
Generating cellular puzzles with logic programs

Raphael Finkel Wiktor Marek Mirek Truszczyński
raphael@cs.uky.edu marek@cs.uky.edu mirek@cs.uky.edu

Department of Computer Science, University of Kentucky

Abstract

We show how to characterize puzzles by logic programs
and how to use those characterizations to build puzzles
automatically. We can control the difficulty level of the
puzzles by choosing how and when to invoke the logic
program.

1. Introduction

Cellular puzzles take the form of cells whose val-
ues are constrained by rules involving groups of
cells. The puzzle starts with clues, which are cells
that already possess their value. It is the pleasant
task of the puzzle enthusiast to solve the puzzle
by entering values in all the cells in a way that sat-
isfies the constraints. A well-formed puzzle has
exactly one solution. To assist the enthusiast, the
puzzle may contain a hint sequence, which is a se-
quence of cells that suggest the order in which the
enthusiast should be able to complete the puzzle.

We consider Sudoku puzzles [TFE05] as a typ-
ical cellular puzzle. Figure 1 shows a sample Su-
doku puzzle. The cells are arranged in a 9× 9 grid
subdivided into nine 3 × 3 sections. We say a set
of 9 cells is complete if the numbers 1 . . . 9 appear
exactly once in that set. The constraints that link
the cells are that each row, column, and section is
complete. The first hint, bE, directs our attention
to a cell that must contain 2, because in its section,
all other locations for 2 are excluded by being filled
in with other numbers or because their row or col-
umn already has a 2.

This paper shows how we use logic programs
to generate cellular puzzles of varying degrees of
difficulty.

2. Generating a random complete
solution

We begin by expressing the constraints in a logic
formalism. For this paper, we present constraints
using the Aspps [ET01] answer-set formalism, al-
though many alternatives, such as smodels [NS97]
and dlv [EFLP00] exist.

Given n as the width of a section (for us, 3), and
m the width of the puzzle (for us, 9), the logic rules
of Figure 2 represent the constraints.

Lines 1 and 2 introduce numsmall and num-
large as predicates true over the range 1 . . .3 and
1 . . . 9, respectively. Lines 3, 4, and 5 give the sig-
nature of the ternary predicate place and the vari-
ables I, J, N, K, and M. We use place(I,J,N) to
represent the fact that the value N is placed in cell
(I,J). Line 6 can be read “given a cell (I,J),
there is at least one and at most one (that is, ex-
actly one) value N that is placed in that cell.” Line
7 represents the constraint that there is exactly one
row I for which any given value N appears in col-
umn J. Line 8 constrains columns in a similar way.
Lines 9 and 10 introduce the section constraints.
Given a section numbered (K,M) and a value N,
there is exactly one cell (I,J) in that section that
has that value.

When we run these rules as a logic program, we
get a very large number of results. We pick the first
result as a desired solution, relying on the random-
ization performed by Aspps. We also randomize
the solution by randomly preloading values in a
few cells. If our preloading is inconsistent with the
constraints, we choose a different random preload-
ing and repeat.



Puzzle
A B C D

a

b

c

d

E F G H I

e

f

g

h

i

5

6

5

8

4

8

3

7

1

6

9

4

9

1

8

8

3

6

2

7 1

3

2

2

5

Solution
A B C D

a

b

c

d

E F G H I

e

f

g

h

i

5 7 4 8 1 9 6 2 3

8 9 1 3 2 6 5 7 4

6 2 3 4 7 5 9 8 1

3 8 5 1 6 2 7 4 9

2 1 6 9 4 7 8 3 5

9 4 7 5 3 8 2 1 6

7 3 8 6 5 4 1 9 2

4 6 2 7 9 1 3 5 8

1 5 9 2 8 3 4 6 7

Hints

1:bE 2:eF 3:eE 4:fE 5:hG 6:iF
7:fD 8:cH 9:cI 10:gG 11:fG 12:cB
13:eI 14:hH 15:bH 16:eA 17:hC 18:gI
19:gA 20:fC 21:fA 22:hA 23:aA 24:dC
25:bG 26:aG 27:aB 28:dA 29:dB 30:bA
31:iG 32:iC 33:bB 34:bF 35:gD 36:gF
37:cD 38:bD 39:cC 40:bC 41:eB 42:eC
43:hB 44:aE 45:dD 46:dE 47:aF 48:hE
49:iE 50:hI 51:iI 52:dG 53:dI 54:gH
55:dH 56:aC

Fig. 1. A 9 × 9 Sudoku puzzle, its solution, and
hints

1 numsmall(1..n).
2 numlarge(1..m).

3 pred place(numlarge, numlarge,
numlarge).

4 var numlarge I,J,N.
5 var numsmall K,M.

6 1 { place(I,J,N)[N] } 1.
7 1 { place(I,J,N)[I] } 1.
8 1 { place(I,J,N)[J] } 1.
9 1 { place(I,J,N)[I,J]: I<=n*K:

J<=n*M: n*(K-1) < I:
10 n*(M-1) < J} 1.

