
On the accuracy and running time of GSATDeborah East and Miroslaw TruszczynskiDepartment of Computer ScienceUversity of KentuckyLexington, KY 40506-0046east|mirek@cs.uky.eduAbstractRandomized algorithms for deciding satis�abilitywere shown to be e�ective in solving problemswith thousands of variables. However, these al-gorithms are not complete. That is, they pro-vide no guarantee that a satisfying assignment,if one exists, will be found. Thus, when studyingrandomized algorithms, there are two importantcharacteristics that need to be considered: therunning time and, even more importantly, theaccuracy | a measure of likelihood that a sat-isfying assignment will be found, provided oneexists. In fact, we argue that without a referenceto the accuracy, the notion of the running timefor randomized algorithms is not well-de�ned. Inthis paper, we introduce a formal notion of accu-racy. We use it to de�ne a concept of the run-ning time. We use both notions to study therandom walk strategy GSAT algorithm. We in-vestigate the dependence of accuracy on proper-ties of input formulas such as clause-to-variableratio and the number of satisfying assignments.We demonstrate that the running time of GSATgrows exponentially in the number of variablesof the input formula for randomly generated 3-CNF formulas and for the formulas encoding 3-and 4-colorability of graphs.IntroductionThe problem of deciding satis�ability of a boolean for-mula is extensively studied in computer science. Itappears prominently, as a prototypical NP-completeproblem, in the investigations of computational com-plexity classes. It is studied by the automated theoremproving community. It is also of substantial interest tothe AI community due to its applications in several ar-eas including knowledge representation, diagnosis andplanning.Deciding satis�ability of a boolean formula is an NP-complete problem. Thus, it is unlikely that sound andcomplete algorithms running in polynomial time exist.However, recent years brought several signi�cant ad-vances. First, fast (although, clearly, still exponential

in the worst case) implementations of the celebratedDavis-Putnam procedure (Davis & Putnam 1960) werefound. These implementations are capable to decide inthe matter of seconds the satis�ability of critically con-strained CNF formulas with 300 variables and thou-sands of clauses (Dubois et al. 1996). Second, severalfast randomized algorithms were proposed and thor-oughly studied (Selman, Levesque, & Mitchell 1992;Selman, Kautz, & Cohen 1996; Selman & Kautz 1993;Mazure, Sa��s, & �Eric Gr�egoire 1997; Spears 1996).These algorithms randomly generate valuations andthen apply some local improvement method in an at-tempt to reach a satisfying assignment. They are oftenvery fast but they provide no guarantee that, givena satis�able formula, a satisfying assignment will befound. That is, randomized algorithms, while oftenfast, are not complete. Still, they were shown to bequite e�ective and solved several practical large-scalesatis�ability problems (Selman & Kautz 1992).One of the most extensively studied randomizedalgorithms recently is GSAT (Selman, Levesque, &Mitchell 1992). GSAT was shown to outperformthe Davis-Putnam procedure on randomly generated3-CNF formulas from the crossover region (Selman,Levesque, & Mitchell 1992). However, GSAT's perfor-mance on structured formulas (encoding coloring andplanning problems) was poorer (Selman, Kautz, & Co-hen 1996; Selman & Kautz 1993; Selman, Kautz, &Cohen 1994). The basic GSAT algorithm would oftenbecome trapped within local minima and never reacha solution. To remedy this, several strategies for es-caping from local minima were added to GSAT yield-ing its variants: GSAT with averaging, GSAT withclause weighting, GSAT with random walk strategy(RWS-GSAT), among others (Selman & Kautz 1993;Selman, Kautz, & Cohen 1994). GSAT with randomwalk strategy was shown to perform especially well.These studies, while conducted on a wide range ofclasses of formulas rarely address a critical issue of thelikelihood that GSAT will �nd a satisfying assignment,

