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2 � Z. Lonc and M. Truszczy�nskiinvestigations, we use the framework of the �xed-parameter complexity introducedby Downey and Fellows [Downey and Fellows 1997]. This framework was previouslyused to study the problem of the existence of stable models of logic programs in[Truszczy�nski 2002]. Our present work extends results obtained there. First, inaddition to the class of all �nite propositional logic programs, we consider its twoimportant subclasses: the class of de�nite Horn programs and the class of purelynegative programs. Second, in addition to stable models of logic programs, we alsostudy supported models and arbitrary models.A decision problem is called parameterized if its inputs are pairs of items. Thesecond item in a pair is referred to as a parameter. The problem to decide, givena logic program P and an integer k, whether P has a stable model with at most katoms is an example of a parameterized decision problem. This parameterized prob-lem is NP-complete. However, �xing k (in other words, k is no longer regarded as apart of the input) makes the problems simpler. It becomes solvable in polynomialtime. The following straightforward algorithm works: for every subset M � At(P )of cardinality at most k, check whether M is a stable model of P . The check canbe implemented to run in linear time in the size of the program. If n stands for thenumber of atoms in P , there are O(nk) sets to be tested. Thus, the overall runningtime of this algorithm is O(mnk), where m is the size of the input program P . Thisdiscussion also applies to analogous problems in logic programming concerned withthe existence of models and supported models.respectively) problem is as, in solvable of isUnfortunately, algorithms with running times given by O(mnk) are not practicaleven for quite small values of k. The question then arises whether better algorithmscan be found, for instance, algorithms whose running-time estimate would be givenby a polynomial of the order that does not depend on k. Such algorithms, if theyexisted, could be practical for a wide range of values of k and could �nd applicationsin computing stable models of logic programs.This question is the subject of our work. We also consider similar questionsconcerning related problems of deciding the existence of models, supported modelsand stable models of cardinality exactly k and at least k. We refer to all theseproblems as small-bound problems since k, when �xed, can be regarded as \small"( kjAt(P )j converges to 0 as jAt(P )j goes to in�nity). In addition, we study problemsof existence of models, supported models and stable models of cardinality at mostjAt(P )j�k, exactly jAt(P )j�k and at least jAt(P )j�k. We refer to these problemsas large-bound problems, since jAt(P )j�k, for a �xed k, can be thought of as \large"( jAt(P )j�kjAt(P )j converges to 1 as jAt(P )j goes to in�nity).We address these questions using the framework of �xed-parameter complexity[Downey and Fellows 1997]. Most of our results are negative. They provide strongevidence that for many parameterized problems considered in the paper there areno algorithms whose running time could be estimated by a polynomial of orderindependent of k.Formally, a parameterized decision problem is a set L � �����, where � is a �xedalphabet. By selecting a concrete value � 2 �� of the parameter, a parameterizeddecision problem L gives rise to an associated �xed-parameter problem L� = fx :(x; �) 2 Lg.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 3A parameterized problem L � �� � �� is �xed-parameter tractable if there exista constant t, an integer function f and an algorithm A such that A determineswhether (x; y) 2 L in time f(jyj)jxjt (jzj stands for the length of a string z 2 ��).We denote the class of �xed-parameter tractable problems by FPT. Clearly, if aparameterized problem L is in FPT, then each of the associated �xed-parameterproblems Ly is solvable in polynomial time by an algorithm whose exponent doesnot depend on the value of the parameter y. Parameterized problems that are not�xed-parameter tractable are called �xed-parameter intractable.To study and compare the complexity of parameterized problems Downey andFellows proposed the following notion of �xed-parameter reducibility (or, simply,reducibility).De�nition 1.1. A parameterized problem L can be reduced to a parameterizedproblem L0 if there exist a constant p, an integer function q, and an algorithm Asuch that:(1) A assigns to each instance (x; y) of L an instance (x0; y0) of L0,(2) A runs in time O(q(jyj)jxjp),(3) x0 depends upon x and y, and y0 depends upon y only,(4) (x; y) 2 L if and only if (x0; y0) 2 L0.We will use this notion of reducibility throughout the paper. If for two parameter-ized problems L1 and L2, L1 can be reduced to L2 and conversely, we say that L1and L2 are �xed-parameter equivalent or, simply, equivalent.Downey and Fellows [Downey and Fellows 1997] de�ned a hierarchy of complexityclasses called the W hierarchy:FPT �W[1] �W[2] �W[3] � : : : : (1)The classes W[t] can be described in terms of problems that are complete for them(a problem D is complete for a complexity class E if D 2 E and every problem inthis class can be reduced to D). Let us call a Boolean formula t-normalized if it is ofthe form of conjunction-of-disjunctions-of-conjunctions ... of literals, with t beingthe number of conjunctions-of, disjunctions-of expressions in this de�nition. Forexample, 2-normalized formulas are conjunctions of disjunctions of literals. Thus,the class of 2-normalized formulas is precisely the class of CNF formulas. We de�nethe weighted t-normalized satis�ability problem as:WS(t):. Given a t-normalized formula � and a non-negative integer k, decidewhether there is a model of � with exactly k atoms (or, alternatively, decide whetherthere is a satisfying valuation for � which assigns the logical value true to exactlyk atoms).Downey and Fellows show that for every t � 2, the problem WS(t) is complete forthe class W[t]. They also show that a restricted version of the problem WS(2):WS2(2):. Given a 2-normalized formula � with each clause consisting of at mosttwo literals, and an integer k, decide whether there is a model of � with exactly katoms ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



4 � Z. Lonc and M. Truszczy�nskiis complete for the class W[1]. There is strong evidence suggesting that all theimplications in (1) are proper. Thus, proving that a parameterized problem iscomplete for a class W[t], t � 1, is a strong indication that the problem is not�xed-parameter tractable.As we stated earlier, in the paper we study the complexity of parameterizedproblems related to logic programming. All these problems ask whether an inputprogram P has a model, supported model or a stable model satisfying some car-dinality constraints involving another input parameter, an integer k. They can becategorized into two general families: small-bound problems and large-bound prob-lems. In the formal de�nitions given below, C denotes a class of logic programs, Drepresents a class of models of interest and � stands for one of the three arithmeticrelations: \�", \=" and \�".D�(C):. Given a logic program P from class C and an integer k, decide whetherP has a model M from class D such that jM j � k.D0�(C):. Given a logic program P from class C and an integer k, decide whetherP has a model M from class D such that (jAt(P )j � k) � jM j.In the paper, we consider three classes of programs: the class of de�nite HornprogramsH, the class of purely negative programs N , and the class of all programsA. We also consider three classes of models: the class of all models M, the classof supported models SP and the class of stable models ST .Thus, for example, the problem SP�(N ) asks whether a purely negative logicprogram P has a supported model M with no more than k atoms (jM j � k). Theproblem ST 0�(A) asks whether a logic program P (with no syntactic restrictions)has a stable model M in which at most k atoms are false (jAt(P )j � k � jM j).Similarly, the problem M0�(H) asks whether a de�nite Horn program P has amodel M in which at least k atoms are false (jAt(P )j � k � jM j).In the three examples given above and, in general, for all problems D�(C) andD0�(C), the input instance consists of a logic program P from the class C and of aninteger k. We will regard these problems as parameterized with k. Fixing k (thatis, k is no longer a part of input but an element of the problem description) leadsto the �xed-parameter versions of these problems. We will denote them D�(C; k)and D0�(C; k), respectively.In the paper, for all but three problems D�(C) and D0�(C), we establish their�xed-parameter complexities. Our results are summarized in Tables I - III.H N AM P P PM0 P W[1]-c NP-cSP P NP-c NP-cSP 0 P NP-c NP-cST P NP-c NP-cST 0 P NP-c NP-cTable I. The complexities of the problems D�(C) and D0�(C).ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 5In Table I, we list the complexities of all problems in which � = \�". Small-bound problems of this type ask about the existence of models of a program P thatcontain at least k atoms. Large-bound problems in this group are concerned withthe existence of models that contain at most jAt(P )j�k atoms (the number of falseatoms in these models is at least k). >From the point of view of the �xed-parametercomplexity, these problems are not very interesting. Several of them remain NP-complete even when k is �xed. In other words, �xing k does not simplify themenough to make them tractable. For this reason, all the entries in Table I, listingthe complexity as NP-complete (denoted by NP-c in the table), refer to �xed-parameter versions D�(C; k) and D0�(C; k) of problems D�(C) and D0�(C). TheproblemM0�(A; k) is NP-complete for every �xed k � 1. All other �xed-parameterproblems in Table I that are marked NP-complete are NP-complete for every valuek � 0.On the other hand, many problems D�(C) and D0�(C) are \easy". They are�xed-parameter tractable in a strong sense. They can be solved in polynomial timeeven without �xing k. This is indicated by marking the corresponding entries inTable I with P (for the class P) rather than with FPT. There is only one exception,the problemM0�(N ), which is W[1]-complete.Small-bound problems for the cases when � = \=" or \�" can be viewed asproblems of deciding the existence of \small" models, that is, models containingexactly k or at most k atoms. Indeed, for a �xed k and the number of atoms in aprogram going to in�nity, the ratio of the number of true atoms to the number ofall atoms converges to 0 (k is \small" with respect to jAt(P )j). The �xed-parametercomplexities of these problems are summarized in Table II.H� H= N� N= A� A=M P W[1]-c W[2]-c W[2]-c W[2]-c W[2]-cSP P W[1]-h, W[2]-c W[2]-c W[2]-c W[2]-cin W[2]ST P P W[2]-c W[2]-c W[2]-c W[2]-cTable II. The complexities of the problem of computing small models (small-bound problems, thecases of � = \=" and \�").The problems involving the class of all purely negative programs and the classof all programs are W[2]-complete. This is a strong indication that they are�xed-parameter intractable. All problems of the form D�(H) are �xed-parametertractable. In fact, they are solvable in polynomial time even without �xing the pa-rameter k. We indicate this by marking the corresponding entries with P. Similarly,the problem ST =(H) of deciding whether a de�nite Horn logic program P has astable model of size exactly k is in P. However, perhaps somewhat surprisingly,the remaining two problems involving de�nite Horn logic programs and � = \="are harder. We proved that the problem M=(H) is W[1]-complete and that theproblem SP=(H) is W[1]-hard. Thus, they most likely are not �xed-parametertractable. We also showed that the problem SP=(H) is in the class W[2]. Theexact �xed-parameter complexity of SP=(H) remains unresolved.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



6 � Z. Lonc and M. Truszczy�nskiLarge-bound problems for the cases when � = \=" or \�" can be viewed asproblems of deciding the existence of \large" models, that is, models with a smallnumber of false atoms | equal to k or less than or equal to k. Indeed, for a �xedk and the number of atoms in a program going to in�nity, the ratio of the numberof true atoms to the number of all atoms converges to 1 (k is \large" with respectto jAt(P )j). The �xed-parameter complexities of these problems are summarizedin Table III. H� H= N� N= A� A=M0 P W[2]-c P W[1]-c P W[2]-cSP 0 P W[3]-c, W[2]-c W[2]-c W[3]-c W[3]-cST 0 P P W[2]-c W[2]-c W[3]-h W[3]-hTable III. The complexities of the problems of computing large models (large-bound problems,the cases of � = \=" and \�").The problems speci�ed by � = \�" and concerning the existence of models arein P. Similarly, the problems speci�ed by � = \�" and involving de�nite Hornprograms are solvable in polynomial time. Lastly, the problem ST 0=(H) is in P, aswell. These problems are in P even without �xing k and eliminating it from input.All other problems in this group have higher complexity and, in all likelihood, are�xed-parameter intractable. One of the problems,M0=(N ), is W[1]-complete. Mostof the remaining problems are W[2]-complete. Surprisingly, some problems are evenharder. Three problems concerning supported models are W[3]-complete. For twoproblems involving stable models, ST 0=(A) and ST 0�(A), we could only prove thatthey are W[3]-hard. For these two problems we did not succeed in establishing anyupper bound on their �xed-parameter complexities.The study of �xed-parameter tractability of problems occurring in the area ofnonmonotonic reasoning is a relatively new research topic. The only two otherpapers we are aware of are [Truszczy�nski 2002] and [Gottlob et al. 1999]. The �rstof these two papers provided a direct motivation for our work here (we discussed itearlier). In the second one, the authors focused on parameters describing structuralproperties of programs. They showed that under some choices of the parametersdecision problems for nonmonotonic reasoning become �xed-parameter tractable.Our results concerning computing stable and supported models for logic pro-grams are mostly negative. Parameterizing basic decision problems by constrainingthe size of models of interest does not lead (in most cases) to �xed-parametertractability.There are, however, several interesting aspects to our work. First, we identi�edsome problems that are W[3]-complete or W[3]-hard. Relatively few problems fromthese classes were known up to now [Downey and Fellows 1997]. Second, in thecontext of the polynomial hierarchy, there is no distinction between the problem ofexistence of models of speci�ed sizes of clausal propositional theories and similarproblems concerning models, supported models and stable models of logic programs.All these problems are NP-complete. However, when we look at the complexity ofthese problems in a more detailed way, from the perspective of �xed-parameterACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 7complexity, the equivalence is lost. Some problems are W[3]-hard, while prob-lems concerning existence of models of 2-normalized formulas are W[2]-completeor easier. Third, our results show that in the context of �xed-parameter tractabil-ity, several problems involving models and supported models are hard even for theclass of de�nite Horn programs. Finally, our work leaves three problems unresolved.While we obtained some bounds for the problems SP=(H), ST 0�(A) and ST 0=(A),we did not succeed in establishing their precise �xed-parameter complexities.The rest of our paper is organized as follows. In the next section, we reviewrelevant concepts in logic programming. Next, we present several useful �xed-parameter complexity results for problems of the existence of models for proposi-tional theories of certain special types. We also state and prove there some auxiliaryresults on the hardness of problems concerning the existence of stable and supportedmodels. We study the complexity of the problems D�(C) and D0�(C) in Section 3.We consider the complexity of problems concerning small and large stable modelsin Sections 4 and 5, respectively.2. PRELIMINARIESWe start by introducing some basic logic programming terminology. We refer thereader to [Lloyd 1984; Apt 1990] for a detailed treatment of the subject.In the paper, we consider only the propositional case. A logic program clause (orrule) is any expression r of the formr = p q1; : : : ; qm;not(s1); : : : ;not(sn); (2)where p, qi and si are propositional atoms. We call the atom p the head of r andwe denote it by h(r). Further, we call the set of atoms fq1; : : : ; qm; s1; : : : ; sng thebody of r and we denote it by b(r). In addition, we distinguish the positive body ofr, fq1; : : : ; qmg (b+(r), in symbols), and the negative body of r, fs1; : : : ; sng (b�(r),in symbols).A logic program is a collection of clauses. For a logic program P , by At(P ) wedenote the set of atoms that appear in P . If every clause in a logic program P hasan empty negative body, we call P a de�nite Horn program. If every clause in Phas an empty positive body, we call P a purely negative program. In this paper wewill consider �nite programs only.A clause r, given by (2), has a propositional interpretation as an implicationpr(r) = q1 ^ : : : ^ qm ^ :s1 ^ : : : ^ :sn ) p:Given a logic program P , by a propositional interpretation of P we mean the propo-sitional formula pr(P ) =^fpr(r): r 2 Pg:We say that a set of atoms M is a model of a clause (2) if M is a (propositional)model of the clause pr(r). As usual, atoms in M are interpreted as true, all otheratoms are interpreted as false. A set of atoms M � At(P ) is a model of a programP if it is a model of the formula pr(P ). We emphasize the requirementM � At(P ).In this paper, given a program P , we are interested only in the truth values ofatoms that actually occur in P .ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



