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is a model, supported model or stable model, respectively, of P . The check canbe implemented to run in linear time in the size of the program. Since there areO(nk) sets to be tested, the overall running time of this algorithm is O(mnk),where m is the size of the input program P and n is the number of atoms in P .The problem is that algorithms with running times given by O(mnk) are notpractical even for quite small values of k. The question then arises whether betteralgorithms can be found, for instance, algorithms whose running-time estimatewould be given by a polynomial of the order that does not depend on k. Suchalgorithms, if they existed, could be practical for a wide range of values of k andcould �nd applications in computing stable models of logic programs.This question is the subject of our work. We also consider similar questionsconcerning related problems of deciding the existence of models, supported mod-els and stable models of cardinality exactly k and at least k. We refer to allthese problems as small-bound problems since k, when �xed, can be regardedas \small". In addition, we study problems of existence of models, supportedmodels and stable models of cardinality at most jAt(P )j� k, exactly jAt(P )j� kand at least jAt(P )j � k. We refer to these problems as large-bound problems,since jAt(P )j � k, for a �xed k, can be informally thought of as \large".We address these questions using the framework of �xed-parameter complex-ity [DF97]. Most of our results are negative. They provide strong evidence thatfor many parameterized problems considered in the paper there are no algorithmswhose running time could be estimated by a polynomial of order independent ofk. Formally, a parameterized decision problem is a set L � �� � ��, where� is a �xed alphabet. By selecting a concrete value � 2 �� of the parameter,a parameterized decision problem L gives rise to an associated �xed-parameterproblem L� = fx : (x; �) 2 Lg.A parameterized problem L � �� � �� is �xed-parameter tractable if thereexist a constant t, an integer function f and an algorithm A such that A deter-mines whether (x; y) 2 L in time f(jyj)jxjt (jzj stands for the length of a stringz 2 ��). We denote the class of �xed-parameter tractable problems by FPT.Clearly, if a parameterized problem L is in FPT, then each of the associated�xed-parameter problems Ly is solvable in polynomial time by an algorithmwhose exponent does not depend on the value of the parameter y. Parameter-ized problems that are not �xed-parameter tractable are called �xed-parameterintractable.To study and compare the complexity of parameterized problems Downeyand Fellows proposed the following notion of �xed-parameter reducibility (or,simply, reducibility).De�nition 1. A parameterized problem L can be reduced to a parameterizedproblem L0 if there exist a constant p, an integer function q, and an algorithmA such that:1. A assigns to each instance (x; y) of L an instance (x0; y0) of L0,2. A runs in time O(q(jyj)jxjp),



3. x0 depends upon x and y, and y0 depends upon y only,4. (x; y) 2 L if and only if (x0; y0) 2 L0.We will use this notion of reducibility throughout the paper. If for two param-eterized problems L1 and L2, L1 can be reduced to L2 and conversely, we saythat L1 and L2 are �xed-parameter equivalent or, simply, equivalent.Downey and Fellows [DF97] de�ned a hierarchy of complexity classes calledthe W hierarchy: FPT �W[1] �W[2] �W[3] � : : : : (1)The classes W[t] can be described in terms of problems that are complete forthem (a problem D is complete for a complexity class E if D 2 E and everyproblem in this class can be reduced to D). Let us call a Boolean formula t-normalized if it is a conjunction-of-disjunctions-of-conjunctions ... of literals,with t being the number of conjunctions-of, disjunctions-of expressions in thisde�nition. For example, 2-normalized formulas are conjunctions of disjunctionsof literals. Thus, the class of 2-normalized formulas is precisely the class of CNFformulas. We de�ne the weighted t-normalized satis�ability problem as:WS(t): Given a t-normalized formula � and a non-negative integer k, decidewhether there is a model of � with exactly k atoms (or, alternatively, decidewhether there is a satisfying valuation for � which assigns the logical valuetrue to exactly k atoms).Downey and Fellows show that for every t � 2, the problem WS(t) is completefor the class W[t]. They also show that a restricted version of the problem WS(2):WS2(2): Given a 2-normalized formula � with each clause consisting of at mosttwo literals, and an integer k, decide whether there is a model of � withexactly k atomsis complete for the class W[1]. There is strong evidence suggesting that all theimplications in (1) are proper. Thus, proving that a parameterized problem iscomplete for a class W[t], t � 1, is a strong indication that the problem is not�xed-parameter tractable.As we stated earlier, in the paper we study the complexity of parameterizedproblems related to logic programming. All these problems ask whether an inputprogram P has a model, supported model or a stable model satisfying somecardinality constraints involving another input parameter, an integer k. Theycan be categorized into two general families: small-bound problems and large-bound problems. In the formal de�nitions given below, C denotes a class of logicprograms, D represents a class of models of interest and � stands for one of thethree arithmetic relations: \�", \=" and \�".D�(C): Given a logic program P from class C and an integer k, decide whetherP has a model M from class D such that jM j � k.D0�(C): Given a logic program P from class C and an integer k, decide whetherP has a model M from class D such that (jAt(P )j � k) � jM j.