if one exists, and the running time is studied withouta reference to this likelihood. Notable exceptions are(Spears 1996), where RWS-GSAT is compared with asimulated annealing algorithm SASAT, and (Mazure,Sa��s, & �Eric Gr�egoire 1997), where RSW-GSAT is com-pared to a tabu search method.In this paper, we propose a systematic approach forstudying the quality of randomized algorithms. To thisend, we introduce the concepts of the accuracy and ofthe running time relative to the accuracy. The accu-racy measures how likely it is that a randomized al-gorithm �nds a satisfying assignment, assuming thatthe input formula is satis�able. It is clear that theaccuracy of GSAT (and any other similar randomizedalgorithm) grows as a function of time | the longerwe let the algorithm run, the better the chance that itwill �nd a satisfying valuation (if one exists). In thispaper, we present experimental results that allow us toquantify this intuition.The notion of the running time of a randomized algo-rithm has not been rigorously studied. First, in mostcases, a randomized algorithm has its running timedetermined by the choice of parameters that specifythe number of random guesses, the number of randomsteps in a local improvement process, etc. Second, inpractical applications, randomized algorithms are of-ten used in an interactive way. The algorithm is letrun until it �nds a solution or the user decides not towait any more, stops the execution, modi�es the pa-rameters of the algorithm or modi�es the problem, andtries again. Finally, since randomized algorithms arenot complete, they may make errors by not �ndingsatisfying assignments when such assignments exist.Algorithms that are faster may be less accurate andthe trade-o� must be taken into consideration (Spears1996).It all points to the problems that arise when at-tempting to systematically study the running times ofrandomized algorithms and extrapolate their asymp-totic behavior. In this paper, we de�ne the conceptof a running time relative to the accuracy. The rela-tive running time is, intuitively, the time needed by arandomized algorithm to guarantee a postulated accu-racy. We show in the paper that the relative runningtime is a useful performance measure for randomizedsatis�ability testing algorithms.Second, we study the dependence of the accuracyand the relative running time on the number of satis-fying assignments that the input formula admits. Intu-itively, the more satisfying assignments the input for-mula has, the better the chance that a randomizedalgorithm �nds one of them, and the shorter the timeneeded to do so. Again, our results quantify these in-

tuitions.These results have interesting implications for theproblem of constructing sets of test cases for experi-menting with satis�ability algorithms. It is now com-monly accepted that random k-CNF formulas from thecross-over region are \di�cult" from the point of viewof deciding their satis�ability. Consequently, they aregood candidates for testing satis�ability algorithms.These claims are based on the studies of the perfor-mance of the Davis-Putnam procedure. Indeed, on av-erage, it takes the most time to decide satis�abilityof CNF formulas randomly generated from the cross-over region. However, the suitability of formulas gener-ated randomly from the cross-over region for the stud-ies of the performance of randomized algorithms is lessclear. Our results indicate that the performance of ran-domized algorithms critically depends on the numberof satisfying assignments and much less on the den-sity of the problem. Both under-constrained and over-constrained problems with a small number of satisfyingassignments, turn out to be hard for randomized algo-rithms. In the same time, Davis-Putnam procedure,while sensitive to the density, is quite robust with re-spect to the number of satisfying truth assignments.In the paper, we apply our approach to the al-gorithm RWS-GSAT from (Selman & Kautz 1993;Selman, Kautz, & Cohen 1994). This algorithm iscommonly regarded as one of the best randomized al-gorithms for satis�ability testing to date. For our ex-periments we used walksat version 35 downloaded fromftp.research.att.com/dist/ai and run on a SPARC Sta-tion 20. Accuracy and running timeLet F be a �nite set of satis�able CNF formulas and letP be a probability distribution de�ned on F . Let A bea sound algorithm (randomized or not) to test satis�a-bility. By the accuracy of A (relative to the probabilityspace (F ;P)), we mean the probability that A �nds asatisfying assignment for a formula generated from Faccording to the distribution P . Clearly, for the ac-curacy of complete algorithms (for all possible spacesof satis�able formulas) is 1 and, intuitively, the higherthe accuracy, the more \complete" is the algorithm forthe space (F ;P).When studying and comparing randomized algo-rithms that are not complete, accuracy seems to bean important characteristics. It needs to be taken intoaccount | in addition to the running time. Clearly,very fast algorithms that often return no satisfying as-signments, even if they exist, are not satisfactory. Infact, most of the work on developing better random-ized algorithms can be viewed as aimed at increasing

