Journal of Atrtificial Intelligence Research X (X) X Submitted X; published X

The Computational Complexity of Dominance and Consistency in

CP-Nets
Judy Goldsmith GOLDSMIT@CS.UKY.EDU
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046, USA
Jérbme Lang LANG @IRIT.FR

IRIT
Université de Toulouse, UPS
31062 Toulouse Cedex, Frarice

Miroslaw Truszczynhski MIREK @CS.UKY.EDU
Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046, USA

Nic Wilson N.WILSON@4C.UCC.IE
Cork Constraint Computation Centre

University College

Cork, Ireland

Abstract

We investigate the computational complexity of testing d@nce and consistency in CP-nets.
Previously, the complexity of dominance has been detemnfoerestricted classes in which the
dependency graph of the CP-net is acyclic. However, ther@aferences of interest that define
cyclic dependency graphs; these are modeled with generale®P In our main results, we show
here that both dominance and consistency for general CGPanetPSPACE-complete. We then
consider the concept of strong dominance, dominance dgoisaand dominance incomparability,
and several notions of optimality, and identify the compiierf the corresponding decision prob-
lems. The reductions used in the proofs are from STRIPS pighand thus reinforce the earlier
established connections between both areas.

1. Introduction

The problems of eliciting, representing and computing with preferencesaoveilti-attribute do-
main arise in many fields such as planning, design, and group decision maHkowever, in a
multi-attribute preference domain, such computations may be nontrivial, abaweleere for the
CP-net representation. Natural questions that arise in a preferent&irdare, “Is this item pre-
ferred to that one?”, and “Is this set of preferences consistent?& kdomally, a set of preferences
is consistent if and only if no item is preferred to itself. We assume thatngrefes ar¢ransitive
i.e., if a is preferred tg3, andp is preferred toy, thena is preferred toy.

An explicit representation of a preference ordering of elements, alkml@tcomesof such
multi-variable domains is exponentially large in the number of attributes. Therefbresearchers

x. New address: LAMSADE, Université Paris-Dauphine, 75775 Paieg 16, France.

(©X Al Access Foundation. All rights reserved.

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

have developed languages for representing preference orderiagaiccinct way. The formalism

of CP-nets (Boutilier et al., 1999) is among the most popular ones. A CProgtles a succinct
representation of preference ordering on outcomes in terms of lodarg@nee statements of the
form p: x > X, wherex;,x; are values of a variablk andp is a logical condition. Informally, a
preference statemept x; > x; means that givem, x; is strictly preferred t; ceteris paribusthat

is, all other things being equalThe meaning of a CP-net is given by a certain ordering relation,
calleddominanceon the set of outcomes, derived from such reading of preferaatengents. If
one outcome dominates another, we say that the dominant prefésred

Reasoning about the preference ordering (dominance relation)sseorby a CP-net is far from
easy. The key problems includi®minance testingndconsistency testingin the first problem,
given a CP-net and two outcomesandf3, we want to decide wheth@ dominatesx. The second
problem asks whether there is a dominance cycle in the dominance ordefingddby an input
CP-net, that is, whether there is an outcome that dominates (is preferitsio)

We study the computational complexity of these two problems. The results abtaioeto this
work concerned only restricted classes of CP-nets, all requiring teagréph of variable depen-
dencies implied by preference statements in the CP-natpeic Under certain assumptions, the
dominance-testing problem is MP and, under some additional assumptions, eveh {omsh-
lak & Brafman, 2002; Boutilier et al., 2004a). We show that the complexity ingdmeeral case
is PSPACE-complete, and this holds even for the propositional case, by exhibitingcitin8el a
PSPACE-hardness proof for dominance testing.

We then turn to consistency testing. While acyclic CP-nets are guaranteedtm$istent, this
is not the case with general CP-nets (Domshlak & Brafman, 2002; Brafnizimopoulos, 2004).
In Section 5, we show that consistency testing is as hard as dominance.testing

In the following two sections we study decision problems related to dominamtegimality
in CP-nets. First, we consider the complexity of deciding strict dominaneeindmce equivalence
and dominance incomparability of outcomes in a CP-net. Then, we study théetitypf deciding
the optimality of outcomes, and the existence of optimal outcomes, for seedi@ s of optimality.

To prove the hardness part of the results, we first establishSRaCE-hardness of some prob-
lems related to propositional STRIPS planning. We then show that theslemoban be reduced
to CP-net dominance and consistency testing by exploiting connectionsdretetions in STRIPS
planning and preference statements in CP-nets.

The complexity results in this paper address CP-nets whose dominancenretatyocontain
cycles. Most earlier work has concentrated on the acyclic model. Howeveargued earlier, for
instance by Domshlak and Brafman (2002), acyclic CP-nets are natienffiy expressive to cap-
ture human preferences on even some simple domai@snsider, for instance, a diner who has
to choose either red or white wine, and either fish or meat. Given red wigy ptiefer meat, and
conversely, given meat they prefer red wine. On the other hand) gitite wine, they prefer fish,
and conversely, given fish they prefer white wine. This gives a ctamtisyclic CP-net, and there is
no acyclic CP-net giving rise to the same preferences on outcomeaicdx\glicity of preference

1. We do not mean to say that cyclic CP-nets are sufficient to capliypessible human preferences on simple domains
— this is obviously not true. However, we note that every preferedagar extendghe preference relation induced
by some CP-net with possibly cyclic dependencies. Not only is this propefdonger true when cyclic dependencies
are precluded but, in the case of binary variables, the number of limdarsothat extends some acyclic CP-net is
exponentially smaller than the number of all linear orders (Xia et al., 2008

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

variables does not necessarily lead to a cyclic order on outcomes.

We assume some familiarity with the complexity cl&SPACE. We refer to Papadimitriou
(1994) for details. In particular, we later use the identiti®SPACE = PSPACE = coPSPACE.

In several places, we will consider versions of decision problem, inwinigut instances are
assumed to have some additional property. Such problems are usuallydtathin the following
way: “Q, givenR’2. We first note that ©, givenR’ is not the same problem a)}‘andR’. Let
us recall the definition of a decision problem as presented by Ausiello ¢1989). Adecision
problemis a pair®? = (lp,Yp) wWherely is a set of strings (formally, a subset 5f, whereX is a
finite alphabet), The decision probleth= (I»,Yp) reads as follows: given a stringe |, decide
whetherx € Yp. A problem(l»,Ys) is in a complexity clas€ if the languagéy, C X* is in C (this
does not depend adip). A problem(lq,Yq) is reducible to(l»,Yp) if there is a polynomial-time
functionF such that (1) for everx € I, F(X) € lp, and (2) for ever, € I, x € Yq if and only
if F(x) € Yp. Thus, if 2 is the decision problem@, givenR’, then |, is the set of all strings
satisfyingR, while Y is the set of all strings satisfyingN Q. For all such problems, it is granted
that the input belongs tR; to solve them we do not have to check that the input string is indeed
an element oR. Such problems@Q, givenR’ are widespread in the literature. However, in most
casesRis a very simple property, that can be checked in polynomial (and ofterr)itiese, such
as “decide whether a graph possesses a Hamiltonian cycle, given ¢énatvevtex has a degree at
most 3”. Here, however, we will consider several proble@sdivenR’ whereRitself is not in the
classP (unless the polynomial hierarchy collapses). However, as we saie attm/complexity of
recognizing whether a given string is idoes not matter. In other words, the complexity Qf,
given R’ is the same, whethdR can be recognized in unit time or BSPACE-complete. We will
come back to this when the first such problem appears in the paper (gf.aibieof Proposition 5).
In no case that we consider is the complexityRareater than the complexity 6J.

A part of this paper (up to Section 5) is an extended version of our eadigerence publication
(Goldsmith et al., 2005). Sections 6 and 7 are entirely new.

2. Generalized Propositional CP-Nets

LetV = {x1,...,X} be afinite set ofariables For each variablg € V, we assume a finitdomain
Dy of values An outcomes ann-tuple (d,...,d) of Dy, x --- x Dy,.

In this paper, we focus opropositionalvariables: variables witbinary domains. LeV be a
finite set of propositional variables. For evety V, we setDy = {x,—x} (thus, we overload the
notation and writex both for the variable and for one of its values). We refex samd—x as literals.
Given a literall we write -l to denote the dual literal to The focus on binary variables makes the
presentation clearer and has no impact on our complexity results.

We also note that in the case of binary domains, we often identify an outcoméheiget of
its values (literals). In fact, we also often identify such sets with the conjurstbtheir elements.
Sets (conjunctions) of literals corresponding to outcomes are consisttnbeplete.

2. In the literature one often finds the following formulatiorQ,“even if R’, which does not have exactly the same
meaning asQ, givenR’. Specifically, when sayingQ is NP-complete, even iR’, one means Q is NP-complete,
and Q givenRis NP-complete as well”.

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

A conditional preference rulésometimes, @reference ruler just arule) overV is an expres-
sionp: | > —l, wherel is a literal of some atom €V andp is a propositional formula ovéf that
does not involve variable.

In the rest of the paper, we need to refer to two different languageenditional preference
language where for every (binary) varialllehe conditional preference table foneeds to specify
a preferred value ox for every possible assignment of its parent variables, and a moreajener
language where the tables may be incomplete (for some values of its paremeeférred value of
x may not be specified) and/or locally inconsistent (for some values of isfsarthe table may both
contain the information that is preferred and the information thak is preferred). We call these
languages respectively CP-nets and GCP-nets (for “generalizewSP- Note that GCP-nets are
not new, as similar structures have been discussed before (Domshlalk2&t03). The reason why
we use this terminology (“CP-nets” and “GCP-nets”) is twofold. First, af¢ime assumptions of
completeness and local consistency for CP-nets are sometimes relaxegapms on CP-nets do
make them. Second, we could have used “CP-nets” and “locally consistanplete CP-nets”
instead of “GCP-nets” and “CP-nets”, but we felt our notation is simpldrraare transparent.

Definition 1 (Generalized CP-net) A generalized CP-nef (for short, aGCP-ne} over V is a
set of conditional preference rules. ForexV we define p(x) and [(x), usually written just:
p*(x) and p (x), as follows: g (x) is equal to the disjunction of all p such that there exists a rule
p:x>-xinC; p: (X) is the disjunction of all p such that there exists a rulefx > x in C. We
define the associated directed grapp @he dependency graptover V to consist of all pairgy, x)

of variables such that y appears in eithet (x) or p~(x).