Fig. 2. Aspps rules for the Sudoku puzzle

removableClues := solution
preservedClues := Ø
while removableClues 6= Ø do

victimClue :=
choose(removableClues)

removableClues -:= {victimClue}
if puzzleBad(removableClues

+ preservedClues) then
preservedClues +:= {victimClue}

end if
end while
clues := preservedClues

Fig. 3. Algorithm to reduce the clue set

3. Reducing the solution to a minimal
set of clues

We take the solution as the initial set of clues and
reduce the clue set until it is minimal by the algo-
rithm of Figure 3. Each iteration randomly picks
a single clue and tries to solve the puzzle with-
out it. If the puzzle is now bad (we’ll explain that
shortly), the clue is added to the set of fixed clues,
which must be preserved. Eventually, all the origi-
nal clues are either removed or preserved; the pre-
served clues become the final set of clues.

The only complex part of this algorithm is the
puzzleBad function, which determines whether
a given set of clues makes a good puzzle. We try
solving the puzzle with Aspps. The Aspps soft-
ware has two stages, the grounder and the solver.



The grounder expands the rules of Figure 2 for all
possible values of the variables, and then it uses
unit propagation to determine as many facts as it
can. It is able to look ahead one step, that is, try
setting a fact to true and to false hoping to find a
solution in only one of those cases. The solver em-
ploys full backtrack, using a heuristic to pick facts
to assert and following the consequences. The fol-
lowing results can arise from applying Aspps.

• The puzzle has no solutions. This situation
should never happen, because each iteration
tests a less-constrained puzzle than the pre-
vious one.

• The grounder finds a solution without looka-
head. The puzzle is “good” and the clue may
be safely removed.

• The grounder finds the solution, but it needs
lookahead. Depending on how difficult we
wish to make the puzzle, we might call the
puzzle either “good” or “bad”. In practice,
unless we are trying to generate a hard puz-
zle, we tell the grounder not to use looka-
head. So when this situation arises, we call
the puzzle “good”.

• Aspps requires the full solver and backtrack
to find a sole solution. Although the puzzle
is well-formed, it is too hard for general en-
thusiasts. We call the puzzle “bad”.

• The puzzle has multiple solutions. The miss-
ing clue is required to keep the puzzle well-
formed. The puzzle is “bad”.

These last two situations require the solver to dis-
tinguish. But we consider both to be “bad”. There-
fore, we don’t ever call the solver. Either the grounder
can solve the puzzle (“good”) or it can’t (“bad”).

If we are trying to generate a hard puzzle, we
let the grounder use one-step lookahead. We also
apply one more test after reaching the final set of
clues: Can the grounder solve the final set of clues
without using lookahead? If so, then the puzzle
isn’t hard enough, but removing any clues would
make it ill-formed or too hard. In this case, we re-
ject the puzzle completely and start afresh.

size initial time iteration time mem

16 × 16 0.2 0.10 4
25 × 25 0.6 – 2.7 0.14 6
36 × 36 4.8 – 54 0.24 14
49 × 49 22 – 300 0.49 30

Fig. 4. Time (seconds) and memory (MB) require-
ments for generating Sudoku puzzles

4. Generating a hint sequence

In a cellular puzzle, most atoms turn out to be false.
For example, in the puzzle of Figure 1 (page 2), it
turns out that place(1,1,5) is true. Therefore
the grounder at some point also derives that
place(1,1,1) is false, as is place(1,1,2) and
all the other related values. The positive (true) in-
stances of place are the interesting ones. By ex-
amining the grounder’s log, we can determine the
order in which it discovers positive atoms by unit
propagation. That list begins with the clues them-
selves. The rest of the positive instances of place
in the log form the hint sequence.

5. Performance

The logic-program approach to generating cellu-
lar puzzles is remarkably efficient in programmer
time. Each puzzle type requires only a few lines of
Aspps code. The algorithm of Figure 3 is encoded
in about 500 lines of Perl [WS90], much of which is
devoted to generating formatted puzzle and hint
output.

Given the Aspps rules, generating a puzzle has
two phases: Finding the solution and reducing the
clues. The time needed for the first phase depends,
of course, on the complexity of the constraints and
the size of the puzzle. On a 3GHz Pentium 4 run-
ning Linux, we accomplish the first phase for Su-
doku puzzles of various sizes in time and memory
shown in Figure 4. The time for the first phase has
a large variance, especially for larger puzzles. Fig-
ure 4 also shows the time for each iteration in the
second phase. This value has much smaller vari-
ance.



6. Puzzle types

We have investigated several cellular puzzle types.

• Sudoku. These are n2 × n2 squares with n2

sections containing n × n cells, where each
row, column, and section are complete.

• Diagonal Sudoku. These puzzles are the same
as Sudoku, but the two diagonals are also
complete. Cells (i, i) constitute the first diag-
onal, and (i, n2 + 1 − i) constitute the other.
We show such a puzzle in Figure 5.