8 � Z. Lonc and M. Truszczy�nskiIt is well known that every de�nite Horn program P has a least model (withrespect to set inclusion). We will denote this model by lm(P ).Let P be a logic program. Following [Clark 1978], for every atom p 2 At(P ) wede�ne a propositional formula comp(p) bycomp(p) = p,_fc(r): r 2 P; h(r) = pg;where c(r) =^fq: q 2 b+(r)g ^^f:s: s 2 b�(r)g:If for an atom p 2 At(P ) there are no rules with p in the head, we get an emptydisjunction in the de�nition of comp(p), which we interpret as a contradiction.Thus, in this case, comp(p) is logically equivalent to :p. On the other hand, ifb(r) = ; then c(r) is an empty conjunction, which we interpret as a tautology. Inthis case comp(p) is logically equivalent to p.We de�ne the program completion (also referred to as the Clark completion) ofP as the propositional theorycomp(P ) =^fcomp(p): p 2 At(P )g:A set of atoms M � At(P ) is called a supported model of P if it is a model ofthe completion of P . It is easy to see that if p does not appear as the head ofa rule in P , p is false in every supported model of P . It is also easy to see thateach supported model of a program P is a model of P (the converse is not true ingeneral).Given a logic program P and a set of atomsM , we de�ne the reduct (also referredto as the Gelfond-Lifschitz reduct) of P with respect to M (PM , in symbols) to bethe logic program obtained from P by(1) removing from P each clause r such that M \ b�(r) 6= ; (we call such clausesblocked by M),(2) removing all negated atoms from the bodies of all the rules that remain (thatis, those rules that are not blocked by M).The reduct PM is a de�nite Horn program. Thus, it has a least model. We saythat M is a stable model of P if M = lm(PM ). Both the notion of the reduct andthat of a stable model were introduced in [Gelfond and Lifschitz 1988].It follows directly from the de�nition that if M is a stable model of a program Pthen M � At(P ) and M is a model of P . In fact, an even stronger property holds.It is well known that every stable model of a program P is not only a model of P| it is a supported model of P . The converse does not hold in general. However,if a program P is purely negative, then stable and supported models of P coincide[Fages 1994].In our arguments we use �xed-parameter complexity results on problems to decidethe existence of models of prescribed sizes for propositional formulas from somespecial classes. To describe these problems we introduce additional terminology.First, given a propositional theory �, by At(�) we denote the set of atoms occurringin �. As in the case of logic programming, we consider as models of a propositionaltheory � only those sets of atoms that are subsets of At(�). Next, we de�ne thefollowing classes of formulas:ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 9tN:. the class of t-normalized formulas (if t = 2, these are simply CNF formulas)2N3:. the class of all 2-normalized formulas whose every clause is a disjunctionof at most three literals (clearly, 2N3 is a subclass of the class 2N)tNM:. the class of monotone t-normalized formulas, that is, t-normalized formu-las in which there are no occurrences of the negation operatortNA:. the class of antimonotone t-normalized formulas, that is, t-normalized for-mulas in which every atom is directly preceded by the negation operator.Finally, we extend the notation M�(C) and M0�(C), to the case when C standsfor a class of propositional formulas. In this terminology, M0=(3NM) denotes theproblem to decide whether a monotone 3-normalized formula � has a model inwhich exactly k atoms are false. Similarly,M=(tN) is simply another notation forthe problemWS[t] that we discussed above. The following three theorems establishseveral complexity results that we will use later in the paper.Theorem 2.1. The problems M=(2N), M=(2NM), M�(2NM) and M0=(2N)are all W[2]-complete.Proof: The �rst two statements, concerning the W[2]-completeness ofM=(2N) andM=(2NM), are proved in [Downey and Fellows 1997].To prove the next statement, we will show that the problemM�(2NM) is equiv-alent to the problem M=(2NM). To this end, we �rst describe a reduction ofM=(2NM) to M�(2NM). Let us consider a monotone 2-normalized formula �and an integer k. We de�ne k0 = k. If k � jAt(�)j, we de�ne �0 = �. Otherwise,�0 = a1 ^ : : : ^ ak+1, where ai; i = 1; : : : ; k + 1, are pairwise di�erent atoms.It is easy to see that � has a model with exactly k atoms if and only if �0 has amodel with at most k0 atoms. Indeed, let M be a model of � with k atoms. SinceM � At(�), k � jAt(�)j. Thus, �0 = �. Consequently, M is a model of �0 andjM j � k0.Conversely, let us consider a model M of �0 such that jM j � k0. If k0 = k >jAt(�)j then �0 = a1 ^ : : : ^ ak+1. The only model of �0 has k + 1 = k0 + 1 atoms,a contradiction with jM j � k0. Thus, k0 = k � jAt(�)j and we have �0 = �. Itfollows that there is a set M 0 � At(�) such that M � M 0 and jM 0j = k. Since �is a monotone 2-normalized formula, a superset of a model of � is also a model of�. In particular, M 0 is a model of � and it has exactly k elements.Given a pair (�; k), the pair (�0; k0) can clearly be constructed in time boundedby a polynomial in the size of �. Thus, all the requirements of the De�nition 1.1are satis�ed. Since �0 is a monotone 2-normalized formula, the problemM=(2NM)is reducible to the problemM�(2NM).The converse reduction can be constructed in a similar way. We de�ne k0 = k.If k � jAt(�)j, we de�ne �0 = �. Otherwise, �0 = a1 ^ : : : ^ ak+1, where ai; i =1; : : : ; k+1, are pairwise di�erent atoms. It is easy to see that � has a model withat most k atoms if and only if �0 has a model with exactly k0 atoms (a similarargument as before can be applied). Clearly, the pair (�0; k0) can be constructedin time polynomial in the size of �. Thus, the problemM�(2NM) is reducible tothe problemM=(2NM).It follows that the problemM�(2NM) is equivalent to the problemM=(2NM)which, as we already stated, is known to be W[2]-complete [Downey and FellowsACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



10 � Z. Lonc and M. Truszczy�nski1997]. Consequently, the problemM�(2NM) is W[2]-complete.To prove the last statement of the theorem we reduceM=(2N) toM0=(2N) andconversely. Let us consider a 2-normalized formula � = Vmi=1Wmij=1 x[i; j], wherex[i; j] are literals. We observe that � has a model of cardinality k if and only if arelated formula �� = Vmi=1Wmij=1 �x[i; j], obtained from � by replacing every negativeliteral :x by a new atom �x and every positive literal x by a negated atom :�x, has amodel of cardinality jAt(��)j � k. This construction de�nes a reduction ofM=(2N)to M0=(2N). It is easy to see that this reduction satis�es all the requirements ofthe de�nition of �xed-parameter reducibility.A reduction ofM0=(2N) toM=(2N) can be constructed in a similar way. Sincethe problemM=(2N) is W[2]-complete, so is the problemM0=(2N). 2In the proof of Theorem 2.1, we presented several reductions and observed thatthey satisfy all the requirements speci�ed in De�nition 1.1 of �xed-parameter re-ducibility. Throughout the paper we prove our complexity results by constructingreductions from one problem to another. In most cases, we only verify the condi-tion (4) of the de�nition which, usually, is the only non-trivial part of the proof.Checking that the remaining conditions hold is straightforward and we leave thesedetails out.Theorem 2.2. The problemsM=(2N3),M=(2NA),M0=(2NM) andM0�(2NM)are W[1]-complete.Proof: The assertions concerning the �rst two problems are proved in [Downey andFellows 1997].Using the reductions described in the proof of the last statement of Theorem2.1, it is easy to show that the problemsM0=(2NM) andM=(2NA) are equivalent.Thus, the problemM0=(2NM) is W[1]-complete.Let � be a monotone 2-normalized theory. Clearly, � has a model of size atmost jAt(�)j � k if and only if it has a model of size exactly jAt(�)j � k. Thus,the problem M0�(2NM) is equivalent to the problem M0=(2NM). We have justproved that this last problem is W[1]-complete. Thus, the problem M0�(2NM) isalso W[1]-complete. 2Theorem 2.3. The problems M0=(3NM) andM0�(3N) are W [3]-complete.Proof: The problems M=(3NA) and M�(3N) are W[3]-complete [Downey andFellows 1997]. Let us now observe that the problems M0=(3NM) and M=(3NA)are equivalent. Similarly, the problemsM0�(3N) andM�(3N) are equivalent. Bothequivalences can be argued in a similar way to that we used in the proof of the laststatement of Theorem 2.1. Thus, the theorem follows. 