In our complexity results we will also need the following representation of @&R: a GCP-
netC is said to be irconjunctive formif C only contains rulep : | > -l such thatp is a (possibly
empty) conjunction of literals. In this case all formufas(x), p* (x) are in disjunctive normal form,
that is, a disjunction of conjunctions of literals (includifg- the empty conjunction of literals).

GCP-nets determine a transitive relation on outcomes, interpreted in termefefgmce. A
preference rulg : | > -l represents the statement “given tipaholds,| is preferred to-l ceteris
paribug’. Its intended meaning is as follows. If outcoriesatisfiesp andl, thenf is preferred to
the outcomex which differs fromf only in that it assigns-l to variablex. In this situation we say
that there isan improving flipfrom o to B sanctionedy the rulep: | > —l.

Definition 2 If ag,...,0n is a sequence of outcomes with>ml and each next outcome in the
sequence is obtained from the previous one by an improving flip, thenywbaax, ..., a0, is an
improvingsequence frorag to o, for the GCP-net, and that,, dominatesig, writtenog < .

Finally, a GCP-net isonsistenif there is no outcome which is strictly preferred to itself, that
is, such thatt < a.

The main objective of the paper is to establish the complexity of the following twbl@ms
concerning the notion of dominance associated with GCP-nets (sometimegsestdetions on the
class of input GCP-nets).

Definition 3

GCP-DOMINANCE: given a GCP-net C and two outcomes®ndf3, decide whethem < 3 in C, that
is, whethei3 dominatesi in C.

GCP-CONSISTENCY. given a GCP-net C, decide whether C is consistent.

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

GCP-nets extend the notion of CP-nets (Boutilier et al., 1999). There ar@rwperties of
GCP-nets that are essential in linking the two notions.

Definition 4
A GCP-net C over V ifcally consistenif for every xe V, the formula g (x) A pd (x) is unsatisfi-
able. Itislocally completsif for every xe V, the formula g (x) v pd () is a tautology.

Informally, local consistency means that there is no outcome in whichxbistipreferred over
—xand-xis preferred ovex. Local completeness means that, for every variabile every outcome
eitherx is preferred overx or —x is preferred ovek.

Definition 5 (Propositional CP-net) A CP-netover the setV of (propositional) variables is a lo-
cally consistent and locally complete GCP-net over V.

It is not easy to decide whether a GCP-net is actually a CP-net. In factaskeis cONP-
complete.

Proposition 1 The problem of deciding, given a GCP-net C, whether C is a CP-netN®-
complete.

Proof: Deciding whether a GCP-né€tis a CP-net consists of checking local consistency and local
completeness. Each of these tasks amounts/adidity tests (one for each variable). It follows that
deciding whether a GCP-net is a CP-net is the intersectiom pf@lems froncoNP. Hence, it is

in coNP, itself. Hardness comes from the following reduction fromsaATt. To any propositional
formula¢ we assign the CP-n€X(¢), defined by its set of variabl&&ar($) U{z}, wherez¢ Var(¢),

and the following tables:

o for any variablex# z Py, (X) = T e (X) = L;

. pé(q))(z) =0; pgy (2 = L.

For any variablex # z, we havepaq))(x) A p5<¢)(x) =1; moreover,paq))(z) A p6(¢)(z) = 1. There-
fore, C(9) is locally consistent. Now, for any variable# z, we havep&d)) (X) vV pg(q))(x) =T.
Moreover,pg(q,)(z) V pg(q))(z) =-¢. Thus,C(¢) is locally complete if and only i is unsatisfiable.
It follows thatC(¢) is a CP-net if and only i is unsatisfiable. [|

Many works on CP-nets make use of explicit conditional preferencegade listeverycom-
bination of values of parent variables (variables on whiclependsgxactlyonce, each such com-
bination designating either or —x as preferred. Clearly, CP-nets in this restricted sense can be
regarded as CP-nets in our sense that, for every vanabhisfy the following condition:

if y1,...,yk are all the atoms appearing p1 (x) and p~ (x) theneverycomplete and
consistent conjunction of literals ovéy,...,yn} appears as a disjunct in exactly one
of p™(x) andp™ (x).

3. There are exceptions. Some are discussed for instance by Boutidie(2004) in Section 6 of their paper.

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Under this embedding, the concepts of dominance and consistency weigecbidere for GCP-nets
generalize the ones considered for CP-nets as defined by Boutilie(20@4).

ProblemscpP-DOMINANCE andCP-CONSISTENCYare defined analogously to Definition 3. In
the paper we are interested in the complexity of dominance and consistehdss for both GCP-
nets and CP-nets. Therefore, the matter of the way in which these netsiglspCP-nets, as for
GCP-nets there are no alternative proposals) are represented is imjp@ia representation of
CP-nets is often more compact than the one proposed by Boutilier et al4)(280the formulas
p*(x) and p~(x) implied by the conditional preference tables can often be given equiydden
exponentially smaller, disjunctive normal form representations. Thusnvdefining a decision
problem, it is critical to specify the way to represent its input instances eaefitesentation may
affect the complexity of the problem. Unless stated otherwise, we assum@@ifanets (and thus,
CP-nets) are represented as a set of preference rules, as e@soridefinition 1. Therefore, the
size of a GCP-net is given by the total size of the formyda&), p* (x), x e V.

We now note a key property of consistent GCP-nets, which we will usraltimes later in the
paper.

Proposition 2 If a GCP-net C is consistent then it is locally consistent.

Proof: If C is not locally consistent then there exists a variablend an outcome satisfying
Pe (X) A pd (). Thena < o can be shown by flipping from its current value im to the dual value
and then flipping it back: sinae satisfiespc (x) A p¢ (x), and sincepe (x) A pt (x) does not involve
any occurrences of, both flips are allowed. [

Finally, we conclude this section with an example illustrating the notions discassse.

Example. Consider a GCP-nef on variablesv = {x,y} with four rules, defined as follows:
X1y >y, —XImy >y yioxX > X oyl x> —x. We havept (y) = x, p(y) = —x, pt(x) = -y and
p~(x) =y. ThereforeC is locally consistent and locally complete, and so is a CP-net.

There is a cycle of dominance between outcomesy < =XAY < =XA 7y < XA -y < XAY,
and soC is inconsistent. This shows that consistency is a strictly stronger propentyldical
consistency.

3. Propositional STRIPS Planning

In this section we derive some technical results on propositional STRE#PBipg which form the
basis of our complexity results in Sections 4 and 5. We establish the complexitstroéxistence
problems for propositional STRIPS planning under restrictions on inptarings that make the
problem of use in the studies of dominance and consistency in GCP-nets.

LetV be a finite set of variables. stateoverV is a complete and consistent set of literals over
V, which we often view as the conjunction of its members. A state is therefolieadent to an
outcomedefined in a CP-nets context.

Definition 6 (Propositional STRIPS planning) By a propositional STRIPS instancge mean a
tuple (V,0o,Y,ACT), where

1. V is afinite set of propositional variables;

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

2. 0g is a state over V, called thaitial state
3. yis a state called thgoat*

4. ACT is a finite set odictions where each action & ACT is described by a consistent con-
junction of literals pré¢a) (a precondition and a consistent conjunction of literals p(est (a
postcondition, or effegt®

An action a isexecutablen a statea if a = pre(a). Theeffectof a in statea, denoted by effa, a),

is the statea’ containing the same literals as for all variables not mentioned in pgst), and
the literals of posta). We assume that an action can &epliedto any state, but that it does not
change the state if its preconditions do not holdaif~ pre(a) (given that states are complete,
this is equivalent ta = —pre(a)) then effa,a) = a. This assumption has no influence as far as
complexity results are concerned.

ThePROPOSITIONAL STRIPS PLAN EXISTENCProblem, orsTRIPS PLANfor short, is to de-
cide whether for a given propositional STRIPS instafdg,y,ACT) there is a finite sequence
of actions leading from the initial stateg to the final statey. Each such sequence ispdan for
(V,00,Y,ACT). A plan isirreducibleif every one of its actions changes the state.

We assume, without loss of generality, that for any acéipno literal inposi{a) appears also
in pre(a); otherwise we can omit the literal froposta) without changing the effect of the action;
if posia) then becomes an empty conjunction, the actiaran be omitted fronACT as it has no
effect.

We have the following result due to Bylander (1994).

Proposition 3 (Bylander, 1994) STRIPS PLANiIS PSPACE-complete.

Typically, propositional STRIPS instances do not require that goaltabess Instead, goals are
defined as consistent conjunctions of literals that do not need to be comipletech a setting, a
plan is a sequence of actions that leads from the start state to a state in vehgattholds. We
restrict consideration toompletegoals. This restriction has no effect on the complexity of the plan
existence problem: it remairBSPACE-complete under the goal-completeness restriction (Lang,
2004).

3.1 Acyclic STRIPS

Definition 7 (Acyclic sets of actions)A set of actions ACT (we use the same notation as in Defi-
nition 6) isacyclicif there is no statex such that(V,a,a,ACT) has a non-empty irreducible plan,
that is to say, if there are no non-trivial directed cycles in the graph on stauced by ACT.

We will now establish the complexity of the following problem:

ACTION-SET ACYCLICITY: given a seACT of actions, decide wheth&CT is acyclic.

Proposition 4
ACTION-SET ACYCLICITY is PSPACE-complete.

4. Note that in standargiTRIPSthe goal can be a partial state. This point is discussed just after Propditio
5. We emphasize that we allow negative literals in preconditions and goafse 8efinitions oSTRIPSdo not allow
this. This particular variant TRIPSis sometimes called PSN (propositiosaliriPswith negation) in the literature.

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Proof: The argument for the membershipRBPACE is standard; we nevertheless give some details.
We will omit such details for further proofs of membershipR8PACE. The following nondeter-
ministic algorithm decides th&CT has a cycle:

guesg;
o = 0p;
repeat
guess an actioa € ACT,;
o' :=eff(a,a);
o:=a
until o = ag.