In the paper, we consider three classes of programs: the class of Horn pro-grams H, the class of purely negative programs N , and the class of all programsA. We also consider three classes of models: the class of all modelsM, the classof supported models SP and the class of stable models ST .Thus, for example, the problem SP�(N ) asks whether a purely negative logicprogram P has a supported model M with no more than k atoms (jM j � k). Theproblem ST 0�(A) asks whether a logic program P (with no syntactic restrictions)has a stable model M in which at most k atoms are false (jAt(P )j � k � jM j).Similarly, the problemM0�(H) asks whether a Horn program P has a model Min which at least k atoms are false (jAt(P )j � k � jM j).In the three examples given above and, in general, for all problems D�(C)and D0�(C), the input instance consists of a logic program P from the class Cand of an integer k. We will regard these problems as parameterized with k.Fixing k (that is, k is no longer a part of input but an element of the problemdescription) leads to the �xed-parameter versions of these problems. We willdenote them D�(C; k) and D0�(C; k), respectively.In the paper, for all but three problems D�(C) and D0�(C), we establish their�xed-parameter complexities. Our results are summarized in Tables 1 - 3.H N AM P P PM0 P W[1]-c NP-cSP P NP-c NP-cSP0 P NP-c NP-cST P NP-c NP-cST 0 P NP-c NP-cTable1. The complexities of the problems D�(C) and D0�(C).In Table 1, we list the complexities of all problems in which � = \�". Small-bound problems of this type ask about the existence of models of a program Pthat contain at least k atoms. Large-bound problems in this group are concernedwith the existence of models that contain at most jAt(P )j�k atoms (the numberof false atoms in these models is at least k). From the point of view of the �xed-parameter complexity, these problems are not very interesting. Several of themremain NP-complete even when k is �xed. In other words, �xing k does notsimplify them enough to make them tractable. For this reason, all the entries inTable 1, listing the complexity as NP-complete (denoted by NP-c in the table),refer to �xed-parameter versions D�(C; k) and D0�(C; k) of problems D�(C) andD0�(C). The problem M0�(A; k) is NP-complete for every �xed k � 1. All other�xed-parameter problems in Table 1 that are marked NP-complete are NP-complete for every value k � 0.On the other hand, many problems D�(C) and D0�(C) are \easy". They are�xed-parameter tractable in a strong sense. They can be solved in polynomialtime even without �xing k. This is indicated by marking the corresponding entriesin Table 1 with P (for the class P) rather than with FPT. There is only oneexception, the problem M0�(N ), which is W[1]-complete.



Small-bound problems for the cases when � = \=" or \�" can be viewed asproblems of deciding the existence of \small" models (that is, models contain-ing exactly k or at most k atoms). The �xed-parameter complexities of theseproblems are summarized in Table 2.H� H= N� N= A� A=M P W[1]-c W[2]-c W[2]-c W[2]-c W[2]-cSP P W[1]-h, W[2]-c W[2]-c W[2]-c W[2]-cin W[2]ST P P W[2]-c W[2]-c W[2]-c W[2]-cTable 2. The complexities of the problem of computing small models (small-boundproblems, the cases of � = \=" and \�").The problems involving the class of all purely negative programs and theclass of all programs are W[2]-complete. This is a strong indication that they are�xed-parameter intractable. All problems of the formD�(H) are �xed-parametertractable. In fact, they are solvable in polynomial time even without �xing theparameter k. We indicate this by marking the corresponding entries with P.Similarly, the problem ST =(H) of deciding whether a Horn logic program P hasa stable model of size exactly k is in P. However, perhaps somewhat surprisingly,the remaining two problems involving Horn logic programs and � = \=" areharder. We proved that the problem M=(H) is W[1]-complete and that theproblem SP=(H) is W[1]-hard. Thus, they most likely are not �xed-parametertractable. We also showed that the problem SP=(H) is in the class W[2]. Theexact �xed-parameter complexity of SP=(H) remains unresolved.Large-bound problems for the cases when � = \=" or \�" can be viewedas problems of deciding the existence of \large" models, that is, models witha small number of