Fixed-parameter complexity of semantics for logic
programs

ZBIGNIEW LONC

Technical University of Warsaw
and

MIROSLAW TRUSZCZYNSKI
University of Kentucky

A decision problem is called parameterized if its input is a pair of strings. One of these strings
is referred to as a parameter. The problem: given a propositional logic program P and a non-
negative integer k, decide whether P has a stable model of size no more than k, is an example of
a parameterized decision problem with k serving as a parameter. Parameterized problems that
are NP-complete often become solvable in polynomial time if the parameter is fixed. The problem
to decide whether a program P has a stable model of size no more than k, where k is fixed and
not a part of input, can be solved in time O(mn*), where m is the size of P and n is the number
of atoms in P. Thus, this problem is in the class P. However, algorithms with the running time
given by a polynomial of order k£ are not satisfactory even for relatively small values of k.

The key question then is whether significantly better algorithms (with the degree of the poly-
nomial not dependent on k) exist. To tackle it, we use the framework of fixed-parameter com-
plexity. We establish the fixed-parameter complexity for several parameterized decision problems
involving models, supported models and stable models of logic programs. We also establish the
fixed-parameter complexity for variants of these problems resulting from restricting attention to
definite Horn programs and to purely negative programs. Most of the problems considered in the
paper have high fixed-parameter complexity. Thus, it is unlikely that fixing bounds on models
(supported models, stable models) will lead to fast algorithms to decide the existence of such
models.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;
F.1.3 [Complexity Measures and Classes|: Complexity hierarchies

General Terms: Logic programming, Complexity
Additional Key Words and Phrases: Normal logic programs, Stable models, Supported models,
Fixed-parameter complexity

1. INTRODUCTION

In this paper we study the complexity of parameterized decision problems con-
cerning models, supported models and stable models of logic programs. In our

Author’s address: Z. Lonc, Institute of Mathematics, Technical University of Warsaw, 00-661
Warsaw, Poland. M. Truszczynski, Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046.

This paper was written while the first author was a visitng professor at the University of Kentucky.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2001 ACM 1529-3785/2001/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001, Pages 1-28.

2 . Z. Lonc and M. Truszczynski

investigations, we use the framework of the fized-parameter complezxity introduced
by Downey and Fellows [Downey and Fellows 1997]. This framework was previously
used to study the problem of the existence of stable models of logic programs in
[Truszczyniski 2002]. Our present work extends results obtained there. First, in
addition to the class of all finite propositional logic programs, we consider its two
important subclasses: the class of definite Horn programs and the class of purely
negative programs. Second, in addition to stable models of logic programs, we also
study supported models and arbitrary models.

A decision problem is called parameterized if its inputs are pairs of items. The
second item in a pair is referred to as a parameter. The problem to decide, given
a logic program P and an integer k, whether P has a stable model with at most k
atoms is an example of a parameterized decision problem. This parameterized prob-
lem is NP-complete. However, fixing & (in other words, k is no longer regarded as a
part of the input) makes the problems simpler. It becomes solvable in polynomial
time. The following straightforward algorithm works: for every subset M C At(P)
of cardinality at most k, check whether M is a stable model of P. The check can
be implemented to run in linear time in the size of the program. If n stands for the
number of atoms in P, there are O(n¥) sets to be tested. Thus, the overall running
time of this algorithm is O(mn*), where m is the size of the input program P. This
discussion also applies to analogous problems in logic programming concerned with
the existence of models and supported models.

respectively) problem is as, in solvable of is

Unfortunately, algorithms with running times given by O(mn*) are not practical
even for quite small values of k. The question then arises whether better algorithms
can be found, for instance, algorithms whose running-time estimate would be given
by a polynomial of the order that does not depend on k. Such algorithms, if they
existed, could be practical for a wide range of values of k£ and could find applications
in computing stable models of logic programs.

This question is the subject of our work. We also consider similar questions
concerning related problems of deciding the existence of models, supported models
and stable models of cardinality ezactly k and at least k. We refer to all these
problems as small-bound problems since k, when fixed, can be regarded as “small”
(% converges to 0 as |At(P)| goes to infinity). In addition, we study problems
of existence of models, supported models and stable models of cardinality at most
|At(P)| — k, exactly |At(P)| —k and at least |At(P)| — k. We refer to these problems
as large-bound problems, since |A¢(P)|—k, for a fixed k, can be thought of as “large”

(% converges to 1 as |A#(P)| goes to infinity).

We address these questions using the framework of fixed-parameter complexity
[Downey and Fellows 1997]. Most of our results are negative. They provide strong
evidence that for many parameterized problems considered in the paper there are
no algorithms whose running time could be estimated by a polynomial of order
independent of k.

Formally, a parameterized decision problem is a set L C ¥* x¥*, where X is a fixed
alphabet. By selecting a concrete value a € ¥* of the parameter, a parameterized
decision problem L gives rise to an associated fized-parameter problem L, = {z :
(x,a) € L}.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 3

A parameterized problem L C X* x X* is fized-parameter tractable if there exist
a constant t, an integer function f and an algorithm A such that A determines
whether (z,y) € L in time f(|y|)|z|* (|z] stands for the length of a string z € ¥*).
We denote the class of fixed-parameter tractable problems by FPT. Clearly, if a
parameterized problem L is in FPT, then each of the associated fixed-parameter
problems L, is solvable in polynomial time by an algorithm whose exponent does
not depend on the value of the parameter y. Parameterized problems that are not
fixed-parameter tractable are called fized-parameter intractable.

To study and compare the complexity of parameterized problems Downey and
Fellows proposed the following notion of fized-parameter reducibility (or, simply,
reducibility).

Definition 1.1. A parameterized problem L can be reduced to a parameterized
problem L' if there exist a constant p, an integer function ¢, and an algorithm A
such that:

1
2
3
4

A assigns to each instance (z,y) of L an instance (z',y") of L',
A runs in time O(q(|y|)|=|P),
2" depends upon z and y, and y' depends upon y only,

)
)
)
) (z,y) € L if and only if («/,y") € L'.

(
(
(
(

We will use this notion of reducibility throughout the paper. If for two parameter-
ized problems L; and L, Ly can be reduced to Ls and conversely, we say that L;
and Ly are fized-parameter equivalent or, simply, equivalent.

Downey and Fellows [Downey and Fellows 1997] defined a hierarchy of complexity
classes called the W hierarchy:

FPT C W[1] C W[2] CW[3] C (1)

The classes W[t] can be described in terms of problems that are complete for them
(a problem D is complete for a complexity class £ if D € £ and every problem in
this class can be reduced to D). Let us call a Boolean formula t-normalized if it is of
the form of conjunction-of-disjunctions-of-conjunctions ... of literals, with ¢ being
the number of conjunctions-of, disjunctions-of expressions in this definition. For
example, 2-normalized formulas are conjunctions of disjunctions of literals. Thus,
the class of 2-normalized formulas is precisely the class of CNF formulas. We define
the weighted t-normalized satisfiability problem as:

WS(t):. Given a t-normalized formula ® and a non-negative integer k, decide
whether there is a model of ® with exactly k atoms (or, alternatively, decide whether
there is a satisfying valuation for ® which assigns the logical value true to exactly
k atoms).

Downey and Fellows show that for every ¢ > 2, the problem WS(t) is complete for
the class W[t]. They also show that a restricted version of the problem WS(2):

WS5(2):. Given a 2-normalized formula ® with each clause consisting of at most
two literals, and an integer k, decide whether there is a model of ® with exactly &
atoms

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

4 . Z. Lonc and M. Truszczynski

is complete for the class W[1]. There is strong evidence suggesting that all the
implications in (1) are proper. Thus, proving that a parameterized problem is
complete for a class W[t], ¢ > 1, is a strong indication that the problem is not
fixed-parameter tractable.

As we stated earlier, in the paper we study the complexity of parameterized
problems related to logic programming. All these problems ask whether an input
program P has a model, supported model or a stable model satisfying some car-
dinality constraints involving another input parameter, an integer k. They can be
categorized into two general families: small-bound problems and large-bound prob-
lems. In the formal definitions given below, C denotes a class of logic programs, D
represents a class of models of interest and A stands for one of the three arithmetic
relations: “<”, “=" and “>”.

Da(C):. Given a logic program P from class C and an integer k, decide whether
P has a model M from class D such that |M] A k.

D\ (C):. Given a logic program P from class C and an integer k, decide whether
P has a model M from class D such that (JA#{(P)| — k) A |M].

In the paper, we consider three classes of programs: the class of definite Horn
programs H, the class of purely negative programs N, and the class of all programs
A. We also consider three classes of models: the class of all models M, the class
of supported models SP and the class of stable models ST

Thus, for example, the problem SP<(N) asks whether a purely negative logic
program P has a supported model M with no more than k atoms (|M| < k). The
problem ST (A) asks whether a logic program P (with no syntactic restrictions)
has a stable model M in which at most k atoms are false (|At(P)| — k < |M]).
Similarly, the problem MY () asks whether a definite Horn program P has a
model M in which at least k atoms are false (|A{(P)| — k > |M]).

In the three examples given above and, in general, for all problems Da (C) and
D) (C), the input instance consists of a logic program P from the class C and of an
integer k. We will regard these problems as parameterized with k. Fixing k (that
is, k is no longer a part of input but an element of the problem description) leads
to the fixed-parameter versions of these problems. We will denote them Da(C, k)
and D'\ (C, k), respectively.

In the paper, for all but three problems Da(C) and D/, (C), we establish their
fixed-parameter complexities. Our results are summarized in Tables I - III.

| (7] N | A]
M 14 P P
M || P | W[l]-c | NP-c
SP 14 NP-c NP-c
SP’ P NP-c NP-c
ST P NP-c NP-c
ST’ P NP-c NP-c

Table I. The complexities of the problems D (C) and D% (C).