This algorithm works in nondeterministic polynomial space (because we esly to storeg,
a anda’), which shows thaBCTION-SET ACYCLICITY is in NPSPACE, and therefore iPSPACE,
SiNCeNPSPACE = PSPACE. Thus,ACTION-SET ACYCLICITY is in coPSPACE, hence inPSPACE,
sincecoPSPACE = PSPACE.

We will now show that theomplemenbf the ACTION-SET ACYCLICITY problem iSPSPACE-
hard by reducing thecycLIC STRIPS PLANproblem to it.

Let PE = (V,00,Y,ACT) be an instance of thecycLIC STRIPS PLANproblem. In particular,
we have thaACT is acyclic. Leta be a new action defined lpye(a) = yandposta) = ap. Itis easy
to see thaACTU {a} is not acyclic if and only if there exists a plan f&tE. Thus, thePSPACE-
hardness of theomplemenbf the ACTION-SET ACYCLICITY problem follows from Proposition
5. Consequently, theCTION-SET ACYCLICITY problem iscoPSPACE-hard. SincePSPACE =
coPSPACE, the ACTION-SET ACYCLICITY problem isPSPACE-hard, as well. [|

Next, we consider the STRIPS planning problem restricted to instancdsaiebacyclic sets of
actions. Formally, we consider the following problem:

ACYCLIC STRIPS PLAN Given a propositional STRIPS instan@é ao,y,ACT) such
thatACT is acyclic andug # v, decide whether there is a plan M, ag, y, ACT)

This is the first of our problems of the forn@); given R’ that we encounter and it illustrates
well the concerns we discussed at the end of the introduction. Résehe set of all propositional
STRIPS instanced/, ao,y, ACT) such thatACT is acyclic, andQ is the set of all such instances for
which there is a plan fofV, ao,y,ACT). Checking whether a given propositional STRIPS instance
is actually acyclic is itselPSPACE-complete (this is what Proposition 4 states), but this does not
matter when it comes to solvimgcYCLIC STRIPS PLAN when considering an instanceafycLic
STRIPS PLAN we already know that it is acyclic (and this is reflected in the reduction helow

Proposition 5
ACYCLIC STRIPS PLANiS PSPACE-complete.

Proof: The argument for the membershipASPACE is standard (cf. the proof of Proposition 4). To
prove PSPACE-hardness, we first exhibit a polynomial-time reductiorfrom sTRIPS PLAN Let
PE = (V,00,Y,ACT) be an instance g§TRIPS PLAN The idea behind the reduction is to introduce
a counter so that each time an action is executed, the counter is incremented. Therooay
count up to 2, wheren = |V|, making use oh additional variables. The counter is initialized to

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

0. Once it reaches"2- 1 it can no longer be incremented and no action can be executed. Hence,
the set of actions in the resulting instancesoRIPS PLANIS acyclic: we are guaranteed to produce

an instance oR. To describe the reduction, we wrieas{xi,...,xn}. We defineF (PE) = PE' =
(V',ag,Y,ACT) as follows:

o V' ={xq,...,%,2,...,Zn}, Wwherez are new variables we will use to implement the counter;

A =0aoA=ZL A= Az,

Y =YAZLA - A2,

for each actiora € ACT, we include inACT n actionsa', 1 < i < n, such that:

pre(a) = pre(a) A=z AZi1 A AZn

—fori<n—1: i
fori<n 1-{ pos{a) =post{a) Az A—z 1A A—Zy, and

e] pre@) =pre(a) A -z
fori=n: { pos{(a") = post(a) A z,.

Furthermore, we include iIACT n actionsb;, 1 < i < n, such that:

pre(b) ==z Az A Azn

— i<n-—-1: i
fori<n-1 {pos(b'):Zi/_‘ZHl/\'“/_'Zn’ and

f pre(b") = -z,
— fori=n: { postb") = z,.

We will denote states ové&#’ by pairs(a, k), wherea is a state ove¥ andk is an integer, <
k <2"—1. We viewk as a compact representation of a state over variables ,z,: assuming that
the binary representation &fis d; . .. d, (with d, being the least significant digitl, represents the
state which containg if di = 1 and—z, otherwise. For instance, [t= {x1,x2,X3}. Then we have
V' = {x1,%2,%3,21,22,23}, and the statexy A Xo A Xz Az A =22 A Z3 is denoted by—x1 A X2 A X3, 5).
We note that the effect & or b' on statg(a, k) is either void, or increments the counter:

(eff(a,a),k+1) if a is executable irfa, k)
(a,k) otherwise

eff(a, (a,k)) = {

i [(o,k+1) if b'is executable irfa, k)
eff(t), (a,k) _{ (a,k) otherwise

Next, we remark that at most omkand at most oné' are executable in a given staie, k).
More precisely,

o if k< 2"—1, then exactly onb' is executable iria, k); denote by(k) the index such that®)
is executable irfa, k) (this index depends only dq. We also have that ¥ is executable in
(a,k), provided that is executable im.

e if k=2"—1, then nca' and nob' is executable irfa, k).

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Now we show thaPFE is acyclic. Assumatis an irreducible plan fofV’,;a’,a’, ACT'). Let
o’ = (a,k). If k< 2"—1, thenmtis empty, since any action iIACT' in any state either is non-
executable or increments the counter, and an irreducible plan containaatitlgs whose effect is
non-void. Ifk =2"—1, then no action oACT is executable im’ and againtis empty. Thus, there
exists no non-empty irreducible plan for’,a’,a’, ACT’), and this holds for alé’. ThereforePE'
is acyclic.

We now claim that there is a plan fBE if and only if there is a plan foPE'. First, assume that
there is a plan ilPE. Let rtbe a shortest plan iRE and letm be its length (the number of actions
used). We haven < 2" — 1, since no state alormgrepeats (otherwise, shorter plans thafor PE
would exist). Letg,as,...,0n = Yybe the sequence of states obtained by executigt a be the
action used in the transition froo to o 1. Sincek < 2" —1 (becausen < 2"—1 andk < m—1),
there is exactly ong 1 < i < n, such that the actioa applies at the statg, k) overV’. Replacing
awith @ in Tryields a plan that when started (ato, 0) leads to(am, m) = (y,m). Appending that
plan with appropriate actiors to increment the counter td'2 1 yields a plan foPE'. Conversely,
if Tis a plan forPE/, the plan obtained from by removing all actions of the fort and replacing
each actiora with ais a plan forPE, sincea has the same effect dhasa does. Thus, the claim
follows. [|

We emphasize that this reductiénfrom STRIPS PLANtO ACYCLIC STRIPS PLAN(Or, equiv-
alently, toSTRIPS PLANQIVENACTION-SET ACYCLICITY) works because it satisfies the following
two conditions:

1. for every instanc®E of STRIPS PLAN F(PE) is an instance okCYCLIC STRIPS PLAN(this
holds because for eveBE, F (PE) is acyclic);

2. for everyPE of STRIPS PLAN F(PE) is a positive instance afcycLic STRIPS PLANIf and
only if PEis a positive instance &fTRIPS PLAN

3.2 Mapping STRIPS Plans to Single-Effect STRIPS Plans

Versions of thesTRIPS PLANandACYCLIC STRIPS PLAN problems that are important for us al-
low only actions with exactly one literal in their postconditions in their input psimnal STRIPS
instances. We call such actiosmgle-effect action® We refer to the restricted problems a5
STRIPS PLANANdACYCLIC SE STRIPS PLAN respectively.

To provePSPACE-hardness of both problems, we describe a mapping BoriPSinstances to
single-effectsTRIPsinstances.

Consider an instandeE = (V,ag,y,ACT) of theSTRIPS PLANproblem, wheréCT is not nec-
essarily acyclic. For each actiane ACT we introduce anewvariablex,, whose intuitive meaning
is that actioma is currently being executed.

We setX = AzeacT Xa. That is,X is the conjunction of negative literals of all the additional
variables. In addition, for each € ACT we setXa = Xa A Apeact—{a} "X We now define an
instancePE = (V/,ap, Y, S(ACT)) of these STRIPS PLANproblem as follows:

6. Such actions are also called “unary” actions in the planning literaturestidleto the terminology “single-effect”
although it is less commonly used, simply because it is more explicit.

7. PSPACE-completeness of propositionaf RIPSplanning with single-effect actions was proved already by Bylander
(1994). However, to deal with acyclicity we need to give a differentiotidn than the one used in that paper.

10

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Set of variablesV’' =V U {x,: a€ ACT};

initial state:agp = dg A X;

goal statey = yAX;

set of actionsS(ACT) = {@ :ac ACT, i =1,...,2|posta)| +1}.
Letabe an action irACT such thapost(a) = Iy A --- Alg, wherely, ..., |q are literals.

— Fori=1,...,q, we define an actioa' by setting:
pre(a) = pre(a) AX A-li; pos(a) = Xa.

The role ofa' is to enforce thaiX, holds aftera is successfully applied, and in this
way to enable “starting the execution @f, provided that no action is currently being
executed, that thieh effect ofais not already true, and that the preconditiomds true.

— Fori =q+1,...,2q, we define actiom by setting:
pre(a') = Xa; posia) = I;.

The role ofa is to make theth effect ofa true.
— Finally, we definea®d*! by setting:

Thus,a®@*1 is designed so that holds aftera®t! is successfully applied; that ia24+1
“closes” the execution dd, thus allowing for the next action to be executed.

Let tbe a sequence of actionsACT. We defineS(m) to be the sequence of actions3fACT)
obtained by replacing each actiann 1t by al,...,a%d*1, whereq = |posta)|. Now consider a
sequence of actions fromS(ACT). Remove front every actiona' such that # 2|pos{a)| + 1,
and replace actions of the foradP°s1@/+1 by a. We denote the resulting sequence of actions from
ACT by S(1). We note tha8(S(1)) = 1t The following properties then hold.

Lemma 1 With the above definitions,
(i) if mtis a plan for PE then 87) is a plan for PE;
(i) if Tis an irreducible plan for PEthen (1) is an irreducible plan for PE;
(i) ACT is acyclic if and only if GACT) is acyclic.

Proof: (i) Let a € ACT be an action, lett be a state and Idt be the state obtained froom by
applyinga. Let 8 be theV’-state obtained by applying the sequence of acti@ds...,a?d*1)
(whereq = |post{a)|) to the statex A X of PE'. We will show thatd = B A X.