false atoms | equal to k or less than or equal to k. The�xed-parameter complexities of these problems are summarized in Table 3.H� H= N� N= A� A=M0 P W[2]-c P W[1]-c P W[2]-cSP0 P W[3]-c, W[2]-c W[2]-c W[3]-c W[3]-cST 0 P P W[2]-c W[2]-c W[3]-h W[3]-hTable 3. The complexities of the problems of computing large models (large-boundproblems, the cases of � = \=" and \�").The problems speci�ed by � = \�" and concerning the existence of modelsare in P. Similarly, the problems speci�ed by � = \�" and involving Hornprograms are solvable in polynomial time. Lastly, the problem ST 0=(H) is inP, as well. These problems are in P even without �xing k and eliminating itfrom input. All other problems in this group have higher complexity and, inall likelihood, are �xed-parameter intractable. One of the problems,M0=(N ), isW[1]-complete. Most of the remaining problems are W[2]-complete. Surprisingly,some problems are even harder. Three problems concerning supported models areW[3]-complete. For two problems involving stable models, ST 0=(A) and ST 0�(A),



we could only prove that they are W[3]-hard. For these two problems we did notsucceed in establishing any upper bound on their �xed-parameter complexities.The study of �xed-parameter tractability of problems occurring in the areaof nonmonotonic reasoning is a relatively new research topic. The only two otherpapers we are aware of are [Tru01] and [GSS99]. The �rst of these two papersprovided a direct motivation for our work here (we discussed it earlier). In thesecond one, the authors focused on parameters describing structural propertiesof programs. They showed that under some choices of the parameters decisionproblems for nonmonotonic reasoning become �xed-parameter tractable.Our results concerning computing stable and supported models for logic pro-grams are mostly negative. Parameterizing basic decision problems by constrain-ing the size of models of interest does not lead (in most cases) to �xed-parametertractability.There are, however, several interesting aspects to our work. First, we identi-�ed some problems that are W[3]-complete or W[3]-hard. Relatively few prob-lems from these classes were known up to now [DF97]. Second, in the con-text of the polynomial hierarchy, there is no distinction between the problemof existence of models of speci�ed sizes of clausal propositional theories andsimilar problems concerning models, supported models and stable models oflogic programs. All these problems are NP-complete. However, when we lookat the complexity of these problems in a more detailed way, from the perspec-tive of �xed-parameter complexity, the equivalence is lost. Some problems areW[3]-hard, while problems concerning existence of models of 2-normalized for-mulas are W[2]-complete or easier. Third, our results show that in the context of�xed-parameter tractability, several problems involving models and supportedmodels are hard even for the class of Horn programs. Finally, our work leavesthree problems unresolved. While we obtained some bounds for the problemsSP=(H), ST 0�(A) and ST 0=(A), we did not succeed in establishing their precise�xed-parameter complexities.The rest of our paper is organized as follows. In the next section, we reviewrelevant concepts in logic programming. After that, we present several useful�xed-parameter complexity results for problems of the existence of models forpropositional theories of certain special types. In the last section we give proofsof some of our complexity results.2 PreliminariesIn the paper, we consider only the propositional case. A logic program clause(or rule) is any expression r of the formr = p q1; : : : ; qm;not(s1); : : : ;not(sn); (2)where p, qi and si are propositional atoms. We call the atom p the head of r andwe denote it by h(r). Further, we call the set of atoms fq1; : : : ; qm; s1; : : : ; sngthe body of r and we denote it by b(r). We distinguish the positive body of r,