the accuracy of these algorithms. Despite this, the ac-curacy is rarely explicitly mentioned and studied (see(Spears 1996; Mazure, Sa��s, & �Eric Gr�egoire 1997)).We will propose now an approach through which therunning times of randomized satis�ability testing algo-rithms can be compared. We will restrict our consider-ations to the class of randomized algorithms designedaccording to the following general pattern. These algo-rithms consist of a series of tries. In each try, a truthassignment is randomly generated. This truth assign-ment is then subject to a series of local improvementsteps aimed at, eventually, reaching a satisfying assign-ment. The maximum number of tries the algorithmwill attempt and the length of each try are the param-eters of the algorithm. They are usually speci�ed bythe user. We will denote byMT the maximum numberof tries and by MF | the maximum number of localimprovement steps. Algorithms designed according tothis pattern di�er, besides possible di�erences in thevalues MT and MF , in the speci�c de�nition of thelocal improvement process. A class of algorithms ofthis structure is quite wide and contains, in particular,the GSAT family of algorithms, as well as algorithmsbased on the simulated annealing approach.Let A be a randomized algorithm falling into theclass described above. Clearly, its average runningtime on instances from the space (F ;P) of satis�ableformulas depends, to a large degree, on the particularchoices for MT and MF . To get an objective mea-sure of the running time, independent ofMT andMF ,when de�ning time, we require that a postulated ac-curacy be met. Formally, let a, 0 < a � 1, be a realnumber (a postulated accuracy). De�ne the runningtime of A relative to accuracy a, ta, to be the mini-mum time t such that for some positive integers MTand MF , the algorithm A with the maximum of MTtries and with the maximum ofMF local improvementsteps per try satis�es:1. the average running time on instances from (F ;P)is at most t, and2. the accuracy of A on (F ;P) is at least a.Intuitively, ta is the minimum expected time that guar-antees accuracy a.The concepts of accuracy and relative to the accu-racy running time open a number of important (an, un-doubtedly, very di�cult) theoretical problems. How-ever, in this paper we will focus on an experimen-tal study of accuracy and relative running time for aGSAT-type algorithm. These algorithms follow the fol-lowing general pattern for the local improvement pro-cess. Given a truth assignment, GSAT selects a vari-able such that after its truth value is ipped (changed

to the opposite one) the number of unsatis�ed clausesis minimum. Then, the ip is actually made dependingon the result of some additional (often again random)procedure.In our experiments, we used two types of data sets.Data sets of the �rst type consist of randomly gener-ated 3-CNF formulas (Mitchell, Selman, & Levesque1992). Data sets of the second type consist of CNFformulas encoding the k-colorability problem for ran-domly generated 2-trees. These two classes of datasets, as well as the results of the experiments, are de-scribed in detail in the next two sections.Random 3-CNF formulasConsider a randomly generated 3-CNF formula F , withN variables and the ratio of clauses to variables equalto L. Intuitively, when L increases, the probabilitythat F is satis�able should decrease. It is indeedso (Mitchell, Selman, & Levesque 1992). What ismore surprising, it switches from being close to oneto being close to zero very abruptly in a very smallrange for L around approximately the value 4:24+6=N(Crawford & Auton 1993) (a slightly di�erent estimate,4:17 + 3:1N�(2=3), was given in (Kirkpatrick & Sel-man 1994)). The set of 3-CNF formulas with N vari-ables and L � 4:24+6=N will be called the cross-overregion and will be denoted by CR(N). Implementa-tions of the Davis-Putnam procedure take, on average,the most time on 3-CNF formulas generated from thecross-over regions (according to a uniform probabilitydistribution). Thus, these formulas are commonly re-garded as good test cases for experimental studies ofthe performance of satis�ability algorithms (Crawford& Auton 1993; Freeman 1996).We used seven sets of satis�able 3-CNF formulasgenerated from the cross-over regions CR(N), N =100; 150; : : : ; 400. These data sets are denoted byDS(N). Each data set DS(N) was obtained by gener-ating randomly 3-CNF formulas with N variables andL = 4:30 (for N = 100) and L = 4:25 (for N � 150)clauses. For each formula, the Davis-Putnam algo-rithm was then used to decide its satis�ability. The�rst one hundred satis�able formulas found in this waywere chosen to form the data set.For each data set DS(N), we determined values forMF , say MF1; : : : ;MFm and MT1; : : : ;MTn for usewith RWS-GSAT, big enough to result in the accuracyat least 0.98. For instance, for N = 100, MF rangedfrom 100 to 1000, with the increment of 100, and MTranged from 5 to 50, with the increment of 5. Next, foreach combination ofMF andMT , we ran RWS-GSATon all formulas in DS(N) and tabulated both the run-ning time and the percentage of problems for which the

