On the accuracy and running time of GSAT

Deborah East and Miroslaw Truszczynski
Department of Computer Science
Uversity of Kentucky
Lexington, KY 40506-0046

east |mirek@cs.uky.edu

Abstract

Randomized algorithms for deciding satisfiability
were shown to be effective in solving problems
with thousands of variables. However, these al-
gorithms are not complete. That is, they pro-
vide no guarantee that a satisfying assignment,
if one exists, will be found. Thus, when studying
randomized algorithms, there are two important
characteristics that need to be considered: the
running time and, even more importantly, the
accuracy — a measure of likelihood that a sat-
istying assignment will be found, provided one
exists. In fact, we argue that without a reference
to the accuracy, the notion of the running time
for randomized algorithms is not well-defined. In
this paper, we introduce a formal notion of accu-
racy. We use it to define a concept of the run-
ning time. We use both notions to study the
random walk strategy GSAT algorithm. We in-
vestigate the dependence of accuracy on proper-
ties of input formulas such as clause-to-variable
ratio and the number of satisfying assignments.
We demonstrate that the running time of GSAT
grows exponentially in the number of variables
of the input formula for randomly generated 3-
CNF formulas and for the formulas encoding 3-
and 4-colorability of graphs.

Introduction

The problem of deciding satisfiability of a boolean for-
mula is extensively studied in computer science. It
appears prominently, as a prototypical NP-complete
problem, in the investigations of computational com-
plexity classes. It is studied by the automated theorem
proving community. It is also of substantial interest to
the AI community due to its applications in several ar-
eas including knowledge representation, diagnosis and
planning.

Deciding satisfiability of a boolean formula is an NP-
complete problem. Thus, it is unlikely that sound and
complete algorithms running in polynomial time exist.
However, recent years brought several significant ad-
vances. First, fast (although, clearly, still exponential

in the worst case) implementations of the celebrated
Davis-Putnam procedure (Davis & Putnam 1960) were
found. These implementations are capable to decide in
the matter of seconds the satisfiability of critically con-
strained CNF formulas with 300 variables and thou-
sands of clauses (Dubois et al. 1996). Second, several
fast randomized algorithms were proposed and thor-
oughly studied (Selman, Levesque, & Mitchell 1992;
Selman, Kautz, & Cohen 1996; Selman & Kautz 1993;
Mazure, Sais, & Eric Grégoire 1997; Spears 1996).
These algorithms randomly generate valuations and
then apply some local improvement method in an at-
tempt to reach a satisfying assignment. They are often
very fast but they provide no guarantee that, given
a satisfiable formula, a satisfying assignment will be
found. That is, randomized algorithms, while often
fast, are not complete. Still, they were shown to be
quite effective and solved several practical large-scale
satisfiability problems (Selman & Kautz 1992).

One of the most extensively studied randomized
algorithms recently is GSAT (Selman, Levesque, &
Mitchell 1992). GSAT was shown to outperform
the Davis-Putnam procedure on randomly generated
3-CNF formulas from the crossover region (Selman,
Levesque, & Mitchell 1992). However, GSAT’s perfor-
mance on structured formulas (encoding coloring and
planning problems) was poorer (Selman, Kautz, & Co-
hen 1996; Selman & Kautz 1993; Selman, Kautz, &
Cohen 1994). The basic GSAT algorithm would often
become trapped within local minima and never reach
a solution. To remedy this, several strategies for es-
caping from local minima were added to GSAT yield-
ing its variants: GSAT with averaging, GSAT with
clause weighting, GSAT with random walk strategy
(RWS-GSAT), among others (Selman & Kautz 1993;
Selman, Kautz, & Cohen 1994). GSAT with random
walk strategy was shown to perform especially well.
These studies, while conducted on a wide range of
classes of formulas rarely address a critical issue of the
likelihood that GSAT will find a satisfying assignment,

if one exists, and the running time is studied without
a reference to this likelihood. Notable exceptions are
(Spears 1996), where RWS-GSAT is compared with a
simulated annealing algorithm SASAT, and (Mazure,
Sais, & Eric Grégoire 1997), where RSW-GSAT is com-
pared to a tabu search method.

