
[Smu68] R.M. Smullyan. First-order logic. Berlin: Springer-Verlag, 1968.

[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,

Rockville, MD, 1988.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733{742, 1976.

[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for

general logic programs. Journal of the ACM, 38:620 { 650, 1991.

14

References

[ABW88] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,

editor, Foundations of deductive databases and logic programming, pages 89{142, Los Altos,

CA, 1988. Morgan Kaufmann.

[AN78] H. Andreka and I. Nemeti. The generalized completeness of Horn predicate logic as a pro-

gramming language. Acta Cybernetica, 4:3{10, 1978.

[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theoretical computer

science, pages 493{574. MIT Press, Cambridge, MA, 1990.

[AV90] S. Abiteboul and V. Vianu. Procedural languages for database queries and updates. Journal

of Computer and System Sciences, 41:181{229, 1990.

[AV91] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal of

Computer and System Sciences, 43:62{124, 1991.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and data bases,

pages 293{322. Plenum Press, 1978.

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�ability of propo-

sitional horn formulae. Journal of Logic Programming, 3:267{284, 1984.

[EG92] T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates

and counterfactuals. In ACM Symposium on Principles of Database Systems, pages 261{273,

1992.

[EHK81] R.L. Epstein, R. Haas, and R.L. Kramer. Hierarchies of sets and degrees below 0

0

. In

M. Lerman, J.H. Schmerl, and R.I. Soare, editors, Logic Year 1979-80, pages 32{48. Springer

Verlag, 1981. S.L.N. in Mathematics 859.

[Fit85] M. C. Fitting. Kripke-Kleene semantics for logic programs. Journal of Logic Programming,

2:295{312, 1985.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski and

K. Bowen, editors, Proceedings of the 5th international symposium on logic programming,

pages 1070{1080, Cambridge, MA., 1988. MIT Press.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and

P. Szeredi, editors, Proceedings of the 7th international conference on logic programming,

pages 579{597, Cambridge, MA., 1990. MIT Press.

[MT91] W. Marek and M. Truszczy�nski. Autoepistemic logic. Journal of the ACM, 38:588{619, 1991.

[MT93] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent reasoning. Berlin:

Springer-Verlag, 1993.

[MT94] W. Marek and M. Truszczy�nski. Revision speci�cations by means of revision programs. In

Logics in AI. Proceedings of JELIA '94. Lecture Notes in Arti�cial Intelligence. Springer-

Verlag, 1994.

[MW88] S. Manchanda and D.S. Warren. A logic-based language for database updates. In J. Minker,

editor, Foundations of Deductive Databases and Logic Programming, pages 363{394, Los

Altos, CA, 1988. Morgan Kaufmann.

[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.

13

1. For every strati�cation hP

�

i

�<�

of P and for every well-ordering � of P which agrees with the

strati�cation hP

�

i

�<�

, the result of the sequential revision process for � and D

I

is the unique

P -justi�ed revision of D

I

.

2. In, in addition, P and D

I

are �nite, the unique P -justi�ed revision of D

I

can be computed in

time proportional to the total size of P and D

I

.

12

Lemma 5.2 together with Duality Theorem 2.4 allows for an estimate of arithmetic complexity of

revisions by means of safe programs. The subsequent result is the analogue of the fundamental result

on the complexity of the least model of the Horn logic program [Smu68, AN78].

We �rst need some de�nitions.

De�nition 5.2 ([EHK81])

1. A subset A � ! is called a d.r.e. set (di�erence of r.e. sets) if there are r.e. sets B;C such that

A = B n C.

2. A subset A � ! is weakly d.r.e. if both A and ! n A are d.r.e. sets.

The class of d.r.e. sets is not closed under complements in the very same way as r.e. sets are not closed

under the complements. The weakly d.r.e sets play the role of \recursive" sets with respect to d.r.e.

sets. More on d.r.e. sets in [EHK81].

We now have a basic result on the arithmetic complexity of revisions of recursive databases by means

of recursive programs.

Theorem 5.3 Let D be a recursive database and P be a recursive safe program. Then the result of

P -justi�ed revision of D is a weakly d.r.e. set.

A converse result holds for a slightly modi�ed class of revision programs.

Notice that the d.r.e. sets and their generalizations, (n+ 1)-r.e. sets form proper subclasses of the

least �eld of sets containing the r.e. sets. This �eld, in turn, is properly contained in the �eld of �

0

2

sets of natural numbers. Thus revisions of recursive databases by means of safe programs determine

rather restricted class of sets.

As noticed above the safe programs play the role of Horn programs in our theory. As in logic

programming, some of useful properties of safe programs can be extended to a wider class of programs.