We note that if for eachh= 1,...,q, statea A X does not satisfypre(a') then the sequence of
actions(al,...,a?**1) has no effect, so the state is still\ X. For this to happen, either doesn't
satisfypre(a), or all ofl4,...,lq already hold imx soposta) holds ina. In either caseq = 3, and
so0=PBAX.

11

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Suppose now that for somies {1,...,q}, a does satisfypre(a'). Then the first such action
a causes and henceX, to hold. After applying actiong®, ... a%, Iy A--- A lq holds, and so
posia) holds. After applyinga®**! bothposta) andX hold. No other variable iv has changed,
soB0 =B AX, as required.

Applying this result iteratively implies that it is a plan forPE thenS(1) is a plan forPE'.

(i) Let T be an irreducible plan fdPE/, so that every action im changes the state, which implies
that every action it is performed in a state where its precondition is true. We will show3H{aj
is a plan forPE. We will assume that # 0. Whent = 0, S(1) = 0, too, and the assertion follows.

Write the first action irt asal, wherea € ACT, and lett’ be the maximal initial subsequence of
T consisting of all actions of the form. We must havg < |pos{a)|, sinceX holds inag (by our
assumption above, actiad does apply) an& is inconsistent with the precondition af for each
i > |pos{a)|. Also, pre(al) and—l; hold inaj and so, ing as well. Thusp satisfiespre(a), and
applyinga changes the state, sine¢; holds inop andposta) = |;. Let us denote by the state
resulting from applyin@ to ag. As we notedf # do,

Let ' be the state resulting after applyingto ag,. If B’ is the goal stat§ thenX holds inf'. If
B’ is not the goal state thens 1'. Letb' be the action irt directly following the last action in’.
By the definition oft’, a # b. After applyingal, X, holds, so i’ eitherX, holds orX holds. Thus,
Xp does not hold, aa # b. Sinceb' changes the statemust be in{1,...,|pos{b)|}, soX holds in
B in this case, too.

Hence the last action it is a9, whereq = |pos{(a)|. Since the only variables M which can
be affected by actiona are those that appear in the literalsposta) and since the actioa?+?
can be executed (otherwise it would not belong)tat follows that’ = B A X.

Applying this reasoning repeatedly, we show that apply#fg) to oo yieldsy, and that each
action inS(1) changes the state, (1) is an irreducible plan foPE, which is non-empty if and
only if T is non-empty.

(i) SupposeACT is not acyclic, so that there exists statand a non-empty irreducible planfor
PEy = (V,a,a,ACT). Then, by (i),S(m) is a plan forPE;, = (V/,a AX,a A X,S(ACT)). Because
Ttis non-empty and irreducible, it changes some stat& ®palso changes some state, and hence
can be reduced to a non-empty irreducible plarFBf,. ThereforeS(ACT) is not acyclic.

Conversely, suppose th&ACT) is not acyclic. Then there exists a stateand a non-empty
irreducible plarrt for (V/;a’,a’, S(ACT)). We will first prove thatX holds at some state obtained
during the execution of this plan.

Suppose thaX holds at no such state, and #tbe the first action ir. We note that # 0. By
our assumptionX does not hold either before or after applymg Thereforeg+1 < j < 2q, where
q = |posta)|. Sincet is irreducible,al changes the state. Thud,j holds ina’ andl; holds in the
state resulting frona’ after applyingal.

By our assumptionX, holds before and after applyirag. Thus, the next action, if there is one,
must also be of the forra for g+ 1 < i < 2q. Repeating this argument implies that all actions in
T are of the forma' whereq+1 <i < 2q. Since the set of literals ipost(a) is consistent|; is
never reset back tel;. Thus, the state resulting frood after applyingrt is different froma’, a
contradiction.

Thus, X holds at some state reached during the executian b&t us consider one such state.
It can be written af A X, for some statd overV. We can cyclically permute to generate a
non-empty irreducible plan’ for (V/,BAX,BAX,S(ACT)). By part (i), S(t') is a non-empty

12

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

irreducible plan forV, 3, ,ACT). ThereforeACT is not acyclic.]

Proposition 6
SE STRIPS PLANANAACYCLIC SE STRIPS PLANare PSPACE-complete.

Proof: Again, the argument for the membership RSPACE is standard. PSPACE-hardness of
ACYCLIC SE STRIPS PLANIs shown by reduction fromdCcycLIC STRIPS PLAN The same con-
struction shows thasTRIPS PLANIS reducible toSE STRIPS PLAN and thusSE STRIPS PLANIS
PSPACE-complete.

Let us consider an instan&E = (V, 0, Yy, ACT) of ACYCLIC STRIPS PLAN We definePE =
(V',aq,Y, S(ACT)), which by Lemma 1(iii) is an instance of thecycLIC SE STRIPS PLANprob-
lem. By Lemma 1(i) and (ii) there exists a plan fek if and only if there exists a plan f&?E. This
implies thatacycLIC SE STRIPS PLANIS PSPACE-hard. |

4. Dominance

The goal of this section is to prove that theP-DOMINANCE problem isPSPACE-complete, and
that the complexity does not go down even when we restrict the class dsibp€P-nets. We
use the results on propositional STRIPS planning from Section 3 to pravehié generatcr-
DOMINANCE problem isPSPACE-complete. We then show that the complexity does not change if
we require the input GCP-net to be locally consistent and locally complete.

The similarities between dominance testing in CP-nets and propositional SPpRiftEng were
first noted by Boutilier et al. (1999). They presented a reduction, ssszlilater in more detail by
Boutilier et al. (2004), from the dominance problem to the plan existendalggrofor a class
of propositional STRIPS planning specifications consistingirdry actions (actions with single
effects). We prove our results for tkile&sP-DOMINANCE andGCP-CONSISTENCYproblems by con-
structing a reduction in the other direction.

This reduction is much more complex than the one used by Boutilier et al. (1898)o the
fact that CP-nets impose more restrictions than STRIPS planning. FirsBtPSTIplanning allows
multiple effects, but GCP-nets only allow flips> —x or —x > x that change the value of one
variable; this is why we constructed the reduction from STRIPS planninmteseffect STRIPS
planning in the last section. Secondly, CP-nets impose two more restrictioak¢tmsistency and
local completeness, which do not have natural counterparts in the COh®XRIPS planning.

For all dominance and consistency problems we consider, the memberpACE can be
demonstrated similarly to the membership proof of Proposition 4, namely by esimgjchondeter-
ministic polynomial space algorithms consisting of repeatedly guessing ajateojmproving flips
and making use of the fact theSPACE = NPSPACE = coPSPACE. Therefore, from now on we
only provide arguments for tHeSPACE-hardness of problems we consider.

4.1 Dominance for Generalized CP-Nets

We will prove that theGCP-DOMINANCE problem isPSPACE-complete by a reduction from the
problemse STRIPS PLAN which we now know to b®SPACE-complete.

13

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

MAPPING SINGLEEFFECTSTRIPSPROBLEMS TOGCPNETS DOMINANCE PROBLEMS

Let (V,0p,Y,ACT) be an instance of thee STRIPS PLANproblem. For every actioa € ACT
we denote by, the unique literal in the postcondition af that is,posi{a) = |,. We denote by
prée (a) the conjunction of all literals ipre(a) different from—l, (we recall that by a convention we
adopted earlieprée (a) does not contaiiy). We then define, to be the conditional preference rule
prée(a) : 13 > -l and defineV (ACT) to be the GCP-né€ = {c,: a< ACT}, which is in conjunctive
form.

A sequence of states in a plan corresponds to an improving sequencedito y, which leads
to the following result.

Lemma 2 With the above notation,

(i) there is a non-empty irreducible plan f@W,ap,y,ACT) if and only if y dominatesag in
M(ACT);

(i) ACT is acyclic if and only if MACT) is consistent.

Proof. We first note the following equivalence. Latbe an action iPACT, and leta and 3 be
different outcomes (or, in the STRIPS setting, states). The aatamplied toa yieldsf if and only
if the rulec, sanctions an improving flip frora to 3. This is becausa applied toa yieldsf3 if and
only if a satisfiegpore(a) anda andp differ only on literall,, with 3 satisfyingl, anda satisfying
—la. This is if and only ifa satisfiegore/ (a) anda andp differ only on literall,, with 3 satisfying
la, anda satisfying—la. This, in turn, is equivalent to say that rutg sanctions an improving flip
froma to (3.

Proof of (i): Suppose first that there exists a non-empty irreduciblegalan. , a, for (V, ao,y, ACT).
Letag,dy,...,0m = Yy be the corresponding sequence of outcomes, and, forieadh...,m, ac-
tion &, when applied in state;_;, yields different stat&;. By the above equivalence, for each
i=1,...,m, cy sanctions an improving flip frorm;_1 to a;, which implies thatip, as,...,amis an
improving flipping sequence il (ACT), and thereforg dominatesig in M(ACT).

Conversely, suppose thatlominatesig in M(ACT), so that there exists an improving flipping
sequencep,d1,...,0m With an, =y, andm> 1. For each =1,...,m, let c; be an element of
M(ACT) which sanctions the improving flip from;_; to ;. Then, by the above equivalence,
actiona;, when applied to state; 1 yieldsa; (which is different froma;_1), and soay,...,anis a
non-empty irreducible plan fov, ag,y, ACT).

Proof of (ii): ACT is not acyclic if and only if there exists a stateand a non-empty irreducible
plan for (V,a,a,ACT). By (i) this is if and only if there exists an outcoraenvhich dominates itself
in M(ACT), which is if and only ifM(ACT) is not consistent.]

Theorem 1 TheGCP-DOMINANCE problem isSPSPACE-complete. Moreover, this remains so under
the restrictions that the GCP-net is consistent and is in conjunctive form.

Proof: PSPACE-hardness is shown by reduction froxaycCLIC SE STRIPS PLAN(Proposition 6).
Let (V,00,y,ACT) be an instance of thecycLIC SE STRIPS PLANproblem. By Lemma 2(ii),
M(ACT) is a consistent GCP-net in conjunctive form. Sioge# y (imposed in the definition of
the problemacycLIC SE STRIPS PLAN, there is a plan fo(V, ao,y,ACT) if and only if there is a

14

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

non-empty irreducible plan fojV, ao,y,ACT), which, by Lemma 2(i), is if and only if dominates
OginC. []

Theorem 1 implies th®SPACE-completeness of dominance in the more general conditional
preference language introduced by Wilson (2004), where the coraipogference rules are written
in conjunctive form.