2We will now present some general results that imply that in many cases, problemswith � = \�", concerning stable and supported models, are not harder than thecorresponding problems with � = \=".For every integer k, 1 � k, we denote by Yk the set of propositional variablesyi;j , where i = 1; 2 : : : ; k + 1, and j = 1; 2; : : : ; i. Next, for each i and j, where1 � i � k + 1 and 1 � j � i, we de�ne a logic program clause qi;j by:yi;j  not(y1;1); : : : ;not(yi�1;1);not(yi+1;1); : : : ;not(yk+1;1)(let us note that for every i, 1 � i � k + 1, rules qi;j , 1 � j � i, have the sameACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 11body). We then de�ne a logic program Qk by settingQk = fqi;j : 1 � i � k + 1 and 1 � j � ig:Lemma 2.4. For every i, 1 � i � k + 1, the set fyi;1; yi;2; : : : ; yi;ig is a stablemodel (supported model) of Qk. Moreover, Qk has no other stable models (supportedmodels).Proof: Let us consider any integer i such that 1 � i � k + 1. We de�ne M =fyi;1; yi;2; : : : ; yi;ig. Since yi;1 appears negated in the body of every rule qi0;j of Qk,with i0 6= i and 1 � j � i0, none of these rules contributes to the Gelfond-Lifschitzreduct of Qk with respect toM . On the other hand, no atom ofM appears negatedin the bodies of the rules qi;j , 1 � j � i. Thus, the Gelfond-Lifschitz reduct of Qkwith respect to M consists of the rulesyi;j  for j = 1; 2; : : : ; i. Clearly, the least model of the reduct is M and, consequently,M is a stable model of Qk.Let us consider now an arbitrary stable modelM of Qk. Since Qk has nonemptystable models and since stable models are incomparable with respect to inclusion[Marek and Truszczy�nski 1993], M 6= ;. Let yi;j 2 M , for some i and j such that1 � i � k + 1 and 1 � j � i. Since qi;j is the only rule of Qk with the head yi;j ,it follows that its body is satis�ed by M . Since all rules qi;j , 1 � j � i, have thesame body and since M is a model of Qk, the heads of all these rules belong toM . Thus, fyi;1; yi;2; : : : ; yi;ig � M . We proved earlier that fyi;1; yi;2; : : : ; yi;ig is astable model of Qk. Since stable models are incomparable with respect to inclusion,M = fyi;1; yi;2; : : : ; yi;ig. This completes the proof of the assertion for the case ofstable models.The program Qk is purely negative. Thus, its stable and supported modelscoincide [Fages 1994]. Consequently, the assertion follows for the case of supportedmodels, as well. 2Theorem 2.5. Let P be a logic program and let k be a non-negative integer. LetYk = fyi;j : i = 1; 2 : : : ; k + 1; j = 1; 2; : : : ; ig be a set of atoms disjoint with At(P )and let Qk be the program constructed above. Then:(1 ) P has a supported model (stable model) of cardinality at most k if and only ifP [Qk has a supported model (stable model) of cardinality equal to k + 1.(2 ) P has a supported model (stable model) of cardinality at least jAt(P )j � k ifand only if P [Qk has a supported model (stable model) of cardinality equal tojAt(P [Qk)j � k(k + 3)=2.Proof: First, we observe that since Yk \ At(P ) = ;, supported models (stablemodels) of P [Qk are precisely the sets M 0 [M 00, where M 0 is a supported model(stable model) of P and M 00 is a supported model (stable model) of Qk.The proofs for parts (1) and (2) of the assertion are very similar. We providehere only the proof for part (2).Let us assume thatM is a supported model of P of cardinality at least jAt(P )j�k.Then, jM j = jAt(P )j�k+a, for some a, 0 � a � k. Clearly, i = (k+1)�a satis�es1 � i � k + 1 and fyi;1; yi;2; : : : ; yi;ig is a supported model of Qk. It follows thatACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



12 � Z. Lonc and M. Truszczy�nskiM 0 =M [ fyi;1; yi;2; : : : ; yi;ig is a supported model of P [Qk and its cardinality isjAt(P )j � k + a+ i. It is now easy to see thatjAt(Qk)j = (k + 1)(k + 2)=2:Thus, we have thatjM 0j = jAt(P )j � k + a+ i = jAt(P )j+ 1= jAt(P [Qk)j � (k + 1)(k + 2)=2 + 1 = jAt(P [Qk)j � k(k + 3)=2:Conversely, let us assume that M 0 is a supported model of P [Qk of cardinalityexactly jAt(P [ Qk)j � k(k + 3)=2. It follows that M 0 = M [ fyi;1; yi;2; : : : ; yi;ig,where M is a supported model of P and 1 � i � k + 1. Clearly,jM j = jM 0j � i = jAt(P [Qk)j � k(k + 3)=2� i= jAt(P )j+ (k + 1)(k + 2)=2� k(k + 3)=2� i � jAt(P )j � k:This completes the argument for part (2) of the assertion for the case of supportedmodels. The same reasoning works also for the case of stable models because allauxiliary facts used in this reasoning hold for stable models, too. 2The program Qk can be constructed in time bounded by a polynomial in the sizeof P and k. Thus, Theorem 2.5 has the following corollary on the reducibility ofsome problems D�(C) to the respective problems D=(C).Corollary 2.6. For every class of logic programs C such that C is closed underunions and N � C, problems SP�(C), ST �(C), SP 0�(C) and ST 0�(C) can be re-duced to (are not harder than) problems SP=(C), ST =(C), SP 0=(C) and ST 0=(C),respectively. 23. THE PROBLEMS D�(C) AND D0�(C)These problems ask about the existence of models with at least k true atoms (inthe case of small bound problems) or with at least k false atoms (for the large-bound problems). From the point of view of the �xed-parameter complexity, theseproblems (with one exception) are not very interesting. Several of them remain NP-complete even if k is �xed (in other words, �xing k does not render them tractable).Others are \easy" | they can be solved in polynomial time even without �xing k.The one exception, the problemM0�(N ), turns out to be W[1]-complete.Theorem 3.1. The following parameterized problems are in P:M�(H),M�(N ),M�(A), SP�(H), ST �(H), M0�(H), SP 0�(H) and ST 0�(H).Proof: (1) The problemsM�(H),M�(N ) andM�(A) are all in P. Indeed, if Q isa logic program, the set of all atoms of Q is a model of Q. Thus, if jAt(Q)j � k, theanswer (in each case) is YES. Otherwise, the answer is NO. Clearly, the questionwhether jAt(Q)j � k can be decided in polynomial time (in the size of Q and k).(2) SP�(H) is in P. To see this, we observe that there is a polynomial-time algo-rithm to compute the greatest supported model of a de�nite Horn program [Aptand van Emden 1982]. A de�nite Horn program Q has a supported model of size atleast k if and only if the greatest supported model of Q has size at least k. Thus,the assertion follows.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 13(3) The problem ST �(H) is in P. Indeed, the least model of a de�nite Horn pro-gram Q is the only stable model of Q. The least model of a de�nite Horn programQ can be computed in linear time [Dowling and Gallier 1984]. So, the assertionfollows.(4) The problems M0�(H), SP 0�(H) and ST 0�(H) are all in P. Indeed, a de�niteHorn logic program has the least model which is also the least supported and theonly stable model of Q. Thus, in the case of each of these three problems, theanswer is YES if and only if the least model of Q has size at most jAt(Q)j � k.Since the least model of Q can be computed in linear time, the three assertions of(4) follow. 2In contrast to the problems covered by Theorem 3.1, which are solvable in poly-nomial time even if k is not a part of the input, problems in the next group remainhard even if k is �xed.Theorem 3.2. Let k be a �xed non-negative integer. The following �xed-parameterproblems are NP-complete: SP�(N ; k), SP�(A; k), ST �(N ; k), ST �(A; k), SP 0�(N ; k),SP 0�(A; k), ST 0�(N ; k) and ST 0�(A; k).Proof: (1) The problems SP�(N ; k), SP�(A; k), ST �(N ; k) and ST �(A; k) are allNP-complete. Clearly, all these problems are in NP. To prove their NP-hardness, werecall that the problems to decide whether a logic program has a supported (stable)model are NP-complete, even under the restriction to purely negative programs[Marek and Truszczy�nski 1991]. Let P be a logic program. Let yi, i = 1; 2; : : : ; k,be atoms not appearing in P . We de�neP 0 = P [ fyi  : i = 1; 2; : : : ; kg:Since At(P )\fy1; y2; : : : ; ykg = ;, P has a stable (supported) model if and only if P 0has a stable (supported) model of size at least k. Moreover, if P 2 N , then P 0 2 N ,as well. Thus, NP-hardness of the problems SP�(N ; k), SP�(A; k), ST �(N ; k)and ST �(A; k) follows.(2) The problems SP 0�(N ; k), SP 0�(A; k), ST 0�(N ; k) and ST 0�(A; k) are all NP-complete. Clearly, all these problems are in NP. To prove their NP-hardness, weuse (as in (1)) the fact that the problems to decide whether a logic program hasa supported (stable) model are NP-complete (even under the restriction to purelynegative programs). Let P be a logic program and let yi, zi, i = 1; 2; : : : ; k beatoms not appearing in P . We de�neP 0 = P [ fyi  not(zi); zi  not(yi): i = 1; 2; : : : ; kg:The logic program fyi  not(zi); zi  not(yi): i = 1; 2; : : : ; kg has 2k stablemodels. Each of these models has exactly k elements (for each i = 1; 2; : : : ; k, itcontains either yi or zi but not both). Since At(P )\fyi; zi: i = 1; : : : ; kg = ;, P hasa stable (supported) model if and only if P 0 has a stable (supported) model of sizeat most jAt(P 0)j�k. Moreover, if P 2 N then P 0 2 N , as well. Thus, NP-hardnessof the SP 0�(N ; k), SP 0�(A; k), ST 0�(N ; k) and ST 0�(A; k) follows. 2We will next study the problemM0�(A; k). It turns out that it is NP-completefor all k � 1 and is trivially solvable in polynomial time if k = 0.Theorem 3.3. The problem M0�(A; 0) is in P. For every k � 1, the problemM0�(A; k) is NP-complete.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



