability, so CE2 holds. To proveCE3, let us consider a default �:M�
 such that � 2 S0 =CnDT (W ) and T [ f�; 
g 6` ?. It follows from the de�-nition of C(D;S; T ) that � ^ 
 2 C(D;CnDT (W ); T ) �



Cn(W [ C(D;CnDT (W ); T )). Hence, the pair(CnDT (W ); Cn(W [C(D;CnDT (W ); T ))) satis�es CE1{CE3.Let us assume now that a pair of theories (S0; T 0) satis-�es CE1{CE3. Then it is easy to see that CnDT (W ) �S0. By CE1, W � T 0. Let us consider a formula� ^ 
 2 C(D;CnDT (W ); T ). Then there is a de-fault �:M�
 2 D such that � 2 CnDT (W ) � S0 andT [ f�; 
g 6` ?. It follows from CE3 that � ^ 
 2 T 0.Hence, C(D;CnDT (W ); T ) � T 0. Since, by CE2, T 0 =Cn(T 0), then Cn(W [C(D;CnDT (W ); T )) � T 0 and weare done. 2As a corollary, we get a characterization of constrainedextensions.Corollary 3.4 (S; T ) is a constrained extension of a de-fault theory (D;W ) if and only ifT = Cn(W [ C(D;CnDT (W ); T )) (2)and S = CnDT (W ). 2This corollary makes it explicit that constrained de-fault logic works in two stages. In the �rst stage, pos-sible sets of assumptions (constraints, as referred to in[Schaub, 1992]) are established as solutions of the �x-point equation (2). Then, each of them uniquely deter-mines the corresponding proper constrained extention.The �xpoint equation (2) implies that all assumptions(theory T ) needed to support a proper constrained ex-tension S in constrained default logic must be \reprov-able". This might be regarded as a weakness of con-strained default logic. In all versions of default logic it isrequired that formulas in the extensions have justi�ca-tions (in terms of proofs from W by means of applicabledefaults). But it is arguable whether the same shouldbe required of assumptions \� is possible" which makedefaults applicable.Corollary 3.4 allows us to strengthen a result bySchaub on pairwise maximality of constrained extensionsof a default theory.Theorem 3.5 If (S; T ) and (S0; T 0) are constrained ex-tensions of a default theory (D;W ) and T � T 0, thenT = T 0 and S = S0 (in particular, \T -parts" of con-strained extensions form an antichain).Proof. First, observe that if (S0; T 0) is a constrainedextension of (D;W ), then T 0 is inconsistent if and onlyif W is inconsistent. Hence, if T 0 is inconsistent thenT is inconsistent as well and, consequently, T = T 0 andS = S0. Assume then that T 0 is consistent.Since (S; T ) is a constrained extension of (D;W ), byCorollary 3.2 we have S = CnMon(GD(S;T)D )(W ). More-over, for every default �:M�
 2 GD(S;T )D , � ^ 
 2 T and,since T � T 0, �^
 2 T 0. Since T 0 is consistent, it followsthat Mon(GD(S;T )D ) � DT 0 . Hence,S = CnMon(GD(S;T )D )(W ) � CnDT 0 (W ) = S0:

Schaub [1992] proved that if (S; T ) and (S0; T 0) are con-strained extensions of a default theory and S � S0 andT � T 0, then S = S0 and T = T 0. 2Theorem 3.5 implies bounds on the number of con-strained extensions of a default theory.Corollary 3.6 Let D be a set consisting of n defaults.Then for every W � L, the default theory (D;W ) has atmost � ndn=2e �constrained extensions.Proof. Theorem 3.5 implies that the family T =fT : (S; T ) is a constrained extension of (D;W )g is anantichain. By Theorem 3.1, each set T 2 T is deter-mined by the set GD(S;T )D . Since T is an antichain, thefamily fGD(S;T )D :T 2 T g is also an antichain. It is wellknown that the size of the largest antichain in the alge-bra of subsets of an n-element set has at most ( ndn=2e )elements. Hence, the assertion follows. 2The second characterization of constrained extensionsthat we present in this section is closely related to theproperty of semi-monotonicity of constrained defaultlogic. It exploits the fact that constrained extensionscan be produced by processing defaults according to anywell-ordering. This is very similar to the correspondingproperty of normal default theories in the logic of Reiter(Theorem 4.3, [Marek and Truszczy�nski, 1993]). In fact,our characterization of constrained default logic providesan alternative argument that for normal default theoriesconstrained and standard default logics coincide.We assume that the set of the atoms of our languageL is denumerable. Consequently, the set of all defaultsover the language L is denumerable.Let (D;W ) be a default theory and � a well-orderingof D. We de�ne an ordinal ��. For every ordinal � < ��we de�ne a set of defaults AD� and a default d�. We alsode�ne a set of defaults AD�. We proceed as follows:If the sets AD�, � < �, have been de�ned but �� has notbeen de�ned then1. If there is no default d 2 D nS�<�AD� such that:(a) W [c(S�<�AD�)[j(S�<�AD�)[j(d)[fc(d)gis consistent, and(b) W [ c(S�<� AD�) ` p(d),then �� = �.2. Otherwise, de�ne d� to be the �-least default d 2D nS�<�AD� such that the conditions (a) and (b)above hold. Then set AD� = S�<�AD� [ fd�g.When the construction terminates, put AD� =S�<�� AD�, S� = Cn(W [ c(AD�)) and T� = Cn(W [c(AD�) [ j(AD�)).This construction has the following property.