In this paper, we propose a systematic approach for
studying the quality of randomized algorithms. To this
end, we introduce the concepts of the accuracy and of
the running time relative to the accuracy. The accu-
racy measures how likely it is that a randomized al-
gorithm finds a satisfying assignment, assuming that
the input formula is satisfiable. It is clear that the
accuracy of GSAT (and any other similar randomized
algorithm) grows as a function of time — the longer
we let the algorithm run, the better the chance that it
will find a satisfying valuation (if one exists). In this
paper, we present experimental results that allow us to
quantify this intuition.

The notion of the running time of a randomized algo-
rithm has not been rigorously studied. First, in most
cases, a randomized algorithm has its running time
determined by the choice of parameters that specify
the number of random guesses, the number of random
steps in a local improvement process, etc. Second, in
practical applications, randomized algorithms are of-
ten used in an interactive way. The algorithm is let
run until it finds a solution or the user decides not to
wait any more, stops the execution, modifies the pa-
rameters of the algorithm or modifies the problem, and
tries again. Finally, since randomized algorithms are
not complete, they may make errors by not finding
satisfying assignments when such assignments exist.
Algorithms that are faster may be less accurate and
the trade-off must be taken into consideration (Spears
1996).

It all points to the problems that arise when at-
tempting to systematically study the running times of
randomized algorithms and extrapolate their asymp-
totic behavior. In this paper, we define the concept
of a running time relative to the accuracy. The rela-
tive running time is, intuitively, the time needed by a
randomized algorithm to guarantee a postulated accu-
racy. We show in the paper that the relative running
time is a useful performance measure for randomized
satisfiability testing algorithms.

Second, we study the dependence of the accuracy
and the relative running time on the number of satis-
fying assignments that the input formula admits. Intu-
itively, the more satisfying assignments the input for-
mula has, the better the chance that a randomized
algorithm finds one of them, and the shorter the time
needed to do so. Again, our results quantify these in-

tuitions.

These results have interesting implications for the
problem of constructing sets of test cases for experi-
menting with satisfiability algorithms. It is now com-
monly accepted that random k-CNF formulas from the
cross-over region are “difficult” from the point of view
of deciding their satisfiability. Consequently, they are
good candidates for testing satisfiability algorithms.
These claims are based on the studies of the perfor-
mance of the Davis-Putnam procedure. Indeed, on av-
erage, it takes the most time to decide satisfiability
of CNF formulas randomly generated from the cross-
over region. However, the suitability of formulas gener-
ated randomly from the cross-over region for the stud-
ies of the performance of randomized algorithms is less
clear. Our results indicate that the performance of ran-
domized algorithms critically depends on the number
of satisfying assignments and much less on the den-
sity of the problem. Both under-constrained and over-
constrained problems with a small number of satisfying
assignments, turn out to be hard for randomized algo-
rithms. In the same time, Davis-Putnam procedure,
while sensitive to the density, is quite robust with re-
spect to the number of satisfying truth assignments.

In the paper, we apply our approach to the al-
gorithm RWS-GSAT from (Selman & Kautz 1993;
Selman, Kautz, & Cohen 1994). This algorithm is
commonly regarded as one of the best randomized al-
gorithms for satisfiability testing to date. For our ex-
periments we used walksat version 35 downloaded from
ftp.research.att.com/dist/ai and run on a SPARC Sta-
tion 20.

Accuracy and running time

Let F be a finite set of satisfiable CNF formulas and let
‘P be a probability distribution defined on F. Let A be
a sound algorithm (randomized or not) to test satisfia-
bility. By the accuracy of A (relative to the probability
space (F,P)), we mean the probability that A finds a
satisfying assignment for a formula generated from F
according to the distribution P. Clearly, for the ac-
curacy of complete algorithms (for all possible spaces
of satisfiable formulas) is 1 and, intuitively, the higher
the accuracy, the more “complete” is the algorithm for
the space (F,P).

When studying and comparing randomized algo-
rithms that are not complete, accuracy seems to be
an important characteristics. It needs to be taken into
account — in addition to the running time. Clearly,
very fast algorithms that often return no satisfying as-
signments, even if they exist, are not satisfactory. In
fact, most of the work on developing better random-
ized algorithms can be viewed as aimed at increasing

the accuracy of these algorithms. Despite this, the ac-
curacy is rarely explicitly mentioned and studied (see
(Spears 1996; Mazure, Sais, & Eric Grégoire 1997)).