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 5

In Table I, we list the complexities of all problems in which A = “>”. Small-
bound problems of this type ask about the existence of models of a program P that
contain at least k£ atoms. Large-bound problems in this group are concerned with
the existence of models that contain at most |At(P)| — k atoms (the number of false
atoms in these models is at least k). ;From the point of view of the fixed-parameter
complexity, these problems are not very interesting. Several of them remain NP-
complete even when k is fixed. In other words, fixing k& does not simplify them
enough to make them tractable. For this reason, all the entries in Table I, listing
the complexity as NP-complete (denoted by NP-c in the table), refer to fixed-
parameter versions D> (C,k) and DL (C, k) of problems D> (C) and DL (C). The
problem MY (A, k) is NP-complete for every fixed k > 1. All other fixed-parameter
problems in Table I that are marked NP-complete are NP-complete for every value
k> 0.

On the other hand, many problems D>(C) and DL (C) are “easy”. They are
fixed-parameter tractable in a strong sense. They can be solved in polynomial time
even without fixing k. This is indicated by marking the corresponding entries in
Table I with P (for the class P) rather than with FPT. There is only one exception,
the problem MY (N), which is W[1]-complete.

Small-bound problems for the cases when A = ° or “<” can be viewed as
problems of deciding the existence of “small” models, that is, models containing
exactly k or at most k atoms. Indeed, for a fixed k and the number of atoms in a
program going to infinity, the ratio of the number of true atoms to the number of
all atoms converges to 0 (k is “small” with respect to |A#(P)|). The fixed-parameter
complexities of these problems are summarized in Table II.

("

L lre] 7 [Ne | AN [Ac [A |
M P W(ll-c | W[2]-c | W[2]-c | W[2]-c | W[2]-c
SP | P | W[IJh, | W2 | W[2]< | W[2]< | W[2]-<

in W[2]
ST P P Wi2]-c | W[2]-c | W[2]-c | W[2]-c

Table II. The complexities of the problem of computing small models (small-bound problems, the
cases of A = “=" and “<”).

The problems involving the class of all purely negative programs and the class
of all programs are W[2]-complete. This is a strong indication that they are
fixed-parameter intractable. All problems of the form D<(#) are fixed-parameter
tractable. In fact, they are solvable in polynomial time even without fixing the pa-
rameter k. We indicate this by marking the corresponding entries with P. Similarly,
the problem ST _(H) of deciding whether a definite Horn logic program P has a
stable model of size exactly k is in P. However, perhaps somewhat surprisingly,
the remaining two problems involving definite Horn logic programs and A = “=”
are harder. We proved that the problem M_(H) is W[1]-complete and that the
problem SP_(H) is W[1]-hard. Thus, they most likely are not fixed-parameter
tractable. We also showed that the problem SP_(#) is in the class W[2]. The
exact fixed-parameter complexity of SP=() remains unresolved.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

6 . Z. Lonc and M. Truszczynski

¢ 7

Large-bound problems for the cases when A = “=” or “<” can be viewed as
problems of deciding the existence of “large” models, that is, models with a small
number of false atoms — equal to k or less than or equal to k. Indeed, for a fixed
k and the number of atoms in a program going to infinity, the ratio of the number
of true atoms to the number of all atoms converges to 1 (k is “large” with respect
to |At(P)|). The fixed-parameter complexities of these problems are summarized
in Table III.

| [He | H | Ne | N | Ac | A]
M | P | W2l P | W< B W2
SP’ P | W[3]-c, | W[2]-c | W[2]-c | W[3]-c | W[3]-c
ST’ P p W[2]-¢c | W[2]-c | W[3]-h | W[3]-h

Table III. The complexities of the problems of computing large models (large-bound problems,
the cases of A = “=" and “<”).

The problems specified by A = “<” and concerning the existence of models are
in P. Similarly, the problems specified by A = “<” and involving definite Horn
programs are solvable in polynomial time. Lastly, the problem ST’ (#) is in P, as
well. These problems are in P even without fixing k£ and eliminating it from input.
All other problems in this group have higher complexity and, in all likelihood, are
fixed-parameter intractable. One of the problems, M" (A), is W[1]-complete. Most
of the remaining problems are W[2]-complete. Surprisingly, some problems are even
harder. Three problems concerning supported models are W[3]-complete. For two
problems involving stable models, ST_(A) and ST (A), we could only prove that
they are W[3]-hard. For these two problems we did not succeed in establishing any
upper bound on their fixed-parameter complexities.

The study of fixed-parameter tractability of problems occurring in the area of
nonmonotonic reasoning is a relatively new research topic. The only two other
papers we are aware of are [Truszczyniski 2002] and [Gottlob et al. 1999]. The first
of these two papers provided a direct motivation for our work here (we discussed it
earlier). In the second one, the authors focused on parameters describing structural
properties of programs. They showed that under some choices of the parameters
decision problems for nonmonotonic reasoning become fixed-parameter tractable.

Our results concerning computing stable and supported models for logic pro-
grams are mostly negative. Parameterizing basic decision problems by constraining
the size of models of interest does not lead (in most cases) to fixed-parameter
tractability.

There are, however, several interesting aspects to our work. First, we identified
some problems that are W[3]-complete or W[3]-hard. Relatively few problems from
these classes were known up to now [Downey and Fellows 1997]. Second, in the
context of the polynomial hierarchy, there is no distinction between the problem of
existence of models of specified sizes of clausal propositional theories and similar
problems concerning models, supported models and stable models of logic programs.
All these problems are NP-complete. However, when we look at the complexity of
these problems in a more detailed way, from the perspective of fixed-parameter

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 7

complexity, the equivalence is lost. Some problems are W[3]-hard, while prob-
lems concerning existence of models of 2-normalized formulas are W[2]-complete
or easier. Third, our results show that in the context of fixed-parameter tractabil-
ity, several problems involving models and supported models are hard even for the
class of definite Horn programs. Finally, our work leaves three problems unresolved.
While we obtained some bounds for the problems SP_(H), ST (A) and ST_(A),
we did not succeed in establishing their precise fixed-parameter complexities.

The rest of our paper is organized as follows. In the next section, we review
relevant concepts in logic programming. Next, we present several useful fixed-
parameter complexity results for problems of the existence of models for proposi-
tional theories of certain special types. We also state and prove there some auxiliary
results on the hardness of problems concerning the existence of stable and supported
models. We study the complexity of the problems D> (C) and D% (C) in Section 3.
We consider the complexity of problems concerning small and large stable models
in Sections 4 and 5, respectively.

2. PRELIMINARIES

We start by introducing some basic logic programming terminology. We refer the
reader to [Lloyd 1984; Apt 1990] for a detailed treatment of the subject.

In the paper, we consider only the propositional case. A logic program clause (or
rule) is any expression r of the form

T= P4 qi,...,qm,n0t(s1),...,n0t(s,), (2)

where p, ¢; and s; are propositional atoms. We call the atom p the head of r and
we denote it by h(r). Further, we call the set of atoms {q1,...,qm,S1,.-.,Sn} the
body of r and we denote it by b(r). In addition, we distinguish the positive body of
r,{q,--.,qm} (b7 (r), in symbols), and the negative body of v, {s1,...,s,} (b (r),
in symbols).

A logic program is a collection of clauses. For a logic program P, by A#(P) we
denote the set of atoms that appear in P. If every clause in a logic program P has
an empty negative body, we call P a definite Horn program. If every clause in P
has an empty positive body, we call P a purely negative program. In this paper we
will consider finite programs only.

A clause r, given by (2), has a propositional interpretation as an implication

pT‘(’I”)Z g N...NgmNANS1AN...\—s, = p.

Given a logic program P, by a propositional interpretation of P we mean the propo-
sitional formula

pr(P) = N\{pr(r):r € P}.

We say that a set of atoms M is a model of a clause (2) if M is a (propositional)
model of the clause pr(r). As usual, atoms in M are interpreted as true, all other
atoms are interpreted as false. A set of atoms M C A#(P) is a model of a program
P if it is a model of the formula pr(P). We emphasize the requirement M C At(P).
In this paper, given a program P, we are interested only in the truth values of
atoms that actually occur in P.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

8 . Z. Lonc and M. Truszczynski

It is well known that every definite Horn program P has a least model (with
respect to set inclusion). We will denote this model by Im(P).

Let P be a logic program. Following [Clark 1978], for every atom p € A#(P) we
define a propositional formula comp(p) by

comp(p) = p& \/{c(r):r € P, h(r) =p},
where

c(r) = /\{q:q ebr(r)}A /\{—|s: seb (r)}.
If for an atom p € A#(P) there are no rules with p in the head, we get an empty
disjunction in the definition of comp(p), which we interpret as a contradiction.
Thus, in this case, comp(p) is logically equivalent to —p. On the other hand, if
b(r) = 0 then ¢(r) is an empty conjunction, which we interpret as a tautology. In
this case comp(p) is logically equivalent to p.

We define the program completion (also referred to as the Clark completion) of
P as the propositional theory

comp(P) = /\{comp(p):p € AH(P)}.

A set of atoms M C A#(P) is called a supported model of P if it is a model of
the completion of P. It is easy to see that if p does not appear as the head of
a rule in P, p is false in every supported model of P. It is also easy to see that
each supported model of a program P is a model of P (the converse is not true in
general).

Given a logic program P and a set of atoms M, we define the reduct (also referred
to as the Gelfond-Lifschitz reduct) of P with respect to M (P, in symbols) to be
the logic program obtained from P by

(1) removing from P each clause r such that M Nb~(r) # () (we call such clauses
blocked by M),

(2) removing all negated atoms from the bodies of all the rules that remain (that
is, those rules that are not blocked by M).

The reduct PM is a definite Horn program. Thus, it has a least model. We say
that M is a stable model of P if M = Im(P™). Both the notion of the reduct and
that of a stable model were introduced in [Gelfond and Lifschitz 1988].

It follows directly from the definition that if M is a stable model of a program P
then M C A#(P) and M is a model of P. In fact, an even stronger property holds.
It is well known that every stable model of a program P is not only a model of P
— it is a supported model of P. The converse does not hold in general. However,
if a program P is purely negative, then stable and supported models of P coincide
[Fages 1994].

