
Logic Programming for Knowledge

Representation

Miros law Truszczyński

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA, mirek@cs.uky.edu

Abstract. This note provides background information and references
to the tutorial on recent research developments in logic programming
inspired by need of knowledge representation.

1 Introduction

McCarthy and Hayes [46] wrote: “[...] intelligence has two parts, which we shall
call the epistemological and the heuristic. The epistemological part is the repre-
sentation of the world in such a form that the solution of problems follows from
the facts expressed in the representation. The heuristic part is the mechanism
that on the basis of the information solves the problem and decides what to
do.” The epistemological part is the concern of knowledge representation. The
heuristic part is typically addressed by search.

While not stated explicitly in McCarthy and Hayes’ definition, the knowledge
representation and the search are closely intertwined. Modeling features of the
language affect the design of search methods. Conversely, the availability of fast
search techniques for particular computational tasks, for instance, proof finding
or model computation, in the case of particular classes of theories, such as Horn
theories or propositional theories in CNF, influences the design of modeling lan-
guages. Effective computational knowledge representation systems require that
the two are integrated.

Logic programming has long been regarded as a prime candidate for a practi-
cal instantiation of computational knowledge representation. First, logic program
clauses align well with natural language constructs humans use to specify con-
straints [31,32]. Next, logic programs (Horn logic programs, to be precise) are
Turing complete [1]. Finally, there are well understood automated proof tech-
niques for reasoning with logic programs [50,32]. These considerations led to the
design of Prolog [6], still a dominant computational knowledge representation
language.

However, the presence of negation in the bodies of logic program rules, while
convenient from the modeling standpoint, posed a challenge. The semantics of
logic programs with negation was not clear and resolving that issue required
a major research effort. The completion semantics [5] was the first attempt to
address the problem. The answer-set semantics [27,28] provided a definitive so-
lution within the class of 2-valued semantics.

For some time after its introduction, the answer-set semantics was a source of
confusion. It was unclear how to use it in practice when modeling application do-
mains, and how to reconcile it with the traditional proof-theory approach to logic
programming. The answer-set programming paradigm [43,48] offered an alterna-
tive to proof-based logic programming and shifted the focus from proof-finding
to model-finding. Under the answer-set programming paradigm, a problem is
modeled as a logic program so that answer sets of the program expanded with
an encoding of a particular instance of the problem (not substitutions associated
with proofs) correspond to solutions to the problem for that instance.

With the understanding of the meaning of programs with negation came
additional evidence of the applicability of logic programs in knowledge represen-
tation. According to [26], the goal of knowledge representation is “to design and
study languages to capture knowledge about environments, their entities and
their behaviors.” Such languages must be able to handle modeling challenges
posed by the qualification and frame problems, defaults, conditionals and nor-
mative statements, (inductive) definitions, and by the need for the elaboration
tolerance. Research showed that answer-set programming, provides means that
adequately address these problems [4,25,26,3]. While answer-set programming
comes with the penalty of syntactic restrictions (no function symbols) and so,
the limited expressive power (the class NP-search for normal logic programs, and
ΣP

2 -search for disjunctive programs), it has major advantages. First, arguably
the task of modeling gets much simpler than in proof-based logic programming
— answer-set programs are truly declarative. Second, it becomes possible to
take advantage of fast search techniques developed in the area of propositional
satisfiability.

In this note I will discuss three recent research directions in logic program-
ming inspired by knowledge representation needs. First, knowledge bases must
be constructed in a modular fashion. This brings up the question of equivalence
of answer-set programs, as well as the need for methods to decompose programs
so that answer-sets of the program can be recovered from answer sets of its com-
ponents. Second, there has been a need for extending the syntax of answer-set
programs with means to model numeric constraints. Such constraints are ubiq-
uitous and, in particular, are common in knowledge representation applications.
Finally, there are logics other than logic programs with the answer-set semantics
that also give rise to knowledge representation systems based on the principle
that models of theories describe problem solutions. One of the most promising
such approaches, the ID-logic [8], combines first-order logic (which is used to
model constraints) with logic programs under the well-founded semantics [58], a
3-valued approximation to the answer-set semantics (which are used to represent
definitions).