We will propose now an approach through which the
running times of randomized satisfiability testing algo-
rithms can be compared. We will restrict our consider-
ations to the class of randomized algorithms designed
according to the following general pattern. These algo-
rithms consist of a series of tries. In each try, a truth
assignment is randomly generated. This truth assign-
ment is then subject to a series of local improvement
steps aimed at, eventually, reaching a satisfying assign-
ment. The maximum number of tries the algorithm
will attempt and the length of each try are the param-
eters of the algorithm. They are usually specified by
the user. We will denote by M T the maximum number
of tries and by M F — the maximum number of local
improvement steps. Algorithms designed according to
this pattern differ, besides possible differences in the
values MT and MF, in the specific definition of the
local improvement process. A class of algorithms of
this structure is quite wide and contains, in particular,
the GSAT family of algorithms, as well as algorithms
based on the simulated annealing approach.

Let A be a randomized algorithm falling into the
class described above. Clearly, its average running
time on instances from the space (F,P) of satisfiable
formulas depends, to a large degree, on the particular
choices for MT and MF. To get an objective mea-
sure of the running time, independent of MT and M F,
when defining time, we require that a postulated ac-
curacy be met. Formally, let a, 0 < a < 1, be a real
number (a postulated accuracy). Define the running
time of A relative to accuracy a, t*, to be the mini-
mum time ¢ such that for some positive integers M7
and M F, the algorithm A with the maximum of MT
tries and with the maximum of M F local improvement
steps per try satisfies:

1. the average running time on instances from (F,P)
is at most ¢, and

2. the accuracy of A on (F,P) is at least a.

Intuitively, ¢® is the minimum expected time that guar-
antees accuracy a.

The concepts of accuracy and relative to the accu-
racy running time open a number of important (an, un-
doubtedly, very difficult) theoretical problems. How-
ever, in this paper we will focus on an experimen-
tal study of accuracy and relative running time for a
GSAT-type algorithm. These algorithms follow the fol-
lowing general pattern for the local improvement pro-
cess. Given a truth assignment, GSAT selects a vari-
able such that after its truth value is flipped (changed

to the opposite one) the number of unsatisfied clauses
is minimum. Then, the flip is actually made depending
on the result of some additional (often again random)
procedure.

In our experiments, we used two types of data sets.
Data sets of the first type consist of randomly gener-
ated 3-CNF formulas (Mitchell, Selman, & Levesque
1992). Data sets of the second type consist of CNF
formulas encoding the k-colorability problem for ran-
domly generated 2-trees. These two classes of data
sets, as well as the results of the experiments, are de-
scribed in detail in the next two sections.

Random 3-CNF formulas

Consider a randomly generated 3-CNF formula F', with
N variables and the ratio of clauses to variables equal
to L. Intuitively, when L increases, the probability
that F' is satisfiable should decrease. It is indeed
so (Mitchell, Selman, & Levesque 1992). What is
more surprising, it switches from being close to one
to being close to zero very abruptly in a very small
range for L around approximately the value 4.2446/N
(Crawford & Auton 1993) (a slightly different estimate,
4.17 + 31N~ ?/3) was given in (Kirkpatrick & Sel-
man 1994)). The set of 3-CNF formulas with N vari-
ables and L = 4.24 + 6/N will be called the cross-over
region and will be denoted by CR(N). Implementa-
tions of the Davis-Putnam procedure take, on average,
the most time on 3-CNF formulas generated from the
cross-over regions (according to a uniform probability
distribution). Thus, these formulas are commonly re-
garded as good test cases for experimental studies of
the performance of satisfiability algorithms (Crawford
& Auton 1993; Freeman 1996).

We used seven sets of satisfiable 3-CNF formulas
generated from the cross-over regions CR(N), N =
100,150, ...,400. These data sets are denoted by
DS(N). Each data set DS(N) was obtained by gener-
ating randomly 3-CNF formulas with N variables and
L =430 (for N = 100) and L = 4.25 (for N > 150)
clauses. For each formula, the Davis-Putnam algo-
rithm was then used to decide its satisfiability. The
first one hundred satisfiable formulas found in this way
were chosen to form the data set.