Theorem 3.7 Let (D;W ) be a default theory and � awell-ordering of D. Then (S�; T�) is a constrained ex-tension of (D;W ) and AD� = GD(S�;T�)D .Proof. It is easy to see that if W is inconsistent thenAD� = ; and S� = T� = Cn(W ) = L. Thus, the asser-tion follows. Assume now thatW is consistent. Then forevery � < ��, W [ c(AD�) [ j(AD�) is consistent. Con-sequently, W [ c(AD�) [ j(AD�) is consistent. Thus,T� is consistent.Let us consider a default d = �:M�
 2 AD�. Wehave � 2 j(AD�) and 
 2 c(AD�). Thus, f�; 
g �T� and, since T� is consistent, T� [ f�; 
g is consis-tent. Moreover, since d 2 AD�, for some � < ��,W [ c(S�<� AD�) ` �. Consequently, � 2 S�. Hence,d 2 GD(S�;T�)D .Consider now a default d = �:M�
 2 D n AD�. Thenone of the conditions (a), (b) above fails for d, that is,either T� [ f�; 
g is inconsistent or S� 6` �. Hence,d =2 GD(S�;T�)D . Thus, AD� = GD(S�;T�)D .The last equality implies thatT� = Cn(W [ c(GD(S�;T�)D ) [ j(GD(S�;T�)D ))= Cn(W [ f� ^ 
 : �:M�
 2 GD(S�;T�)D g)= Cn(W [ C(D;S�; T�)):Thus, to end the proof we need to show that S� =CnDT� (W ). Let us notice that the condition (b) aboveimplies that CnMon(AD�)(W ) = Cn(W[c(AD�)) = S�.Thus, S� = CnMon(GD(S�;T�)D )(W ). Let A = f�:M�
 2D : T� [ f�; 
g 6` ?g. Then DT� = Mon(A) andGD(S�;T�)D = fd 2 A : p(d) 2 S�g. Hence, GD(S�;T�)D �A and S� = CnMon(GD(S�;T�)D )(W )� CnMon(A)(W ) = CnDT� (W ):Thus, to show that S� = CnDT� (W ), we need to provethat CnDT� (W ) � CnMon(GD(S�;T�)D )(W ). To this end,let us consider a formula ' 2 CnDT� (W ). The for-mula ' has a proof from W in PC + DT� . One canprove by induction on the length of this proof that' 2 CnMon(GD(S�;T�)D )(W ) (due to space restrictions, weomit the details of the argument). 2The converse result is also true.Theorem 3.8 Let (S; T ) be a constrained extension ofa default theory (D;W ). Then for any well-ordering �of D such that defaults from GD(S;T )D precede all otherdefaults, AD� = GD(S;T )D , S� = S and T� = T . 2This result will be proved in a full version of the paper.

4 Computational aspects of constraineddefault logicCorollary 3.4 allows us to design an algorithm for com-puting all constrained extensions for a �nite default the-ory (D;W ). Let us consider a set of defaults A � D.Let S = CnMon(A)(W ), B = fd 2 A : p(d) 2 Sg,C = f� ^ 
: �:M�
 2 Bg, T = Cn(W [ C) and E =f�:M�
 2 D:T [ f�; 
g 6` ?g. It is easy to see thatif E = A then (S; T ) is a constrained extension for(D;W ). Indeed, DT = Mon(E). Thus, if E = A thenMon(A) = DT and S = CnDT (W ). Moreover, B =GD(S;T )D . Hence, C = C(D;S; T ) = C(D;CnDT (W ); T )and T = Cn(W [ C) = Cn(W [ C(D;CnDT (W ); T )).Thus, (S; T ) is a constrained extension for (D;W ). Con-sidering all sets A � D, we will get all constrained exten-sions of (D;W ). Indeed, if (S; T ) is a constrained exten-sion then it will be found by considering A = f�:M�
 2D:T [ f�; 
g 6` ?g. Thus, we have the following algo-rithm:For every A � D1. compute U such that Cn(U) = CnMon(A)(W ) (thetheory CnMon(A)(W ) is in�nite, however U is �nite| see [Marek and Truszczy�nski, 1993]),2. compute B = fd 2 A : U ` p(d)g, and let C =f� ^ 
: �:M�
 2 Bg,3. compute E = f�:M�
 2 D:W [ C [ f�; 
g 6` ?g,4. if E = A then output (Cn(U); Cn(W [ C)) as aconstrained extension of (D;W ).The complexity of the above algorithm is determinedby the number of calls to a propositional consistencychecking procedure. Assume that the number of defaultsin D is n. Given A � D, we need at most n2 calls to sucha procedure to compute U , at most n calls to compute Band n calls to compute E. Hence, for every A � D, weneed O(n2) calls to a propositional consistency checkingprocedure, and O(n22n) calls to such a procedure for thewhole algorithm.We have the following complexity result (see [Gareyand Johnson, 1979] for a discussion of complexityclasses).Theorem 4.1 The following problems:IN-SOME Given a �nite default theory (D;W ) and aformula ', decide if ' is in some constrained exten-sion for (D;W ),NOT-IN-ALL Given a �nite default theory (D;W )and a formula ', decide if there is a constrainedextension for (D;W ) not containing ',are �P2 -complete. The problem