De�nition 5.3 Let P be a revision program and let hP

�

i

�<�

be a partition of P . We say that hP

�

i

�<�

is a strati�cation of P if for every � < �:

1. P

�

is safe, and

2. head(P

�

) \

S

�<�

var(P

�

) = ;.

Safe programs are strati�ed. Notice also that revision programs obtained from locally strati�ed logic

programs under the interpretation described in Section 2 are strati�ed according to De�nition 5.3.

To test if a �nite revision program P is strati�ed, one can use a modi�ed version of the algorithm

of Apt, Blair and Walker [ABW88]. It takes linear time in the size of P . Moreover, also in linear time,

one can establish a partition of P into strata hP

m

i

m<n

.

For strati�ed programs we have the following generalization of Theorem 5.1(1).

Theorem 5.4 Let P be a strati�ed revision program. Then for every database D

I

there exists a unique

database D

R

such that hD

I

; D

R

i is a P -justi�ed transition.

As in the case of safe programs, one can show that given a �nite strati�ed revision program P and

an initial database D, the unique P -justi�ed revision of D can be computed in linear time (in the total

size of P and D).

Consider a strati�cation hP

�

i

�<�

of a strati�ed program P . A well-ordering � of P agrees with the

the strati�cation hP

�

i

�<�

if whenever �

1

< �

2

< � then every rule in P

�

1

�-precedes every rule in P

�

2

(such orderings exist). Now, we can generalize Theorem 5.1(3) and (4).

Theorem 5.5 Let P be a strati�ed revision program and let D

I

be a database. Then:

11

(9) if head(r) = in(a) then I := I [fag else if head(r) = out(a) then O := O [fag

(10) R := R [frg

(11) A := AR

P

(D) nR

(12) if I \O = ; and AR

P

(D) = R then report \D is a P -justi�ed revision of D

I

"

While as stated, this algorithm is more complex than the previous one (the main loop has to be

repeated jP j! times), it can be improved. One can show that it is enough to consider only a subset of

the set of all orderings of cardinality at most 2

jP j

.

Some minor improvements are also possible in algorithm Guess and Check. Despite all these

improvements, both algorithms remain exponential. High complexity of computing justi�ed revisions

is a serious problem. Fortunately, there are wide classes of programs whose computational properties

are much better. We discuss them in the next section.

5 Safe programs

We will now discuss two types of revision programs, safe and strati�ed, for which the task of �nding a

P -justi�ed revision can be solved in polynomial time. Let us recall that we restrict our attention in the

paper to propositional programs only. Results of this section can be partly extended to the predicate

case. The details will be given in a full version of the paper.

De�nition 5.1 A revision program P is safe if

1. there is no a such that in(a) 2 var(P) and out(a) 2 head(P)

2. there is no a such that out(p) 2 var(P) and in(a) 2 head(P)

For example, program P

1

= fin(a) out(b)g is safe. Similarly, P

2

= fin(a) out(b);out(c) ;

out(d) in(a);out(b) g is also safe. Program P

3

= fin(a) out(b); in(b) out(a)g is not safe.

It is clear that safeness is a syntactic condition and it can be checked in linear time. Safe revision

programs have several other nice properties, too. They are similar to the properties of Horn logic

programs. We gather them all together in the next theorem.

Theorem 5.1 Let P be a safe revision program. Then, for every database D

I

:

1. There is a unique D

R

such that hD

I

; D

R

i is a P -justi�ed transition.

2. The family of sets fD �D

I

: D is a model of P g has a least element: the set D

R

�D

I

, where

D

R

is a unique P -justi�ed revision of D

I

.

3. For every well-ordering � of P , the result of the sequential revision process for � and D

I

is a

P -justi�ed revision for D

I

.

4. The unique P -justi�ed revision for D

I

can be computed in time proportional to the total size of

D

I

and P .

The proof of Theorem 5.1 is based on the following useful lemma.

Lemma 5.2 Let P be a safe program and let D be any database. Then the necessary change hI; Oi

determined by P jD has the property that (D [I) nO is a P -justi�ed revision of D.

Lemma 5.2 says that in the case of safe programs there is no need to guess. The second part of the

reduction is still necessary, but then we can compute the unique P -justi�ed revision of D by computing

the necessary change. Moreover, it is easy to see that this unique justi�ed revision can be computed in

linear time in the total size of an initial database and the program.