Theoretical advances in answer-set programming would remain just that, if
they were not followed by practical applications. These applications require work-
ing and effective answer-set programming software. There has been much work
in that area. I will conclude this paper with brief comments on and references
to some of the state-of-the-art implementations.

2 Modularity

A basic design principle in knowledge representation is the principle of modular-
ity. It stipulates that knowledge bases be composed of modules, each representing
a fragment of an application domain being modeled. The principle of modularity
gave rise to research problems that have generated much interest among logic
programming and answer-set programming researchers. Two of them that I will
discuss are:

1. To characterize cases when two knowledge base modules are equivalent for
substitution, and

2. To improve the efficiency of processing algorithms by taking advantage of
the modular structure of the knowledge base.

Informally, two modules are equivalent for substitution if replacing one with
the other does not affect the meaning of the knowledge base. When optimizing
the knowledge base for conciseness, efficiency of processing, robustness to change,
or other appropriate measure of quality, one approach is to optimize each module
separately. For that approach to be safe, though, the optimized module should
be equivalent for substitution to the original one. Otherwise, optimization might
have unwanted side effects. In a related way, the concept of equivalence for
substitution has applications in knowledge-base query optimization. Thus, the
notion of equivalence for substitution is an important one.

When a knowledge base is represented by a logic program under the answer-
set semantics, one can formalize the concept of the equivalence for substitution,
or strong equivalence, the term more commonly used in answer-set programming,
as follows: two programs P and Q are strongly equivalent if for every program
R, the programs P ∪R and Q ∪R have the same answer sets. Indeed, if P and
Q have this property, one can replace P with Q or Q with P within any larger
program, and the answer sets (a formal description of the “meaning”) will not
change.

The concept of strong equivalence was introduced in [33]. That paper also
presented a complete characterization of strong equivalence in terms of the equiv-
alence in the logic here-and-there [29]. We note in passing that while a necessary
condition, having the same answer sets is not sufficient for two programs to be
strongly equivalent. Thus, a most direct attempt at extending the concept of
equivalence from the classical logic to answer-set programming does not work.
[36,56] presented simple characterizations of strong equivalence that do not make
explicit references to the logic here-and-there. [55] cast the concept in terms of
the equivalence in the modal logic S4F. Several generalizations and variations of
the notion were proposed and studied in [15,17,19,16,34,23]. [54] extended the
problem of strong equivalence to an abstract algebraic setting of the approxima-
tion theory of operators on lattices [9].

Modularity can also be exploited in processing programs. It is well known
that the problem of the existence of an answer set of a logic program is NP-
complete for normal propositional logic programs [45] and ΣP

2 -complete for the

disjunctive ones [18]. Modular structure of the program can have dramatic effect
on the complexity of this decision problem and the associated search task.

This has been known for quite some time in the case when the dependencies
among modules are acyclic. [2] proposed the class of stratified programs, in which
dependencies between modules are acyclic, and dependencies within modules
are subject to certain restrictions. Each stratified normal logic program has
exactly one answer set. Moreover, it can be computed efficiently. The results on
stratification have been generalized in the form of a splitting theorem, to the
case when the dependencies between modules are still acyclic but the structure
of each module is not restricted anymore [35]. When a program can be “split”,
a form of divide-and-conquer approach can significantly speed up the process of
computing answer sets. It is worth noting that, as strong equivalence, splitting
also has an algebraic description within the approximation theory [60,59].

Recently, researchers focused on the general case, when dependencies among
modules are not acyclic [21,30]. By controlling the way, in which modules inter-
act, [30] managed to characterize answer sets of the overall program in terms of
answer sets of individual modules and outlined several possible applications for
this general result.

3 Programs with constraints

Numeric constraints are common. Modeling them in the basic language of first-
order logic is, however, a tedious task. It requires auxiliary atoms and leads
to large programs with no transparent meaning. The problem has been long
recognized in the area of database systems, where queries often concern numeric
properties of sets of records. To make the process of formulating such queries
easier, database query languages are equipped with syntax that provides explicit
means to express numeric constraints, referred to in the field of databases as
aggregates. The same holds true of constraint programming languages.