satisfying assignment was found. Fixing a required ac-curacy, say at the level of a, we then looked for the besttime which resulted in this (or higher) accuracy. Weused this time as an experimental estimate for ta. Theresults of this experiment are shown in Figure 1 for twovalues for a: 0.9 and 0.95. Both curves demonstrateexponential growth, with the running time increasingby the factor of 1.5 - 2 for every 50 additional variablesin the input problems. Thus, while GSAT outperformsDavis-Putnam procedure for instances generated fromthe critical regions, if we prescribe the accuracy, it isalso exponential and, thus, will quickly reach the limitsof its applicability. We did not extend our results be-yond formulas with up to 400 variables due to the lim-itations of the Davis-Putnam procedure, (or any othercomplete method to test satis�ability). For problemsof this size, GSAT is still extremely e�ective (takes onlyabout 2.5 seconds). Data sets used in the next sectiondo not have this limitation (we know all formulas inthese sets are satis�able).

Figure 1: Running time of GSAT on randomly gener-ated 3-CNF formulas, as a function of the number ofvariablesIn the same way as the data sets DS(N), we con-structed data sets DS(100; pk�1; pk), where p0 = 1,and pk = 2k�3 � 100, k = 2; : : : ; 11. Each data setDS(100; pk�1; pk) consists of 100 satis�able 3-CNF for-mulas generated from the cross-over region CR(100)and having more than pk�1 and no more than pk sat-isfying assignments. Each data set was formed by ran-domly generating 3-CNF formulas from the cross-overregion CR(100) and by selecting the �rst 100 formu-las with the number of satisfying assignments falling inthe prescribed range (again, we used the Davis-Putnamprocedure, here).For each data set we ran the RWS-GSAT algorithmwith MF = 500 and MT = 50 thus, allowing thesame upper limits for the number of random steps forall data sets (these values resulted in the accuracy of.99 in our experiments with the data set DS(100) dis-

cussed earlier). Table 2 summarizes our �ndings. Itshows that there is a strong dependence of the accu-racy on the number of solutions. Generally, instanceswith small number of solutions are much harder forRWS-GSAT than those with large numbers of solu-tions. Moreover, this observation is not a�ected byhow much constrained the input formulas are. We ob-served the same general behavior when we repeatedthe experiment for data sets of 3-CNF formulas gener-ated from the under-constrained region (100 variables,410 clauses) and over-constrained region (100 vari-ables, 450 clauses), with under-constrained instanceswith few solutions being the hardest. These results in-dicate that, when generating data sets for experimentalstudies of randomized algorithms, it is perhaps moreimportant to ensure that they have few solutions ratherthan that they come from the critically constrained re-gion.

Figure 2: Accuracy of RWS-GSAT as a funcction ofthe number of satisfying assignmentsCNF formulas encoding k-colorabilityTo expand the scope of applicability of our resultsand argue their robustness, we also used in our studydata sets consisting of CNF formulas encoding the k-colorability problem for graphs. Formulas of this typewere used in the past in the experimental studies of theperformance of satis�ability testing algorithms (John-son et al. 1991). In particular, it was reported in (Sel-man & Kautz 1993) that RWS-GSAT does not performwell on such inputs.Given a graph G with the vertex set V =fv1; : : : ; vng and the edge set E = fe1; : : : ; emg,we construct the CNF formula COL(G; k) as fol-lows. First, we introduce new propositional variablescol(v; i), v 2 V and i = 1; : : : ; k. The variable col(v; i)expresses the fact that the vertex v is colored with thecolor i. Now, we de�ne COL(G; k) to consist of the