14 � Z. Lonc and M. Truszczy�nskiProof. The �rst part of the assertion is evident. The answer to the problemM0�(A; 0) is always YES. Indeed, for every logic program P , the set M = At(P ) isa model of P and it satis�es the inequality jAt(P )j � jM j.Let us now assume that k � 1. We will �rst consider the problem P(k) to decidewhether a 2-normalized (that is, CNF) formula � has a model of size at mostjAt(�)j � k (k is �xed and not a part of the input). This problem is NP-complete.It is clearly in NP. To show its NP-hardness, we will reduce to it the general CNFsatis�ability problem. Let 	 be a CNF theory and let yi, 1 � i � k, be atoms notoccurring in 	. Then 	 has a model if and only if 	0 = 	 [ f:yi: i = 1; 2; : : : ; kghas a model of size at most jAt(	0)j � k. Hence, NP-completeness of the problemP(k), where k � 1, follows.ProblemM0�(A; k) is clearly in NP. To prove NP-hardness ofM0�(A; k) we willreduce the problem P(k) to it. Let � be a CNF theory. Let us assume thatAt(�) = fx1; x2; : : : ; xng. For each clause C = a1 _ : : : _ ap _ :b1 _ : : : _ :br of �we de�ne program clauses rC;i, 1 � i � n:rC;i = xi  b1; : : : ; br;not(a1); : : : ;not(ap):Let P� = frC;i:C 2 �; i = 1; : : : ; ng. Clearly, At(P�) = fx1; x2; : : : ; xng (that is,the formula � and the program P� have the same atoms).Let M be a model of � and let C be a clause of �. Since M satis�es C, M doesnot satisfy the body of the rules rC;i, 1 � i � n. In other words, M satis�es all therules rC;i, 1 � i � n. Thus, if M is a model of � then M is a model of P�. SinceAt(�) = At(P�), it follows that if � has a model of size at most jAt(�)j � k thenthe program P� has a model of size at most jAt(P�)j � k.Conversely, let us consider a model M of P� such that jM j � n�k. Since k � 1,we have jM j < n. Let us assume that there is a clause C of � that is not satis�edbyM . Then, the bodies of all program clauses rC;i, 1 � i � n, are satis�ed. Hence,fx1; : : : ; xng �M and jM j � jAt(P�)j = n, a contradiction. It follows that M is amodel of �.Thus, indeed, the problem P(k) can be reduced to the problemM0�(A; k) andNP-hardness ofM0�(A; k) follows. 2The only problem with � = \�" whose complexity is a�ected by �xing k isM0�(N ). �xed-parameter polynomial time. Namely, we have the following result.Theorem 3.4. The problem M0�(N ) is W[1]-complete.Proof: Let us consider a monotone 2-normalized formula �. In each clause C =x1 _ : : : _ xk of � we pick an arbitrary atom, say x1. We then de�ne a logicprogram clause rC = x1  not(x2); : : : ;not(xk). Finally, we de�ne a logic programP� = frC :C 2 �g. Clearly, P� is a purely negative program, it is built over thesame set of atoms as � and it has the same models as �. Similarly, for every purelynegative program P , the 2-normalized formula pr(P ) is monotone. Moreover, theset of atoms of pr(P ) is the same as that of P , and pr(P ) and P have the samemodels.It follows that the problem M0�(N ) is equivalent to the problem M0�(2NM)).Thus, the assertion follows by Theorem 2.2. 2ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 154. THE CASE OF SMALL MODELSIn this section we deal with the problems M�(C), SP�(C) and ST �(C) for � =\=" and � = \�". Speaking informally, we are interested in the existence ofmodels that are small, that is, contain no more than some speci�ed number ofatoms. The problem ST �(A) was �rst studied in [Truszczy�nski 2002]. In thatwork, it was proved that the problem ST �(A) is W[2]-hard and belongs to theclass W[3]. In this section we establish the exact location of the problem ST �(A)in the W hierarchy and obtain similar results for problems concerning the existenceof models and supported models.Theorem 4.1. The problems M�(N ), M=(N ), M�(A) and M=(A) are allW[2]-complete.Proof: Since N � A, it is enough to prove that the problems M�(N ), � = \�"and \=", are W[2]-hard, and that the problemsM�(A), � = \�" and \=", are inW[2].Reasoning as in the proof of Theorem 3.4, we argue that the problemsM�(2NM)can be reduced to the problems M�(N ), for � = \�" and \=". Indeed, M is amodel of a monotone 2-normalized formula � if and only if M is a model of thelogic program P�, as de�ned in the proof of Theorem 3.4. Since � is a monotone2-normalized formula, P� is a purely negative logic program. This establishes thereducibility. By Theorem 2.1, it follows that the problems M�(N ) and M=(N )are W[2]-hard.Since M is a model of a logic program P if and only if M is a model of pr(P ),it follows that the problemsM�(A) andM=(A) can be reduced to the problemsM�(2N) andM=(2N), respectively. Hence, by Theorem 2.1, the problemsM�(A)andM=(A) are in W[2]. 2Theorem 4.2. The problems M�(H), SP�(H), ST �(H) and ST =(H) are inP.Proof: A de�nite Horn logic program has a model (supported model, stable model)of size at most k if and only if its least model (which is also the least supported modeland the only stable model) has size at most k. The least model of a de�nite Hornprogram can be computed in linear time. Thus, the problems M�(H), SP�(H)and ST �(H) are in P. Since the least model of a de�nite Horn program is theunique stable model of the program, it follows that also the problem ST =(H) is inP. 2We emphasize that k is a part of the input for problems dealt with in Theorem4.2. Thus, all these problems are solvable in polynomial time even without �xingk.Theorem 4.3. The problem M=(H) is W[1]-complete.Proof: We will �rst prove the hardness part. To this end, we will reduce the prob-lem M=(2NA) to the problemM=(H). Let � be an antimonotone 2-normalizedformula and let k be a non-negative integer. Let a0; : : : ; ak be k+1 di�erent atomsnot occurring in �. For each clause C = :x1 _ : : : _ :xp of � we de�ne a logicprogram rule rC by rC = a0  x1; : : : ; xp:ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



16 � Z. Lonc and M. Truszczy�nskiWe then de�ne P� byP� = frC :C 2 �g [ fai  aj : i; j = 0; 1; : : : ; k; i 6= jg:Let us assume that M is a model of size k of the program P�. If for some i, 0 �i � k, ai 2M then fa0; : : : ; akg �M and, consequently, jM j > k, a contradiction.Thus, M does not contain any of the atoms ai. Since M satis�es all rules rC andsince it consists of atoms of � only, M is a model of � (indeed, the body of eachrule rC must be false so, consequently, each clause C must be true). Similarly, onecan show that if M is a model of � then it is a model of P�. Thus, W[1]-hardnessfollows by Theorem 2.2.To prove that the problem M=(H) is in the class W[1], we will reduce it tothe problem M=(2N3). To this end, for every de�nite Horn program P we willdescribe a 2-normalized formula �P , with each clause consisting of no more thanthree literals, and such that P has a model of size k if and only if �P has a modelof size (k + 1)2k + k. Moreover, we will show that �P can be constructed in timebounded by a polynomial in the size of P (with the degree not depending on k).First, let us observe that without loss of generality we may restrict our attentionto de�nite Horn programs whose rules do not contain multiple occurrences of thesame atom in the body. Such occurrences can be eliminated in time linear in thesize of the program. Let P be such a program and let k be a non-negative integer.If k = 0, we de�ne P 0 to consist of all the facts in P . Otherwise, we de�ne P 0 tobe the program obtained from P by removing all clauses with bodies consisting ofmore than k atoms and adding clauses of the form a  a, for a 2 At(P ). It isevident that P has a model of size k if and only if P 0 has a model of size k. Itis also clear that the body of every rule of P 0 consists of no more than k atoms.Finally, the program P 0 can be constructed in time linear in the size of P .Thus, we will describe the construction of the formula �P only for de�nite Hornprograms P in which the body of every rule consists of no more than k atoms. LetP be such a program. We de�neB = fB: B � b(r); for some r 2 Pg:For every set B 2 B we introduce a new variable u[B]. Further, for every atom xin P we introduce 2k new atoms x[i], i = 1; : : : ; 2k. i = 1; 2; : : : ; 2k. Finally, weintroduce yet another set of new atoms z[1]; : : : ; z[2k].We will now de�ne several families of formulas. First, for every x 2 At(P ) andi = 1; : : : ; 2k we de�neD(x; i) = x, x[i] (or (:x _ x[i]) ^ (x _ :x[i]));and, for each set B 2 B and for each x 2 B, we de�neE(B; x) = x ^ u[B n fxg]) u[B] (or :x _ :u[B n fxg] _ u[B]):Next, for each set B 2 B and for each x 2 B we de�neF (B; x) = u[B]) x (or :u[B] _ x):For each rule r in P we introduce a formulaG(r) = u[b(r)]) h(r) (or :u[b(r)] _ h(r)):ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 17Finally, for each t = 1; : : : ; 2k letH(t) = z[t], z[t] (or (:z[t] _ z[t])):We de�ne �P to be the conjunction of all these formulas (more precisely, of their2-normalized representations given in the parentheses) and of the formula u[;].Clearly, �P is a formula from the class 2N3. Further, since the body of each rule inP has at most k elements, the set B has no more than jP j2k elements, each of themof size at most k (jP j denotes the cardinality of P , that is, the number of rules inP ). Thus, �P can be constructed in time bounded by a polynomial in the size ofP , whose degree does not depend on k.Let us consider a model M of P such that jM j = k. We denote by p the numberof sets B 2 B such that B �M . We de�neM 0 =M[fx[i]:x 2M; i = 1; : : : ; 2kg[fu[B]:B �M andB 2 Bg[fz[t]: t = 1; : : : ; 2k�pg:The set M 0 satis�es all formulas D(x; i), x 2 At(P ), i = 1; : : : ; 2k and H(t), t =1; : : : 2k. In addition, the formula u[;] is also satis�ed by M 0 (; � M and so,u[;] 2M 0).Let us consider a formula E(B; x), for some B 2 B and x 2 B. Let us assumethat