10

MS2 Given a �nite revision program P and an element a, decide whether there are databases D

I

and

D

R

such that D

R

is a P -justi�ed revision of D

I

and a 2 D

I

if and only if a =2 D

R

(informally,

decide whether there is a P -justi�ed transition which changes the status of a)

MS3 Given a �nite revision program P , an element a and a database D

I

, decide whether there is a

database D

R

such that D

R

is a P -justi�ed revision of D

I

and a 2 D

R

MS4 Given a �nite revision program P , an element a and a database D

R

, decide whether there is a

database D

I

such that D

R

is a P -justi�ed revision of D

I

and a 2 D

I

As before, all these problems are in NP. In addition, it is not hard to see that E1 can be polynomially

reduced to each of MS1 and MS2. Hence, both are NP-complete. NP-completeness of MS3 follows from

the fact that their restricted versions (when P consists of in-rules only and D

I

= ;) are equivalent to

the problems to decide whether a given element belongs to at least one stable model of a logic program.

The problem involving existence of a preimage, MS4, is solvable in polynomial time. Hence, we get the

following theorem.

Theorem 4.3 Problems MS1 - MS3 are NP-complete. Problem MS4 is in the class P.

Membership in All problems can be regarded as complements of Membership in Some problems.

One can use Theorem 4.3 to establish their complexity.

We will now present two algorithms for computing all P -justi�ed revisions for a given database D

I

.

The �rst of these algorithms, we refer to it as Guess and Check algorithm, is based directly on the

de�nition of justi�ed revisions and on Theorem 4.1. The idea is to try every possibility for a P -justi�ed

revision for D

I

. Theorem 4.1 allows us to restrict the search space to subsets of the universe var(P).

Guess and Check(P;D

I

)

(1) Compute U = var(P)

(2) Compute D

0

I

= D

I

\ var(P)

(3) for all subsets D

0

R

of U repeat:

(4) if Check Justi�ed Revision(P;D

0

I

; D

0

R

)

(5) then output D

0

R

[(D

I

n U) as a P -justi�ed revision of D

I

.

Steps (1) and (2) can be implemented to run in time linear in the size of P and D

I

. The loop (3)

is executed 2

n

times, where n is the size of the universe var(P). Each execution of the loop takes time

linear in the size of P and D

I

, Hence, the algorithm runs in time O((m + n)2

n

), where n = jvar(P)j

and m = jD

I

j.

The next algorithm is based on the sequential revision process idea. Namely, it is based on Theorem

3.1 which states that all P -justi�ed revisions of D

I

can be found if all possible orderings of rules in P

are considered. In the description given below, I stands for all elements inserted until now, O stands for

all elements removed until now and D stands for the current database, R consists of all the rules that

were already applied and A stands for the rules that can be applied in a current stage. If the algorithm

does not generate any output, D

I

has no P -justi�ed revisions.

Sequential Revision Process(P;D

I

)

(1) for all total orderings � of P repeat:

(2) I := ;

(3) O := ;

(4) D := D

I

(5) R := ;

(6) A := AR

P

(D) nR

(7) while I \O = ; and A 6= ; do

(8) r:= �-�rst rule in A

9

Problems concerned with justi�ed revisions can be grouped into into three broad categories:

Existence: Does a justi�ed revision exist?

Membership in some: Does an atom a belong to some justi�ed revision?

Membership in all: Does an atom a belong to all justi�ed revisions?

These questions can be further specialized. Let us start with the existence problem. It has three

versions:

E1 Given a �nite revision program P , decide whether there is a P -justi�ed transition.

E2 Given a �nite revision program P and a �nite database D

I

, decide whether there is a database D

R

such that D

R

is a P -justi�ed revision of D

I

.

E3 Given a �nite revision program P and a �nite database D

R

, decide whether there is a database D

I

such that D

R

is a P -justi�ed revision of D

I

.

Given a �nite program P and two �nite sets D

I

and D

R

one can check in linear time whether D

R

is a

P -justi�ed revision of D

I

. Consider the following algorithm.

Check Justi�ed Revision(P;D

I

; D

R

)

(1) Compute the program P

D

R

(as in Stage 1 of De�nition 2.3)

(2) Compute the reduct P

D

R

jD

I

(as in Stage 2 of De�nition 2.3)

(3) Encode P

D

R

jD

I

as a Horn program Q (as in De�nition 2.2)

(4) Compute the least model M of Q

(5) Decode from M the necessary change (I; O) for P

D

R

jD

I

(6) if I \O 6= ; then returnffalseg

(7) else if D

R

6= D

I

[I nO then returnffalseg

(8) else returnftrueg

Steps (1), (2), and (6) - (8) correspond to De�nition 2.3. Steps (3) - (5) correspond to De�nition

2.2. Hence, it is easy to see that algorithm Check Justi�ed Revision correctly checks whether D

R

is a P -justi�ed revision of D

I

. Notice also that step (4) can be accomplished in time proportional to

the size of Q [DG84]. Hence, the whole algorithm can be implemented to run in time linear in the size

of P , D

I

and D

R

.