following clauses:1. :col(x; i) _ :col(y; i), for every edge fx; yg from G,2. col(x; 1) _ : : : _ col(x; k), for every vertex x of G,3. :col(x; i) _ :col(x; j), for every vertex x of G andfor every i; j, 1 � i < j � k.It is easy to see that there is a one-to-one corre-spondence between k-colorings of G and satisfying as-signments for COL(k;G). To generate formulas forexperimenting with RWS-GSAT (and other satis�abil-ity testing procedures) it is, then, enough to generategraphs G and produce formulas COL(G; k).In our experiments, we used formulas that encode3-colorings for graphs known as 2-trees. The class of2-trees is de�ned inductively as follows:1. A complete graph on three vertices (a \triangle") isa 2-tree2. If T is a 2-tree than a graph obtained by selectingan edge fx; yg in T , adding to T a new vertex z andjoining z to x and y is also a 2-tree.A 2-tree with 6 vertices is shown in Fig. 3. The verticesof the original triangle are labeled 1, 2 and 3. Theremaining vertices are labeled according to the orderthey were added.
1

2

3

6

5

4Figure 3: An example 2-tree with 6 verticesThe concept of 2-trees can be generalized to k-trees,for an arbitrary k � 2. Graphs in these classes areimportant. They have bounded tree-width and, con-sequently, many NP-complete problems can be solvedfor them in polynomial time (Arnborg & Proskurowski1989).We can generate 2-trees randomly by simulating thede�nition given above and by selecting an edge for \ex-pansion" randomly in the current 2-tree T . We gener-ated in this way families G(p), for p = 50; 60; : : : ; 150,each consisting of one hundred randomly generated2-trees with p vertices. Then, we created sets of ofCNF formulas C(p; 3) = fCOL(T; 3):T 2 G(p)g, forp = 50; 60; : : : ; 150. Each formula in a set C(p; 3) hasexactly 6 satisfying assignments (since each 2-tree hasexactly 6 di�erent 3-colorings). Thus, they are appro-priate for testing the accuracy of RWS-GSAT. UsingCNF formulas of this type has an important bene�t.

Data sets can be prepared without the need to usecomplete (but very ine�cient for large inputs) satis�-ability testing procedures. By appropriately choosingthe underlying graphs, we can guarantee the satis�a-bility of the resulting formulas and, often, we also havesome control over the number of solutions.We used the same methodology as the one describedin the previous section to tabulate the accuracy andthe running time of RSW-GSAT for a large range ofchoices for the parameters MF and MT . Based onthese tables, as before, we computed estimates for thetimes ta for a = 0:9 and 0:95, for each of the datasets. The results that present the running time ta asa function of the number of vertices in a graph (whichis of the same order as the number of variables in thecorresponding CNF formula) are gathered in Figure4. They show that RWS-GSAT's performance deteri-orates exponentially (time grows by the factor of 3� 4for every 50 additional vertices).

Figure 4: Running time of RWS-GSAT on formulasencoding 3-colorability, as a function of the number ofverticesAn important question is: how to approach con-straint satisfaction problems is they seem to be beyondthe scope of applicability of randomized algorithms? Acommon approach is to relax some constraints. It oftenworks because the resulting constraint sets (theories)are \easier" to satisfy (admit more satisfying assign-ments). We have already discussed the issue of thenumber of solutinos in the previous section. Now, wewill illustrate the e�ect of increasing the number of so-lutions (relaxing the constraints) in the case of the col-orability problem. To this end, we will consider formu-las from the spaces C(p; 4), representing 4-colorabilityof 2-trees. These formulas have exponentially manysatisfying truth assignments (a 2-tree with p verticeshas exactly 3� 2p 4-colorings). For these formulas wealso tabulated the times ta, for a = 0:95, as a functionof the number of vertices in the graph. The results are

shown in Figure 5.