fq1; : : : ; qmg (b+(r), in symbols), and the negative body of r, fs1; : : : ; sng (b�(r),in symbols).A logic program is a collection of clauses. For a logic program P , by At(P )we denote the set of atoms that appear in P . If every clause in a logic programP has an empty negative body, we call P a Horn program. If every clause in Phas an empty positive body, we call P a purely negative program.A clause r, given by (2), has a propositional interpretation as an implicationpr(r) = q1 ^ : : : ^ qm ^ :s1 ^ : : : ^ :sn ) p:Given a logic program P , by a propositional interpretation of P we mean thepropositional formula pr(P ) =^fpr(r): r 2 Pg:We say that a set of atoms M is a model of a clause (2) if M is a (propositional)model of the clause pr(r). As usual, atoms in M are interpreted as true, allother atoms are interpreted as false. A set of atoms M � At(P ) is a model of aprogram P if it is a model of the formula pr(P ). We emphasize the requirementM � At(P ). In this paper, given a program P , we are interested only in thetruth values of atoms that actually occur in P .It is well known that every Horn program P has a least model (with respectto set inclusion). We will denote this model by lm(P ).Let P be a logic program. Following [Cla78], for every atom p 2 At(P ) wede�ne a propositional formula comp(p) bycomp(p) = p,_fc(r): r 2 P; h(r) = pg;where c(r) =^fq: q 2 b+(r)g ^^f:s: s 2 b�(r)g:If for an atom p 2 At(P ) there are no rules with p in the head, we get an emptydisjunction in the de�nition of comp(p), which we interpret as a contradiction.We de�ne the program completion [Cla78] of P as the propositional theorycomp(P ) = fcomp(p): p 2 At(P )g:A set of atoms M � At(P ) is a supported model of P if it is a model of thecompletion of P . It is easy to see that if p does not appear as the head of a rulein P , p is false in every supported model of P . It is also easy to see that eachsupported model of a program P is a model of P (the converse is not true ingeneral).Given a logic program P and a set of atoms M , we de�ne the reduct of Pwith respect to M (PM , in symbols) to be the logic program obtained from Pby1. removing from P each clause r such that M \b�(r) 6= ; (we call such clausesblocked by M),



2. removing all negated atoms from the bodies of all the rules that remain (thatis, those rules that are not blocked by M).The reduct PM is a Horn program. Thus, it has a least model. We say that Mis a stable model of P if M = lm(PM ). Both the notion of the reduct and thatof a stable model were introduced in [GL88].It is known that every stable model of a program P is a supported modelof P . The converse does not hold in general. However, if a program P is purelynegative, then stable and supported models of P coincide [Fag94].In our arguments we use �xed-parameter complexity results on problemsto decide the existence of models of prescribed sizes for propositional formulasfrom some special classes. To describe these problems we introduce additionalterminology. First, given a propositional theory �, by At(�) we denote the setof atoms occurring in �. As in the case of logic programming, we consider asmodels of a propositional theory � only those sets of atoms that are subsets ofAt(�). Next, we de�ne the following classes of formulas:tN: the class of t-normalized formulas (if t = 2, these are simply CNF formulas)2N3: the class of all 2-normalized formulas whose every clause is a disjunctionof at most three literals (clearly, 2N3 is a subclass of the class 2N)tNM: the class of monotone t-normalized formulas, that is, t-normalized formu-las in which there are no occurrences of the negation operatortNA: the class of antimonotone t-normalized formulas, that is, t-normalized for-mulas in which every atom is directly preceded by the negation operator.Finally, we extend the notationM�(C) andM0�(C), to the case when C standsfor a class of propositional formulas. In this terminology,M0=(3NM) denotes theproblem to decide whether a monotone 3-normalized formula � has a model inwhich exactly k atoms are false. Similarly,M=(tN) is simply another notation forthe problem WS[t] that we discussed above. The following theorem establishesseveral complexity results that we will use later in the paper.Theorem 1. (i) The problemsM=(2N) andM=(2NM) are W[2]-complete.(ii) The problems M=(2N3) andM=(2NA) are W[1]-complete.(iii) The problem M0�(3N) is W [3]-complete.Proof: The statements (i) and (ii) are proved in [DF97]. To prove the statement(iii), we use the fact that the problem M�(3N) is W [3]-complete [DF97]. Wereduce M�(3N) to M0�(3N) and conversely. Let us consider a 3-normalizedformula � = Vmi=1Wmij=1Vmij`=1 x[i; j; `], where x[i; j; `] are literals. We observethat � has a model of cardinality at most k if and only if a related formula�� = Vmi=1Wmij=1Vmij`=1 �x[i; j; `], obtained from � by replacing every negative literal:x by a new atom �x and every positive literal x by a negated atom :�x, has amodel of cardinality at least jAt( ��)j � k. This construction de�nes a reductionof M�(3N) to M0�(3N). It is easy to see that this reduction satis�es all therequirements of the de�nition of �xed-parameter reducibility.A reduction of M0�(3N) to M�(3N) can be constructed in a similar way.Since the problem M�(3N) is W[3]-complete, so is the problem M0�(3N). 2