By Theorem 4.1 it follows that each of problems E1 - E3 is in NP. Problem E2 is, in fact, NP-

complete. It follows from the observation that under the restriction to programs consisting of in-rules

only and to the case D

I

= ;, problem E2 becomes equivalent to the question whether a logic program

has a stable model, which is known to be NP-complete [MT91]. Since the satis�ability problem is

polynomially reducible to E1, E1 is NP-complete. Problem E3 is simpler. If D

R

is not a model for

P the answer is NO. Otherwise, D

R

is a P -justi�ed revision of itself. Since checking whether D

R

is a

model of P can be accomplished in time linear in the size of P and D

R

, problem E3 can be solved in

linear time, too. These observations are summarized in the following theorem.

Theorem 4.2 Problems E1 and E2 are NP-complete. Problem E3 can be decided in time linear in the

size of P and D

R

.

Next, we will consider the Membership in some problem. Speci�cally, we will consider the following

versions of this problem:

MS1 Given a �nite revision program P and an element a, decide whether there are databases D

I

and

D

R

such that D

R

is a P -justi�ed revision of D

I

and a 2 D

I

if and only if a 2 D

R

(informally,

decide whether there is a P -justi�ed transition which does not change the status of a)

8

and

A = AR

P

(D) n fr

�

: 1 �
 < �g:

(The set D describes the database prior to step � in the construction, the set A consists of all rules

that are applicable with respect to the database D and have not been applied in the construction until

now.) If A = ; then we stop the construction and set �

�

= �. Otherwise, we de�ne

�

�

= minf�: r

�

2 Ag:

Next, if head(r

�

�

) = in(a), de�ne

I

�

= I [fag; O

�

= O:

Otherwise, if head(r

�

�

) = out(a), de�ne

I

�

= I; O

�

= O [fag:

If I

�

\O

�

6= ;, de�ne �

�

= �+ 1 and stop.

After the construction terminates, de�ne I

R

=

S

<�

�

I

, O

R

=

S

<�

�

O

and D

R

= (D

I

[I

R

)nO

R

.

Note that �

�

and the sequences fI

g

<�

�

, fO

g

<�

�

, and f�

g

1�
<�

�

depend on the well-ordering � of

P . We suppressed � in the notation in order to simplify it. Let us also observe that if P is �nite, all

ordinal numbers appearing in the construction are also �nite.

The process described above is called the sequential revision process for the ordering� and a database

D

I

. Its result is a database D

R

. In Examples 3.1 and 3.2 we saw that the result of a sequential revision

process is not necessarily a P -justi�ed revision of D

I

. We will now investigate conditions under which

it is so.

A well-ordering of a revision program P is called a posteriori consistent for D

I

if all the rules of P

that were applied in the corresponding sequential revision process are applicable with respect to the

resulting database D

R

. It is called sound for a database D

I

if I

R

\O

R

= ;. The ordering considered in

Example 3.1 is not a posteriori consistent for D

I

= ;, The ordering given in Example 3.2 is not sound

for D

I

= ;.

Theorem 3.1 Let P be a revision program and let D

I

be a database. A database D

R

is a P -justi�ed

revision of D

I

if and only if there exists a well-ordering of P which is a posteriori consistent and sound

for D

I

and such that D

R

is the result of the corresponding sequential revision process.

Theorem 3.1 states that P -justi�ed revisions correspond to a well-motivated class of orderings of

the revision program P . It allows us to construct a P -justi�ed revision of D

I

by means of a process in

which rules are applied sequentially one by one, assuming an a posteriori consistent and sound ordering

of P can be found.

4 Complexity and algorithms

We will now study the complexity of problems involving justi�ed revisions. For related results see

[EG92]. We will also present two algorithms for computing justi�ed revisions given a �nite revision

program and a �nite initial database. We use a certain \localization" result, which says that the status

of an element can get changed only if it is mentioned in P . The status of other elements remains

unchanged.

Theorem 4.1 (Localization Theorem) Let P be a revision program. A database D

R

is a P -justi�ed

revision of a database D

I

if and only if

1. D

R

\ var(P) is a P -justi�ed revision of D

I

\ var(P), and

2. D

R

= (D

R

\ var(P)) [(D

I

n var(P)).

7

For example, the rule in(c) in(a);out(b) is D-applicable if D = fa; bg and it is not D-applicable if

D = fa; dg.