x ^ u[B n fxg] is true in M 0. Then, x 2 M 0 and, since x 2 At(P ), x 2 M .Moreover, since u[B n fxg] 2 M 0, B n fxg � M . It follows that B � M and,consequently, that u[B] 2M 0. Thus, M 0 satis�es all \E-formulas" in �P .Next, let us consider a formula F (B; x), where B 2 B and x 2 B, and let usassume thatM 0 satis�es u[B]. It follows that B �M . Consequently, x 2M . SinceM �M 0, M 0 satis�es x and so, M 0 satis�es F (B; x).Lastly, let us look at a formula G(r), where r 2 P . Let us assume that u[b(r)] 2M 0. Then, b(r) � M . Since r is a de�nite Horn clause and since M is a model ofP , it follows that h(r) 2 M . Consequently, h(r) 2 M 0. Thus, M 0 is a model ofG(r).We proved that M 0 is a model of �P . Moreover, it is easy to see that jM 0j =k + k2k + p+ 2k � p = (k + 1)2k + k.Conversely, let us assume thatM 0 is a model of �P and that jM 0j = (k+1)2k+k.We set M =M 0 \ At(P ). First, we will show that M is a model of P .Let us consider an arbitrary clause r 2 P , sayr = h b1; : : : ; bp;where h and bi, 1 � i � p, are atoms. Let us assume that fb1; : : : ; bpg � M . Weneed to show that h 2M .Since fb1; : : : ; bpg = b(r), the set fb1; : : : ; bpg and all its subsets belong to B.Thus, �P contains formulasE(fb1; : : : ; bi�1g; bi) = bi ^ u[fb1; : : : ; bi�1g]) u[fb1; : : : ; bi�1; big];where i = 1; : : : ; p. All these formulas are satis�ed by M 0. We also have u[;] 2 �P .Consequently, u[;] is satis�ed byM 0, as well. Since all atoms bi, 1 � i � p, are alsosatis�ed by M 0 (since M �M 0), it follows that u[fb1; : : : ; bpg] is satis�ed by M 0.The formula G(r) = u[fb1; : : : ; bpg] ) h belongs to �P . Thus, it is satis�ed byM 0. It follows that h 2 M 0. Since h 2 At(P ), h 2 M . Thus, M is a model of rand, consequently, of the program P .ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



18 � Z. Lonc and M. Truszczy�nskiTo complete the proof we have to show that jM j = k. Since M 0 is a model of�P , for every x 2 M , M 0 contains all atoms x[i], 1 � i � 2k. Hence, if jM j > kthen jM 0j � jM j+ jM j � 2k � (k + 1)(1 + 2k) > (k + 1)2k + k, a contradiction.So, we will assume that jM j < k. Let us consider an atom u[B], where B 2 B,such that u[B] 2 M 0. For every x 2 B, �P contains the rule F (B; x). The set M 0is a model of F (B; x). Thus, x 2 M 0 and, since x 2 At(P ), we have that x 2 M .It follows that B �M . It is now easy to see that the number of atoms of the formu[B] that are true in M 0 is smaller than 2k. Thus, jM 0j < jM j+ jM j � 2k + 2k �(k� 1)(1+2k)+ 2k < (k+1)2k+ k, again a contradiction. Consequently, jM j = k.It follows that the problem M=(H) can be reduced to the problem M=(2N3).Thus, by Theorem 2.2, the problemM=(H) is in the class W[1]. This completesour argument. 2Theorem 4.4. The problems ST �(N ) and SP�(N ) are W [2]-hard.Proof: Since stable and supported models of purely negative programs coincide[Fages 1994], we will show W [2]-hardness for stable models only. To this end,we will �nd a reduction of M�(2NM) (which is W [2]-hard, see Theorem 2.1) toST �(N ).Let � be a monotone 2-normalized formula and let fx1; : : : ; xng be the set ofatoms that occur in �. We de�ne a program P� 2 N as follows. For every atomxj , j = 1; : : : ; n, occurring in � we introduce k new atoms xj [1]; xj [2]; : : : ; xj [k].For each of these atoms we include in P� the following rule:rj;` = xj [`] not(x1[`]); : : : ;not(xj�1[`]);not(xj+1[`]); : : : ;not(xn[`]);j = 1; : : : ; n; ` = 1; : : : ; k. Next, for each clause C = xi1 _ : : : _ xis in �, weintroduce a new atom fC and include in P� the rule:rC = fC  not(xi1 [1]); : : : ;not(xi1 [k]);not(xi2 [1]); : : : ;not(xi2 [k]);: : : ;not(xis [1]); : : : ;not(xis [k]);not(fC):We will show that � has a model of cardinality at most k if and only if P� hasa stable model of size at most k.Let M = fxt1 ; xt2 ; : : : ; xtmg, m � k, be a model of �. We claim thatM 0 = fxt1 [1]; xt2 [2]; : : : ; xtm [m]; xtm [m+ 1]; : : : ; xtm [k]gis a stable model of P�. Let C be a clause from �. Since M is a model of �,C contains an atom, say xtj , from M . Then, however, j � m and xtj [j] 2 M 0.The atom xtj [j] occurs negated in the body of the rule rC . Thus, the rule rC doesnot contribute to the reduct PM 0� . In the same time, the rules rj;` contribute thefollowing rules to the reduct: xtj [j] ;for j = 1; : : : ;m, and xtm [j] ;ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 19for j = m+1; : : : ; k. Thus, lm(PM 0� ) =M 0 and, consequently,M 0 is a stable modelof P� of size k.Conversely, let us assume that P� has a stable model M 0 of size at most k.The atoms fC cannot be in M 0 and, if xj [`] 2 M 0, then xi[`] 62 M 0, for i 6= j.Moreover, if for every j, 1 � j � n, xj [`] 62 M 0, then the rule r1;` implies thatx1[`] 2 M 0, a contradiction. Hence, for every ` = 1; : : : ; k, exactly one of theatoms x1[`]; : : : ; xn[`] is in M 0. Thus, all stable models of P� are of the formM 0 = fxt1 [1]; xt2 [2]; : : : ; xtk [k]g, where the indices t1; t2; : : : ; tk are not necessarilypairwise distinct. Let M = fxt1 ; : : : ; xtkg. Clearly, jM j � k. Suppose M is not amodel of some clause C = xi1 _ : : :_ xis . Then, none of the atoms xi1 ; : : : ; xis is inM . Consequently none of the atoms xij [`], j = 1; : : : ; s, ` = 1; : : : ; k, is in M 0. Itfollows that the rule fC  is in the reduct PM 0� and, so, fC 2M 0, a contradiction.Thus, M is indeed a model of � of cardinality at most k.This completes the argument that M�(2NM) can be reduced to ST �(N ) andthe assertion of the theorem follows by Theorem 2.1. 2Later in the paper we will need a stronger version of Theorem 4.4. To state it, weneed more terminology. We de�ne N1 to be the class of purely negative programssuch that each atom occurs exactly once in the head of a rule. It is clear that theprogram P� constructed in the proof of the Theorem 4.4 belongs to the class N1.Thus, we obtain the following result.Theorem 4.5. The problems ST �(N1) and SP�(N1) are W [2]-hard. 2Theorem 4.6. The problem SP=(A) is in W [2].Proof: We will show a reduction of SP=(A) to M=(2N), which is in W [2] byTheorem 2.1. Let P be a logic program with atoms x1; : : : ; xn. We can identifysupported models of P with models of its completion comp(P ). The completion isof the form comp(P ) = �1 ^ : : : ^ �n, where�i = xi , mi_j=1miĵ`=1x[i; j; `];i = 1; : : : ; n, and x[i; j; `] are literals. It can be constructed in linear time in thesize of the program P .We will use comp(P ) to de�ne a formula �P . The atoms of �P are x1; : : : ; xnand u[i; j], i = 1; : : : ; n, j = 1; : : : ;mi. For i = 1; : : : ; n, letGi = xi ) mi_j=1 u[i; j]; (or :xi _ mi_j=1u[i; j]);G0i = mi_j=1 u[i; j]) xi; (or mîj=1(xi _ :u[i; j]));Hi = mi�1ĵ=1 mîj0=j+1(:u[i; j] _ :u[i; j0]); for every i such that mi � 2;ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



20 � Z. Lonc and M. Truszczy�nskiIi = mîj=1(u[i; j]) miĵ`=1x[i; j; `]) (or mîj=1miĵ`=1(:u[i; j] _ x[i; j; `]));Ji = mi_j=1miĵ`=1x[i; j; `]) xi; (or mîj=1(xi _ mij_̀=1:x[i; j; `])):The formula �P is a conjunction of the formulas written above (of the formulasgiven in the parentheses, to be precise). Clearly, �P is a 2-normalized formula.We will show that comp(P ) has a model of size k (or equivalently, that P has asupported model of size k) if and only if �P has a model of size 2k.Let M = fxp1 ; : : : ; xpkg be a model of comp(P ). Then, for each i = p1; : : : ; pk,there is j, 1 � j � mi, such that M is a model of Vmij`=1 x[i; j; `] (this is because Mis a model of every formula �i). We denote one such j (an arbitrary one) by ji.We claim that M 0 =M [ fu[i; ji] : i = p1; : : : ; pkgis a model of �P . Clearly, Gi is true in M 0 for every i, 1 � i � n. If xi 62 Mthen u[i; j] 62 M 0 for all j = 1; : : : ;mi. Thus, G0i is satis�ed by M 0. Since for eachi, 1 � i � n, there is at most one j such that u[i; j] 2 M 0, it follows that everyformula Hi is true in M 0. By the de�nition of ji, if u[i; j] 2M 0 then j = ji and M 0is a model of Vmij`=1 x[i; j; `]. Hence, Ii is satis�ed by M 0. Finally, all formulas Ji,1 � i � n, are clearly true in M 0. Thus, M 0 is a model of �P of size 2k.Conversely, letM 0 be a model of �P such that jM 0j = 2k. Let us assume thatM 0contains exactly s atoms u[i; j]. The clauses Hi ensure that for each i, M 0 containsat most one atom u[i; j]. Therefore, the setM 0\fu[i; j]: i = 1; : : : ; n j = 1; : : : ;migis of the form fu[p1; jp1 ]; : : : ; u[ps; jps ]g, where p1 < : : : < ps.Since the conjunction of Gi and G0i is equivalent to xi , Wmij=1 u[i; j], it followsthat exactly s atoms xi belong to M 0. Thus, jM 0j = 2s = 2k and s = k. It is noweasy to see that M 0 is of the form fxp1 ; : : : ; xpk ; u[p1; jp1 ]; : : : ; u[pk; jpk ]g.We will now prove that for every i, 1 � i � n, the implicationxi ) mi_j=1miĵ`=1x[i; j; `]is true inM 0. To this end, let us assume that xi is true inM 0 (in other words, thatxi 2 M 0). Then, there is j, 1 � j � mi, such that u[i; j] 2 M 0 (in fact, i = pt andj = jpt , for some t, 1 � t � k). Since the formula Ii is true in M 0, the formulaVmij`=1 x[i; j; `] is true in M 0. Thus, the formula Wmij=1Vmij`=1 x[i; j; `] is true in M 0,too.Since for every i, 1 � i � n, the formula Ji is true in M 0, it follows thatall formulas �i are true in M 0. Since the only atoms of M 0 that appear in theformulas �i are the atoms xp1 : : : ; xpk , it follows that M = fxp1 : : : ; xpkg is amodel of comp(P ) = �1 ^ : : : ^ �n.Thus, the problem SP=(A) can be reduced to the problem M=(2N), whichcompletes the proof. 