Applications of answer-set programming in knowledge representation brought
up the same problem and motivated extensions of the basic language of program
rules with syntax to model constraints directly [51,7,10,20,22,49,52]. These ap-
proaches agree on many classes of programs. However, they differ in intuitions,
as well as in some technical aspects. To gain a better understanding of exten-
sions of answer-set programming with constraints, and to offer a more princi-
pled approach to the semantics of such extensions, researchers proposed and
studied answer-set programming formalisms based on abstract constraint atoms
[42,44,41,53,38]. This approach lead to a theory of programs with constraints
based on the concept of a computation driven by a generalization of the one-step
provability operator [57]. In the case of programs with monotone and convex
constraints the parallels with the normal logic programming are very strong [41].
Recent work extended these parallels also to the case of arbitrary constraints [38].
We will now present, following closely [44] and [40], some of the basic aspects
of the theory of programs with abstract constraints concentrating on the case
when these constraints are monotone.

We consider a language determined by a fixed countable set At of propo-
sitional variables. An abstract constraint atom is a syntactic expression A =
(C,X), where X ⊆ At is a finite set of propositional variables, called the do-
main of A, and C ⊆ P(At) is the set of satisfiers of A. We will write Adom for
X and Asat for C.

A propositional interpretation M ⊆ At satisfies an abstract constraint atom
A, denoted M |= A, if M ∩ Adom ∈ Asat , that is, if the set of elements in the
domain of A that are true in M is a satisfier of A.

A constraint program is a set of constraint rules, that is, expressions of the
form

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (1)

where A, A1, . . . , Am are constraints and not denotes default negation. The
constraint A is the head and the set {A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} is the
body of r. The concept of satisfiability described above extends in the standard
way to constraint rules and programs.

We denote by At(P) the set of atoms in the domains of constraints in a
constraint program P . We denote by hset(P), the headset of P , that is, the
union of the domains of the heads of all rules in P .

We will now list several basic definitions and properties of constraint pro-
grams mirroring those of normal ones, and culminating with a generalization of
the concept of the answer-set.
M -applicable rules. Let M ⊆ At be an interpretation. A rule (1) is M -
applicable if M satisfies every literal in the body of r. We write P (M) for the
set of all M -applicable rules in P .
Supported models. An interpretation M is a supported model of a constraint
program P if M is a model of P and M ⊆ hset(P (M)).
Nondeterministic one-step provability. An interpretation M ′ ⊆ At is non-
deterministically one-step provable from an interpretation M ⊆ At by means of
a constraint program P , if M ′ ⊆ hset(P (M)) and for every head A of a rule in
P (M), M ′ |= A. Given a constraint program P , the nondeterministic one-step
provability operator Tnd

P
is an operator on P(At) such that for every M ⊆ At ,

Tnd

P
(M) consists of all sets that are nondeterministically one-step provable from

M by means of P .
Monotone constraints and monotone-constraint programs. A constraint
A is monotone if for every M,M ′ ⊆ At , M ⊆ M ′ and M |= A together imply
that M ′ |= A. A monotone-constraint program is a program built of monotone
constraints.
Horn constraint programs. A rule (1) is Horn if constraints A, A1, . . . , Ak

are monotone, and if k = m (no occurrences of default negation). A constraint
program is Horn if every constraint rule in the program is Horn.
Bottom-up computations for Horn programs. Let P be a Horn constraint
program. A P -computation is a sequence 〈Xk〉

∞
k=0

such that X0 = ∅ and for
every k,

Xk ⊆ Xk+1, and Xk+1 ∈ Tnd

P
(Xk).

The result of a P -computation t = 〈Xk〉 is the set
⋃

k
Xk. We denote it by Rt.