In our arguments we use fixed-parameter complexity results on problems to decide
the existence of models of prescribed sizes for propositional formulas from some
special classes. To describe these problems we introduce additional terminology.
First, given a propositional theory ®, by At(®) we denote the set of atoms occurring
in ®. As in the case of logic programming, we consider as models of a propositional
theory ® only those sets of atoms that are subsets of A#®). Next, we define the
following classes of formulas:

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 9

tN:. the class of t-normalized formulas (if ¢ = 2, these are simply CNF formulas)

2Nj3:. the class of all 2-normalized formulas whose every clause is a disjunction
of at most three literals (clearly, 2Ns is a subclass of the class 2N)

tNM:. the class of monotone t-normalized formulas, that is, t-normalized formu-
las in which there are no occurrences of the negation operator

tNA:. the class of antimonotone t-normalized formulas, that is, t-normalized for-
mulas in which every atom is directly preceded by the negation operator.

Finally, we extend the notation Ma(C) and M/, (C), to the case when C stands
for a class of propositional formulas. In this terminology, M’ (8NM) denotes the
problem to decide whether a monotone 3-normalized formula ® has a model in
which exactly k atoms are false. Similarly, M= (tN) is simply another notation for
the problem WSJt] that we discussed above. The following three theorems establish
several complexity results that we will use later in the paper.

THEOREM 2.1. The problems M—(2N), M_(2NM), M<(2NM) and M_(2N)
are all W[2]-complete.

Proof: The first two statements, concerning the W[2]-completeness of M_(2N) and
M_(2NM), are proved in [Downey and Fellows 1997].

To prove the next statement, we will show that the problem M<(2NM) is equiv-
alent to the problem M_(2NM). To this end, we first describe a reduction of
M=(2NM) to M<(2NM). Let us consider a monotone 2-normalized formula @
and an integer k. We define k' = k. If k < |AH(®)|, we define ' = &. Otherwise,
@' =qa; A...Aagy1, where a;,i = 1,...,k + 1, are pairwise different atoms.

It is easy to see that ® has a model with exactly k& atoms if and only if ' has a
model with at most k' atoms. Indeed, let M be a model of ® with k£ atoms. Since
M C AH®), k < |At(®)|. Thus, ' = ®&. Consequently, M is a model of &' and
M < K.

Conversely, let us consider a model M of ®' such that |[M| < k. If &' =k >
|At(®)| then " =a; A... A agt1. The only model of @ has &+ 1 =k' + 1 atoms,
a contradiction with |M| < k'. Thus, k' = k < |A{(®)| and we have &' = &. It
follows that there is a set M' C A¢(®) such that M C M’ and |M'| = k. Since ®
is a monotone 2-normalized formula, a superset of a model of ® is also a model of
®. In particular, M’ is a model of ® and it has exactly k elements.

Given a pair (®, k), the pair (®', k') can clearly be constructed in time bounded
by a polynomial in the size of ®. Thus, all the requirements of the Definition 1.1
are satisfied. Since @' is a monotone 2-normalized formula, the problem M= (2NM)
is reducible to the problem M<(2NM).

The converse reduction can be constructed in a similar way. We define k' = k.
If k < |At(®)|, we define ® = ®. Otherwise, ' = a; A ... A ag41, where a;,i =
1,...,k+1, are pairwise different atoms. It is easy to see that ® has a model with
at most k£ atoms if and only if &' has a model with exactly k' atoms (a similar
argument as before can be applied). Clearly, the pair (®', k') can be constructed
in time polynomial in the size of ®. Thus, the problem M« (2NM) is reducible to
the problem M_(2NM).

It follows that the problem M<(2NM) is equivalent to the problem M_(2NM)
which, as we already stated, is known to be WJ[2]-complete [Downey and Fellows

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

10 . Z. Lonc and M. Truszczynski

1997]. Consequently, the problem M<(2NM) is W[2]-complete.

To prove the last statement of the theorem we reduce M—(2N) to M’ (2N) and
conversely. Let us consider a 2-normalized formula ® = A", \/;n:’1 x[i, j], where
x[i, j] are literals. We observe that ® has a model of cardinality k if and only if a
related formula ® = A", V'L, z[i, j], obtained from @ by replacing every negative
literal =z by a new atom & and every positive literal « by a negated atom -z, has a
model of cardinality |A#(®)| — k. This construction defines a reduction of M_(2N)
to ML(2N). It is easy to see that this reduction satisfies all the requirements of
the definition of fixed-parameter reducibility.

A reduction of M’ (2N) to M_(2N) can be constructed in a similar way. Since
the problem M_(2N) is W[2]-complete, so is the problem M’ (2N). |

In the proof of Theorem 2.1, we presented several reductions and observed that
they satisfy all the requirements specified in Definition 1.1 of fixed-parameter re-
ducibility. Throughout the paper we prove our complexity results by constructing
reductions from one problem to another. In most cases, we only verify the condi-
tion (4) of the definition which, usually, is the only non-trivial part of the proof.
Checking that the remaining conditions hold is straightforward and we leave these
details out.

THEOREM 2.2. The problems M_(2N3), M_(2NA), M_(2NM) and M (2NM)
are W[1]-complete. B

Proof: The assertions concerning the first two problems are proved in [Downey and
Fellows 1997].

Using the reductions described in the proof of the last statement of Theorem
2.1, it is easy to show that the problems ML (2NM) and M—(2NA) are equivalent.
Thus, the problem ML (2NM) is W[1]-complete.

Let ® be a monotone 2-normalized theory. Clearly, ® has a model of size at
most |A#(®)| — k if and only if it has a model of size exactly |A¢®)| — k. Thus,
the problem MY (2NM) is equivalent to the problem M’ (2NM). We have just
proved that this last problem is W[1]-complete. Thus, the problem M. (2NM) is
also W[1]-complete. B O

THEOREM 2.3. The problems ML(3NM) and M (3N) are W[3]-complete.

Proof: The problems M_(3NA) and M<(3N) are W[3]-complete [Downey and
Fellows 1997]. Let us now observe that the problems M’ (8NM) and M_(3NA)
are equivalent. Similarly, the problems M’ (3N) and M<(3N) are equivalent. Both
equivalences can be argued in a similar way to that we used in the proof of the last
statement of Theorem 2.1. Thus, the theorem follows. O

We will now present some general results that imply that in many cases, problems
with A = “<”, concerning stable and supported models, are not harder than the
corresponding problems with A = “=".

For every integer k, 1 < k, we denote by Y} the set of propositional variables
Yij, where 1 = 1,2...,k+ 1, and j = 1,2,...,i. Next, for each ¢ and j, where
1<i<k+1and 1< j <, we define a logic program clause g; ; by:

Yij < not(yi,1),...,n0t(yi—1,1),n0t(yi+1,1),- .., n0t(yrt1,1)
(let us note that for every ¢, 1 < i < k+ 1, rules ¢; j, 1 < j < i, have the same

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 11

body). We then define a logic program @y, by setting
Qr={q;:1<i<k+1 and 1<j<i}.

LEMMA 2.4. For every i, 1 < i < k+1, the set {yi1,Yiz2,-..,Yii} is a stable
model (supported model) of Q. Moreover, Qi has no other stable models (supported
models).

Proof: Let us consider any integer ¢ such that 1 < i < k+ 1. We define M =
{Yi1,¥i2, -, ¥} Since y; 1 appears negated in the body of every rule g; ; of Qy,
with ' #4 and 1 < j < ', none of these rules contributes to the Gelfond-Lifschitz
reduct of Q) with respect to M. On the other hand, no atom of M appears negated
in the bodies of the rules ¢; j, 1 < j <4. Thus, the Gelfond-Lifschitz reduct of Q
with respect to M consists of the rules
Yij <

for j = 1,2,...,4. Clearly, the least model of the reduct is M and, consequently,
M is a stable model of Q.

Let us consider now an arbitrary stable model M of Q. Since @} has nonempty
stable models and since stable models are incomparable with respect to inclusion
[Marek and Truszczyriski 1993], M # 0. Let y; ; € M, for some ¢ and j such that
1<i<Ek+1and 1< j<i. Since g;; is the only rule of @} with the head y; ;,
it follows that its body is satisfied by M. Since all rules ¢;;, 1 < j <4, have the
same body and since M is a model of @, the heads of all these rules belong to
M. Thus, {yi1,Yi2,.--,¥ii} € M. We proved earlier that {y;1,%i2,...,yi:} is a
stable model of Q. Since stable models are incomparable with respect to inclusion,
M ={yi1,Yi2,---,Yi:}. This completes the proof of the assertion for the case of
stable models.

The program @y, is purely negative. Thus, its stable and supported models
coincide [Fages 1994]. Consequently, the assertion follows for the case of supported
models, as well. O

THEOREM 2.5. Let P be a logic program and let k be a non-negative integer. Let
Yi={yi;;i=12...)k+1, j=1,2,...,i} be a set of atoms disjoint with At(P)
and let Qy, be the program constructed above. Then:

(1) P has a supported model (stable model) of cardinality at most k if and only if
P U Qy, has a supported model (stable model) of cardinality equal to k + 1.
(2) P has a supported model (stable model) of cardinality at least |At(P)| — k if

and only if PUQy has a supported model (stable model) of cardinality equal to
|AUP U Qr)| — k(k + 3)/2.

Proof: First, we observe that since Y N At(P) = (), supported models (stable
models) of P U @y, are precisely the sets M'U M", where M' is a supported model
(stable model) of P and M" is a supported model (stable model) of Q.

The proofs for parts (1) and (2) of the assertion are very similar. We provide
here only the proof for part (2).

Let us assume that M is a supported model of P of cardinality at least | A¢(P)|—k.
Then, |M| = |At(P)| -k +a, for some a, 0 < a < k. Clearly, i = (k+1) — a satisfies
1<i<k+1and {yi1,Yi2,---,Yii} is a supported model of Q. It follows that

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

12 . Z. Lonc and M. Truszczynski
M'=MU{yi1,Yi2,---,Yii} is a supported model of PU @y, and its cardinality is
|At(P)| — k + a +i. It is now easy to see that
|AH(Qr)| = (k + 1)(k +2)/2.
Thus, we have that

IM'| = |AYP)| —k+a+i=]A{P)|+1
= [A(PUQL)| — (k+1)(k+2)/2+1=|A(PUQy)| — k(k + 3)/2.