4.2 Dominance in CP-Nets

In this section we show thaCcP-DOMINANCE remainsPSPACE-complete under the restriction to
locally consistent and locally complete GCP-nets, that is, CP-nets. Wetoetieis restriction of
GCP-DOMINANCE asCP-DOMINANCE.

Consistency of a GCP-net implies local consistency (Proposition 2). efdrer the reduc-
tion in the proof of Theorem 1 (fromCYCLIC SE STRIPS PLANtO GCP-DOMINANCE restricted
to consistent GCP-nétss also a reduction tGaCP-DOMINANCE restricted to locally consistent
GCP-netsPSPACE-hardness oAcYcCLIC SE STRIPS PLAN(Proposition 6) then implies thacp-
DOMINANCE restricted to locally consistent GCP-netsASPACE-hard, and, in factPSPACE-
complete since membershipR$PACE is easily obtained with the usual line of argumentation.

We will show PSPACE-hardness focP-DOMINANCE by a reduction fromGCP-DOMINANCE
for consistent GCP-nets.

MAPPING LOCALLY CONSISTENTGCPNETS TOCPNETS

Let C be a locally consistent GCP-net. Nét= {x1,...,X,} be the set of variables &. We define
V' =V U{y1,...,yn}, where{yi,...,ya} NV = 0. We define a GCP-net’ overV’, which we
will show is a CP-net. To this end, for evere V' we will define conditional preference rules
q*(z):z>-zandq (z) : -z> zto be included irC’ by specifying formulas|" (z) andq™ (2).

First, for each variablg €V, we set

at(x)=yi and g (x)=yi.

Thus,x; depends only of;. We also note that the formulag (x;) andq~(x;) satisfy local consis-
tency and local completeness requirements.
Next, for each variablg;, 1 <i < n, we define

&= X Y)A - AX—1 o Yic1) AXit1 < Yig1) A A (X < Yn),

ff=eAp"(x) and f =g Ap (X).
Finally, we define
q-(yi) ="V (=f Ax)
and
q ()= fi V(=f" A-%).

Thus,y; depends on every variableVH but itself.
We note that by the local consistency @f formulas f* A -, 1 <i < n, are unsatisfiable.
Consequently, formulag® (yi) Aq~(yi), 1 <i < n, are unsatisfiable. Thu€/ is locally consistent.

15

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Finally, o™ (yi) Vg (yi) is equivalent tof.* v —x v f~ VX, so is a tautology. Thus' is locally
complete and hence a CP-net oVér

Let a andp be outcomes ovefxy, ..., X} and{yi,...,¥n}, respectively. Byaf3 we denote the
outcome ove¥’ obtained by concatenatimgtuplesa andf. Conversely, every outcome f6f can
be written in this way.

Let a be an outcome oveY. We definea to be the outcome ovefyi,...,y,} obtained by
replacing ina every component of the form with y; and every componentx; with —y;. Then for
everyi, 1<i<n, a0 | &.

Let s be a sequencay,...,0n, of outcomes oveV. Definel(s) to be the sequence &f'-
outcomes: aglo, 001, A101,0105,...,0m0m. Further, lett be a sequencep, €y, ...,en of V/-
outcomes witheg = a@ ande, = BB. Definel’(t) to be the sequence obtained froimy projecting
each element intoV and iteratively removing elements in the sequence which are the same as their
predecessor (until any two consecutive outcomes are different).

Lemma 3 With the above definitions,

(i) if sis animproving sequence for C framrto B then L(s) is an improving sequence fof €om
oo to BB;

(i) ift is an improving sequence froma to BB then L(t) is an improving sequence fromto f;
(iii) C is consistent if and only if Gs consistent.

Proof: Lete= A{L;(X < Vi). The definitions have been arranged so that the GCErzetd the
CP-netC’ have the following properties:

(a) If edoes not hold in an outconmyverV’, then every improving flip applicable fochanges the
value of some variablg ory; so thatx; < y; holds after the flip.

Indeed, let us assume that there is an improving flip fydim some outcomg overV’. If the
flip concerns a variablg, thenx; <» —y; holds iny. Consequentlyg; < y; holds iny'.

Thus, let us assume that the flip concerns a varigblé g holds iny then, sincee does not,
X < —y; holds iny. Thus,x < y; holds iny. If g does not hold iry then neitherfﬁ nor f;~ does.
Thus, ifx (—x;, respectively) holds iy, y; (—y;, respectively) holds iy'. Since the flip concerng,
it follows thatx; < y; holds iny'.

(b) No improving flip fromaa changes any variable.

Indeed, for any variablg, sincee holds inad, x < Yy; holds inad, too. Thus, no improving

flip changess.

(c) There is an improving flip i€’ that changes variablg in an outcomea if and only if there is

an improving flip for the GCP-nef from outcomea that changes variabbe. After applying the
improving flip (changing variablg) to a@, there is exactly one improving flip possible. It changes
x; and results in an outconfB, wherep is the outcome ovev resulting from applying ta the
improving flip changing the variabbe.

To prove (c), let us first assume thay; holds inad and observe that in such casg holds in
ad, too. It follows thatg* (y;) holds ina@ if and only if p*(X) holds ina. Consequently, changing
yi in ad is an improving flip inC’ if and only if changingx; in a is an improving flip inC. The
argument in the case whenholds ina@ is analogous (but involves (y;) andp~(X;)). Thus, the
first part of (c) follows.

16

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Let B be the outcome obtained by applying an improving flipitan a. It follows that the

improving flip changing the value of in ad results in the outcomap. In this outcome, by (a),
an improving flip must concemy or y; such thak; < y; holds after the flip. Since for every# i,
Xj < yj holds ina, the only improving flips i concern eithex; ory;. By the local consistency
of C/, y; cannot be flipped right back. Clearly, changids an improving flip that can be applied
to a. By our discussion, it is thenlyimproving flip applicable irap and it results in the outcome
BB. This proves the second part of (c).

Proof of (i): The assertion follows by iterative application of (c).

Proof of (ii): Suppose thatis an improving sequena®, s, ..., &m of V/-outcomes witkeg = aa

anden = BB. Sincee holds ingg, (b) implies that the first flip changes some variaggleand (c)
implies that the second flip changes variakleo makex; < y; hold again. Hence, can be written
asdd. By (c) there is an improving flip i€ from outcomen changing variable;, that is, leading
from a to d. Iterating this process shows thdtt) is an improving sequence fromto f.

Proof of (iii): Suppose that is inconsistent. Then there exists some outconamd an improving
sequencsin C froma to a. By (i), L(s) is an improving sequence froa® to ad, proving thatC’
is inconsistent.

Conversely, suppose th@t is inconsistent, so there exists an improving sequéhaeC’ from
some outcome to itself. By (a), any improving flip applied to an outcome in waades not hold
increases (by one) the numberiafuch thats; < y; holds. This implies tha¢ must hold in some
outcome int, because is not acyclic. Write this outcome agx. We can cyclically permuteto
form an improving sequende from a@ to itself. Part (ii) then implies thdt'(t;) is an improving
flipping sequence faC from a to itself, showing thaC is inconsistent. |

Theorem 2 CP-DOMINANCE isS PSPACE-complete. This holds even if we restrict the CP-nets to
being consistent.

Proof: We use a reduction frorRSPACE-hardness of the&scP-DOMINANCE problem when the
GCP-nets are restricted to being consistent (Theorem 1)Clbet a consistent, and hence locally
consistent, GCP-net ovat, and leta and 3 be outcomes ovev. Consider the CP-net’ over
variablesv’ constructed above. Lemma 3(i) and (ii) imply tiiadominatesx in C if and only if BB
dominatesa@ in C'. Moreover,C' is consistent by Lemma 3(iii). Consequently, the hardness part
of the assertion follows.]

Note thatPSPACE-hardness obviously remains if we require input outcomes to be different,
because the reduction for Theorem 1 uses a pair of different outcomes

Notice the huge complexity gap with the problem of deciding whether there exiat:n-
dominated outcome, which is “onl\WP-complete (Domshlak et al., 2003, 2006).

5. Consistency of GCP-Nets

In this section we show that thecP-CONSISTENCY problem isPSPACE-complete, using results
from Sections 3 and 4.

17

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Theorem 3
GCP-CONSISTENCYis PSPACE-complete. This holds even under the restriction to GCP-nets in
conjunctive form.

Proof: PSPACE-hardness is shown by reduction froxaTION-SET ACYcCLICITY. We apply func-
tion S from Section 3.2 followed by from Section 4.1. This maps instancesA@TION-SET
ACYCLICITY to instances o6CP-CONSISTENCYin conjunctive form. By Lemma 1(iii) and Lemma
2 (i), an instance oACTION-SET ACYCLICITY is acyclic if and only if the corresponding instance
of GCP-CONSISTENCYis consistent, proving the result. [

We now show that consistency testing rema$RACE-complete for CP-nets (GCP-nets that
are both locally consistent and locally complete).

Theorem 4 CP-CONSISTENCYis PSPACE-complete.

Proof: We use a reduction froreCP-CONSISTENCY under the restriction that the GCP-net is in
conjunctive form. LeC be a GCP-net in conjunctive form. We define a CP@leats follows. Be-
causeC is in conjunctive form, local consistency can be decided in polynomial timié aasounts
to checking the consistency of a conjunction of conjunctions of litera(Sidfnot locally consistent
we setC’ to be a predetermined inconsistent but locally consistent CP-net, suchihesarample
in Section 2. Otherwise is locally consistent and foa€’ we take the CP-net we constructed in
Section 4.2. The mapping from locally consistent GCP-nets to CP-netsjlambin Section 4.2,
preserves consistency (Lemma 3 (iii)). Since local inconsistency impliessigtency (Proposi-
tion 2), we have that the GCP-n@tis consistent if and only if the CP-n€X is consistent. Thus,
PSPACE-hardness of ther-CONSISTENCYproblem follows from Theorem 3. |

6. Additional Problems Related to Dominance in GCP-Nets

Having proved our main results on consistency of and dominance in GGGPwe move on to
additional questions concerning the dominance relation. Before we stateweeintroduce more
terminology.