If a rule C is D-applicable then its conclusion can be executed on the database D and, according to

the type of the head of C, an atom will be inserted to or deleted from D. Assume that a certain well-

ordering � of the rules of P is given. Then, the following sequential revision process can be considered:

in each step select the �rst rule according to � which has not been selected before and which is applicable

with respect to the current state of the database. Modify the database according to the head of the

selected rule. Stop when a selection of a rule is no longer possible. The question that we deal with in

this section is: how the results of such revision process relate to P -justi�ed revisions?

Example 3.1 Let D = ; and let P consist of the following two rules:

(1) in(c) out(b)

(2) in(b) in(c).

Let us process the rules in the order they are listed. Rule (1) is applicable with respect to D = ;.

Hence, the update in(c) is executed and we get a new database D

1

= fcg. The second rule is the

�rst D

1

-applicable rule not applied yet. Hence, the update in(b) is executed. Consequently, the next

database D

2

= fb; cg is obtained. Since there are no other rules left, the process stops. Notice, however,

that rule (1) is not D

2

-applicable. Hence, the justi�cation for inserting c is lost and D

2

should not be

regarded as a revision of D. Observe that D

2

is not a P -justi�ed revision of D, either.

Example 3.1 shows that there are cases when processing rules sequentially does not lead to a P -

justi�ed revision. The problem is that some of the rules applied at the beginning of the process may be

rendered inapplicable by subsequent updates. But there is yet another source of problems.

Example 3.2 Let D = ; and let P consist of the following three rules:

(1) in(c) out(b)

(2) in(d) in(a)

(3) out(c) in(d).

Let us process the rules in the order they are listed. After using rule (1) we get a new database:

D

1

= fcg. Then, rule (2) is D

1

-applicable and after the update we obtain the database D

2

= fc; dg.

Finally, we apply rule (3) and produce the database D

3

= fdg. Notice that all the rules applied in the

process are D

3

-applicable. But D

3

is not a model of the program P and sets of inserted and deleted

atoms are not disjoint. Hence, it cannot be regarded as a possible revised version of D. Observe also

that, since D

3

is not a model of P it is not a P -justi�ed revision of D.

Example 3.2 shows another case when processing rules of the program according to some ordering

does not yield a P -justi�ed revision. It turns out that Examples 3.1 and 3.2 capture all such cases.

We will now formally de�ne the sequential revision process and provide a precise formulation of the

statement above. The approach we take is similar to our earlier result in which default extensions (and,

hence, also stable models of logic programs) are characterized as results of some sequential computation

by means of default rules (program clauses) [MT93].

Let D

I

be a set of atoms (a database) and let P be a revision program. Both D

I

and P may be

in�nite. Let fr

�

g

�<�

be the enumeration of rules in P (here and below, we will use Greek letters to

denote ordinals) corresponding to some well-ordering � of P . We de�ne an ordinal �

�

, a sequence of

ordinals f�

g

1�
<�

�

and two sequences of sets fI

g

<�

�

and fO

g

<�

�

as follows. First, we de�ne

I

0

= ;; O

0

= ;:

Let � � 1 be on ordinal number. Assume that we have already de�ned I

and O

, for
 < � and �

for 1 �
 < �. Set

I =

[

<�

I

; O =

[

<�

O

; D = (D

I

[I) nO

6

Theorem 2.1 ([MT94]) 1. Let P be a revision program and let (I; O) be the necessary change

determined by P . Then, for every model M of P , I �M and O \M = ;.

2. If a database D satis�es a revision program P then D is a unique P -justi�ed revision of D.

3. Let P be a revision program and let D

I

be a database. If a database D

R

is a P -justi�ed revision

of D

I

, then D

R

is a model of P .

Revision programming can be viewed as a generalization of logic programming. Given a logic

program clause C = p q

1

; : : : ; q

m

;not(s

1

); : : : ;not(s

n

) we de�ne the revision rule r(C) as

in(p) in(q

1

); : : : ; in(q

m

);out(s

1

); : : : ;out(s

n

): (3)

In addition, for a logic program P , we de�ne the corresponding revision program r(P) by

r(P) = fr(C):C 2 Pg: (4)

Theorem 2.2 (Stability theorem) Let P be a logic program. A set of atoms M is a model of P if

and only if M is a model of r(P). A set of atoms M is a stable model of P if and only of M is an

r(P)-justi�ed revision of ;.

One of the reasons for adopting justi�ed revisions to describe database transformations entailed by

revision programs is given in the next result. It states, that justi�ed revisions satisfy some minimality

condition. Speci�cally, the change is minimized.

Theorem 2.3 (Minimality theorem) Let P be a revision program and let D

I

be a database. If D

R

is a P -justi�ed revision of D

I

, then D

R

�D

I

(� stands for the symmetric di�erence) is minimal in the

family fD �D

I

:D is a model of Pg.