2Theorem 4.7. The problem ST =(A) is in W [2].ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 21Proof: In [Truszczy�nski 2002], it is shown that the problem ST =(A) can be reducedto the problem of existence of a model of size k of a certain formula �. This formula� is a conjunction of formulas of the formxi , mi_j=1miĵ`=1x[i; j; `];for i = 1; : : : ; n, where fx1; : : : ; xng is the set of atoms of � and x[i; j; `] denotesome literals over this set of atoms. This theory is the Clark completion of a certainlogic program P . Thus, we get a reduction of ST =(A) to SP=(A). By Theorem4.6, it follows that ST =(A) is in W [2]. 2Theorems 4.4, 4.6 and 4.7, and Corollary 2.6 yield the following result.Corollary 4.8. The problems ST �(N ), SP�(N ), ST �(A), SP�(A), ST =(N ),SP=(N ), ST =(A) and SP=(A) are W [2]-complete. 2Finally, in our last result of this section, we establish bounds on the �xed-parameter complexity of the problem SP=(H).Theorem 4.9. The problem SP=(H) is W [1]-hard and belongs to W [2].Proof: Since H is a subclass of A, it follows immediately from Theorem 4.6 thatSP=(H) is in W [2]. The W [1]-hardness can be proved in exactly the same way asfor the problemM=(H) (Theorem 4.3), except that for every atom x of �, we haveto include the rule x x in P�. 25. THE CASE OF LARGE MODELSIn this section we deal with the problems M0�(C), SP 0�(C) and ST 0�(C) for � =\=" and � = \�". Speaking informally, we are now interested in the existenceof models that are large, that is, models in which the number of false atoms isbounded from above by some integer.Theorem 5.1. The problemsM0�(H), SP 0�(H), ST 0�(H),M0�(N ) andM0�(A)are in P.Proof: The problemsM0�(C), where C = H;N or A, have always the answer YES(the set of all atoms is a model of any logic program). Hence, all these threeproblems are trivially in P.Next, we observe that there is a polynomial-time algorithm to compute the great-est supported model of a de�nite Horn program [Apt and van Emden 1982]. Conse-quently, the problem SP 0�(H) is in P (there is a supported model in which no morethan k atoms are false if and only if no more than k atoms are false in the greatestsupported model). Finally, a de�nite Horn program has a unique stable model(its least model) that can be computed in polynomial time. Hence, the problemST 0�(H) is also in P. 2Theorem 5.2. The problem M0=(N ) is W[1]-complete.Proof: It is easy to see that this problem is equivalent to the problemM0=(2NM)(the same reductions as those used in Theorem 3.4 work). This latter problem isW[1]-complete (Theorem 2.2). Hence, the assertion follows. 2ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



22 � Z. Lonc and M. Truszczy�nskiTheorem 5.3. The problems M0=(H) andM0=(A) are W[2]-complete.Proof: Both problems are clearly in W[2] (models of a logic program P are modelsof the corresponding 2-normalized formula pr(P )). Since H � A, to complete theproof it is enough to show that the problemM0=(H) is W[2]-hard. To this end, wewill reduce the problemM=(2NM) toM0=(H).Let � be a monotone 2-normalized formula and let k � 0. Let fx1; : : : ; xng bethe set of atoms of �. We de�ne a de�nite Horn program P� corresponding to �as follows. We choose an atom a not occurring in � and include in P� all rules ofthe form xi  a, i = 1; 2; : : : ; n. Next, for each clause C = xi1 _ : : : _ xip of � weinclude in P� the rule rC = a xi1 ; : : : ; xip :We will show that � has a model of size k if and only if P� has a model of sizejAt(P�)j � (k + 1) = (n+ 1)� (k + 1) = n� k.Let M be a model of � of size k. We de�ne M 0 = fx1; : : : ; xng nM . The set M 0has n � k elements. Let us consider any clause rC 2 P� of the form given above.Since M satis�es C, there is j, 1 � j � p, such that xij =2M 0. Thus, M 0 is a modelof rC . Since a =2M 0, M 0 satis�es all clauses xi  a. Hence, M 0 is a model of P�.Conversely, letM 0 be a model of P� of size exactly n�k. If a 2M 0 then xi 2M 0,for every i, 1 � i � n. Thus, jM 0j = n+ 1 > n� k, a contradiction. Consequently,we obtain that a =2 M 0. Let M = fx1; : : : ; xng nM 0. Since a =2 M 0, jM j = k.Moreover, M satis�es all clauses in �. Indeed, let us assume that there is a clauseC such that no atom of C is in M . Then, all atoms of C are in M 0. Since M 0satis�es rC , a 2 M 0, a contradiction. Now, the assertion follows by Theorem 2.1.2 Theorem 5.4. The problem SP 0=(H) is W [3]-hard.Proof: We will reduce the problemM0=(3NM) (which is W[3]-complete by Theorem2.3) to the problem SP 0=(H). Let� = m̂i=1 mi_j=1miĵ`=1x[i; j; `]be a monotone 3-normalized formula, where x[i; j; `] are atoms. Let us assume thatjAt(�)j = n.We de�ne a de�nite Horn program P� as follows. Let u[1]; : : : ; u[m]; v[1]; : : : ; v[k+1] be new atoms not occurring in �. First, for every x 2 At(�), we include in P�the rule x x:Next, for every i = 1; : : : ;m, we include in P� mi rulesu[i] x[i; j; 1]; : : : ; x[i; j;mij ];where j = 1; : : : ;mi. Finally, we include in P� k + 1 rulesv[q] u[1]; : : : ; u[m];where q = 1; : : : ; k + 1.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 23We will show that � has a model of cardinality n�k if and only if the de�nite Hornprogram P� has a supported model of cardinality jAt(P�)j�k = n+m+k+1�k =n+m+ 1.Let M be a model of �, jM j = n � k. It is easy to see that M 0 = M [fu[1]; : : : ; u[m]; v[1]; : : : ; v[k+1]g is a supported model of P� of cardinality n+m+1.Conversely, let M 0 be a supported model of P� of cardinality n+m+1. ClearlyM 0 is a model of the Clark completion comp(P�) of P�. If u[i] 62 M 0, for somei = 1; : : : ;m, then v[q] 62 M 0, for every q = 1; : : : ; k + 1, because v[q] , Vmi=1 u[i]belongs to comp(P�). Hence, jM 0j � n+m�1, a contradiction. Therefore u[i] 2M 0,for every i = 1; : : : ;m. Consequently, for every q = 1; : : : ; k+1, we have v[q] 2M 0.LetM =M 0\At(�). Clearly, jM j = n+m+1�m� (k+1) = n�k. Moreover,Mis a model of each formula Wmij=1Vmij`=1 x[i; j; `], i = 1; : : : ;m. Indeed, M 0 is a modelof the formula u[i], Wmij=1Vmij`=1 x[i; j; `] belonging to comp(P�) and u[i] 2M 0, fori = 1; : : : ;m. Hence, M is a model of � of cardinality n� k. 2Theorem 5.5. The problem SP 0=(A) is in W [3].Proof: Let P be a logic program with atoms x1; : : : ; xn. Its supported modelscoincide with models of the Clark completion comp(P ) of P . The formulas of theClark completion are of the formxi , mi_j=1miĵ`=1x[i; j; `];where i = 1; : : : ; n and x[i; j; `] are literals. It is a routine task to check that thecompletion comp(P ) can be converted into a 3-normalized formula in a number ofsteps being a polynomial with respect to the size of the program P . Hence, SP 0=(A)is in W [3]. 2Corollary 5.6. SP 0=(H) and SP 0=(A) are W[3]-complete. 2Theorem 5.7. The problems ST 0�(A) and ST 0=(A) are W[3]-hard.Proof: By Corollary 2.6, it su�ces to show that ST 0�(A) is W[3]-hard. We willreduce the problemM0�(3N) to the problem ST 0�(A). Let� = m̂i=1 mi_j=1miĵ`=1x[i; j; `]be a 3-normalized formula, where x[i; j; `] are literals. Let u[1]; : : : ; u[m], v[1]; : : : ; v[2k+1] be new atoms not occurring in �. For each atom x 2 At(�), we introduce newatoms x[s], s = 1; : : : ; k.Let P� be a logic program with the following rules:A(x; y; s) = x[s] not(y[s]); x; y 2 At(�); x 6= y; s = 1; : : : ; k;B(x) = x x[1]; x[2]; : : : ; x[k]; x 2 At(�);C(i; j) = u[i] x0[i; j; 1]; x0[i; j; 2]; : : : ; x0[i; j;mij ]; i = 1; : : : ;m; j = 1; : : : ;mi;ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