Conversely, let us assume that M’ is a supported model of P U @y of cardinality
exactly |At(P U Qk)| - k(k + 3)/2 It follows that M' = M U {yi,l:yi,% Ce 7yi,i}7
where M is a supported model of P and 1 <i < k + 1. Clearly,

M| = |M'| —i=|A{PUQy)| — k(k+3)/2 —i
= |AUP)|+ (k + 1)(k +2)/2 — k(k + 3)/2 — i > |AH(P)| — k.

This completes the argument for part (2) of the assertion for the case of supported
models. The same reasoning works also for the case of stable models because all
auxiliary facts used in this reasoning hold for stable models, too. |

The program () can be constructed in time bounded by a polynomial in the size
of P and k. Thus, Theorem 2.5 has the following corollary on the reducibility of
some problems D<(C) to the respective problems D (C).

COROLLARY 2.6. For every class of logic programs C such that C is closed under
unions and N° C C, problems SP<(C), ST<(C), SP<(C) and ST<(C) can be re-
duced to (are not harder than) problems SP—(C), ST=(C), SP_(C) and ST'_(C),

respectively. O

3. THE PROBLEMS D5 (C) AND D% (C)

These problems ask about the existence of models with at least k& true atoms (in
the case of small bound problems) or with at least k false atoms (for the large-
bound problems). From the point of view of the fixed-parameter complexity, these
problems (with one exception) are not very interesting. Several of them remain NP-
complete even if £ is fixed (in other words, fixing k does not render them tractable).
Others are “easy” — they can be solved in polynomial time even without fixing k.
The one exception, the problem MY (N), turns out to be W[1]-complete.

THEOREM 3.1. The following parameterized problems are in P: M>(H), M>(N),
M>(A), SP>(H), ST>(H), M5 (H), SPL(H) and STS(H).

Proof: (1) The problems M>(#H), M>(N) and M>(A) are all in P. Indeed, if @ is
a logic program, the set of all atoms of () is a model of). Thus, if |At(Q)| > k, the
answer (in each case) is YES. Otherwise, the answer is NO. Clearly, the question
whether |At(Q)| > k can be decided in polynomial time (in the size of @ and k).
(2) SP>(H) is in P. To see this, we observe that there is a polynomial-time algo-
rithm to compute the greatest supported model of a definite Horn program [Apt
and van Emden 1982]. A definite Horn program) has a supported model of size at
least k if and only if the greatest supported model of) has size at least k. Thus,
the assertion follows.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 13

(3) The problem ST >(H) is in P. Indeed, the least model of a definite Horn pro-
gram @ is the only stable model of). The least model of a definite Horn program
@ can be computed in linear time [Dowling and Gallier 1984]. So, the assertion
follows.
(4) The problems M4 (H), SPL(H) and ST (H) are all in P. Indeed, a definite
Horn logic program has the least model which is also the least supported and the
only stable model of). Thus, in the case of each of these three problems, the
answer is YES if and only if the least model of @ has size at most |A{Q)| — k.
Since the least model of () can be computed in linear time, the three assertions of
(4) follow. |
In contrast to the problems covered by Theorem 3.1, which are solvable in poly-
nomial time even if k is not a part of the input, problems in the next group remain
hard even if k is fixed.

THEOREM 3.2. Let k be a fized non-negative integer. The following fixed-parameter
problems are NP-complete: SP>(N, k), SP> (A, k), ST>(N, k), ST>(A, k), SPL (N, k),
873'2 (A, k), ST'Z (N, k) and ST'Z(A, k).

Proof: (1) The problems SP> (N, k), SP>(A, k), ST>(N,k) and ST > (A, k) are all
NP-complete. Clearly, all these problems are in NP. To prove their NP-hardness, we
recall that the problems to decide whether a logic program has a supported (stable)
model are NP-complete, even under the restriction to purely negative programs
[Marek and Truszczynski 1991]. Let P be a logic program. Let y;, i = 1,2,...,k,
be atoms not appearing in P. We define

P =PU{y;«:i=12,...,k}.

Since At(P)N{y1,y2,--.,yr} = 0, P has a stable (supported) model if and only if P’
has a stable (supported) model of size at least k. Moreover, if P € N, then P’ € NV,
as well. Thus, NP-hardness of the problems SP>(N,k), SP>(A, k), ST>(N, k)
and ST > (A, k) follows.

(2) The problems SPL (N, k), SPL (A, k), ST~ (N, k) and STS (A, k) are all NP-
complete. Clearly, all these problems are in NP. To prove their NP-hardness, we
use (as in (1)) the fact that the problems to decide whether a logic program has
a supported (stable) model are NP-complete (even under the restriction to purely
negative programs). Let P be a logic program and let y;, z;, i = 1,2,...,k be
atoms not appearing in P. We define

P'=PU{y; < not(z;);2; ¢ not(y;):i =1,2,... ,k}.

The logic program {y; + mnot(z;);2z; < not(y;):i = 1,2,...,k} has 2% stable
models. Each of these models has exactly k elements (for each i = 1,2,... k, it
contains either y; or z; but not both). Since A{(P)N{y;,z;:i =1,...,k} =0, P has
a stable (supported) model if and only if P’ has a stable (supported) model of size
at most |A{(P")| — k. Moreover, if P € N then P' € N/, as well. Thus, NP-hardness
of the SPL(NV, k), SPL(A, k), STL (N, k) and STL (A, k) follows. O

We will next study the problem M. (A, k). It turns out that it is NP-complete
for all k¥ > 1 and is trivially solvable in polynomial time if k¥ = 0.

THEOREM 3.3. The problem ML (A,0) is in P. For every k > 1, the problem
ML (A, k) is NP-complete. -

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

14 . Z. Lonc and M. Truszczynski

Proof. The first part of the assertion is evident. The answer to the problem
ML (A,0) is always YES. Indeed, for every logic program P, the set M = A#(P) is
a model of P and it satisfies the inequality |At(P)] > |M]|.

Let us now assume that & > 1. We will first consider the problem P (k) to decide
whether a 2-normalized (that is, CNF) formula ® has a model of size at most
|At(®)| — k (k is fixed and not a part of the input). This problem is NP-complete.
It is clearly in NP. To show its NP-hardness, we will reduce to it the general CNF
satisfiability problem. Let ¥ be a CNF theory and let y;, 1 <1 < k, be atoms not
occurring in ¥. Then ¥ has a model if and only if ¥' = ¥ U {—~y;:i =1,2,...,k}
has a model of size at most |A#(¥')| — k. Hence, NP-completeness of the problem
P(k), where k > 1, follows.

Problem MY (A, k) is clearly in NP. To prove NP-hardness of M4 (A, k) we will
reduce the problem P(k) to it. Let ® be a CNF theory. Let us assume that
AH®) = {z1,22,...,zn}. For each clause C = a1 V... Va,V —by V...V <b, of ®
we define program clauses r¢;, 1 <@ < n:

re; = & < bi,...,br,not(ay),...,not(ap).

Let Pp = {r¢i:C € ®, i =1,...,n}. Clearly, At(Ps) = {1, 22,...,z,} (that is,
the formula ® and the program Pg have the same atoms).

Let M be a model of ® and let C' be a clause of ®. Since M satisfies C, M does
not satisfy the body of the rules r¢;, 1 <4 <n. In other words, M satisfies all the
rules rc;, 1 <4 < n. Thus, if M is a model of ® then M is a model of Ps. Since
At(®) = At(Ps), it follows that if ® has a model of size at most |A{(®)| — k then
the program Pp has a model of size at most |At(Ps)| — k.

Conversely, let us consider a model M of Py such that |[M| < n—k. Since k > 1,
we have |M| < n. Let us assume that there is a clause C' of ® that is not satisfied
by M. Then, the bodies of all program clauses r¢ ;, 1 < ¢ < n, are satisfied. Hence,
{z1,...,2,} C M and |M| > |At(Ps)| = n, a contradiction. It follows that M is a
model of ®.

Thus, indeed, the problem P(k) can be reduced to the problem MX (A, k) and
NP-hardness of M% (A, k) follows. B |

The only problem with A = “>” whose complexity is affected by fixing k is
ML (N). fixed-parameter polynomial time. Namely, we have the following result.

THEOREM 3.4. The problem MY (N) is W[1]-complete.

Proof: Let us consider a monotone 2-normalized formula ®. In each clause C' =
1V ...V x of & we pick an arbitrary atom, say x;. We then define a logic
program clause r¢ = x1 < not(z2),...,not(xy). Finally, we define a logic program
Py = {rc: C € ®}. Clearly, Py is a purely negative program, it is built over the
same set of atoms as ® and it has the same models as ®. Similarly, for every purely
negative program P, the 2-normalized formula pr(P) is monotone. Moreover, the
set of atoms of pr(P) is the same as that of P, and pr(P) and P have the same
models.

It follows that the problem MY (N) is equivalent to the problem MY (2NM)).
Thus, the assertion follows by Theorem 2.2. B O

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 15

4. THE CASE OF SMALL MODELS

In this section we deal with the problems Ma(C), SPa(C) and ST a(C) for A =
“=" and A = “<”. Speaking informally, we are interested in the existence of
models that are small, that is, contain no more than some specified number of
atoms. The problem ST <(A) was first studied in [Truszczynski 2002]. In that
work, it was proved that the problem S7 <(A) is W[2]-hard and belongs to the
class W[3]. In this section we establish the exact location of the problem ST <(A)
in the W hierarchy and obtain similar results for problems concerning the existence
of models and supported models.

THEOREM 4.1. The problems M<(N), M=(N), M<(A) and M=(A) are all
W[2]-complete.

Proof: Since N' C A, it is enough to prove that the problems Ma(N), A = “<”
and “=", are W[2]-hard, and that the problems Ma(A), A = “<” and “=", are in
W[2].