IN-ALL Given a �nite default theory (D;W ) and a for-mula ', decide if ' is in all constrained extensionsof (D;W ),is �P2 -complete.Proof. To verify that a formula ' belongs to some(does not belong to all, resp.) constrained extensionsof (D;W ), we can nondeterministically guess a set ofdefaults A � D, verify that (Cn(U); Cn(W [ C)) is aconstrained extension for (D;W ) (U and C are as de-�ned in the above algorithm) and verify that U ` '(U 6` ', resp.), what requires one more call to a propo-sitional consistency checking procedure. It follows thatthe problems IN-SOME and NOT-IN-ALL are in �P2 .Since the problem NOT-IN-ALL is in �P2 , the problemIN-ALL is in �P2 . Observe next that S is an extensionfor a normal default theory if and only if (S; S) is a con-strained extension for this theory (see [Schaub, 1992]).Hence, the hardness of all three problems in their re-spective complexity classes follows from the fact thatthe problems IN-SOME, NOT-IN-ALL and IN-ALL forextensions of normal default theories are �P2 -hard and�P2 -hard, respectively (see [Gottlob, 1992]). 25 Connections between constrained andrational default logicsFirst, we will show that rational extensions determineconstrained extensions. That is, we will show that forevery rational extension S of a default theory, there is Tsuch that (S; T ) is a constrained extension of this theory.Theorem 5.1 Let E be a rational extension for a de-fault theory (D;W ) and let A 2 MA(D;W;E) be suchthat E = CnMon(A)(W ) (= Cn(W [ c(A))). Let C =Cn(E [ j(A)) (= Cn(W [ c(A)[ j(A))). Then (E;C) isa constrained extension of (D;W ).Proof. We need to show that �(C) = (E;C). We willprove �rst that pair (E;C) satis�es CE1{CE3 with re-spect to C. The conditions CE1 and CE2 are obviouslysatis�ed. Now, let a default d = �:M�
 be such that � 2E and C[f�; 
g is consistent. Since C[f�; 
g is consis-tent, then E [ j(A[fdg) = E [ j(A)[f�g is consistent.Moreover, since p(A) � CnMon(A)(W ) = E and � 2 E,we have p(A[fdg) = p(A)[f�g � E = CnMon(A)(W ) �CnMon(A[fdg)(W ). Thus, (A [ fdg) 2 A(D;W;E). Bythe maximality of A, d 2 A. Hence, 
 2 c(A) � E andf�; 
g � c(A) [ j(A) � C. It follows that 
 2 E and� ^ 
 2 Cn(C) = C and CE3 holds.Now, we need to prove that if a pair (S; T ) satis-�es CE1{CE3 with respect to C then E � S andC � T . Let us notice that, since c(A) [ j(A) � C,for d = �:M�
 2 A, C [ f�; 
g = C. By AS1,j(A) = ; or j(A)[E is consistent. Thus, we have eitherC = Cn(E [ j(A)) is consistent or A = ; (let us recallthat we do not consider justi�cation-free defaults). Inboth cases for d = �:M�
 2 A, C [ f�; 
g is consistent.