Figure 5: Running time of RWS-GSAT on formulasencoding 4-colorability, as a function of the number ofverticesThus, despite the fact the size of a formula fromC(p; 4) is larger than the size of a formula from C(p; 3)by the factor of � 1:6, RWS-GSAT's running timesare lower. In particular, within .5 seconds RWS-GSATcan �nd a 4-coloring of randomly generated 2-treeswith 500 vertices. As demonstrated by Figure 4, RWS-GSAT would require thousands of seconds for 2-trees ofthis size to guarantee the same accuracy when �nding3-colorings. ConclusionsIn the paper we formally stated the de�nitions of theaccuracy of a randomized algorithm and of its runningtime relative to a prescribed accuracy. We showed thatthese notions enable objective studies and comparisonsof the performance and quality of randomized algo-rithms. We applied our approach to study the RSW-GSAT algorithm. We showed that, given a prescribedaccuracy, the running time of RWS-GSAT was expo-nential in the number of variables for several classesof randomly generated CNF formulas. We also showedthat the accuracy (and, consequently, the running timerelative to the accuracy) strongly depended on thenumber of satisfying assignments: the bigger this num-ber, the easier was the problem for RWS-GSAT. Thisobservation is independent of the \density" of the in-put formula. The results suggest that satis�able CNFformulas with few satisfying assignments are hard forRWS-GSAT and should be used for comparisons andbenchmarking. One such class of formulas, CNF en-codings of the 3-colorability problem for 2-trees wasdescribed in the paper and used in our study of RWS-GSAT.Exponential behavior of RWS-GSAT points to thelimitations of randomized algorithms. However, our

results indicating that input formulas with more solu-tions are \easier" for RWS-GSAT to deal with, explainRWS-GSAT's success in solving some large practicalproblems. They can be made \easy" for RWS-GSATby relaxing some of the constraints.Finally, let us briey note that we performed a sim-ilar study of another GSAT-type algorithm and ob-tained results consistent with those reported in thepaper. ReferencesArnborg, S., and Proskurowski, A. 1989. Linear timealgorithms for NP-hard problems restricted to partialk-trees. Discrete Appl. Math. 23:11{24.Crawford, J., and Auton, L. 1993. Experimentalresults on crossover point in satis�ability problems.In Proceedings of AAAI-93, 21{27. Menlo Park, CA:American Association for Arti�cial Intelligence.Davis, M., and Putnam, H. 1960. A computing proce-dure for quanti�cation theory. Journal of Associationfor Computing Machines 7.Dubois, O.; Andre, P.; Boufkhad, Y.; and Carlier,J. 1996. Sat versus unsat. In Cliques, Coloring andSatis�ability, Second DIMACS Implementation Chal-lenge.Freeman, J. W. 1996. Hard random 3-sat problemsand the davis-putnam procedure. Arti�cial Intelli-gence 81.Johnson, D.; Aragon, C.; McGeoch, L.; and Schevon,C. 1991. Optimization by simulated annealing: Anexperimental evaluation; part ii, graph coloring andnumber partitioning. Operations Research 39(3).Kirkpatrick, S., and Selman, B. 1994. Critical behav-ior in the satis�ability of random boolean expressions.Science 264:1297{1301.Mazure, B.; Sa��s, L.; and �Eric Gr�egoire. 1997. Tabusearch for sat. In Proceedings of the Fourteenth Na-tional Conference on Arti�cial Intelligence (AAAI-97). MIT Press.Mitchell, D.; Selman, B.; and Levesque, H. 1992.Hard and easy distributions of SAT problems. InProceedings of AAAI-92. Los Altos, CA: AmericanAssociation for Arti�cial Intelligence.Selman, B., and Kautz, H. A. 1992. Planning as sat-is�ability. In Proceedings of the 10th European Con-ference on Arti�cial Intelligence.Selman, B., and Kautz, H. 1993. Domain-independent extensions to GSAT: Solving large struc-tured satis�ability problems. In Proceedings ofIJCAI-93. San Mateo, CA: Morgan Kaufmann.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noisestrategies for improving local search. In Proceedingsof the Twelfth National Conference on Arti�cial In-telligence (AAAI-94).Selman, B.; Kautz, H.; and Cohen, B. 1996. Localsearch stragies for satis�ability. In Cliques, Coloringand Satis�ability, Second DIMACS ImplementationChallenge.Selman, B.; Levesque, H.; and Mitchell, D. 1992. Anew method for solving hard satis�ability problems.In Proceedings of AAAI-92, 440 { 446. Los Altos, CA:American Association for Arti�cial Intelligence.Spears, W. M. 1996. Simulated annealing for hardsatis�ability problems. DIMACS Cliques, Coloringand Satis�ability 26.