We note that if P is a Horn constraint program and t is a P -computation,
Rt is a supported model of P .
Derivable models. A set M of atoms is a derivable model of a Horn constraint
program P if there exists a P -computation t such that M = Rt. If a Horn
constraint program has a model, one can show that it has computations and,
consequently, derivable models. By our comment above, derivable models of a
Horn constraint program P are supported models and so, in particular, models
of P .
The reduct. Let P be a monotone-constraint program and M a subset of
At(P). The reduct of P with respect to M , PM , is the Horn constraint program
obtained from P by: (1) removing from P all rules whose body contains a literal
not(B) such that M |= B; and (2) removing literals not(B) for the bodies of
the remaining rules.
Answer sets. Let P be a program. A set of atoms M is an answer set of P

if M is a derivable model of PM . Since PM is a Horn constraint program, the
definition is sound.

The definitions of the reduct and of answer sets follow and generalize the
corresponding definitions proposed for normal logic programs, as in the setting
of Horn constraint programs, derivable models play the role of a least model.

As in normal logic programming, answer sets of monotone-constraint pro-
grams are supported models and, consequently, models. As shown in [51], mono-
tone-constraint programs generalize programs with weight atoms [51]. Some
other results one can prove for monotone-constraint programs are extensions
of the characterizations of strong and uniform equivalence of programs, of the
concept of the program completion [5], and of loop formulas [37]. The latter two
concepts proved useful in designing a solver pbmodels [39] for computing answer
sets of programs with weight constraints in the syntax of smodels. Pbmodels
placed second in two events of the 1st Answer-Set Programming Contest [24].

We concentrated here on monotone-constraint programs. Programs built of
more general classes of constraints offer additional challenges. The class of convex
constraint atoms (A is convex if for every M , M ′ and M ′′ such that M ′ |= A,
M ′′ |= A and M ′ ⊆M ⊆M ′′, M |= A, as well) is most closely related to the class
of monotone constraints and the basic approach described above extends. For
arbitrary constraint atoms there is no simple generalization due to non-monotone
behavior of such constraints. [38] developed a principled approach to the problem
of the answer-set semantics for programs with arbitrary constraints. However,
the general approach of [38] resulted in three candidate semantics, none of which
has emerged as the definitive one for programs with arbitrary constraints.

4 Model expansion and ID-logic

Several fundamental knowledge representation and reasoning problems can be
stated formally as search problems, and solved by general search methods. In
fact, this observation lies behind the answer-set programming paradigm. We
will now introduce a simple formalism for modeling search problems and show

how to integrate it with logic programming to produce an effective answer-set
programming formalism. This approach stems from the work on the formalism
called datalog with constraints [13,14] and research on the role of definitions in
knowledge representation [8]. It has been actively studied and developed further
in [11,47,12].

We start with basic terminology. A signature is a nonempty set σ of relation
symbols, each with a positive integer arity. Let U be a fixed infinite countable
set (the universe), and let σ be a signature. An instance of σ over U is a set I

of finite relations over U , such that there is a one-to-one correspondence r ↔ rI

between σ and I, and the corresponding relation symbols r and relations rI are
of the same arity.

We denote by Instσ the set of all instances of σ. If I ∈ Instσ, we define the
domain of I, dom(I), to be the set of all those elements of U that appear in
a tuple of a relation in I. Since all relations in I are finite, dom(I) is finite,
too. Let σ′ ⊆ σ be signatures. We say that K ∈ Instσ expands I ∈ Instσ′ if
dom(I) = dom(K) and for every r ∈ σ′, rI = rK . We write I = K|σ′ to denote
that K expands I.

The formalism of model expansion (the logic MX) is based on the language
Lσ of the first-order logic, determined by a signature σ (thus, we assume here
no function symbols).

An instance I ∈ Instσ determines a first-order logic interpretation 〈dom(I), I〉
of Lσ. With some abuse of notation, for an instance I ∈ Instσ and a sentence
ϕ ∈ Lσ, we write I |= ϕ instead of 〈dom(I), I〉 |= ϕ.

Let σ′ ⊆ σ be signatures and let ϕ ∈ Lσ be a sentence. Given an instance I ∈
Instσ′ we call an instance K ∈ Instσ an I-model of ϕ if K expands I and K |= ϕ

(hence the term model expansion). The concept extends in a straightforward
way to sets of sentences. We will refer to finite sets of sentences interpreted by
I-models as MX-theories.