Finally, even a cursory inspection of our construction of justi�ed revisions shows that, unlike in

ordinary logic programming, each of the stages of the reduction process is symmetric. That is the same

principle is used for positive and negative literals in the body. This symmetry phenomenon actually is

more general. We denote by D the complement of D i.e. At n D. The program P

D

called dual of P

arises from P by simultaneous substitution of in for out and conversely.

Theorem 2.4 (Duality theorem) Let P be a revision program and let D

I

be a database. Then, D

R

is a P -justi�ed revision of D

I

if and only if D

R

is a P

D

-justi�ed revision of D

I

.

Stability, Minimality and Duality Theorems have been proved in [MT94]. All the

remaining results in this paper are original and not published or submitted elsewhere.

3 Sequential revision process

Our de�nition of P -justi�ed revisions has a certain \global" character. It is based on two operators that

are applied to programs rather than to individual rules. First of these operators assigns the reduct to a

revision program, the other one assigns to the reduct the necessary change it implies. Hence, P -justi�ed

revisions of D

I

can be viewed as the results of applying all rules of P to D

I

\in parallel". In this section,

we will present a di�erent description of P -justi�ed revisions. We will show that P -justi�ed revisions

of D

I

are exactly those databases D

R

which can be obtained from D

I

by executing all rules of P one

by one according to some enumeration of the rules in P . This property of the semantics of P -justi�ed

revisions is similar to the notion of serializability in transaction management.

Let C be a revision rule and let D be a database. If D satis�es the body of the rule C, then C is

applicable with respect to D (D-applicable, for short). Let P be a revision program. We de�ne

AR

P

(D) = fC 2 P :C is D-applicableg:

5

respectively) if p 2 D (p =2D, respectively), or if there is i, 1 � i � m, such that q

i

=2 D, or if there is i,

1 � i � n, such that s

i

2 D. A database D satis�es a revision program P if D satis�es each rule in P .

In order to apply revision programming to a database D, we need to take for U the set of all

ground atomic formulas p

R

(a

1

; : : : ; a

k

). To specify the insertion of (a

1

; : : : ; a

k

) into a relation R of D

we can use an in-rule: in(p

R

(a

1

; : : : ; a

k

)) . Similarly, the deletion can be speci�ed as the out-rule

out(p

R

(a

1

; : : : ; a

k

)) . More generally, rules of type (1) describe integrity constraints of the form: if

tuples q

1

; : : : ; q

m

are in a database and tuples s

1

; : : : ; s

n

are not in the database, then tuple p is in the

database. Rules of type (2) have a similar interpretation, except that they stipulate that tuple p be

not in the database.

We use revision programs as means to specify integrity constraints. We assume some initial state D

I

of a database. If D

I

satis�es all constraints in a revision program P , no change in D

I

is necessary. If,

however, D

I

does not satisfy P , we use P as an input-output device to enforce on D

I

the constraints

it represents. That is, we produce several (possibly none) databases D

R

each of which satis�es the

constraints of P . Moreover, we do so in such a way that each change (insertion, deletion) necessary to

transform D

I

into D

R

is justi�ed.

A detailed discussion of motivations for our approach to revisions as well as several examples is

given in [MT94].

We will now present a construction introduced in [MT94], which describes a mechanism for enforcing

rules in revision programs. It is based on the notion of necessary change | the change that is entailed

by a program alone, that is, without references to any databases.

De�nition 2.2 Let P be a revision program. Let Q be the Horn program obtained from P by treating

each literal in P as a separate propositional variable. Let M be the least model of Q. The necessary

change for P (or, determined by P) is de�ned as the pair (I; O), where I = fa : a is an atom and in(a) 2

Mg and O = fa : a is an atom and out(a) 2Mg. If the least model M of Q does not contain any pair

in(a), out(a), that is, if I \O = ;, then P is called coherent.

In general, necessary change is not su�cient to compute a revised database. The initial database

as well as a tentative �nal one (used in a way reminiscent of the construction of stable models [GL88])

must be taken into account.

De�nition 2.3 ([MT94]) Let P be a revision program and let D

I

and D

R

be two databases.

1. The reduct of P with respect to (D

I

; D

R

) is de�ned in two stages:

Stage 1: Eliminate from P every rule of type (1) or (2) such that q

i

=2 D

R

, for some i, 1 � i � m,

or s

j

2 D

R

, for some j, 1 � j � n. The resulting program is denoted by P

D

R

.

Stage 2: From the body of each rule that remains after Stage 1 eliminate each in(a) such that

a 2 D

I

and each out(a) such that a =2 D

I

.