For each data set DS(N), we determined values for
MF, say MFy,...,MF,, and MTy,..., MT, for use
with RWS-GSAT, big enough to result in the accuracy
at least 0.98. For instance, for N = 100, M F ranged
from 100 to 1000, with the increment of 100, and MT
ranged from 5 to 50, with the increment of 5. Next, for
each combination of M F and M T, we ran RWS-GSAT
on all formulas in DS(N) and tabulated both the run-
ning time and the percentage of problems for which the

satisfying assignment was found. Fixing a required ac-
curacy, say at the level of a, we then looked for the best
time which resulted in this (or higher) accuracy. We
used this time as an experimental estimate for t*. The
results of this experiment are shown in Figure 1 for two
values for a: 0.9 and 0.95. Both curves demonstrate
exponential growth, with the running time increasing
by the factor of 1.5 - 2 for every 50 additional variables
in the input problems. Thus, while GSAT outperforms
Davis-Putnam procedure for instances generated from
the critical regions, if we prescribe the accuracy, it is
also exponential and, thus, will quickly reach the limits
of its applicability. We did not extend our results be-
yond formulas with up to 400 variables due to the lim-
itations of the Davis-Putnam procedure, (or any other
complete method to test satisfiability). For problems
of this size, GSAT is still extremely effective (takes only
about 2.5 seconds). Data sets used in the next section
do not have this limitation (we know all formulas in
these sets are satisfiable).

300
250 a=4) —
200
1.50
100
0.50

0 T T T T T
100 150 200 20 300 a0 400
MNunaber af Variahlea

w B O R PIN

Figure 1: Running time of GSAT on randomly gener-
ated 3-CNF formulas, as a function of the number of
variables

In the same way as the data sets DS(INV), we con-
structed data sets D.S(100,pg—1,pk), where pp = 1,
and pp = 273 %100, k = 2,...,11. Each data set
DS(100, pr—1, pr) consists of 100 satisfiable 3-CNF for-
mulas generated from the cross-over region C'R(100)
and having more than pg_; and no more than py sat-
isfying assignments. Each data set was formed by ran-
domly generating 3-CNF formulas from the cross-over
region CR(100) and by selecting the first 100 formu-
las with the number of satisfying assignments falling in
the prescribed range (again, we used the Davis-Putnam
procedure, here).

For each data set we ran the RWS-GSAT algorithm
with MF = 500 and MT = 50 thus, allowing the
same upper limits for the number of random steps for
all data sets (these values resulted in the accuracy of
.99 in our experiments with the data set DS(100) dis-

cussed earlier). Table 2 summarizes our findings. It
shows that there is a strong dependence of the accu-
racy on the number of solutions. Generally, instances
with small number of solutions are much harder for
RWS-GSAT than those with large numbers of solu-
tions. Moreover, this observation is not affected by
how much constrained the input formulas are. We ob-
served the same general behavior when we repeated
the experiment for data sets of 3-CNF formulas gener-
ated from the under-constrained region (100 variables,
410 clauses) and over-constrained region (100 vari-
ables, 450 clauses), with under-constrained instances
with few solutions being the hardest. These results in-
dicate that, when generating data sets for experimental
studies of randomized algorithms, it is perhaps more
important to ensure that they have few solutions rather
than that they come from the critically constrained re-
gion.

e op R R R R

50

| | | | | | | | | |
AL 25 5 1 02 4 8 16 32 64 128258
MNumber of Salutions 100

Figure 2: Accuracy of RWS-GSAT as a funcction of
the number of satisfying assignments

CNF formulas encoding k-colorability

To expand the scope of applicability of our results
and argue their robustness, we also used in our study
data sets consisting of CNF formulas encoding the k-
colorability problem for graphs. Formulas of this type
were used in the past in the experimental studies of the
performance of satisfiability testing algorithms (John-
son et al. 1991). In particular, it was reported in (Sel-
man & Kautz 1993) that RWS-GSAT does not perform
well on such inputs.

Given a graph G with the vertex set V =
{v1,...,v,} and the edge set E = {e1,...,en},
we construct the CNF formula COL(G, k) as fol-
lows. First, we introduce new propositional variables
col(v,i),v €V and i =1,...,k. The variable col(v, 1)
expresses the fact that the vertex v is colored with the
color i. Now, we define COL(G, k) to consist of the

following clauses:
1. —col(z,i) V —col(y, i), for every edge {z,y} from G,
2. col(z,1) V...V col(z, k), for every vertex z of G,

3. —col(x,i) V —col(z,j), for every vertex of G and
for every i,7, 1 <i< j <k.