Reasoning as in the proof of Theorem 3.4, we argue that the problems M (2NM)
can be reduced to the problems Ma(N), for A = “<” and “=". Indeed, M is a
model of a monotone 2-normalized formula ® if and only if M is a model of the
logic program Py, as defined in the proof of Theorem 3.4. Since ® is a monotone
2-normalized formula, Pg is a purely negative logic program. This establishes the
reducibility. By Theorem 2.1, it follows that the problems M<(N) and M_(N)
are W[2]-hard.

Since M is a model of a logic program P if and only if M is a model of pr(P),
it follows that the problems M« (A) and M=(A) can be reduced to the problems
M<(2N) and M_(2N), respectively. Hence, by Theorem 2.1, the problems M < (A)
and M~ (A) are in W[2]. O

THEOREM 4.2. The problems M<(H), SP<(H), ST<(H) and ST=(H) are in
P.

Proof: A definite Horn logic program has a model (supported model, stable model)
of size at most k if and only if its least model (which is also the least supported model
and the only stable model) has size at most k. The least model of a definite Horn
program can be computed in linear time. Thus, the problems M<(H), SP<(H)
and ST <(H) are in P. Since the least model of a definite Horn program is the
unique stable model of the program, it follows that also the problem ST =(H) is in
P. |

We emphasize that k is a part of the input for problems dealt with in Theorem
4.2. Thus, all these problems are solvable in polynomial time even without fixing
k.

THEOREM 4.3. The problem M=(H) is W[1]-complete.

Proof: We will first prove the hardness part. To this end, we will reduce the prob-
lem M~(2NA) to the problem M—(H). Let ® be an antimonotone 2-normalized
formula and let k£ be a non-negative integer. Let ag,-..,ar be k+ 1 different atoms
not occurring in ®. For each clause C = -1 V...V =z, of ® we define a logic
program rule r¢ by

rc= Qo< T1,...,Tp.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

16 . Z. Lonc and M. Truszczynski

We then define Py by
Pq>:{ro:C’E<I>}U{ai<—aj:i,j=0,1,...,k, ’L;é]}

Let us assume that M is a model of size k of the program Pg. If for some i, 0 <
i <k, a; € M then {ao,...,ar} € M and, consequently, |M| > k, a contradiction.
Thus, M does not contain any of the atoms a;. Since M satisfies all rules r¢ and
since it consists of atoms of ® only, M is a model of ® (indeed, the body of each
rule ro must be false so, consequently, each clause C' must be true). Similarly, one
can show that if M is a model of ® then it is a model of Pg. Thus, W[1]-hardness
follows by Theorem 2.2.

To prove that the problem M_(#) is in the class W[1], we will reduce it to
the problem M_(2N3). To this end, for every definite Horn program P we will
describe a 2-normalized formula ®p, with each clause consisting of no more than
three literals, and such that P has a model of size k if and only if ®p has a model
of size (k + 1)2* + k. Moreover, we will show that ®p can be constructed in time
bounded by a polynomial in the size of P (with the degree not depending on k).

First, let us observe that without loss of generality we may restrict our attention
to definite Horn programs whose rules do not contain multiple occurrences of the
same atom in the body. Such occurrences can be eliminated in time linear in the
size of the program. Let P be such a program and let k£ be a non-negative integer.
If kK = 0, we define P’ to consist of all the facts in P. Otherwise, we define P’ to
be the program obtained from P by removing all clauses with bodies consisting of
more than k atoms and adding clauses of the form a « a, for a € A{(P). It is
evident that P has a model of size k if and only if P’ has a model of size k. It
is also clear that the body of every rule of P’ consists of no more than k atoms.
Finally, the program P’ can be constructed in time linear in the size of P.

Thus, we will describe the construction of the formula ®p only for definite Horn
programs P in which the body of every rule consists of no more than k¥ atoms. Let
P be such a program. We define

B ={B: B C(r), for some r € P}.

For every set B € B we introduce a new variable u[B]. Further, for every atom x
in P we introduce 2¥ new atoms z[i], i = 1,...,2%. i =1,2,...,2% Finally, we
introduce yet another set of new atoms z[1], ..., z[2¥].

We will now define several families of formulas. First, for every z € A¢(P) and
i=1,...,2"F we define

D(z,i)= zez[i] (or (-zVe[l]) A (zV-zi])),
and, for each set B € B and for each x € B, we define
E(B,z)= zAu[B\{z}]=u[B] (or ~zV —w[B\ {z}]Vu[B]).
Next, for each set B € B and for each z € B we define
F(B,z) = u[B]=x (or ~u[B]V z).
For each rule r in P we introduce a formula

G(r) = ul[b(r)] = h(r) (or =u[b(r)] Vv h(r)).

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 17

Finally, for each t = 1,...,2" let
H(t)= z[t] e z[t] (or (—z[t]V z][t]))-

We define ®p to be the conjunction of all these formulas (more precisely, of their
2-normalized representations given in the parentheses) and of the formula u[{)].
Clearly, ®p is a formula from the class 2N3. Further, since the body of each rule in
P has at most k elements, the set B has no more than |P|2* elements, each of them
of size at most k (|P| denotes the cardinality of P, that is, the number of rules in
P). Thus, ®p can be constructed in time bounded by a polynomial in the size of
P, whose degree does not depend on k.

Let us consider a model M of P such that |M| = k. We denote by p the number
of sets B € B such that B C M. We define

M' = MU{z[il:z € M,i=1,...,2"}U{u[B]: BC M and B € BYu{z[t]:t = 1,...,2k—p}.

The set M' satisfies all formulas D(z,i), € A{(P), i = 1,...,2% and H(t), t =
1,...2%. In addition, the formula u[f)] is also satisfied by M’ () C M and so,
ull] € M').

Let us consider a formula E(B,z), for some B € B and « € B. Let us assume
that © A u[B \ {z}] is true in M'. Then, v € M' and, since x € A(P), x € M.
Moreover, since u[B \ {z}] € M', B\ {z} C M. It follows that B C M and,
consequently, that u[B] € M'. Thus, M’ satisfies all “E-formulas” in ®p.

Next, let us consider a formula F(B,z), where B € B and = € B, and let us
assume that M’ satisfies u[B]. It follows that B C M. Consequently, x € M. Since
M C M', M' satisfies x and so, M’ satisfies F(B,x).

Lastly, let us look at a formula G(r), where r € P. Let us assume that u[b(r)] €
M'. Then, b(r) C M. Since r is a definite Horn clause and since M is a model of
P, it follows that h(r) € M. Consequently, h(r) € M'. Thus, M’ is a model of
G(r).

We proved that M’ is a model of ®p. Moreover, it is easy to see that |M'| =
E+k2b+p+2F —p=(k+1)2" + k.

Conversely, let us assume that M’ is a model of ®p and that |M'| = (k+1)2F +k.
We set M = M' N At(P). First, we will show that M is a model of P.

Let us consider an arbitrary clause r € P, say

T:h(—bl,...,bp,

where h and b;, 1 < i < p, are atoms. Let us assume that {b;,...,b,} C M. We
need to show that h € M.

Since {b1,...,bp} = b(r), the set {b1,...,by} and all its subsets belong to B.
Thus, ®p contains formulas

E({bl, .. -,bi—l},bi) =b; A u[{bl, .. -;bi—l}] = U[{bl, .. -,bi—l,bi}],

where i = 1,...,p. All these formulas are satisfied by M'. We also have u[f)] € ®p.
Consequently, u[f)] is satisfied by M', as well. Since all atoms b;, 1 <14 < p, are also
satisfied by M’ (since M C M), it follows that u[{b1,...,bp}] is satistied by M.

The formula G(r) = u[{b1,...,bp}] = h belongs to ®p. Thus, it is satisfied by
M'. Tt follows that h € M'. Since h € A{P), h € M. Thus, M is a model of r
and, consequently, of the program P.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

18 . Z. Lonc and M. Truszczynski

To complete the proof we have to show that |M| = k. Since M’ is a model of
®p, for every x € M, M' contains all atoms z[i], 1 < i < 2*. Hence, if |[M| > k
then |M'| > |M| + |M| x 2% > (k + 1)(1 4+ 2*) > (k + 1)2* + k, a contradiction.

So, we will assume that |M| < k. Let us consider an atom u[B], where B € B,
such that u[B] € M'. For every « € B, ®p contains the rule F(B,z). The set M’
is a model of F(B,x). Thus, z € M' and, since x € At(P), we have that x € M.
It follows that B C M. It is now easy to see that the number of atoms of the form
u[B] that are true in M’ is smaller than 2¥. Thus, |M'| < |M|+ |M| x 2% + 2% <
(k—1)(1+2%) + 2% < (k+1)2* + k, again a contradiction. Consequently, |M| = k.

It follows that the problem M= (H) can be reduced to the problem M—(2Ns).
Thus, by Theorem 2.2, the problem M_(#) is in the class W[1]. This completes
our argument. O

THEOREM 4.4. The problems ST <(N) and SP<(N') are W|2]-hard.

Proof: Since stable and supported models of purely negative programs coincide
[Fages 1994], we will show W][2]-hardness for stable models only. To this end,
we will find a reduction of M<(2NM) (which is W[2]-hard, see Theorem 2.1) to
ST<(N).

Let ® be a monotone 2-normalized formula and let {z;,...,2,} be the set of
atoms that occur in ®. We define a program Py € N as follows. For every atom
zj, j = 1,...,n, occurring in ® we introduce k new atoms x;[1],z;[2],...,z;[k].
For each of these atoms we include in Pg the following rule:

rie= x;[{] < not(xi[f]),...,not(z;_1[¢]),not(z;11[£]),...,not(x,[{]),
j=1...,n, £ =1,...,k. Next, for each clause C = z;; V...V x;, in @, we
introduce a new atom fc and include in Py the rule:
roc = fo ¢+ mnot(z;[1]),...,not(z; [k]),
not(z;,[1]),...,not(x;,[k]),

ey

not(z;,[1]),...,not(z;, [k]), not(fc).