Given signatures σ′ ⊆ σ, we can regard an MX-theory T from Lσ as an
encoding of a search problem. This problem has Instσ as the set of its instances
and, for every instance I ∈ Instσ, I-models as solutions to the instance I.

One can show that the expressive power of MX-theories is the same as that
of (normal) logic programs [13]. In some cases, though, the task of modeling
the search problems as MX-theories is significantly more complicated than when
answer-set programs are used. Modeling definitions is often particularly cumber-
some. To address that issue, researchers proposed extensions of the formalism
MX with logic programs which, under the well-founded semantics [58], are well
suited to model definitions [8].

We will present one such extension, the ID-logic [8,12,47]. Let σ′ ⊆ σ be
signatures. A theory T modeling a search problem in the formalism of the ID-
logic consists of two parts. An MX-theory T ′ in Lσ forms one of the parts. A
normal logic program T ′′, also in Lσ but with no relation symbol from σ′ in the
head of a rule, forms the other one. Let σdef be the set of relation symbols in the
heads of the rules of the program T ′′. Intuitively, these are the symbols that need

to be defined and that are defined in the ID-logic theory T by its component
T ′′.

Given an instance I ∈ Instσ′ , an instance K ∈ Instσ is an I-model of T if K

is an I-model of T ′ and K|σdef is the total well-founded model of the program
T ′′ ∪ K|σ\σdef

1. Informally, to obtain an I-model of an ID-logic theory T , we
guess the extensions of all relation symbols in σ (keeping the extensions of the
relation symbols in σ′ as they are specified by I and not introducing any new
constants), and verify that the extensions of the relation symbols in σdef are
fully determined by the program T ′′ and the extensions of the relation symbols
not in σdef under the well-founded semantics.

The ID-logic (under the restriction of no function symbols in the language)
has the same expressive power as (non-disjunctive) answer-set programming [14].
However, arguably, its semantics is simpler, as it relies on two intuitive concepts:
constraints and definitions. Consequently, the ID-logic has a significant poten-
tial for knowledge representation applications. A practical demonstration of the
modeling capabilities of ID-logic can be found in [11].

5 Tools

While theoretical challenges make answer-set programming an exciting research
area, it is because of the existence of effective computational tools, effective
enough to handle several classes of “industrial-grade” problems, that it is steadily
gaining on importance. We will now briefly review some of these tools.

The general approach to processing answer-set programs consists of two steps:
(1) grounding, that is, instantiating and simplifying an input program with vari-
ables into a propositional program, and (2) solving, that is, computing answer
sets of the program resulting from step (1). The grounding step is designed so
that all answer sets of the original program can be recovered in step (2).

The lparse/smodels software (www.tcs.hut.fi/Software/smodels/)
constitutes the earliest attempt at making answer-set programming practical.
It remains widely used. Arguably, lparse is the most widely used grounder by
solver developers, and smodels remains one of the most competitive solvers.

The dlv system (www.dbai.tuwien.ac.at/proj/dlv/) was proposed
soon after lparse/smodels. The dlv offers an integrated grounder and solver pack-
age capable of computing answer-sets of disjunctive programs with aggregates.
With its front-ends for SQL, inheritance, planning, and abduction and diagnosis,
it emerges as the most flexible answer-set programming system at present. In this
context, it is important to note that dlv won the 1st Answer-Set Programming
Contest in the modeling/grounding/solving category [24].

Among software addressing only one of the stages in the computation of
answer sets, gringo gringo.sourceforge.net/ is a recent newcomer in the
area of grounders. Noteworthy solvers are clasp (www.cs.uni-potsdam.de/
clasp/), pbmodels (www.cs.uky.edu/ai/pbmodels/), cmodels (www.cs.
1 We abuse the notation here by viewing instances as sets of the corresponding ground

atoms in the language extending Lσ with the elements of U as constants.

utexas.edu/users/tag/cmodels.html), as well as gnt (www.tcs.hut.
fi/Software/gnt/). Each of these solvers performed very well in the 1st
Answer-Set Programming Contest [24], with clasp winning in two events. Other
notable solver is assat, which pioneered the idea of using loop formulas to reduce
answer-set computation to propositional satisfiability.