In the proof of part (iii) of Theorem 1, we observed that the reduction wedescribed there satis�es all the requirements speci�ed in De�nition 1 of �xed-parameter reducibility. Throughout the paper we prove our complexity resultsby constructing reductions from one problem to another. In most cases, we onlyverify the condition (4) of the de�nition which, usually, is the only non-trivialpart of the proof. Checking that the remaining conditions hold is straightforwardand we leave these details out.3 Some proofsIn this section we present some typical proofs of �xed-parameter complexityresults for problems involving existence of models, supported models and stablemodels of logic programs. Our goal is to introduce key proof techniques that weused when proving the results discussed in the introduction.Theorem 2. The problems M0=(H) andM0=(A) are W[2]-complete.Proof: Both problems are clearly in W[2] (models of a logic program P are modelsof the corresponding 2-normalized formula pr(P )). Since H � A, to completethe proof it is enough to show that the problem M0=(H) is W[2]-hard. To thisend, we will reduce the problem M=(2NM) to M0=(H).Let � be a monotone 2-normalized formula and let k � 0. Let fx1; : : : ; xngbe the set of atoms of �. We de�ne a Horn program P� corresponding to � asfollows. We choose an atom a not occurring in � and include in P� all rules ofthe form xi  a, i = 1; 2; : : : ; n. Next, for each clause C = xi1 _ : : : _ xip of �we include in P� the rule rC = a xi1 ; : : : ; xip :We will show that � has a model of size k if and only if P� has a model of sizejAt(P�)j � (k + 1) = (n+ 1)� (k + 1) = n� k.Let M be a model of � of size k. We de�ne M 0 = fx1; : : : ; xng nM . The setM 0 has n � k elements. Let us consider any clause rC 2 P� of the form givenabove. Since M satis�es C, there is j, 1 � j � p, such that xij =2M 0. Thus, M 0is a model of rC . Since a =2 M 0, M 0 satis�es all clauses xi  a. Hence, M 0 is amodel of P�.Conversely, let M 0 be a model of P� of size exactly n � k. If a 2 M 0 thenxi 2 M 0, for every i, 1 � i � n. Thus, jM 0j = n + 1 > n � k, a contradiction.Consequently, we obtain that a =2M 0. Let M = fx1; : : : ; xngnM 0. Since a =2M 0,jM j = k. Moreover, M satis�es all clauses in �. Indeed, let us assume that thereis a clause C such that no atom of C is in M . Then, all atoms of C are in M 0.Since M 0 satis�es rC , a 2 M 0, a contradiction. Now, the assertion follows byTheorem 1. 2Theorem 3. The problem M=(H) is W[1]-complete.



Proof: We will �rst prove the hardness part. To this end, we will reduce the prob-lemM=(2NA) to the problemM=(H). Let � be an antimonotone 2-normalizedformula and let k be a non-negative integer. Let a0; : : : ; ak be k + 1 di�erentatoms not occurring in �. For each clause C = :x1 _ : : : _ :xp of � we de�ne alogic program rule rC by rC = a0  x1; : : : ; xp:We then de�ne P� byP� = frC :C 2 �g [ fai  aj : i; j = 0; 1; : : : ; k; i 6= jg:Let us assume that M is a model of size k of the program P�. If for some i,0 � i � k, ai 2 M then fa0; : : : ; akg � M and, consequently, jM j > k, acontradiction. Thus, M does not contain any of the atoms ai. Since M satis�esall rules rC and since it consists of atoms of � only, M is a model of � (indeed,the body of each rule rC must be false so, consequently, each clause C must betrue). Similarly, one can show that if M is a model of � then it is a model ofP�. Thus, W[1]-hardness follows by Theorem 1.To prove that the problem M=(H) is in the class W[1], we will reduce it tothe problemM=(2N3). To this end, for every Horn program P we will describea 2-normalized formula �P , with each clause consisting of no more than threeliterals, and such that P has a model of size k if and only if �P has a model ofsize (k + 1)2k + k. Moreover, we will show that �P can be constructed in timebounded by a polynomial in the size of P (with the degree not depending on k).First, let us observe that without loss of generality we may restrict our at-tention to Horn programs whose rules do not contain multiple occurrences ofthe same atom in the body. Such occurrences can be eliminated in time linearin the size of the program. Next, let us note that under this restriction, a Hornprogram P has a model of size k if and only if the program P 0, obtained fromP by removing all clauses with bodies consisting of more than k atoms, has amodel of size k. The program P 0 can be constructed in time linear in the size ofP and k.Thus, we will describe the construction of the formula �P only for Hornprograms P in which the body of every rule consists of no more than k atoms.Let P be such a program. We de�neB = fB: B � b(r); for some r 2 Pg:For every set B 2 B we introduce a new variable u[B]. Further, for every atomx in P we introduce 2k new atoms x[i], i = 1; : : : ; 2k.We will now de�ne several families of formulas. First, for every x 2 At(P )and i = 1; : : : ; 2k we de�neD(x; i) = x, x[i] (or (:x _ x[i]) ^ (x _ :x[i]));and, for each set B 2 B and for each x 2 B, we de�neE(B; x) = x ^ u[B n fxg]) u[B] (or :x _ :u[B n fxg] _ u[B]):



Next, for each set B 2 B and for each x 2 B we de�neF (B; x) = u[B]) x (or :u[B] _ x):Finally, for each rule r in P we introduce a formulaG(r) = u[b(r)]) h(r) (or :u[b(r)] _ h(r)):We de�ne �P to be the conjunction of all these formulas (more precisely, oftheir 2-normalized representations given in the parentheses) and of the formulau[;]. Clearly, �P is a formula from the class 2N3. Further, since the body of eachrule in P has at most k elements, the set B has no more than jP j2k elements, eachof them of size at most k (jP j denotes the cardinality of P , that is, the numberof rules in P ). Thus, �P can be constructed in time bounded by a polynomialin the size of P , whose degree does not depend on k.Let us consider a model M of P such that jM j = k. We de�neM 0 = M [ fx[i]:x 2M; i = 1; : : : ; 2kg [ fu[B]:B �Mg:The set M 0 satis�es all formulas D(x; i), x 2 At(P ), i = 1; : : : ; 2k. In addition,the formula u[;] is also satis�ed by M 0 (; �M and so, u[;] 2M 0).Let us consider a formula E(B; x), for some B 2 B and x 2 B. Let us assumethat x ^ u[B n fxg] is true in M 0. Then, x 2 M 0 and, since x 2 At(P ), x 2 M .Moreover, since u[B n fxg] 2 M 0, B n fxg � M . It follows that B � M and,consequently, that u[B] 2M 0. Thus, M 0 satis�es all \E-formulas" in �P .Next, let us consider a formula F (B; x), where B 2 B and x 2 B, and letus assume that M 0 satis�es u[B]. It follows that B �M . Consequently, x 2M .Since M �M 0, M 0 satis�es x and so, M 0 satis�es F (B; x).Lastly, let us look at a formula G(r), where r 2 P . Let us assume thatu[b(r)] 2M 0. Then, b(r) �M . Since r is a Horn clause and since M is a modelof P , it follows that h(r) 2 M . Consequently, h(r) 2 M 0. Thus, M 0 is a modelof G(r).We proved that M 0 is a model of �P . Moreover, it is easy to see that jM 0j =k + k2k + 2k = (k + 1)2k + k.Conversely, let us assume that M 0 is a model of �P and that jM 0j = (k +1)2k + k. We set M = M 0 \At(P ). First, we will show that M is a model of P .Let us consider an arbitrary clause r 2 P , sayr = h b1; : : : ; bp;where h and bi, 1 � i � p, are atoms. Let us assume that fb1; : : : ; bpg �M . Weneed to show that h 2M .Since fb1; : : : ; bpg = b(r), the set fb1; : : : ; bpg and all its subsets belong to B.Thus, �P contains formulasE(fb1; : : : ; bi�1g; bi) = bi ^ u[fb1; : : : ; bi�1g]) u[fb1; : : : ; bi�1; big];where i = 1; : : : ; p. All these formulas are satis�ed byM 0. We also have u[;] 2 �P .Consequently, u[;] is satis�ed by M 0, as well. Since all atoms bi, 1 � i � p, are