Leta andf3 be outcomes in a GCP-n€t We say thati and3 aredominance-equivaletih C,
written a ~¢ B, if a =3, ora <¢c B andp <c a. Next,a andf3 aredominance-incomparabia C
if a # B, a4cB andBAca. Finally, a strictly dominate$ if 3 <c a anda4¢p.

Definition 8

We define the following decision problems:

SELF-DOMINANCE: given a GCP-net C and an outcornedecide whethem <¢ a, that is, whether
o dominates itself in C.

STRICT DOMINANCE: given a GCP-net C and outcomasand 3, decide whethea strictly domi-
natesf in C.

DOMINANCE EQUIVALENCE: given a GCP-net C and outcomasand 3, decide whethea and3
are dominance-equivalent in C.

DOMINANCE INCOMPARABILITY: given a GCP-net C and outcomesand 3, decide whethea
and 3 are dominance-incomparable in C.

18

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

When establishing the complexity of these problems, we will use polynomial-timetieds
from the problenGCP-DOMINANCE. LetH be a GCP-net with the set of variabMs= {x1,..., X},
and letp be an outcome. We define a GCP-Bet ©4(H, 3) with the set of variable¥/ =V U {y}
by setting the conditions for flips on variabbgsi = 1,...,n, andy as follows:

1. ifx €p:
p& (%) = P (%) vV -y
Pe(X) = Py (X) Ay

2. if =% € B
P& (%) = P (%) Ay
Ps(Xi) = Py (%) vV -y

3. ps(y) =B
4. ps(y) =-B.

The mappingd1 can be computed in polynomial time. Moreover, one can check thhisfa
locally consistent GCP-ne®; (H, B) is also locally consistent. Finally, Hi is a CP-net@1(H,B)
is a CP-net, as well.

For everyV-outcomey, we lety" = yAyandy = yA —y. We note that everW-outcome is of
the formy™ ory—. To explain the structure of the GCP-ii&twe point out that there is an improving
flipin G fromy" into &* if and only if there is an improving flip itd from y to & (thus,G restricted
to outcomes of the forng™ forms a copy of the GCP-nét). Moreover, there is an improving flip
in G from y~ into & if and only if d agrees with3 on exactly one more variable thany does.
Finally, an improving flip moves between outcomes of different type if and ibitiyransformsp3—
toB*, ory" toy for somey # .

We now formalize some useful properties of the GCP@et ©1(H,3). We use the notation
introduced above.

Lemma 4 For every V-outcome Yy~ <g B and, ify# B, y" <c B (in other words B3+ dominates
every other W-outcome).

Proof: Consider any-outcomey # . ThenyA -y <c B A —y since, giveny, changing a literal
to the form it has i3 is an improving flip. By the definition, we also hapen -y <c B Ay and
YAY <c YAy (asy # B). It follows thatB~ < BT andy"™ <gy~ <c B". Thus, the assertion
follows. [

Lemma 5 For arbitrary V -outcomen different fromp3, the following statements are equivalent:
1. B=<pa;
2. Bt <gat;

3. B+ G at.

19

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Proof: By Lemma 40" <g B". Thus, the conditions (2) and (3) are equivalent.

[(1)=-(2)] Clearly (recall our discussion about the structur&fif there is an improving flip from
yto din H, then there is an improving flip from* to 8" in G. Thus, if there is an improving
sequence il from B to a, there is an improving sequence@from B toa™.

[(2)=(1)] Let us assumB™ <g a™, and let us consider an improving sequence of minimum length
from 3+ to at. By the minimality, no internal element in such a sequend¥ isThus, no internal
element equalB™ either (as the only improving flip frofd~ leads to3*). Since an improving flip
fromy~ toy' requires thay = B, all outcomes in the sequence are of the fgrm By dropping

y from each outcome in this sequence, we get an improving flipping seqfremee to 3 in H.
Thus,3 <y a.]

Lemma 6 Let H be consistent and let and 8 be different V-outcomes. Them! < a™ if and
only if B <y a.

Proof: Suppose there exists an improving sequence fmonto itself. There must be an outcome
in the sequence of the forgp —y (otherwise, dropping in every outcome yields an improving
sequence from to a in H, contradicting the consistency Hf). To perform an improving flip from
-y to y we needB to hold, which implies thaB* appears in the sequence. Th@s,<g a™. By
Lemma53 <y Q.

Conversely, let us assume tifaky o. Again by Lemma 5t <ga™. By Lemma4ot <gB*.
Thus,a™ <ga™. [|

The next construction is similar. Lét be a GCP-net on variabl&s= {x,...,X,}, and leta
be an outcome. We define a GCP-Ret O2(H,a) as follows. As before, we s&¥¥ =V U{y} to
be the set of variables &f. We define the conditions for flips on variabbgsi = 1,...,n, andy as
follows:

- P& (%) = P (%) Ay
P (%) = Py () AY
3. p&(y) = —a
4. pg(y) =a.

Informally, outcomes of the forng™ form in F a copy ofH. There are no improving flips between
outcomes of the forng—. There is an improving flip frona™ to a~ and, for everyy # a, fromy™ to
y". In particular, ifF is consistent the®,(H,a) is consistent, The mappir@®, can be computed
in polynomial time and we also have the following property.

Lemma 7 Letf3 be aV-outcome different from Then the following conditions are equivalent:
1. B<ya
2. a~ strictly dominate~

3. o~ andf3~ are not dominance-incomparable in F.

20

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Proof: If there exists an improving sequence fr@m to a~ then the first improving flip in the se-
guence changes to B*. Moreover, there is an improving flip frogt toy~ if and only ify = a.
Thus,f~ <g a~ ifand only if B <4 a. Sincea™ A B~ all three conditions are equivalent. =

Proposition 7 The following problems areSPACE-complete:SELFDOMINANCE, STRICT DOM-
INANCE, DOMINANCE EQUIVALENCE, andDOMINANCE INCOMPARABILITY .

Proof: For all four problems, membership is proven easily as for the problemsliaresgctions.

For thePSPACE-hardness proofs, we use the problemDOMINANCE in a version when we
required that the input CP-net be consistent and the two input outconfeedif The problem is
PSPACE-hard by Theorem 2.

LetH be a consistent CP-net on a ¥atf variables, and let andf3 be two different/ -outcomes.
By Lemma 53 <4 a can be decided by deciding the problel@MINANCE EQUIVALENCE for a™
and " in the GCP-ne®1(H,B). Thus, thePSPACE-hardness 0DOMINANCE EQUIVALENCE
follows.

Next, the equivalence of Lemma®| <g a™ < B <y a, which holds due to consistency ldf
shows that the problemELF~DOMINANCE is PSPACE-hard.

Finally, by Lemma 73 <4 a can be decided either by deciding the problemRiICT DOMI-
NANCE for outcomesx~— andB~ in ©2(H,a), or by deciding the complement of the probleam-
INANCE INCOMPARABILITY fora™ andp~ in the GCP-ne®,(H, a). It follows thatSTRICT DOM-
INANCE andDOMINANCE INCOMPARABILITY (the latter by the fact thabPSPACE=PSPACE) are
PSPACE-complete? [

Corollary 1 The problemSELFDOMINANCE andDOMINANCE EQUIVALENCE are PSPACE-com-
plete under the restriction to CP-nets. The problesn&®ICT DOMINANCE and DOMINANCE IN-
COMPARABILITY remainPSPACE-complete under the restriction to consistent CP-nets.

Proof: Since in the proof of Proposition 7 we have tlihis a CP-net, the claim for the first two
problems follows by our remarks that the mapp#gpreserves the property of being a CP-net.

For the last two problems, we observe that sifice the proof of Proposition 7 is assumed to
be consistent = ©,(H,a) is consistent, too. Thus, it is also locally consistent and the mapping
F to F’ we used for the proof of Theorem 2 applies. In particufdiis a consistent CP-net and has
the following properties (implied by Lemma 3):

1. a strictly dominate$ in F if and only if a@ strictly dominate$p in F’

2. o andp are dominance-incomparablefnif and only if aa andBp are dominance-incompa-
rable inF’.

SinceF’ is a consistent CP-net, the claim for the last two problems follows, too. []

8. For STRICT DOMINANCE, the result could have been also obtained as a simple corollary of Theétyrsince in
consistent GCP-nets dominance is equivalent to strict dominance.

21

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

7. Problems Concerning Optimality in GCP-Nets

The dominance relatiorc of a GCP-neC determines a certain order relation, which gives rise to
several notions of optimality. We will introduce them and study the complexityooesponding
decision problems.

We first observe that the dominance equivalence relation is indeed amlegae relation (re-
flexive, symmetric and transitive). Thus, it partitions the set of all outcantesion-empty equiv-
alence classes, which we cdthminanceclasses. We denote the dominance class of an outcome
in a GCP-neC by [a]c.

The relation<c induces on the set of dominance classesiat orderrelation (a relation that is
irreflexive and transitive). Namely, we defifedc <2° [B]c if [a]c # [Blc (equivalentlya ¢ B) and
o <c B- One can check that the definition of the relati@gc on dominance classes is independent
of the choice of representatives of the classes.

Definition 9 (Non-dominated class, optimality in GCP-nets)Let C be a GCP-net. A dominance
class[alc is non-dominatedf it is maximal in the strict order<i¢ (there is no dominance class
[Blc such that[a]c <€ [B]c). A dominance class dominatingif for every dominance claggc,
[a]c = [Blc or [Blc <& [alc.

An outcomen is weakly non-dominated it belongs to a nhon-dominated class.dfis weakly
non-dominated and is the only element in its dominance classptienon-dominated

An outcomea is dominatingif it belongs to a dominating class. An outcomds strongly
dominatingif it is dominating and non-dominated.

Outcomes that are weakly non-dominated, non-dominated, dominating angligtiominating
capture some notions of optimality. In the context of CP-nets, weakly namirdted and non-
dominated outcomes were proposed and studied before (Brafman & Dihosp2004). They were
referred to as weakly and strongly optimal there. Similar notions of optimality &kso studied
earlier for the problem of defining winners in partial tournaments (Brandid., 2007). We will
study here the complexity of problems to decide whether a given outcome is batichahether
optimal outcomes exist.