Thus, CE3 implies that S is closed under inference rulesfromMon(A). Moreover, by CE1,W � S and, by CE2,S is closed under propositional provability. It followsthat E = CnMon(A)(W ) � S. We have p(A) � E � S.So, it follows from CE3 and CE2 that j(A)[ c(A) � T .Since, by CE1, W � T and, by CE2, T = Cn(T ), thenC � T and we are done. 2The converse statement is not true. Every default the-ory has at least one constrained extension [Schaub, 1992]and there are default theories that do not have rationalextensions [Mikitiuk and Truszczy�nski, 1993]. We willshow that for seminormal default theories an exact one-to-one correspondence between rational and constrainedextensions can be established. But �rst we will prove anauxiliary result.Theorem 5.2 Let (S; T ) be a constrained extension ofa default theory (D;W ). Then GD(S;T )D 2 A(D;W;S).Proof. It follows from Theorem 3.1 that T = Cn(S [j(GD(S;T )D )). If T is consistent then j(GD(S;T )D )[S is alsoconsistent. If T is inconsistent then it follows from thede�nition of GD(S;T )D that GD(S;T )D = ;, so j(GD(S;T )D ) =;. Thus, in both cases AS1 holds.According to the de�nition of GD(S;T )D , p(GD(S;T )D ) �S. By Corollary 3.2, S = CnMon(GD(S;T )D )(W ). Hence,AS2 also holds. 2Theorem 5.3 Let (S; T ) be a constrained extension of aseminormal default theory (D;W ). Then S is a rationalextension of (D;W ) and GD(S;T )D 2MA(D;W;S).Proof. By Theorem 5.2, GD(S;T )D 2 A(D;W;S) and, byCorollary 3.2, S = CnMon(GD(S;T)D )(W ). Thus, we needto prove the maximality of GD(S;T )D in A(D;W;S) only.Since every default in D is seminormal, we can rewritethe de�nitions of GD(S;T )D , DT and C(D;S; T ) asGD(S;T )D = ��:M�
 2 D : � 2 S; T [ f�g 6` ?� ;DT = ��
 : �:M�
 2 D;T [ f�g 6` ?� ;C(D;S; T ) = �� : �:M�
 2 GD(S;T )D � = j(GD(S;T )D ):Let us denote GD(S;T )D by A. Since, by Corollary 3.4,S = CnDT (W ) and T = Cn(W [ C(D;CnDT (W ); T )),we get T = Cn(W [ j(A)).Let us consider now a default d = �:M�
 2 D nA. Wehave either � =2 S = CnMon(A)(W ) or T [ f�g is incon-sistent. If T [f�g is inconsistent then W [ j(A)[f�g =W[j(A[fdg) is inconsistent and the set A[fdg does notsatisfy AS1 (since d is seminormal, j(fdg) 6= ;). If � =2CnMon(A)(W ) then CnMon(A[fdg)(W ) = CnMon(A)(W )and p(A [ fdg) = p(A) [ f�g 6� CnMon(A[fdg)(W ), soA[fdg does not satisfyAS2. By Proposition 4.2 from an



extended version of [Mikitiuk and Truszczy�nski, 1993],A 2 MA(D;W;S) and we are done. 2Schaub ([1992]) proved that every default theory has aconstrained extension, so we have the following corollary(proved �rst by other methods in an extended version of[Mikitiuk and Truszczy�nski, 1993]).Corollary 5.4 Every seminormal default theory has arational extension. 26 The case of justi�cation-free defaultsWe close this paper with a remark that constrained de-fault logic can be extended to cover the case of defaulttheories that may contain justi�cation-free defaults. Tothis end, one has to replace CE3 by the following twoconditions:CE31 For any default �:M�
 2 D, if � 2 S0 and T [f�; 
g is consistent then 
 2 S0 and � ^ 
 2 T 0.CE32 For any default �:
 2 D, if � 2 S0 and T [ f
g isconsistent then 
 2 S0.The de�nitions of GD(S;T )D , DT and C(D;S; T ) mustbe modi�ed in the same way. Under such modi�cationsall results presented in this paper, except for Theorem5.1, remain true. Moreover, the following, slightly mod-i�ed version of Theorem 5.1 holds (the assumption ofconsistency of a rational extension is added).Theorem 6.1 Let E be a consistent rational extensionfor a default theory (D;W ) and let A 2 MA(D;W;E)be such that E = CnMon(A)(W ) (= Cn(W [ c(A))). LetC = Cn(E [ j(A)) (= Cn(W [ c(A) [ j(A))). Then(E;C) is a constrained extension of (D;W ).Proofs of these results will be included in a full versionof the paper.7 ConclusionsIn this paper we showed that constrained and rationaldefault logics are closely related. While Reiter's defaultlogic and constrained default logic coincide on the classof normal default theories, rational and constrained de-fault logics coincide on a much wider class of seminormaldefault theories.We showed that basic problems of reasoning with con-strained extensions are complete for the second level ofthe polynomial hierarchy (with the exception of the ex-istence of an extension problem, which is trivially in P).We also proposed algorithms to compute constrained ex-tensions.Constrained default logic was originally introducedonly for default theories without justi�cation-free de-faults. In the paper, we proposed a modi�cation of theoriginal de�nition of Schaub, which allows for defaultsto be justi�cation-free. Under our de�nition, all majorproperties of constrained default logic remain true.
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