also satis�ed by M 0 (since M � M 0), it follows that u[fb1; : : : ; bpg] is satis�edby M 0.The formula G(r) = u[fb1; : : : ; bpg] ) h belongs to �P . Thus, it is satis�edby M 0. It follows that h 2M 0. Since h 2 At(P ), h 2M . Thus, M is a model ofr and, consequently, of the program P .To complete the proof we have to show that jM j = k. Since M 0 is a model of�P , for every x 2M , M 0 contains all atoms x[i], 1 � i � 2k. Hence, if jM j > kthen jM 0j � jM j+ jM j � 2k � (k + 1)(1 + 2k) > (k + 1)2k + k, a contradiction.So, we will assume that jM j < k. Let us consider an atom u[B], where B 2 B,such that u[B] 2M 0. For every x 2 B, �P contains the rule F (B; x). The set M 0is a model of F (B; x). Thus, x 2M 0 and, since x 2 At(P ), we have that x 2M .It follows that B �M . It is now easy to see that the number of atoms of the formu[B] that are true in M 0 is smaller than 2k. Thus, jM 0j < jM j+ jM j� 2k + 2k �(k�1)(1+2k)+2k < (k+1)2k+k, again a contradiction. Consequently, jM j = k.It follows that the problemM=(H) can be reduced to the problemM=(2N3).Thus, by Theorem 1, the problem M=(H) is in the class W[1]. This completesour argument. 2Theorem 4. The problem SP=(A) is in W [2].Proof: We will show a reduction of SP=(A) to M=(2N), which is in W [2] byTheorem 1. Let P be a logic program with atoms x1; : : : ; xn. We can identifysupported models of P with models of its completion comp(P ). The completionis of the form comp(P ) = �1 ^ : : : ^ �n, where�i = xi , mi_j=1miĵ`=1x[i; j; `];i = 1; : : : ; n, and x[i; j; `] are literals. It can be constructed in linear time in thesize of the program P .We will use comp(P ) to de�ne a formula �P . The atoms of �P are x1; : : : ; xnand u[i; j], i = 1; : : : ; n, j = 1; : : : ;mi. For i = 1; : : : ; n, letGi = xi ) mi_j=1 u[i; j]; (or :xi _ mi_j=1 u[i; j]);G0i = mi_j=1 u[i; j]) xi; (or mîj=1(xi _ :u[i; j]));Hi = mi�1ĵ=1 mîj0=j+1(:u[i; j] _ :u[i; j0]); for every i such that mi � 2;Ii = mîj=1(u[i; j]) miĵ`=1x[i; j; `]) (or mîj=1miĵ`=1(:u[i; j] _ x[i; j; `]));



Ji = mi_j=1miĵ`=1x[i; j; `]) xi; (or mîj=1(xi _ mij_̀=1:x[i; j; `])):The formula �P is a conjunction of the formulas written above (of the for-mulas given in the parentheses, to be precise). Clearly, �P is a 2-normalizedformula. We will show that comp(P ) has a model of size k (or equivalently, thatP has a supported model of size k) if and only if �P has a model of size 2k.Let M = fxp1 ; : : : ; xpkg be a model of comp(P ). Then, for each i = p1; : : : ; pk,there is j, 1 � j � mi, such that M is a model of Vmij`=1 x[i; j; `] (this is becauseM is a model of every formula �i). We denote one such j (an arbitrary one) byji. We claim that M 0 = M [ fu[i; ji] : i = p1; : : : ; pkgis a model of �P . Clearly, Gi is true in M 0 for every i, 1 � i � n. If xi 62M thenu[i; j] 62 M 0 for all j = 1; : : : ;mi. Thus, G0i is satis�ed by M 0. Since for each i,1 � i � n, there is at most one j such that u[i; j] 2 M 0, it follows that everyformula Hi is true in M 0. By the de�nition of ji, if u[i; j] 2M 0 then j = ji andM 0 is a model of Vmij`=1 x[i; j; `]. Hence, Ii is satis�ed by M 0. Finally, all formulasJi, 1 � i � n, are clearly true in M 0. Thus, M 0 is a model of �P of size 2k.Conversely, let M 0 be a model of �P such that jM 0j = 2k. Let us assume thatM 0 contains exactly s atoms u[i; j]. The clauses Hi ensure that for each i, M 0contains at most one atom u[i; j]. Therefore, the set M 0\fu[i; j]: i = 1; : : : ; n j =1; : : : ;mig is of the form fu[p1; jp1 ]; : : : ; u[ps; jps ]g where p1 < : : : < ps.Since the conjunction of Gi and G0i is equivalent to xi , Wmij=1 u[i; j], itfollows that exactly s atoms xi belong to M 0. Thus, jM 0j = 2s = 2k and s = k.It is now easy to see that M 0 is of the form fxp1 ; : : : ; xpk ; u[p1; jp1 ]; : : : ; u[pk; jpk ]g.We will now prove that for every i, 1 � i � n, the implicationxi ) mi_j=1miĵ`=1x[i; j; `]is true in M 0. To this end, let us assume that xi is true in M 0. Then, there isj, 1 � j � mi, such that u[i; j] 2 M 0 (in fact, i = pt and j = jpt , for some t,1 � t � k). Since the formula Ii is true in M 0, the formula Vmij`=1 x[i; j; `] is truein M 0. Thus, the formula Wmij=1Vmij`=1 x[i; j; `] is true in M 0, too.Since for every i, 1 � i � n, the formula Ji is true in M 0, it follows thatall formulas �i are true in M 0. Since the only atoms of M 0 that appear in theformulas �i are the atoms xp1 : : : ; xpk , it follows that M = fxp1 : : : ; xpkg is amodel of comp(P ) = �1 ^ : : : ^ �n.Thus, the problem SP=(A) can be reduced to the problem M=(2N), whichcompletes the proof. 2For the problem SP=(A) we also established the hardness result | we provedthat it is W[2]-hard (we omit the proof due to space restrictions). Thus, we foundthe exact location of this problem in the W-hierarchy. For the problem ST 0�(A),that we are about to consider now, we only succeeded in establishing the lower