It is easy to see that there is a one-to-one corre-
spondence between k-colorings of G and satisfying as-
signments for COL(k,G). To generate formulas for
experimenting with RWS-GSAT (and other satisfiabil-
ity testing procedures) it is, then, enough to generate
graphs G and produce formulas COL(G, k).

In our experiments, we used formulas that encode
3-colorings for graphs known as 2-trees. The class of
2-trees is defined inductively as follows:

1. A complete graph on three vertices (a “triangle”) is
a 2-tree

2. If T is a 2-tree than a graph obtained by selecting
an edge {z,y} in T, adding to T a new vertex z and
joining z to = and y is also a 2-tree.

A 2-tree with 6 vertices is shown in Fig. 3. The vertices
of the original triangle are labeled 1, 2 and 3. The
remaining vertices are labeled according to the order
they were added.

Figure 3: An example 2-tree with 6 vertices

The concept of 2-trees can be generalized to k-trees,
for an arbitrary £ > 2. Graphs in these classes are
important. They have bounded tree-width and, con-
sequently, many NP-complete problems can be solved
for them in polynomial time (Arnborg & Proskurowski
1989).

We can generate 2-trees randomly by simulating the
definition given above and by selecting an edge for “ex-
pansion” randomly in the current 2-tree T'. We gener-
ated in this way families G(p), for p = 50,60, ..., 150,
each consisting of one hundred randomly generated
2-trees with p vertices. Then, we created sets of of
CNF formulas C(p,3) = {COL(T,3):T € G(p)}, for
p = 50,60,...,150. Each formula in a set C(p, 3) has
exactly 6 satisfying assignments (since each 2-tree has
exactly 6 different 3-colorings). Thus, they are appro-
priate for testing the accuracy of RWS-GSAT. Using
CNF formulas of this type has an important benefit.

Data sets can be prepared without the need to use
complete (but very inefficient for large inputs) satisfi-
ability testing procedures. By appropriately choosing
the underlying graphs, we can guarantee the satisfia-
bility of the resulting formulas and, often, we also have
some control over the number of solutions.

We used the same methodology as the one described
in the previous section to tabulate the accuracy and
the running time of RSW-GSAT for a large range of
choices for the parameters MF and MT. Based on
these tables, as before, we computed estimates for the
times t* for ¢ = 0.9 and 0.95, for each of the data
sets. The results that present the running time ¢ as
a function of the number of vertices in a graph (which
is of the same order as the number of variables in the
corresponding CNF formula) are gathered in Figure
4. They show that RWS-GSAT’s performance deteri-
orates exponentially (time grows by the factor of 3 —4
for every 50 additional vertices).

10.00
9.00
£.00
7.00
6.00

k=3

5.00

4.00

B ARDS A DN

3.00
2.00
1.00+

T T T
50 100 150 200 250
Number of Vertices

Figure 4: Running time of RWS-GSAT on formulas
encoding 3-colorability, as a function of the number of
vertices

An important question is: how to approach con-
straint satisfaction problems is they seem to be beyond
the scope of applicability of randomized algorithms? A
common approach is to relax some constraints. It often
works because the resulting constraint sets (theories)
are “easier” to satisfy (admit more satisfying assign-
ments). We have already discussed the issue of the
number of solutinos in the previous section. Now, we
will illustrate the effect of increasing the number of so-
lutions (relaxing the constraints) in the case of the col-
orability problem. To this end, we will consider formu-
las from the spaces C(p,4), representing 4-colorability
of 2-trees. These formulas have exponentially many
satisfying truth assignments (a 2-tree with p vertices
has exactly 3 x 2P 4-colorings). For these formulas we
also tabulated the times t%, for a = 0.95, as a function
of the number of vertices in the graph. The results are

shown in Figure 5.