24 � Z. Lonc and M. Truszczy�nskiwhere x0[i; j; `] = � x if x[i; j; `] = xnot(x) if x[i; j; `] = :x;and D(q) = v[q] u[1]; u[2]; : : : ; u[m]; q = 1; : : : ; 2k + 1:Clearly, jAt(P�)j = nk + n+m+ 2k + 1, where n = jAt(�)j. We will show that� has a model of cardinality at least n� k if and only if P� has a stable model ofcardinality at least jAt(P�)j � 2k = n(k + 1) +m+ 1.Let M = At(�) n fx1; : : : ; xkg be a model of �, where x1; : : : ; xk are someatoms from At(�) that are not necessarily distinct. We claim that M 0 = At(P�) nfx1; : : : ; xk; x1[1]; : : : ; xk[k]g is a stable model of P�.Let us notice that a rule A(x; y; s) is not blocked by M 0 if and only if y = xs.Hence, the program PM 0� consists of the rules:x[1] ; for x 6= x1;x[2] ; for x 6= x2: : :x[k] ; for x 6= xkx x[1]; x[2]; : : : ; x[k]; x 2 At(�)v[q] u[1]; u[2]; : : : ; u[m]; q = 1; : : : ; 2k + 1;and of some of the rules with heads u[i]. Let us suppose that every rule of P� withhead u[i] contains a negated atom x 2 M or a non-negated atom x 62 M . Then,for every j = 1; : : : ;mi there exists `, 1 � ` � mij such that either x[i; j; `] = :xand x 2 M , or x[i; j; `] = x and x 62 M . Thus, M is not a model of the for-mula Wmij=1Vmij`=1 x[i; j; `] and, consequently,M is not a model of �, a contradiction.Hence, for every i = 1; : : : ;m, there is a rule with head u[i] containing neither anegated atom x 2 M nor a non-negated atom x 62 M . These rules also contributeto the reduct PM 0� .All atoms x[s] 6= x1[1]; x2[2]; : : : ; xk[k] are facts in PM 0� . Thus, they belong tolm(PM 0� ). Conversely, if x[s] 2 lm(PM 0� ) then x[s] 6= x1[1]; x2[2]; : : : ; xk[k]. More-over, it is evident by rules B(x) that x 2 lm(PM 0� ) if and only if x 6= x1; x2; : : : ; xk.Hence, by the observations in the previous paragraph, u[i] 2 lm(PM 0� ), for eachi = 1; : : : ;m. Finally, v[q] 2 lm(PM 0� ), q = 1; : : : 2k + 1, because the rules D(q)belong to the reduct PM 0� . Hence, M 0 = lm(PM 0� ) so M 0 is a stable model of P�and its cardinality is at least n(k + 1) +m+ 1.Conversely, letM 0 be a stable model of P� of size at least jAt(P�)j�2k. Clearly allatoms v[q], q = 1; : : : ; 2k+1, must be members ofM 0 and, consequently, u[i] 2M 0,for i = 1; : : : ;m. Hence, for each i = 1; : : : ;m, there is a rule in P�u[i] x0[i; j; 1]; x0[i; j; 2]; : : : ; x0[i; j;mij ]ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 25such that x0[i; j; `] 2M 0 if x0[i; j; `] = x, and x0[i; j; `] 62M 0 if x0[i; j; `] = :x. Thus,M 0 is a model of the formula Wmij=1Vmij`=1 x[i; j; `], for each i = 1; : : : ;m. ThereforeM =M 0 \At(�) is a model of �.It is a routine task to check that rules A(x; y; s) and B(x) imply that all stablemodels of P� are of the formAt(P�) n fx1; x2; : : : ; xk; x1[1]; x2[2]; : : : ; xk[k]g(where x1; x2; : : : ; xk are not necessarily distinct). Hence, jM j = jM 0 \ At(�)j �n� k. We have reduced the problemM0�(3N) to the problem ST 0�(A). Thus, theassertion follows by Theorem 2.3. 2Corollary 5.8. The problem SP 0�(A) is W[3]-hard.Proof: A positive cycle in a logic program P is a sequence of rules r0; r1; : : : ; rn inP such that for every i = 0; 1; : : : ; n� 1, h(ri) 2 b+(ri+1) and h(rn) 2 b+(r0). It iseasy to see that the program P constructed in the proof of Theorem 5.7 does notcontain positive cycles. Therefore, by the Fages lemma [Fages 1994], stable andsupported models of P coincide. Thus, the proof of Theorem 5.7 applies in the caseof supported models too. 2By Theorem 5.5, Corollary 5.8 and Corollary 2.6 we get the following result.Corollary 5.9. The problem SP 0�(A) is W[3]-complete. 2Theorem 5.10. The problem SP 0=(N ) is in W[2].Proof: We will reduce the problem SP 0=(N ) to M0=(2N) (which belongs to W[2]by Theorem 2.1).Let us consider a purely negative program P with At(P ) = fx1; : : : ; xng. Itscompletion consists of formulas�i = xi , mi_j=1miĵ`=1:x[i; j; `] ; i = 1; : : : ; n;where x[i; j; `] 2 At(P ).For each xi 2 At(P ), we introduce new atoms xi[1]; xi[2]; : : : ; xi[2k]. Next, foreach set U(i; j) = fx[i; j; `] : ` = 1; : : : ;mijg we de�ne a new atom u[i; j]. Finally,we introduce yet another set of new atoms: z[1]; : : : ; z[2k].Let us consider the following formulas:A(i; t) = xi , xi[t]; i = 1; : : : ; n; t = 1; : : : ; 2k;B(x; i; j) = x) u[i; j]; x 2 U(i; j); i = 1; : : : ; n; j = 1; : : : ;mi;C(i) = xi ) mi_j=1:u[i; j]; i = 1; : : : ; n;D(i) = xi ( mi_j=1miĵ`=1:x[i; j; `]; i = 1; : : : ; n;E(t) = z[t], z[t]; t = 1; : : : 2k:ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



26 � Z. Lonc and M. Truszczy�nskiWe de�ne �P to be the conjunction of the formulas listed above. Since each ofthese formulas can be rewritten as a conjunction of disjunctions, it is clear thatwithout loss of generality we may assume that �P is a 2-normalized formula. Letus also note that the number of atoms of �P is given by the formula jAt(�P )j =n(2k + 1) +Pni=1mi + 2k.We claim that P has a supported model of size n � k if and only if �P has amodel of size jAt(�P )j � (k + 1)2k � k. To prove it, we proceed as follows.Let At(P )nM , whereM = fxi1 ; : : : ; xikg, be a supported model of P (xi1 ; : : : ; xikare some k distinct atoms of P ). We denote by q the number of subsets of Mdi�erent from all sets U(i; j). We will show that At(�P ) nM 0, whereM 0 =M [fxi[t] : xi 2M; t = 1; : : : ; 2kg[fu[i; j] : U(i; j) �Mg[fz[1]; : : : ; z[q]gis a model of �P . First, let us observe that jM 0j = k+k2k+(2k�q)+q = (k+1)2k+k.Clearly, by the de�nition of M 0, At(�P ) nM 0 is a model of each formula A(i; t).Let us consider a formula B(x; i; j), for some i; j such that 1 � i � n and 1 � j �mi, and for some x 2 U(i; j). If x 2 At(�P ) nM 0, then x 62 M . It follows thatU(i; j) 6�M . Consequently, u[i; j] 2 At(�P ) nM 0 and, so, At(�P ) nM 0 is a modelof B(x; i; j).Next, let us consider a formula C(i), for some i, 1 � i � n. Further, let usassume that xi 2 At(�P ) nM 0. It follows that xi 2 At(P ) nM . Since At(P ) nMis a supported model of P , At(P ) nM satis�es the formula �i. Thus, there is j,1 � j � mi, such that for all ` = 1; : : : ;mij , x[i; j; `] 2 M . Hence, U(i; j) � Mand, consequently, u[i; j] =2 At(�P ) nM 0. Thus, At(�P ) nM 0 is a model of C(i).Since At(P ) nM satis�es each formula �i, 1 � i � n, it is clear that At(�P ) nM 0satis�es the formula D(i). Since all formulas E(t), 1 � t � 2k, are tautologies,At(�P ) nM 0 is a model of each of them, too. Thus, At(�P ) nM 0 is a model of �P .Conversely, let At(�P ) nM 0 be a model of �P , for some set M 0 � At(�P ) suchthat jM 0j = (k+1)2k+k. LetM = At(P )\M 0. If jM j > k then, since all formulasA(i; t) hold in At(�P ) nM 0, jM 0j � jM j(2k +1) � (k + 1)(2k +1) > (k + 1)2k + k,a contradiction. Next, let us consider the case jM j < k and let us assume thatu[i; j] 2 M 0, for some i and j such that 1 � i � n and 1 � j � mi. SinceAt(�P ) nM 0 is a model of all formulas B(x; i; j), where x 2 U(i; j), it follows thatfor every x 2 U(i; j), x 2M . Thus, U(i; j) �M and, consequently,jfu[i; j] : u[i; j] 2M 0gj = jfU(i; j) : U(i; j) �Mgj � 2jM j:Therefore,jM 0j � jM j(2k + 1) + 2jM j + 2k < (k + 1)2k + k � 1 < (k + 1)2k + k;a contradiction again. Thus, jM j = k.We will show that At(P )nM is a supported model of P . To this end, we will provethat At(P )nM is a model of all formulas �i, 1 � i � n. Since At(�P )nM 0 satis�esall formulasD(i), 1 � i � n, and since all atoms appearing in these formulas belongto At(P ), it follows that At(P ) nM satis�es all formulas D(i), 1 � i � n.ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.



Fixed-parameter complexity of semantics for logic programs � 27To show that At(P )nM is a model of a formula �i, 1 � i � n, it is then su�cientto prove that At(P ) nM is a model of the implicationxi ) mi_j=1miĵ`=1:x[i; j; `]: (3)Let xi 2 At(P ) nM . Then, by the implication C(i), which holds in At(�P ) nM 0,there exists j, 1 � j � mi, such that u[i; j] 2M 0. Using the implications B(x; i; j)and reasoning as before, it is easy to show that U(i; j) �M . Thus, At(P ) nM is amodel of Vmij`=1 :x[i; j; `] and, consequently, of the implication (3). 2A kernel of a digraph is an independent set S of vertices (that is, a set of verticeswith no edge with both the initial and terminal vertices in S) such that every vertexnot in S is a terminal vertex of some edge whose initial vertex is in S.Let us recall that N1 denotes the class of purely negative programs such thateach atom occurs exactly once in the head of a rule. We de�ne N2 to be the class ofpurely negative programs such that there is exactly one negated atom in the bodyof each rule.Let P 2 Ni, i = 1; 2. We de�ne G(P ) to be a digraph with the vertex set At(P )and the edge set consisting of pairs (y; x) such that there is a rule in P with thehead x and not(y) in the body.Lemma 5.11. (1 ) Let P 2 N1. A set S � At(P ) is a stable model of P if andonly if S is a kernel in G(P ).(2 ) Let P 2 N2. A set S � At(P ) is a stable model of P if and only if At(P ) n Sis a kernel in G(P ).Proof: (1) Let us assume that S � At(P ) is a stable model of a program P 2 N1.For every x 2 At(P ), let us denote by rx the only rule of P with x as the head.Let us consider a vertex x 2 S. Then, rx is not blocked by S. Hence, for everyy in the body of rx, y =2 S. In other words, for every y such that (y; x) is an edgeof G(P ), y =2 S. Thus, S is an independent set.Next, let us consider a vertex x 62 S. Then, rx is blocked by S. Consequently,there is y in the body of rx such that y 2 S. In other words, there is an edge (y; x)in G(P ) such that y 2 S.It follows that S is a kernel of G(P ). The proof of the converse implication issimilar.(2) Let S � At(P ) be a stable model of a program P 2 N2. Let us denoteS0 = At(P ) n S. We will show that S0 is a kernel of G(P ). Let x 2 S0. Thenx =2 S. Since S is a stable model of P and since P 2 N2, it follows that every rulex  not(y) in P is blocked by S or, equivalently, that y 2 S. Consequently, forevery edge (y; x) in G(P ), if x 2 S0, then y =2 S0. Thus, S0 is an independent set.Next, let us consider x =2 S0. Then, x 2 S. Since S is a stable model of P , thereis a rule x  not(y) in P such that y =2 S. It follows that y 2 S0. Thus, for everyx =2 S0, there is an edge (y; x) in G(P ) such that y 2 S0. Consequently, S0 is akernel of G(P ). The proof of the converse statement is similar. 2Theorem 5.12. The problems ST 0�(N ), ST 0=(N ), SP 0�(N ) and SP 0=(N ) areW[2]-complete. ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.
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