First, we note the following general properties (simple consequencespipies of finite strict
orders).

Lemma 8 Let C be a GCP-net.
1. There exist non-dominated classes and so, weakly non-dominatexres.
2. Dominating outcomes and nondominated outcomes are weakly ndnadech
3. A strongly dominating outcome is dominating and non-dominated.
4. The following conditions are equivalent:

(&) C has a unigue non-dominated class;
(b) C has a dominating outcome;
(c) weakly non-dominated and dominating outcomes in C coincide.

For consistent GCP-nets only two different notions of optimality remain.

22

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Lemma 9 Let C be a consistent GCP-net. Then:

1. Each dominance class is a singletety is a strict order, and<c and <gc coincide (modulo
the one-to-one and onto correspondence: [a]c)

2. If a is a weakly non-dominated outconte,s non-dominated (weakly non-dominated and
non-dominated outcomes coincide)

3. If a is a dominating outcome, is strongly dominating (strongly dominating and dominating
outcomes coincide).

4. Finally,a is a unique (weakly) non-dominated outcome if and ordyi$fstrongly dominating.

Next, we observe that all concepts of optimality we introduced are diffeferthis end, we will
show GCP-nets with a single non-dominated class that is a singleton, with multipiéamoinated
classes, each being a singleton, with a single non-dominated class thatisingteton, and with
multiple non-dominated classes, each containing more than one element. Weastaig a GCP-

net with two non-dominated classes, one of them a singleton and the othevmmsisting of several
outcomes.

Example 1 Consider the following GCP-net C with two binary variables a and b

ra>a
‘b>b

This GCP-net determines a strict preorder on the dominance classeghiah {ab} is the only
maximal class (in fact, all dominance classes are singletons). Thus,katttisnon-dominated and
dominating and so, it is strongly dominating.

Example 2 Consider the following GCP-net C with two binary variables a and b
b:a>a

b:a>a

a:b>b

a:b>b

This GCP-net determines a strict preorder, in whietb} and{ab} are two different non-dominated
classes. Thus, ab arab are non-dominated and there is no dominating outcome.

Example 3 Consider a GCP-net with variablestaand c, defined as follows:

a:b>b
a:b>b
b:a>a
b5

23

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

There are two dominance classes: -S{abc abc,abc abc} and $ = {abc,abc, abc,abc}. Every
outcome in $strictly dominates every outcome ig, $herefore, §is the unique non-dominated
class and every outcome i 8 dominating. Because;$ not a singleton, there are no non-
dominated outcomes (and so, no strongly dominating outcome, either).

Example 4 Let us remove from the GCP-net of Example 3 the preference statementa. Then

& and S are still the two dominance classes, but now every outcomgisiScomparable with
any outcome in & Thus, $and $ are both non-dominated. Since there are two non-dominated
classes, there is no dominating outcome. Since each class has morenthalement, there are no
non-dominated outcomes. All outcomes are weakly non-dominateghthou

Example 5 Let us modify the GCP-net of Example 3 by changing the preference stitena > a
into bc: a> a. The dominance relatior of this GCP-net satisfies the following properties: (i)
the four outcomes inc&lominate each other; (iigbc - abc > abc > abc; (iii) any outcome in §
dominates ab (and,a fortiori, abc). One can check that there are five dominance classe$abc},
{abc}, {abc} and{abc}. Two of them are non-dominated; &d {abc}. Since there are two non-
dominated classes, there is no dominating outcome. On the other faba}, is a non-dominated
outcome (a unique one).

We will consider the following decision problems corresponding to the notbaptimality we
introduced.

Definition 10

For a given GCP-net C:

WEAKLY NON-DOMINATED OUTCOME: given an outcome, decide whetheo is weakly non-
dominated in C

NON-DOMINATED OUTCOME: given an outcome, decide whethea is non-dominated in C
DOMINATING OUTCOME: given an outcome, decide whethen is dominating in C

STRONGLY DOMINATING OUTCOME given an outcome, decide whethea is strongly dominat-
inginC

EXISTENCE OF A NONDOMINATED OUTCOME: decide whether C has a nhon-dominated outcome
EXISTENCE OF A DOMINATING OUTCOME decide whether C has a dominating outcome
EXISTENCE OF A STRONGLY DOMINATING OUTCOME decide whether C has a strongly dominat-
ing outcome.

In some of the hardness proofs, we will again use the reduc@arend©,, described in the
previous section. We note the following additional useful properties oGBE-netG = ©1(H,).

Lemma 10 For arbitrary V -outcomenx different fromp, the following statements are equivalent:
1. [3+ <gat
2. a* is weakly non-dominated in G

3. a' is a dominating outcome in G.

24

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Proof: Sincef™ is dominating inG (Lemma 4), weakly non-dominated outcomes and dominating
outcomes coincide (Lemma 8). It follows that the conditions (1)-(3) aré/algunt to each othem

Proposition 8 The following problems areSPACE-complete:WEAKLY NON-DOMINATED OUT-
COME and DOMINATING OUTCOME. The result holds also for the problems restricted to CP-nets.

Proof: The membership is easy to prove by techniques similar to those we used earlier.

For thePSPACE-hardness proofs, we use reductions fromboOMINANCE for consistent CP-
nets (in the version where the two input outcomes are different).HLbe a CP-net, and and
B two differentV-outcomes. By Lemmas 5 and 1®~<y a can be decided by deciding either of
the problemsvEAKLY NON-DOMINATED OUTCOME and DOMINATING OUTCOME for the GCP-
netG = ©1(H,B) and the outcome&™. We observed earlier, that Hi is a CP-net, then so is
G = 01(H,B). Thus, the second part of the assertion follows.]

Next, we will consider the problerBTRONGLY DOMINATING OUTCOME. We will exploit the
reductionF = ©(H,a), which we discussed in the previous section. We observe the following
property offF.

Lemma 11 Let H be a GCP-net and E ©2(H,a). Thena™ is strongly dominating in F if and
only if a is dominating in H.

Proof: Let us assume that is dominating inH. From the definition of, it follows that for every
V-outcomey # o, y© < a®™ andy” <g y". Sincea™ <¢ a~, a~ is dominating inF. Since there
is no improving flip leading out ofi —, o~ is strongly dominating.

Conversely, let us assume that is strongly dominating ik and lety be aVv-outcome differ-
ent froma. Let us consider an improving sequence frgto a~. All outcomes in the sequence
other than the last one,~, are of the formd". Moreover, the outcome directly precediag is
a™. Droppingy from every outcome in the segment of the sequence betweanda™ yields an
improving sequence fromto a in H. |

We now have the following consequence of this result.

Proposition 9 The problemsTRONGLY DOMINATING OUTCOMEIis PSPACE-complete, even if re-
stricted to CP-nets.

Proof: Let H be a CP-net (over the sétof variables) andt an outcome. By Lemma 11, the prob-
lem DOMINATING OUTCOME can be decided by deciding the probl&mMRONGLY DOMINATING
ouTCcOoME for F = O2(H,a) anda~. Thus, thePSPACE-hardness 06TRONGLY DOMINATING
ouTcoMEfollows by Proposition 8. The membershipR8PACE is, as in other cases, standard and
is omitted.

SinceH is a CP-net, it is locally consistent and $ois locally consistent, too. As in the proof
of Corollary 1 we use the mapping from GCP-f&etio CP-netF’ defined in Section 4.2. By Lemma
3, a is a strongly dominating outcome kif and only if aa dominates every outcome of the form
VY, which is if and only ifa@ is a strongly dominating outcome I, since anyF’-outcome is
dominated by an outcome of the foyy (using the ruleg™ (%) =y; andq (%) = —y;). Therefore

25

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

STRONGLY DOMINATING ouTCOME for F anda can be decided by decidirgrRONGLY DOMI-
NATING ouTCcOME for F/ anda@. Thus, the second part of the claim follows. []

The problenNON-DOMINATED OUTCOME is easier. Itis known to be in P for CP-nets (Brafman
& Dimopoulos, 2004). The result extends to GCP-nets. Indegtligfa GCP-net and an outcome,
o is non-dominated if and only if there is no improving flip that applies t@ he latter holds if and
only if for every variablexin H, if x (respectively;~x) holds ina, thenp~(x) (respectivelyp™(x))
does not hold i. Since the conditions can be checked in polynomial the claim holds and e hav
the following result.

Proposition 10 The problemNON-DOMINATED OUTCOME for GCP-nets is irP.

Next, we will consider the problems concerning the existence of optimal mgsolLetH be a
GCP-net on the set of variablgs= {x,...,X,}, and leta and3 be two differenl-outcomes. For
everyi =12 ... n, we define formulas; as follows. Ifx € a, thenaq; is the conjunction of all
literals ina, except that instead of we take—x;. Similarly, if —x € a, thena; is the conjunction of
all literals ina, except that instead oefx; we takex;. Thus,q; is the outcome that results inwhen
the literal in corresponding tg is flipped into its dual.

We now define a GCP-n& = ©3(H, a,3) by takingW =V U {y} as the set of variables &
and by defining the flipping conditions as follows:

The GCP-neB3(H,a,B) has the following properties. The outcomes of the fgrm(=yAy)
form a copy ofH. There is no improving flip for the outconte™ (= a A —y). Next, there is no
improving flip intoa™ from an outcome of the formg—. To see this, let us assume that such a flip
exists and concerns a variable, saylt follows thaty = a;. By the definition of flipping conditions,
an improving flip fory~ that involvesx; is impossible, a contradiction. Thus, the only improving
flip that leads tax— originates ino ™.

We also have that for every outcomether thano and, y- <g 3. It follows from the fact
that for every outcomg other thar and3, y~ has an improving flip. Indeed, for each suyctinere
is a variableg such that (i)x; is false iny, and (ii) flipping the literal o; to its dual does not lead to
a (that is,yis nota;). (For even ify = a; for somei, then, becausg a # B, there exists’ # i such
thaty and[3 differ on Xy, so thatx; satisfies (i) and (ii).) Thus, a flip on that variable is improving.
As all improving flips between outcomes containing result in one more variabbe assigned to
true, thus having the same status as it hgd3 yv <g 3~ follows.

Finally, we have3~ <g B and, for every outcomeother thar3, y© <g y—. This leads to the
following property ofE = ©3(H, a,B).