2. The program resulting from P after both stages are executed is called the reduct of P with respect

to (D

I

; D

R

) and is denoted by P

D

R

jD

I

.

3. Let (I; O) be the necessary change determined by P

D

R

jD

I

. If I \ O = ; (that is, if P

D

R

jD

I

is

coherent) and D

R

= (D

I

[I) n O, then D

R

is called a P -justi�ed revision of D

I

and the pair

hD

I

; D

R

i is called a P -justi�ed transition. We will write D

I

P

! D

R

in such case.

Informally, in order to treat D

R

as a P -justi�ed revision of D

I

, we need to have justi�cations for

every deletion and insertion that are needed to transform D

I

into D

R

. The justi�cation must be valid

after the revision. Hence, only rules of P jD

R

can be used as justi�cations. In addition, the initial

status D

I

of the database must be taken into account (Stage 2). If the necessary change entailed by

the resulting program P

D

R

jD

I

converts D

I

into D

R

, D

R

is a P -justi�ed revision of D

I

.

The following result describes the most fundamental properties of satisfaction and necessary change.

4

analogies with logic programming. In this paper, we discuss applications of revision programming to

study updates and integrity constraints in databases and investigate results on algorithmic aspects of

revision programming.

In the next section we recall basic de�nitions and results from [MT94]. In Section 3, we show that

the semantics of justi�ed revisions has a certain \serializability" property. Namely, justi�ed revisions are

exactly the results of the sequential revision process in which rules are executed according to a certain

order. Next, we study the complexity of several decision problems involving justi�ed revisions and we

present algorithms to compute them. These algorithms are computationally complex. In the last section

we introduce a class of programs, called safe programs, which have the property that for an arbitrary

database there is a unique justi�ed revision. Finite propositional safe programs can be recognized in

linear time. In addition, for every initial database the unique justi�ed revision can be computed in

linear time (in the total size of the program and the initial database). Safe programs play in revision

programming the role analogous to that played by Horn programs in logic programming. Extending the

analogy, the class of safe programs is generalized to the class of strati�ed revision programs. Two key

properties of safe programs are preserved. First, strati�ed programs can be recognized in polynomial

time. Second, computing justi�ed revisions for strati�ed revision programs is linear (in the total size

of the program and the initial database). We also identify a class of sets studied in classical recursion

theory associated with justi�ed revisions of recursive databases determined by recursive safe program.

From the database perspective the classes of safe and strati�ed revision programs are especially

important as they have good computational properties and they always determine a unique justi�ed

revision.

Although there is an immense literature devoted to updates in databases, the roots of our work

are in logic programming and knowledge representation. The technique developed here is based on the

work of Reiter [Rei80] and Gelfond and Lifschitz [GL88]. However, motivations as well as some key

ideas come from database theory. First, we treat programs as input-output devices, as it is the case in

DATALOG [Ull88]. Second, our language is similar to that used by Abiteboul and Vianu [AV90, AV91]

in their work on extensions of DATALOG admitting deletions. Strati�ed programs were studied (in a

di�erent setting) by Manchanda and Warren [MW88], who assigned to them a Kripke-style semantics.

2 Preliminaries

In this section we present basic concepts of revision programming introduced in [MT94]. We will encode

a database D as a theory consisting of ground atomic formulas of a certain �rst-order language. Namely,

for each k-ary relation R in the database schema we have a predicate symbol p

R

whose intended meaning

is: p

R

(x

1

; : : : ; x

k

) if and only if (x

1

; : : : ; x

k

) 2 R. Then, each tuple (a

1

; : : : ; a

k

) of R is represented by

the ground atom p

R

(a

1

; : : : ; a

k

).

De�nition 2.1 Let U be a denumerable set. We call its elements atoms. A revision in-rule or, simply,

an in-rule, is any expression of the form

in(p) in(q

1

); : : : ; in(q

m

);out(s

1

); : : : ;out(s

n

); (1)

where p, q

i

, 1 � i � m, and s

j

, 1 � j � n, are all in U . A revision out-rule or, simply, an out-rule, is

any expression of the form

out(p) in(q

1

); : : : ; in(q

m

);out(s

1

); : : : ;out(s

n

); (2)

where p, q

i

, 1 � i � m, and s

j

, 1 � j � n, are all in U . All in- and out-rules are called rules.