Finally, we mention software for answer-set programming systems based on
the ID-logic. The grounder psgrnd (www.cs.uky.edu/ai/aspps/) can pro-
cess ID-logic theories, in which the first-order component is in the clausal form
(possibly with weight atoms), and the logic program component is a Horn
program. The solver aspps (www.cs.uky.edu/ai/aspps/) is designed to
compute answer-sets of ground ID-logic theories satisfying these restrictions.
Recently more general tools have been developed, including MXG (www.cs.
sfu.ca/research/groups/mxp/mxg/), an integrated software package for
grounding and computing models of ID-logic theories, and GidL/MidL package
(www.cs.kuleuven.be/˜dtai/krr/software/idp.html) for grounding
(GidL) and model generation (MidL) of theories in the ID-logic.

6 Closing comments

Answer-set programming, a variant of logic programming with the answer-set
semantics, and formalisms such as ID-logic, which combine first-order logic with
logic programming under the well-founded semantics, are well suited for knowl-
edge representation applications. After about a decade since they have been
proposed, they continue to generate theoretical research challenges. In the same
time, thanks to the development of computational software, their practical im-
portance is steadily growing.

Acknowledgments

The author acknowledges the support of NSF grant IIS-0325063 and KSEF grant
1036-RDE-008.

References

1. H. Andréka and I. Németi, The generalized completeness of Horn predicate logic as

a programming language, Acta Cybernetica 4 (1978/79), no. 1, 3–10.
2. K. Apt, H.A. Blair, and A. Walker, Towards a theory of declarative knowledge,

Foundations of deductive databases and logic programming, Morgan Kaufmann,
1988, pp. 89–142.

3. C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

4. C. Baral and M. Gelfond, Logic programming and knowledge representation, Jour-
nal of Logic Programming 19/20 (1994), 73–148.

5. K.L. Clark, Negation as failure, Logic and data bases, Plenum Press, New York-
London, 1978, pp. 293–322.

6. A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel, Un systeme de communica-

tion homme-machine en francais, Tech. report, University of Marseille, 1973.

7. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and Gerald Pfeifer, Aggregate func-

tions in disjunctive logic programming: semantics, complexity, and implementation

in DLV, Proceedings of the 18th International Joint Conference on Artificial In-
telligence (IJCAI 2003), Morgan Kaufmann, 2003, pp. 847–852.

8. M. Denecker, The well-founded semantics is the principle of inductive definition,
Proceedings of the 6th European Workshop on Logics in Artificial Intelligence,
LNAI, vol. 1489, Springer, 1998, pp. 1–16.

9. M. Denecker, V. Marek, and M. Truszczyński, Approximations, stable operators,

well-founded fixpoints and applications in nonmonotonic reasoning, Logic-Based
Artificial Intelligence, Kluwer Academic Publishers, 2000, pp. 127–144.

10. M. Denecker, N. Pelov, and M. Bruynooghe, Ultimate well-founded and stable se-

mantics for logic programs with aggregates, Proceedings of the 17th International
Conference on Logic Programming (ICLP 2001), LNCS, vol. 2237, Springer, 2001,
pp. 212–226.

11. M. Denecker and E. Ternovska, Inductive situation calculus., Proceedings of the
9th International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2004), AAAI Press, 2004, pp. 545–553.

12. , A logic for non-monotone inductive definitions, ACM Transactions on
Computational Logic (2008), To appear.

13. D. East and M. Truszczyński, Datalog with constraints, Proceedings of the 17th
National Conference on Artificial Intelligence (AAAI 2000), AAAI Press, 2000,
pp. 163–168.

14. D. East and M. Truszczyński, Predicate-calculus based logics for modeling and solv-

ing search problems, ACM Transactions on Computational Logic 7 (2006), 38–83.

15. T. Eiter and M. Fink, Uniform equivalence of logic programs under the stable

model semantics, Proceedings of the 19th International Conference on Logic Pro-
gramming (ICLP 2003), LNCS, vol. 2916, Springer, 2003, pp. 224–238.

16. T. Eiter, M. Fink, H. Tompits, and S. Woltran, Strong and uniform equivalence

in answer-set programming: Characterizations and complexity results for the non-

ground case., Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI 2005), 2005, pp. 695–700.