• MultiFour. This puzzle is our own invention.
It has 4n × 4n cells. Again, each row and
column is complete, but now a set of cells is
complete if every value 1 . . . 4 occurs exactly
n times. We show such a puzzle in Figure 6.
For n = 2, we can add the extra constraint that
every 2 × 2 section has each of 1 . . . 4 exactly
once. This constraint is apparently not satis-
fiable for larger n.

• MultiSpot. These puzzles are our own inven-
tion. They have n×n cells, for n = 5, 6, 7, 8, 9.
Each row and column is complete, as is each
irregularly-shaped region. We show such a
puzzle for n = 7 in Figure 7.

All these puzzles use only completeness constraints.
We could also impose numerical constraints, such
as requiring that particular cells have values adding
to some value. One form of numeric cellular puz-
zle is arranged as a planar graph of a fixed shape.
Each region and each edge is a cell that must have
an integer value. The value on each edge must be
the sum of the values of the regions it borders. It
remains to be seen if such puzzles are attractive to
enthusiasts. It is certainly easy to generate them.

7. References

[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola
Leone, and Gerald Pfeifer. Declarative
problem-solving in DLV. In Jack Minker,
editor, Logic-Based Artificial Intelligence,
pages 79–103. Kluwer Academic Pub-
lishers, Dordrecht, 2000.

[ET01] D. East and M. Truszczyński. aspps —
an implementation of answer-set pro-
gramming with propositional schemata.

Puzzle
A B C D

a

b

c

d

E F G H I

e

f

g

h

i 7

8

2

2 3

8

9

76

1

4

1

9

9 5

3

4

2

1

Solution
A B C D

a

b

c

d

E F G H I

e

f

g

h

i

2 8 5 6 3 7 1 9 4

9 1 6 4 8 2 7 5 3

3 7 4 9 5 1 2 6 8

6 4 8 3 7 9 5 2 1

5 2 1 8 6 4 9 3 7

7 9 3 1 2 5 4 8 6

1 6 7 2 9 3 8 4 5

4 3 9 5 1 8 6 7 2

8 5 2 7 4 6 3 1 9

Fig. 5. A 9 × 9 diagonal Sudoku puzzle



Puzzle
A B C D E F G H

a

b

c

d

e

f

g

h

I J K L

i

j

k

l

4

2

41

41

3

2

1

2

1

2

2

4

1

1

4

1

2 2

4

2

4

4

3

4

1

1

4

1

1

3

2

1

1

3 4

41

3

2

3

4

3

3

4

1

1

2

3

2

2

2

3

2

3 3

3

4

1

3

2

4

2

4

2

2

2

4

2

2

1

3

Solution
A B C D E F G H

a

b

c

d

e

f

g

h

I J K L

i

j

k

l

3 2 2 3 2 1 3 1 1 4 4 4

2 1 3 2 1 1 4 3 4 2 3 4

1 1 4 4 4 2 2 3 3 1 2 3

3 1 1 2 1 3 4 2 4 3 4 2

2 2 1 1 3 1 3 2 4 4 3 4

2 2 2 1 3 4 4 1 1 4 3 3

1 3 2 1 4 4 3 4 2 3 1 2

4 4 4 3 2 3 1 2 3 1 2 1

1 4 4 4 3 2 1 3 2 3 2 1

3 3 1 2 4 4 2 4 1 2 1 3

4 4 3 4 1 3 2 1 3 2 1 2

4 3 3 3 2 2 1 4 2 1 4 1

Fig. 6. An n = 3 MultiFour puzzle

Puzzle

p

p p

p p

p

p

pp

pp

p

p p

pp

A B C D E

a

b

c

d

e

F

f

G

g

1

6

4

7

13

3

3

5

7

4

Solution

p

p p

p p

p

p

pp

pp

p

p p

pp

A B C D E

a

b

c

d

e

F

f

G

g

2 5 4 3 7 6 1

1 7 6 5 2 3 4

3 6 1 7 4 2 5

4 2 5 1 6 7 3

6 3 7 4 1 5 2

7 4 3 2 5 1 6

5 1 2 6 3 4 7

Fig. 7. An n = 7 MultiSpot puzzle

In Proceedings of Logic Programming and
Nonmonotonic Reasoning Conference, LP-
NMR 2001, volume 2173, pages 402–405.
Lecture Notes in Artificial Intelligence,
Springer Verlag, 2001.

[NS97] I. Niemelä and P. Simons. Smodels —
an implementation of the stable model
and well-foundd semantics for normal
logic programs. In Logic Programming
and Nonmonotonic Reasoning (the 4th
International Conference, Dagstuhl, Ger-
many, 1997), volume 1265 of Lecture
Notes in Computer Science, pages 420–
429. Springer-Verlag, 1997.

[TFE05] Wikipedia: The Free Encyclopedia. Su-
doku, 2005. http://en.wikipedia.
org/wiki/Sudoku.

[WS90] L. Wall and R. L. Schwartz. Programming
Perl. O’Reilly and Associates, 1990.