0.5

0.4 4

0.3
=4
0.2

L =T - I s}

0.1

100 200 300 400 500

Number of Vertices

Figure 5: Running time of RWS-GSAT on formulas
encoding 4-colorability, as a function of the number of
vertices

Thus, despite the fact the size of a formula from
C(p,4) is larger than the size of a formula from C(p, 3)
by the factor of ~ 1.6, RWS-GSAT’s running times
are lower. In particular, within .5 seconds RWS-GSAT
can find a 4-coloring of randomly generated 2-trees
with 500 vertices. As demonstrated by Figure 4, RWS-
GSAT would require thousands of seconds for 2-trees of
this size to guarantee the same accuracy when finding
3-colorings.

Conclusions

In the paper we formally stated the definitions of the
accuracy of a randomized algorithm and of its running
time relative to a prescribed accuracy. We showed that
these notions enable objective studies and comparisons
of the performance and quality of randomized algo-
rithms. We applied our approach to study the RSW-
GSAT algorithm. We showed that, given a prescribed
accuracy, the running time of RWS-GSAT was expo-
nential in the number of variables for several classes
of randomly generated CNF formulas. We also showed
that the accuracy (and, consequently, the running time
relative to the accuracy) strongly depended on the
number of satisfying assignments: the bigger this num-
ber, the easier was the problem for RWS-GSAT. This
observation is independent of the “density” of the in-
put formula. The results suggest that satisfiable CNF
formulas with few satisfying assignments are hard for
RWS-GSAT and should be used for comparisons and
benchmarking. One such class of formulas, CNF en-
codings of the 3-colorability problem for 2-trees was
described in the paper and used in our study of RWS-
GSAT.

Exponential behavior of RWS-GSAT points to the
limitations of randomized algorithms. However, our

results indicating that input formulas with more solu-
tions are “easier” for RWS-GSAT to deal with, explain
RWS-GSAT’s success in solving some large practical
problems. They can be made “easy” for RWS-GSAT
by relaxing some of the constraints.

Finally, let us briefly note that we performed a sim-
ilar study of another GSAT-type algorithm and ob-
tained results consistent with those reported in the

paper.

References

Arnborg, S., and Proskurowski, A. 1989. Linear time
algorithms for NP-hard problems restricted to partial
k-trees. Discrete Appl. Math. 23:11-24.

Crawford, J., and Auton, L. 1993. Experimental
results on crossover point in satisfiability problems.
In Proceedings of AAAI-93, 21-27. Menlo Park, CA:
American Association for Artificial Intelligence.

Davis, M., and Putnam, H. 1960. A computing proce-
dure for quantification theory. Journal of Association
for Computing Machines 7.

Dubois, O.; Andre, P.; Boufkhad, Y.; and Carlier,
J. 1996. Sat versus unsat. In Cliques, Coloring and
Satisfiability, Second DIMACS Implementation Chal-
lenge.

Freeman, J. W. 1996. Hard random 3-sat problems
and the davis-putnam procedure. Artificial Intelli-
gence 81.

Johnson, D.; Aragon, C.; McGeoch, L.; and Schevon,
C. 1991. Optimization by simulated annealing: An
experimental evaluation; part ii, graph coloring and
number partitioning. Operations Research 39(3).

Kirkpatrick, S., and Selman, B. 1994. Critical behav-
ior in the satisfiability of random boolean expressions.
Science 264:1297-1301.

Mazure, B.; Sais, L.; and Eric Grégoire. 1997. Tabu
search for sat. In Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI-
97). MIT Press.

Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and easy distributions of SAT problems. In
Proceedings of AAAI-92. Los Altos, CA: American
Association for Artificial Intelligence.

Selman, B., and Kautz, H. A. 1992. Planning as sat-
isfiability. In Proceedings of the 10th FEuropean Con-
ference on Artificial Intelligence.

Selman, B., and Kautz, H. 1993. Domain-
independent extensions to GSAT: Solving large struc-
tured satisfiability problems. In Proceedings of
1JCAI-93. San Mateo, CA: Morgan Kaufmann.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proceedings
of the Twelfth National Conference on Artificial In-
telligence (AAAI-94).

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local
search stragies for satisfiability. In Cliques, Coloring
and Satisfiability, Second DIMACS Implementation
Challenge.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
new method for solving hard satisfiability problems.
In Proceedings of AAAI-92, 440 — 446. Los Altos, CA:
American Association for Artificial Intelligence.

Spears, W. M. 1996. Simulated annealing for hard
satisfiability problems. DIMACS Cliques, Coloring
and Satisfiability 26.