17. T. Eiter, M. Fink, and S. Woltran, Semantical characterizations and complexity

of equivalences in answer set programming, ACM Transactions on Computational
Logic (2006), To appear.

18. T. Eiter and G. Gottlob, On the computational cost of disjunctive logic program-

ming: propositional case, Annals of Mathematics and Artificial Intelligence 15
(1995), no. 3-4, 289–323.

19. T. Eiter, H. Tompits, and S. Woltran, On solution correspondences in answer-set

programming, Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), Morgan Kaufmann, 2005, pp. 97–102.

20. I. Elkabani, E. Pontelli, and T. C. Son, Smodels with CLP and its applications:

a simple and effective approach to aggregates in ASP, Proceedings of the 20th
International Conference on Logic Programming (ICLP 2004), LNCS, vol. 3132,
Springer, 2004, pp. 73–89.

21. W. Faber, G. Greco, and N. Leone, Magic sets and their application to data in-

tegration, Proceedings of the 10th International Conference on Database Theory
(ICDT 2005), LNCS, vol. 3363, Springer, 2005, pp. 306–320.

22. W. Faber, N. Leone, and G. Pfeifer, Recursive aggregates in disjunctive logic pro-

grams: semantics and complexity., Proceedings of the 9th European Conference on
Artificial Intelligence (JELIA 2004), LNAI, vol. 3229, Springer, 2004, pp. 200 –
212.

23. M. Fink, R. Pichler, H. Tompits, and S. Woltran, Complexity of rule redundancy in

non-ground answer-set programming over finite domains, Proceedings of the 9th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2007), LNAI, vol. 4483, Springer, 2007, pp. 123–135.

24. M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Trusz-
czyński, The first answer set programming system competition, Proceedings of the
9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2007, LNAI, vol. 4483, Springer, 2007, pp. 3–17.

25. M. Gelfond, Representing knowledge in A-Prolog, Computational Logic: Logic Pro-
gramming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, LNCS,
vol. 2408, Springer, 2002, pp. 413–451.

26. M. Gelfond and N. Leone, Logic programming and knowledge representation – the

A-prolog perspective, Artificial Intelligence 138 (2002), 3–38.
27. M. Gelfond and V. Lifschitz, The stable semantics for logic programs, Proceedings

of the 5th International Conference on Logic Programming (ICLP 1988), MIT
Press, 1988, pp. 1070–1080.

28. , Classical negation in logic programs and disjunctive databases, New Gen-
eration Computing 9 (1991), 365–385.

29. A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der
Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse
(1930), 42–56.

30. T. Janhunen, E. Oikarinen, H. Tompits, and S. Wotran, Modularity aspects of

disjunctive stable models, Proceedings of the 9th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2007), LNAI, vol. 4483,
Springer, 2007, pp. 175–187.

31. R. Kowalski, Predicate logic as a programming language, Proceedings of the
Congress of the International Federation for Information Processing (IFIP-1974)
(Amsterdam), North Holland, 1974, pp. 569–574.

32. , Logic for problem solving, North Holland, Amsterdam, 1979.
33. V. Lifschitz, D. Pearce, and A. Valverde, Strongly equivalent logic programs, ACM

Transactions on Computational Logic 2(4) (2001), 526–541.
34. , A characterization of strong equivalence for logic programs with variables,

Proceedings of the 9th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2007), LNAI, vol. 4483, Springer, 2007, pp. 188–
200.

35. V. Lifschitz and H. Turner, Splitting a logic program, Proceedings of the 11th
International Conference on Logic Programming (ICLP 1994), 1994, pp. 23–37.

36. F. Lin, Reducing strong equivalence of logic programs to entailment in classical

propositional logic, Proceedings of the 8th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2002), Morgan Kaufmann, 2002.

37. F. Lin and Y. Zhao, ASSAT: Computing answer sets of a logic program by SAT

solvers, Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI 2002), AAAI Press, 2002, pp. 112–117.