Expressions in(a) and out(a) are called literals. Literals in(p) and out(p) are called the heads of the

rules (1) and (2). The head of a rule r is denoted by head(r). A collection of rules is called a revision

program or, simply, a program. The set of all literals appearing in a program (as the heads of the rules

in a program) is denoted by var(P) (head(P), respectively). A database D satis�es a rule (1) (rule (2),

3

1 Introduction

We study a formalism for stating and enforcing integrity constraints in databases. Integrity constraints

can be described in the language of �rst-order logic, which is quite expressive and allows us to for-

mulate a wide range of constraints. However, there is a problem: if no restrictions on the syntax of

integrity constraints are imposed, the classical semantics of the language of �rst-order logic does not

entail a mechanism for enforcing them. In this paper, we describe a version of the �rst-order logic

language consisting of rules rather than formulas. In that we follow the approach of logic programming

[vEK76, Apt90] but our class of rules is much more general. Our system allows us to specify integrity

constraints in a declarative fashion similarly as in the case of the standard �rst-order language (or logic

programming). What is more important, it provides an imperative interpretation to these integrity

constraints and, consequently, a mechanism to enforce them, given the initial state of a database. In

this paper we will study basic properties of our formalism and we will argue that it is a convenient tool

for describing updates on databases and integrity constraints which databases must satisfy.

There are fragments of �rst-order logic that can be given an imperative interpretation. For example,

as �rst pointed by Van Emden and Kowalski [vEK76], de�nite Horn programs have least Herbrand

models and these models can be described in a procedural fashion.

This match between declarative �rst-order logic semantics and procedural treatment of rules in

logic programming disappears for wider classes of theories. Logic programming writes clauses in such a

way as to underline their imperative, computational, character. Namely, a logic program clause is any

expression of the form

 �

1

; : : : ; �

k

;:�

1

; : : : ;:�

m

;

where �

i

, �

i

and
 are propositional atoms (the restriction to the propositional case is not needed. We

adopt it for the sake of simplicity of discussion). It is interpreted as a mechanism for computing

after �

i

, 1 � i � k have been computed and after it has been established that �

i

, 1 � i � m, cannot

be computed. This last part is somewhat controversial. Several proposals were made to formalize the

requirement \�

i

cannot be computed". They led to di�erent semantics for logic programs [Cla78, Fit85,

VRS91]. One of the most successful is the semantics of stable models [GL88]. The key idea behind the

stable model semantics is to select a tentative model M , regard atoms not in M as those that cannot

be computed, and use this information in the van Emden-Kowalski computation process. If M is what

is produced as the result, M is a stable model. Hence, :� is interpreted as absence from a tentative

model, while positive literals have to be computed.

We will consider updates (insertions and deletions), and integrity constraints which, in the case

of some data being present in a database and some data being absent from the database, require that

some other data be present in (absent from) the database. The formalism of logic programs with stable

semantics is not expressive enough to be directly employed as a speci�cation language for database

updates and integrity constraints. Logic program clauses can only compute new atoms and, thus, can

model rules which require items be inserted into databases. But they cannot model deletions. No logic

program clause can express an imperative rule (under some conditions) delete a record, since

negative literals are not allowed in the head. Second, less troublesome limitation, of logic programming

is that logic programs compute from the empty set of atoms while updates and integrity constraints

must be enforced on arbitrary databases. DATALOG [Ull88] overcomes this di�culty.

In this paper, we present a system which allows us to form rules with negative literals in the head.

We call it revision programming. For revision programs, we describe a semantics of justi�ed revisions.

This semantics describes, for a given set of atoms, all \justi�ed" ways in which to modify it in order

to satisfy the constraints speci�ed by a revision program. Consequently, our formalism can be used to

formulate and process integrity constraints and updates.

Revision programming extends logic programming and the notion of a justi�ed revision generalizes

that of a stable model. It is di�erent, though, from logic programming with classical negation [GL90].

We have introduced revision programs and justi�ed revisions in [MT94]. We have studied there basic

properties of revision programming, mentioned a simple application to belief revision and considered

2

Revision programming, database updates and integrity

constraints

Victor W. Marek

Miros law Truszczy�nski

Department of Computer Science

University of Kentucky

Lexington, KY 40506-0027

fmarek,mirekg@ms.uky.edu

Fax: (606)-323-1971

Phone: (606)-257-3961

Keywords: revision programming, integrity constraints, updates, justi�ed transitions, safe programs,

strati�ed programs

Abstract

We investigate revision programming, a logic-based mechanism for description of changes in data-

bases. We show that revisions justi�ed by an initial database and a revision program can be computed

by a sequential execution of the rules of the program (with subsequent check of the applicability of the

rules). In general, a program may determine none, exactly one or many justi�ed revisions of a given

initial database. We exhibit two classes of programs, safe and strati�ed, with the property that for

every initial database a unique justi�ed revision exists. We study the complexity of basic problems

associated with justi�ed revisions. Although the existence problems are NP-complete, for safe and

strati�ed programs justi�ed revisions can be computed in polynomial time.

1