We will show that ® has a model of cardinality at most k if and only if Py has
a stable model of size at most k.
Let M = {xt,, ey, .., 2, }, m < k, be a model of ®. We claim that

M' = {$t1[1]7 $t2[2]a'--;$t [m]7mtm|:m+1]""’$tm[k]}

m

is a stable model of Pg. Let C' be a clause from ®. Since M is a model of @,
C contains an atom, say x;, from M. Then, however, j < m and z;[j] € M'.
The atom w4, [j] occurs negated in the body of the rule 7. Thus, the rule r¢ does

not contribute to the reduct P}, In the same time, the rules rj ¢ contribute the
following rules to the reduct:

xtj[j] <,
foryj=1,...,m, and

Lt [.7] <,
ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 19

forj =m+1,...,k. Thus, lm(PéW) = M' and, consequently, M’ is a stable model
of Py of size k.

Conversely, let us assume that Pp has a stable model M’ of size at most k.
The atoms fo cannot be in M’ and, if x;[{] € M', then x;[¢] € M', for i # j.
Moreover, if for every j, 1 < j < n, x;[¢] € M’, then the rule r , implies that
z1[f] € M’, a contradiction. Hence, for every £ = 1,...,k, exactly one of the
atoms z1[€],...,zp[f] is in M'. Thus, all stable models of Py are of the form
M' = {z,[1], 2,[2], . . ., x¢, [K]}, where the indices ¢, s, ..., T, are not necessarily
pairwise distinct. Let M = {xy,,...,x¢, }. Clearly, |M| < k. Suppose M is not a
model of some clause C' = z;, V...V z;,. Then, none of the atoms z;,,...,z;, isin
M. Consequently none of the atoms z;,[(], j = 1,...,s, £ =1,...,k,isin M'. It
follows that the rule fc < is in the reduct PY " and, so, fo € M', a contradiction.
Thus, M is indeed a model of ® of cardinality at most k.

This completes the argument that M<(2NM) can be reduced to ST <(N) and
the assertion of the theorem follows by Theorem 2.1. O

Later in the paper we will need a stronger version of Theorem 4.4. To state it, we
need more terminology. We define N to be the class of purely negative programs
such that each atom occurs exactly once in the head of a rule. It is clear that the
program Py constructed in the proof of the Theorem 4.4 belongs to the class M.
Thus, we obtain the following result.

THEOREM 4.5. The problems ST <(N1) and SP<(N1) are W[2]-hard. O
THEOREM 4.6. The problem SP=(A) is in W[2].

Proof: We will show a reduction of SP_(A) to M_(2N), which is in W[2] by
Theorem 2.1. Let P be a logic program with atoms zi,...,x,. We can identify
supported models of P with models of its completion comp(P). The completion is
of the form comp(P) = ® A ... A ®,, where

my; Mij

<I>i =T < \/ /\ x[i,j,l],
j=1¢=1
i=1,...,n, and z[i,], {] are literals. It can be constructed in linear time in the
size of the program P.
We will use comp(P) to define a formula ®p. The atoms of ®p are 1,...,z,
and uli,jl,i=1,...,n,j=1,...,m;. Fori=1,...,n, let

Gi=wi= \[uli,jl, (or —a; v \/ uli,),
j=1

j=1
Gi =\ uli,j]= =i, (or /\(w:V-uli,j]),
j=1 Jj=1

m;—1 my;
H; = /\ /\ (—wli, 4]V —wli,j']), for every i such that m; > 2,
j=1 j'=j+1
ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

20 . Z. Lonc and M. Truszczynski

fi= Nlidl = Nalid. @) lor A AGulid vali, i, 0),
j=1 =1 j=1=1
J=\ Nalii 0= o, (or NG\ -ali,,0).
j=1¢=1 j=1 =1

The formula ®p is a conjunction of the formulas written above (of the formulas
given in the parentheses, to be precise). Clearly, ®p is a 2-normalized formula.
We will show that comp(P) has a model of size k (or equivalently, that P has a
supported model of size k) if and only if ®p has a model of size 2k.

Let M = {zp,,...,zp, } be a model of comp(P). Then, for each i = p,...,px,
there is j, 1 < j < m;, such that M is a model of A;* x[z J, €] (this is because M
is a model of every formula ®;). We denote one such j (an arbitrary one) by j;.
We claim that

M = MU{U['L,]z] : i:pla"‘apk}

is a model of ®p. Clearly, G; is true in M’ for every i, 1 < i < n. If z; € M
then ufi, j] ¢ M' for all j = 1,...,m;. Thus, G} is satisfied by M'. Since for each
i, 1 < i < n, there is at most one j such that u[i,j] € M', it follows that every
formula H; is true in M'. By the definition of j;, if u[i, j] € M’ then j = j; and M’
is a model of /\T{ x[i,j,£). Hence, I; is satisfied by M'. Finally, all formulas J;,
1 < i < mn, are clearly true in M'. Thus, M’ is a model of ®p of size 2k.

Conversely, let M’ be a model of ®p such that |M'| = 2k. Let us assume that M’
contains exactly s atoms wu[i, j]. The clauses H; ensure that for each 4, M’ contains
at most one atom u[i, j|]. Therefore, the set M'N{u[i,jl:i=1,....,nj=1,...,m;}
is of the form {u[p1, jp,], -, u[ps, Jp.1}, where p; < ... < ps.

Since the conjunction of G and G} is equivalent to T & \/ 1 uli, j], it follows
that exactly s atoms z; belong to M’ Thus, |M'| = 2s = 2k and s = k. It is now
easy to see that M’ is of the form {xpl,...,xpk,u[pl,jpl], e UPE, Ipe] T

We will now prove that for every ¢, 1 < ¢ < n, the implication

mg Mij

j=1¢=1

is true in M'. To this end, let us assume that x; is true in M’ (in other words, that
x; € M'). Then, there is j, 1 < j < m;, such that u[i, j] € M' (in fact, i = p; and
J = Jp., for some ¢, 1 < ¢ < k). Since the formula I; is true in M’, the formula
Nii @i, j,] is true in M'. Thus, the formula \/ NS i, 4,0 is true in M,
too.

Since for every 4, 1 < i < n, the formula J; is true in M’', it follows that
all formulas ®; are true in M’'. Since the only atoms of M’ that appear in the
formulas ®; are the atoms xp, ...,ap,, it follows that M = {zp, ...,zp. } is &
model of comp(P) = @1 A ... APy,

Thus, the problem SP=(A) can be reduced to the problem M=(2N), which
completes the proof. O

THEOREM 4.7. The problem ST =(A) is in W|[2].

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 21

Proof: In [Truszczynski 2002], it is shown that the problem S7 =(A) can be reduced
to the problem of existence of a model of size k of a certain formula ®. This formula
® is a conjunction of formulas of the form

m; Mij

T; & \/ /\ a:[i,j,[],

j=1¢=1

for i = 1,...,n, where {z1,...,z,} is the set of atoms of ® and x[i, j,] denote
some literals over this set of atoms. This theory is the Clark completion of a certain
logic program P. Thus, we get a reduction of ST=(A) to SP=(A). By Theorem
4.6, it follows that ST =(A) is in W[2]. O
Theorems 4.4, 4.6 and 4.7, and Corollary 2.6 yield the following result.

COROLLARY 4.8. The problems ST <(N), SP<(N), ST<(A), SP<(A), ST=(N),
SP_(N), ST=(A) and SP=(A) are W][2]-complete. O

Finally, in our last result of this section, we establish bounds on the fixed-
parameter complexity of the problem SP_(H).

THEOREM 4.9. The problem SP—(H) is W[1]-hard and belongs to W|2].

Proof: Since H is a subclass of A, it follows immediately from Theorem 4.6 that
SP=(H) is in W[2]. The W[1]-hardness can be proved in exactly the same way as
for the problem M= (H) (Theorem 4.3), except that for every atom z of ®, we have
to include the rule ¢ < = in Pg. O

5. THE CASE OF LARGE MODELS

In this section we deal with the problems My (C), SP'A(C) and ST, (C) for A =
“=" and A = “<”. Speaking informally, we are now interested in the existence
of models that are large, that is, models in which the number of false atoms is
bounded from above by some integer.

THEOREM 5.1. The problems M- (M), SP<(M), ST<(H), M (N) and ML (A)

are in P. -

Proof: The problems M’ (C), where C = H, N or A, have always the answer YES
(the set of all atoms is a model of any logic program). Hence, all these three
problems are trivially in P.

Next, we observe that there is a polynomial-time algorithm to compute the great-
est supported model of a definite Horn program [Apt and van Emden 1982]. Conse-
quently, the problem SP’ (H) is in P (there is a supported model in which no more
than k atoms are false if and only if no more than k atoms are false in the greatest
supported model). Finally, a definite Horn program has a unique stable model
(its least model) that can be computed in polynomial time. Hence, the problem
ST (H) is also in P.]

THEOREM 5.2. The problem M' (N) is W[1]-complete.

Proof: It is easy to see that this problem is equivalent to the problem M’ (2NM)
(the same reductions as those used in Theorem 3.4 work). This latter problem is
W([1]-complete (Theorem 2.2). Hence, the assertion follows. O

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

22 . Z. Lonc and M. Truszczynski

THEOREM 5.3. The problems M_(H) and M_(A) are W[2]-complete.

Proof: Both problems are clearly in W[2] (models of a logic program P are models
of the corresponding 2-normalized formula pr(P)). Since H C A, to complete the
proof it is enough to show that the problem M_ (#) is W[2]-hard. To this end, we
will reduce the problem M_(2NM) to ML (H).

Let ® be a monotone 2-normalized formula and let & > 0. Let {z1,..., 2y} be
the set of atoms of ®. We define a definite Horn program P corresponding to @
as follows. We choose an atom a not occurring in ® and include in Pg all rules of
the form z; - a, i =1,2,...,n. Next, for each clause C' = z;, V...V z;, of & we
include in Pg the rule

ro = a(—ﬂfil,...,ﬂfip.