38. L Liu, E. Pontelli, T. C. Son, and M. Truszczyński, Logic programs with abstract

constraint atoms: the role of computations, Proceedings of the 23rd International
Conference on Logic Programming (ICLP 2007), LNCS, Springer, 2007 (this vol-
ume).

39. L. Liu and M. Truszczyński, Pbmodels - software to compute stable models by pseu-

doboolean solvers, Proceedings of the 8th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR-05), LNAI, vol. 3662, Springer,
2005, pp. 410–415.

40. , Properties of programs with monotone and convex constraints, Proceedings
of the 20th National Conference on Artificial Intelligence (AAAI-05), AAAI Press,
2005, pp. 701–706.

41. , Properties and applications of programs with monotone and convex con-

straints, Journal of Artificial Intelligence Research 27 (2006), 299–334.
42. V.W. Marek and J.B. Remmel, Set constraints in logic programming, Proceedings

of the 7th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2004), vol. 2923, Springer, 2004, LNAI, pp. 167–179.

43. V.W. Marek and M. Truszczyński, Stable models and an alternative logic pro-

gramming paradigm, The Logic Programming Paradigm: a 25-Year Perspective,
Springer, Berlin, 1999, pp. 375–398.

44. , Logic programs with abstract constraint atoms, Proceedings of the 19th
National Conference on Artificial Intelligence (AAAI 2004), AAAI Press, 2004,
pp. 86–91.

45. W. Marek and M. Truszczyński, Autoepistemic logic, Journal of the ACM 38
(1991), no. 3, 588–619.

46. J. McCarthy and P. Hayes, Some philosophical problems from the standpoint of

artificial intelligence, Machine Intelligence 4, Edinburgh University Press, 1969,
pp. 463–502.

47. D.G. Mitchell and E. Ternovska, A framework for representing and solving NP

search problems, Proceedings of the 20th National Conference on Artificial Intelli-
gence (AAAI 2005), AAAI Press, 2005, pp. 430–435.

48. I. Niemelä, Logic programming with stable model semantics as a constraint pro-

gramming paradigm, Annals of Mathematics and Artificial Intelligence 25 (1999),
no. 3-4, 241–273.

49. N. Pelov, Semantics of logic programs with aggregates, PhD Thesis. Department of
Computer Science, K.U.Leuven, Leuven, Belgium (2004).

50. J.A. Robinson, A machine-oriented logic based on resolution principle, Journal of
the ACM 12 (1965), 23–41.

51. P. Simons, I. Niemelä, and T. Soininen, Extending and implementing the stable

model semantics, Artificial Intelligence 138 (2002), 181–234.
52. T. Son and E. Pontelli, A constructive semantic characterization of aggregates

in answer set programming, Theory and Practice of Logic Programming (2007),
Accepted (available at http://arxiv.org/abs/cs.AI/0601051).

53. T. Son, E. Pontelli, and P.H. Tu, Answer sets for logic programs with arbitrary

abstract constraint atoms, Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI 2006), AAAI Press, 2006, pp. 129–134.

54. M. Truszczyński, Strong and uniform equivalence of nonmonotonic theories — an

algebraic approach, Proceedings of the 10th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2006), AAAI Press, 2006,
pp. 389–399.

55. M. Truszczyński, The modal logic S4F, the default logic, and the logic here-and-

there, Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI
2007), AAAI Press, 2007.

56. H. Turner, Strong equivalence made easy: nested expressions and weight constraints,
Theory and Practice of Logic Programming 3 (2003), 609–622.

57. M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a pro-

gramming language, Journal of the ACM 23 (1976), no. 4, 733–742.
58. A. Van Gelder, K.A. Ross, and J.S. Schlipf, The well-founded semantics for general

logic programs., Journal of the ACM 38 (1991), no. 3, 620–650.
59. J. Vennekens and M. Denecker, An algebraic account of modularity in ID-logic, Pro-

ceedings of 8th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2005), LNAI, vol. 3662, 2005, pp. 291–303.

60. J. Vennekens, D. Gilis, and M. Denecker, Splitting an operator: an algebraic mod-

ularity result and its applications to logic programming, Proceedings of the 20th
International Conference on Logic Programming (ICLP 2004), 2004, pp. 195–209.