Lemma 12 Let H be a GCP-net and let and 3 be two different outcomes. Th@n<y a if and
only if ©3(H,a,B) has a (strongly) dominating outcome.

26

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Proof: (Only if) Based on our earlier remarks,” <g a~. Moreover, sincel <y o, we have
BT <eg a'. In addition, for everyy different froma and, y" <e Yy~ <g B~ <e B. Thus,a™ is
both dominating and strongly dominating (the latter follows from the fact that noowig flips
lead out ofa ™).

(If) Let us assume thai~ is dominating (and so, the argument applies also wineris strongly
dominating). Then there is an improving sequence ffonto a~. Let us consider a shortest such
sequence. Clearlg™ is the outcome just befor@™ in that sequence (as we pointed out, no im-
proving flip from an outcome of the forry to o~ is possible). Moreover, by the definition of
©3(H,a,B) and the fact that we are considering a shortest sequencefrdma—, every outcome
in the sequence betwe@r anda™ is of the formy*. By droppingy from each of these outcomes,
we get an improving sequence frgo a. [|

Proposition 11 The problemEXISTENCE OF DOMINATING OUTCOMEand the problenEXISTENCE
OF STRONGLY DOMINATING OUTCOMEare PSPACE-complete, even if restricted to CP-nets.

Proof: We show the hardness part only, as the membership part is straightflorwaprove hard-
ness we notice that by Lemma 12, given a consistent CPHaetd two outcomes and, B <y a

can be decided by deciding either of the probleEXx$STENCE OF DOMINATING OUTCOMEand
EXISTENCE OF STRONGLY DOMINATING ouTCOMEor ©O3(H,a,B). To prove the second part of
the assertion, we note thatHf is consistentE = ©3(H, a, B) is consistent, too and so, the mapping
from locally consistent GCP nets to CP-nets applies. Let us denote tHeakapplying the map-
ping toE by E’. Then, using the same argument as in the proof of Propositiirh@s a (strongly)
dominating outcome if and only & has a strongly dominating outcome. Thus, one can decide
whether3 <y o in a consistent CP-nét by deciding either of the problen®s<ISTENCE OF DOM
INATING OUTCOME andEXISTENCE OF STRONGLY DOMINATING OUTCOMEor E’. [

We also note that the probleEXKISTENCE OF NONDOMINATED OUTCOME is easier (under
standard complexity theory assumptions).

Proposition 12 The problenEXISTENCE OF NONDOMINATED OUTCOME iS NP-complete.

Proof: We note that in the case of GCP-nets in conjunctive form the problem isrktwleNP-hard
(Domshlak et al., 2003, 2006). Thus, the problemshard for GCP-nets. The membership in the
classNP follows from Proposition 10. [|

If we restrict to consistent GCP-nets, the situation simplifies. First, we rggatima 9) that if
a GCP-net is consistent then weakly non-dominated and non-dominatedr@stcoincide, and the
same is true for dominating and strongly dominating outcomes. Moreovenrigistent GCP-nets,
non-dominated outcomes exist (and so, the corresponding decisiderprigttrivially in P). Thus,
for consistent GCP-nets we will only consider problemasviNATING OUTCOME andEXISTENCE
OF DOMINATING OUTCOME.

Proposition 13 The problem®OMINATING OUTCOME and EXISTENCE OF DOMINATING OUTF
COME restricted to consistent GCP-nets arecoNP.

27

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Proof: Using Lemmas 8 and @ is not a dominating outcome if and only if there exists an outcome
B # a which is non-dominated. Similarly, there is no dominating outcome in a consistePtreC

if and only if there are at least two non-dominated outcomes. Thus, ggessmdeterministically

an outcome # a, and verifying tha3 is non-dominated, is a non-deterministic polynomial-time
algorithm deciding the complement of the proble@MINATING OUTCOME. The argument for the
other problem is similar. [|

We do not know if the bounds in Proposition 13 are tight, that is, whethee tiwes problems
arecoNP-complete. We conjecture they are.

8. Concluding Remarks

We have shown that dominance and consistency testing in CP-nets arRsSBatbE-complete. Also
several related problems related to dominance and optimality in CP-n€&SR&EE-complete, too.

The repeated use of reductions from planning problems confirms the impertd the struc-
tural similarity between STRIPS planning and reasoning with CP-nets. Thigests that the well-
developed field of planning algorithms for STRIPS representationsciedlgdor unary operators
(Brafman & Domshlak, 2003), could be useful for implementing algorithmsdfaminance and
consistency in CP-nets.

Our theorems extend to CP-nets with non-binary domains, and to extensidnsagdations
of CP-nets, such as TCP-nets (Brafman & Domshlak, 2002; Brafmal, &086) that allow for
explicit priority of some variables over others, and the more general éyegior conditional pref-
erences (Wilson, 2004a, 2004b), where the conditional preferetes are written in conjunctive
form.

The complexity result for dominance is also relevant for the following cairstd optimisation
problem: given a CP-net and a constraint satisfaction problem (C8&B)afi optimal solution (a
solution of the CSP which is not dominated by any other solution of the CSR)isT¢tomputation-
ally complex, intuitively because a complete algorithm involves many dominarezkshvhen the
definition of dominance under constraints allows for dominance paths to gagihioutcomes vio-
lating the constraints (Boultilier et al., 2004b)Y'he problem of checking whether a given solution
of a CSP is non-dominated can be seen te BRACE-complete by a reduction from CP-dominance
that uses a CSP that has exactly two solutions.

Our results reinforce the need for work on finding special classebfgms where dominance
and consistency can be tested efficiently (Domshlak & Brafman, 2002tiiBowet al., 2004a),
and for incomplete methods for checking consistency and constrained atomié/Vilson, 2004a,
2006).

Several open problems remain. We do not know the complexity of decidieghehthe prefer-
ence relation induced by a CP-net is complete. We do not know whether @ocgiand consistency
testing remairPSPACE-complete when the number of parents in the dependency graph is bounded
by a constant. We also do not know whether these two problems re?s@CE-complete for
CP-nets in conjunctive form (the reduction used to prove Theorems 2 gieddls CP-nets that are
not in conjunctive form). Two additional open problems are listed at theoéBection 7.

9. With another possible definition, where going through outcomes violatsgdhstraints is not allowed (Prestwich
et al., 2005), dominance testing is not needed to check whether aggiligion is non-dominated.

28

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY N CP-NETS

Acknowledgments

The authors are grateful to the reviewers for their excellent commerndgodpierre Marquis for
helpful discussions. This material is supported in part by the NSF undamt§sITR-0325063,
[1S-0097278 and KSEF-1036-RDE-008, by the ANR Project ANR-EISAN-0384 “Preference
Handling and Aggregation in Combinatorial Domains”, by Science Founda@tand under Grants
No. 00/P1.1/C075 and 05/IN/1886, and by Enterprise Ireland Ulyssesltgaant FR/2006/36.

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamel&,Fotasi, M. (1999).
Complexity and Approximation. Combinatorial optimization problems and dpgroxima-
bility properties Springer Verlag.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004a).-n€R: a tool for
representing and reasoning with conditional ceteris paribus statendentsial of Artificial
Intelligence Resear¢t21, 135-191.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004bkfétence-based con-
strained optimization with CP-net€omputational Intelligenge20(2), 137-157.

Boutilier, C., Brafman, R., Hoos, H., & Poole, D. (1999). Reasoning witid@@onal ceteris paribus
preference statements. Rroceedings of UAI-9%p. 71-80.

Brafman, R., Domshlak, C., & Shimony, E. (2006). On graphical modelingrefepence and
importance.Journal of Artificial Intelligence Research5, 389-424.

Brafman, R., & Dimopoulos, Y. (2004). Extended semantics and optimizatiamigdms for CP-
networks.Computational Intelligence0(2), 218-245.

Brafman, R., & Domshlak, C. (2002). Introducing variable importancestiafts into CP-nets. In
Proceedings of UAI-02op. 69-76.

Brafman, R., & Domshlak, C. (2003). Structure and complexity of planniitly wnary operators.
Journal of Artificial Intelligence Research8, 315-439.

Brandt, F., Fischer, F., & Harrenstein, P. (2007). The computatiomaptaxity of choice sets. In
Proceedings of TARK-Qpp. 82-91.

Bylander, T. (1994). The computational complexity of propositional $IRplanning.Atrtificial
Intelligence 69(1-2), 165-204.

Domshlak, C., & Brafman, R. (2002). CP-nets—reasoning and conejstesting. InProceedings
of KR-02 pp. 121-132.

Domshlak, C., Prestwich, S., Rossi, F., Venable, K., & Walsh, T. (200&)dldnd soft constraints
for reasoning about qualitative conditional preferenclesirnal of Heuristics12(4/5), 263—
285.

Domshlak, C., Rossi, F., Venable, K., & Walsh, T. (2003). Reasoningtadxft constraints and
conditional preferences: complexity results and approximation technituBsoceedings of
IJCAI-03 pp. 215-220.

Goldsmith, J., Lang, J., Truszazski, M., & Wilson, N. (2005). The computational complexity of
dominance and consistency in CP-netsPtoceedings of IJCAI-Q%p. 144-149.

29

J. GOLDSMITH, J. LANG, M. TRUSzZCZYNSKI, N. WILSON

Lang, J. (2004). Logical preference representation and combialatote. Annals of Mathematics
and Artificial Intelligence42(1), 37—71.

Papadimitriou, C. (1994)Computational complexityAddison-Wesley.

Prestwich, S., Rossi, F., Venable, B., & Walsh, T. (2005). Constraisgdbpreferential optimization.
In Proceedings of AAAI-QPp. 461-466.

Wilson, N. (2004a). Consistency and constrained optimisation for conditipreferences. In
Proceedings of ECAI-Q4p. 888-892.

Wilson, N. (2004b). Extending CP-nets with stronger conditional pegiez statements. IRro-
ceedings of AAAI-Q4p. 735-741.

Wilson, N. (2006). An efficient upper approximation for conditionalference. InProceedings of
ECAI-06 pp. 472-476.

Xia, L., Conitzer, V., & Lang, J. (2008). Voting on multiattribute domains withlicypreferential
dependencies. IRroceedings of AAAI-Q®p. 202—-207.

30