We will show that ® has a model of size k if and only if Py has a model of size
|[At(Pg)| — (k+1)=(n+1)—(k+1)=n—k.

Let M be a model of ® of size k. We define M' = {xy,...,2,}\ M. The set M’
has n — k elements. Let us consider any clause r¢ € Py of the form given above.
Since M satisfies C, there is j, 1 < j < p, such that x;; ¢ M'. Thus, M' is a model
of r¢. Since a ¢ M', M' satisfies all clauses z; < a. Hence, M' is a model of Pg.

Conversely, let M’ be a model of Py of size exactly n—k. If a € M’ then x; € M’
for every i, 1 <i < n. Thus, |[M'| =n+1>n— k, a contradiction. Consequently,
we obtain that a ¢ M'. Let M = {x1,...,z,} \ M'. Since a ¢ M', |M| = k.
Moreover, M satisfies all clauses in ®. Indeed, let us assume that there is a clause
C such that no atom of C' is in M. Then, all atoms of C' are in M'. Since M’
satisfies r¢, a € M’, a contradiction. Now, the assertion follows by Theorem 2.1.
O

THEOREM 5.4. The problem SP'_(H) is W [3]-hard.

Proof: We will reduce the problem M’ (3NM) (which is W[3]-complete by Theorem
2.3) to the problem SP’ (H). Let

be a monotone 3-normalized formula, where z[i, j, £] are atoms. Let us assume that
|At(®@)| = n.

We define a definite Horn program Pg as follows. Let u[l], ..., u[m],v[1],...,v[k+
1] be new atoms not occurring in ®. First, for every z € A#(®), we include in P
the rule

T4 .
Next, for every i = 1,...,m, we include in Py m; rules
uli] < i, j,1],. .., 2[4, j, my],
where j = 1,...,m;. Finally, we include in P k + 1 rules
v[gq] < ull],...,u[m],

where ¢ =1,...,k+ 1.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 23

We will show that ® has a model of cardinality n—k if and only if the definite Horn
program Py has a supported model of cardinality |At(Pe)|—k =n+m+k+1—k =
n+m+1.

Let M be a model of ®, |M| = n — k. It is easy to see that M' = M U
{u[l],...,u[m],v[1],..., v[k+1]}is a supported model of Py of cardinality n+m+1.

Conversely, let M’ be a supported model of Py of cardinality n +m + 1. Clearly
M' is a model of the Clark completion comp(Ps) of Pg. If u[i] ¢ M', for some
i =1,...,m, then v[g] € M', for every ¢ = 1,...,k + 1, because v[q] & AI~, uli]
belongs to comp(Pg). Hence, |M'| < n+m—1, a contradiction. Therefore u[i] € M’,
for every i = 1,...,m. Consequently, for every ¢ =1,...,k+ 1, we have v[g] € M'.
Let M = M'NAY®). Clearly, M| =n+m+1—m—(k+1) = n—k. Moreover, M
is a model of each formula \/;’“1 /\zn”1 z[i,§,¢],i=1,...,m. Indeed, M’ is a model
of the formula u[i] \/;n:’1 Ni2i xi, j, €] belonging to comp(Py) and uli] € M', for
i =1,...,m. Hence, M is a model of ® of cardinality n — k. O

THEOREM 5.5. The problem SP'_(A) is in W|3].

Proof: Let P be a logic program with atoms zi,...,z,. Its supported models
coincide with models of the Clark completion comp(P) of P. The formulas of the
Clark completion are of the form

mg; Mij
Ti <= \/ /\ a:[i,j,[],
j=1¢=1
where i = 1,...,n and z[i, j, £] are literals. It is a routine task to check that the

completion comp(P) can be converted into a 3-normalized formula in a number of
steps being a polynomial with respect to the size of the program P. Hence, SP’_(A)
is in W3] m|

COROLLARY 5.6. SPL(H) and SPL(A) are W[3]-complete. |
THEOREM 5.7. The problems ST'<(A) and ST'_(A) are W[3]-hard.

Proof: By Corollary 2.6, it suffices to show that ST'.(A) is W[3]-hard. We will
reduce the problem M’ (3N) to the problem ST<(A). Let

/\ [i, 5, 1]

||
||>3
||<§

be a 3-normalized formula, where z[i, j, K] are literals. Let u[l],...,u[m], v[1],...,v[2k+
1] be new atoms not occurring in ®. For each atom z € A#(®), we introduce new
atoms z[s], s =1,...,k.

Let Pg be a logic program with the following rules:

A(z,y,s) = z[s] « not(y[s]), =,y € AY®), x #vy, s=1,...,k,
B(z) = ¢ < z[1],2[2],...,z[k], =€ AHP),

C(Zaj) = ’U’[Z] « xl[iaj7 1],$,[i,j, 2]7 v ;ml[i;jamij]a 1=]-7 v, M, .7 =]-;' ce, My,

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

24 . Z. Lonc and M. Truszczynski

where

x [7/;.7:6] - { not(gj) if :L”[Z',]',g] = T,

and
D(q) =v[g] + u[1],u[2],...,u[m], ¢=1,...,2k+ 1.

Clearly, |A#(Ps)| = nk +n +m + 2k + 1, where n = |A#(®)|. We will show that
® has a model of cardinality at least n — k if and only if Py has a stable model of
cardinality at least |A#(Pgp)| — 2k =n(k +1) + m + 1.

Let M = At(®) \ {z1,...,zr} be a model of &, where z;,...,z; are some
atoms from A#(®) that are not necessarily distinct. We claim that M’ = A#(Ps) \
{z1,...,zp,z1[1],...,z[k]} is a stable model of Pg.

Let us notice that a rule A(x,y,s) is not blocked by M’ if and only if y = ;.
Hence, the program P " consists of the rules:

z[l] « , for z # 1,

z[2] « , for z # zy

zlk] « , for x # xy,
x + z[1],z[2],...,z[k], =€ AiD)

v[g] < u[1],ul2],...,u[m], ¢=1,...,2k+1,

and of some of the rules with heads u[i]. Let us suppose that every rule of Py with
head u[é] contains a negated atom = € M or a non-negated atom x ¢ M. Then,
for every j = 1,...,m; there exists £, 1 < £ < my; such that either z[i, j,{] = -z
and z € M, or z[i,j,f] = ¢ and * ¢ M. Thus, M is not a model of the for-
mula, \/;n:1 Ai23 a[i, §, €] and, consequently, M is not a model of ®, a contradiction.
Hence, for every i = 1,...,m, there is a rule with head u[i] containing neither a
negated atom x € M nor a non-negated atom x ¢ M. These rules also contribute
to the reduct P’

All atoms x[s] # z1[1], 2[2],...,zx[k] are facts in P2, Thus, they belong to
Im(PM"). Conversely, if z[s] € lm(P}") then w[s] # x1[1],22[2],...,zx[k]. More-
over, it is evident by rules B(z) that = € lm(PéW) if and only if z # x1, 2o, ..., xk.
Hence, by the observations in the previous paragraph, u[i] € lm(PéW), for each
i =1,...,m. Finally, v[q] € lm(PéW), g = 1,...2k + 1, because the rules D(q)
belong to the reduct PM . Hence, M’ = Im(PA") so M' is a stable model of Ps
and its cardinality is at least n(k 4+ 1) +m + 1.

Conversely, let M’ be a stable model of Py of size at least | At(Pg)|—2k. Clearly all
atoms v[g], ¢ = 1,...,2k+ 1, must be members of M' and, consequently, u[i] € M’',
fori=1,...,m. Hence, for each ¢ = 1,...,m, there is a rule in Pp

uli] < 2'[i, j,1],2'[¢,4,2],...,2'[i, j, mj]

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 25

such that z'[i, 7,0 € M" if 2'[i, j,{] = z, and z'[i,j,€] & M' if 2'[i, j,€] = —x. Thus,
M’ is a model of the formula \/;n:’1 /\:{n:i x[i, j, 4], for each i = 1,...,m. Therefore
M = M' N At(®) is a model of P.

It is a routine task to check that rules A(x,y,s) and B(x) imply that all stable
models of Pg are of the form

At(Pp) \ {z1, 2, . . ., xp, w1 [1], 22[2), . . ., zx[k]}

(where 1, x2,...,) are not necessarily distinct). Hence, |M| = |M' N A(®)| >
n — k. We have reduced the problem M’ (3N) to the problem ST (A). Thus, the
assertion follows by Theorem 2.3. - O

COROLLARY 5.8. The problem SP-(A) is W[3]-hard.

Proof: A positive cycle in a logic program P is a sequence of rules rg,r1,...,r, in
P such that for every i = 0,1,...,n—1, h(r;) € b7 (r;11) and h(r,) € bt (ro). It is
easy to see that the program P constructed in the proof of Theorem 5.7 does not
contain positive cycles. Therefore, by the Fages lemma [Fages 1994], stable and
supported models of P coincide. Thus, the proof of Theorem 5.7 applies in the case

of supported models too. O
By Theorem 5.5, Corollary 5.8 and Corollary 2.6 we get the following result.
COROLLARY 5.9. The problem SP'c(A) is W[3]-complete. |

THEOREM 5.10. The problem SPL_(N) is in W[2].

Proof: We will reduce the problem SPL(N) to M’ (2N) (which belongs to W[2]
by Theorem 2.1).

Let us consider a purely negative program P with A#P) = {z1,...,z,}. Its
completion consists of formulas

m; Mij

o= we\/ \-2iiq, i=1,...n
j=1t=1
where z[i, j, f] € At(P).
For each z; € At(P), we introduce new atoms =;[1],z;[2],...,z;[2*]. Next, for
each set U(i,j) = {x[,4,€]: ¢ =1,...,my;} we define a new atom u[¢, j]. Finally,
we introduce yet another set of new atoms: z[1], ..., z[2¥].

Let us consider the following formulas:

Alit) = zpext], i=1,....n, t=1,...2%

B(J;JILJ]’): wiu[i7]]’ er(i7])7i:]'?"'Jn?j:]'?"'JmZ’

m;
C('L): .’L'zi \/—l’u,['L,]], ’L:]_,,n,
i=1

mg Mij

D)= @i« \/ \-el,50, i=1,..n,

j=1¢=1

E(t)= z[t]e 2[t], t=1,...2"%

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

26 . Z. Lonc and M. Truszczynski

We define ®p to be the conjunction of the formulas listed above. Since each of
these formulas can be rewritten as a conjunction of disjunctions, it is clear that
without loss of generality we may assume that ®p is a 2-normalized formula. Let
us also note that the number of atoms of ®p is given by the formula |A{(®p)| =
n(2k + 1)+ 30 m; + 2k,

We claim that P has a supported model of size n — k if and only if ®p has a
model of size |At(®p)| — (k + 1)2¥ — k. To prove it, we proceed as follows.

Let A(P)\ M, where M = {z;,,...,z;, }, be asupported model of P (z;,,...,z;,
are some k distinct atoms of P). We denote by g the number of subsets of M
different from all sets U (i, j). We will show that A#(®p) \ M’', where

M' = MU{z[t]: z; € M, t =1,...,.2 U {uli,j]: U@,j) € MYU{z[1],...,z2[q]}

is a model of ®p. First, let us observe that |M'| = k+k2*+(28—q)+q = (k+1)2*+k.

Clearly, by the definition of M’, At{(®p) \ M'is a model of each formula A(i,).
Let us consider a formula B(z,1, j), for some 4,5 such that 1 <i <mand 1 <j <
m;, and for some z € U(i,j). If x € At(®p) \ M', then « ¢ M. It follows that
U(i,j) € M. Consequently, uli,j] € A{(®p) \ M' and, so, At(®p) \ M’ is a model
of B(x,1,j).

Next, let us consider a formula C(i), for some i, 1 < i < n. Further, let us
assume that z; € At(®p) \ M'. It follows that z; € Ay(P) \ M. Since At(P)\ M
is a supported model of P, At(P)\ M satisfies the formula ®;. Thus, there is j,
1 < j < my, such that for all £ = 1,...,my;, x[i,j,€] € M. Hence, U(i,j) C M
and, consequently, u[i, j] ¢ At(®p) \ M'. Thus, At(®Pp) \ M’ is a model of C(7).

Since A#(P)\ M satisfies each formula ®;, 1 < i < n, it is clear that A{(®p)\ M’
satisfies the formula D(i). Since all formulas E(t), 1 < t < 2¥, are tautologies,
At(®p)\ M' is a model of each of them, too. Thus, A#(®p) \ M’ is a model of P p.

Conversely, let At(®p) \ M’ be a model of ®p, for some set M’ C A (®p) such
that [M'| = (k+1)2F +k. Let M = At(P)NM'. If [M| > k then, since all formulas
A(i,t) hold in AH(®p) \ M', |M'| > |M|(2F +1) > (k+1)(2% +1) > (k+1)2* +k,
a contradiction. Next, let us consider the case |M| < k and let us assume that
uli,j] € M', for some i and j such that 1 < i < mnand 1 < j < m;. Since
At(®p) \ M'is a model of all formulas B(z,1,j), where x € U(i,), it follows that
for every w € U(i,j), © € M. Thus, U(i,j) C M and, consequently,

[{uli, 5] : uli,jl € M'} = {U(,j) : U(i,j) € M} < 2™,
Therefore,
|M'| < |M|2F +1) +2M 2k < (B +1)2F + k=1 < (k+ 1)2% + &,

a contradiction again. Thus, |M| = k.

We will show that A#(P)\ M is a supported model of P. To this end, we will prove
that A¢(P)\ M is a model of all formulas ®;, 1 < i < n. Since At(Pp)\ M' satisfies
all formulas D(i), 1 < i < n, and since all atoms appearing in these formulas belong
to At(P), it follows that A¢(P) \ M satisfies all formulas D(i), 1 <i < n.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 27

To show that At(P)\ M is a model of a formula ®;, 1 < i < n, it is then sufficient
to prove that A¢(P) \ M is a model of the implication

zi =\ N\ ~ali. 5,0 (3)

j=1¢=1
Let z; € At(P) \ M. Then, by the implication C(i), which holds in A{(®p) \ M’,
there exists j, 1 < j < m;, such that u[i, j] € M'. Using the implications B(z, i, j)
and reasoning as before, it is easy to show that U(i,j) C M. Thus, A{(P)\ M is a
model of /\:{n:i —z[i, §,¢] and, consequently, of the implication (3). a

A kernel of a digraph is an independent set S of vertices (that is, a set of vertices
with no edge with both the initial and terminal vertices in S) such that every vertex
not in S is a terminal vertex of some edge whose initial vertex is in S.

Let us recall that A} denotes the class of purely negative programs such that
each atom occurs exactly once in the head of a rule. We define N5 to be the class of
purely negative programs such that there is exactly one negated atom in the body
of each rule.

Let P € N;, i =1,2. We define G(P) to be a digraph with the vertex set At(P)
and the edge set consisting of pairs (y,x) such that there is a rule in P with the
head z and not(y) in the body.

LEMMA 5.11. (1) Let P € Ni. A set S C At(P) is a stable model of P if and
only if S is a kernel in G(P).
(2) Let P € Ny. A set S C At(P) is a stable model of P if and only if At(P)\ S
is a kernel in G(P).

Proof: (1) Let us assume that S C A#(P) is a stable model of a program P € N.
For every x € Ai(P), let us denote by r, the only rule of P with x as the head.

Let us consider a vertex € S. Then, r, is not blocked by S. Hence, for every
y in the body of r,, y ¢ S. In other words, for every y such that (y,x) is an edge
of G(P), y ¢ S. Thus, S is an independent set.

Next, let us consider a vertex x € S. Then, r, is blocked by S. Consequently,
there is y in the body of r, such that y € S. In other words, there is an edge (y, z)
in G(P) such that y € S.

It follows that S is a kernel of G(P). The proof of the converse implication is

similar.
(2) Let S C At(P) be a stable model of a program P € N,. Let us denote
S = A(P) \ S. We will show that S’ is a kernel of G(P). Let z € S'. Then
x ¢ S. Since S is a stable model of P and since P € N5, it follows that every rule
x < not(y) in P is blocked by S or, equivalently, that y € S. Consequently, for
every edge (y,z) in G(P), if z € S, then y ¢ S'. Thus, S’ is an independent set.

Next, let us consider ¢ S’. Then, z € S. Since S is a stable model of P, there
is a rule < not(y) in P such that y ¢ S. It follows that y € S'. Thus, for every
x ¢ S', there is an edge (y,z) in G(P) such that y € S’. Consequently, S’ is a
kernel of G(P). The proof of the converse statement is similar. |

THEOREM 5.12. The problems ST«(N), ST_(N), SPL(N) and SP_(N) are
W[2]-complete. - B

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

28 . Z. Lonc and M. Truszczynski

Proof: We will first reduce ST <(N;) to ST-(N). Let P € N;. We define @ to
be a program in Ny C A such that G(Q) = G(P). The program () is determined
uniquely by the digraph G(P). We will show that P has a stable model of size at
most k if and only if @) has a stable model of size at least |At| — k, where At is the
set of atoms of both @ and P. By Lemma 5.11 P has a stable model S of size at
most k if and only if S is a kernel of the digraph G(P) of cardinality at most k.
Lemma 5.11 implies now that G(Q) = G(P) has a kernel S of cardinality at most
k if and only if At\ S is a stable model of @ of cardinality at least |At| — k.

It follows that the problem ST <(N;) can be reduced to the problem ST (N).
By Theorem 4.5 it follows that the problem ST (N) is W[2]-hard. Since stable

and supported models of purely negative programs coincide, SP (N) is W[2]-hard.

Theorems 5.10 and Corollary 2.6 imply now that both SP.(N) and SP_(N\) are
W/[2]-complete. The WI[2]-completeness of the problems ST'<(N) and ST (N)
follows again from the fact that stable and supported models coincide for purely
negative programs. O

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation
under Grants No. 9619233, 9874764 and 0097278. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Aprt, K. 1990. Logic programming. In Handbook of theoretical computer science, J. van Leeuven,
Ed. Elsevier, Amsterdam, 493-574.

ApT, K. AND VAN EMDEN, M. 1982. Contributions to the theory of logic programming. Journal
of the ACM 29, 3, 841-862.

CLARK, K. 1978. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker, Eds.
Plenum Press, New York-London, 293-322.

DowLING, W. AND GALLIER, J. 1984. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming 1, 3, 267-284.

DownNEY, R. G. AND FELLOWS, M. R. 1997. Parametrized Complexity. Springer-Verlag.

FaGEs, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 51-60.

GELFOND, M. AND LirscHITZ, V. 1988. The stable semantics for logic programs. In Proceedings
of the 5th International Conference on Logic Programming, R. Kowalski and K. Bowen, Eds.
MIT Press, 1070-1080.

GoTTLOB, G., SCARCELLO, F., AND SIDERI, M. 1999. Fixed parameter complexity in Al and
nonmonotonic reasoning. In Logic Programming and Nonmonotonic Reasoning, Proceedings
of the 5th International Conference, LPNMR99, M. Gelfond, N. Leone, and G. Pfeifer, Eds.
Lecture Notes in Computer Science, vol. 1730. Springer-Verlag.

Lroyp, J. W. 1984. Foundations of logic programming. Symbolic Computation. Artificial Intel-
ligence. Springer-Verlag, Berlin-New York.

MAREK, W. AND TRUSzCzYNSKI, M. 1991. Autoepistemic logic. Journal of the ACM 38, 3,
588-619.

MAREK, W. AND TRUSzZCZYNSKI, M. 1993. Nonmonotonic logics; contexrt-dependent reasoning.
Springer-Verlag, Berlin.

TRUSZCZYNSKI, M. 2002. Computing large and small stable models. Theory and Practice of Logic
Programming 2.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

Fixed-parameter complexity of semantics for logic programs . 29

Received August 2000; revised December 2001; accepted December 2001

ACM Transactions on Computational Logic, Vol. V, No. N, December 2001.