bound on its complexity. We proved it to be W[3]-hard. We did not succeed inobtaining any non-trivial upper estimate on its complexity.Theorem 5. The problem ST 0�(A) is W[3]-hard.Proof: We will reduce the problem M0�(3N) to the problem ST 0�(A). Let� = m̂i=1 mi_j=1miĵ`=1x[i; j; `]be a 3-normalized formula, where x[i; j; `] are literals. Let u[1]; : : : ; u[m]; v[1]; : : : ;v[2k+1] be new atoms not occurring in �. For each atom x 2 At(�), we introducenew atoms x[s], s = 1; : : : ; k.Let P� be a logic program with the following rules:A(x; y; s) = x[s] not(y[s]); x; y 2 At(�); x 6= y; s = 1; : : : ; k;B(x) = x x[1]; x[2]; : : : ; x[k]; x 2 At(�);C(i; j) = u[i] x0[i; j; 1]; x0[i; j; 2]; : : : ; x0[i; j;mij ]; i = 1; : : : ;m; j = 1; : : : ;mi;where x0[i; j; `] = �x if x[i; j; `] = xnot(x) if x[i; j; `] = :x;D(q) = v[q] u[1]; u[2]; : : : ; u[m]; q = 1; : : : ; 2k + 1:Clearly, jAt(P�)j = nk + n + m + 2k + 1, where n = jAt(�)j. We will showthat � has a model of cardinality at least n � k if and only if P� has a stablemodel of cardinality at least jAt(P�)j � 2k = n(k + 1) +m+ 1.Let M = At(�) n fx1; : : : ; xkg be a model of �, where x1; : : : ; xk are someatoms from At(�) that are not necessarily distinct. We claim that M 0 = At(P�)nfx1; : : : ; xk; x1[1]; : : : ; xk[k]g is a stable model of P�.Let us notice that a rule A(x; y; s) is not blocked by M 0 if and only if y = xs.Hence, the program PM 0� consists of the rules:x[1] ; for x 6= x1;x[2] ; for x 6= x2: : :x[k] ; for x 6= xkx x[1]; x[2]; : : : ; x[k]; x 2 At(�)v[q] u[1]; u[2]; : : : ; u[m]; q = 1; : : : ; 2k + 1;and of some of the rules with heads u[i]. Let us suppose that every rule of P�with head u[i] contains either a negated atom x 2 M or a non-negated atomx 62 M . Then, for every j = 1; : : : ;mi there exists `, 1 � ` � mij such thateither x[i; j; `] = :x and x 2 M , or x[i; j; `] = x and x 62 M . Thus, M is not



a model of the formula Wmij=1Vmij`=1 x[i; j; `] and, consequently, M is not a modelof �, a contradiction. Hence, for every i = 1; : : : ;m, there is a rule with headu[i] containing neither a negated atom x 2 M nor a non-negated atom x 62 M .These rules also contribute to the reduct PM 0� .All atoms x[s] 6= x1[1]; x2[2]; : : : ; xk[k] are facts in PM 0� . Thus, they belongto lm(PM 0� ). Conversely, if x[s] 2 lm(PM 0� ) then x[s] 6= x1[1]; x2[2]; : : : ; xk[k].Moreover, it is evident by rules B(x) that x 2 lm(PM 0� ) if and only if x 6=x1; x2; : : : ; xk. Hence, by the observations in the previous paragraph, u[i] 2lm(PM 0� ), for each i = 1; : : : ;m. Finally, v[q] 2 lm(PM 0� ), q = 1; : : : 2k + 1,because the rules D(q) belong to the reduct PM 0� . Hence, M 0 = lm(PM 0� ) so M 0is a stable model of P� and its cardinality is at least n(k + 1) +m+ 1.Conversely, let M 0 be a stable model of P� of size at least jAt(P�)j � 2k.Clearly all atoms v[q], q = 1; : : : ; 2k + 1, must be members of M 0 and, conse-quently, u[i] 2M 0, for i = 1; : : : ;m. Hence, for each i = 1; : : : ;m, there is a rulein P� u[i] x0[i; j; 1]; x0[i; j; 2]; : : : ; x0[i; j;mij ]such that x0[i; j; `] 2 M 0 if x0[i; j; `] = x, and x0[i; j; `] 62 M 0 if x0[i; j; `] = :x.Thus, M 0 is a model of the formula Wmij=1Vmij`=1 x[i; j; `], for each i = 1; : : : ;m.Therefore M = M 0 \ At(�) is a model of �.It is a routine task to check that rules A(x; y; s) and B(x) imply that allstable models of P� are of the formAt(P�) n fx1; x2; : : : ; xk; x1[1]; x2[2]; : : : ; xk[k]g(x1; x2; : : : ; xk are not necessarily distinct). Hence, jM j = jM 0 \At(�)j � n� k.We have reduced the problem M0�(3N) to the problem ST 0�(A). Thus, theassertion follows by Theorem 1. 2References[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logicand data bases, pages 293{322. Plenum Press, New York-London, 1978.[DF97] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,1997.[Fag94] F. Fages. Consistency of Clark's completion and existence of stable models.Journal of Methods of Logic in Computer Science, 1:51{60, 1994.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InR. Kowalski and K. Bowen, editors, Proceedings of the 5th International Con-ference on Logic Programming, pages 1070{1080. MIT Press, 1988.[GSS99] G. Gottlob, F. Scarcello, and M. Sideri. Fixed parameter complexity in AIand nonmonotonic reasoning. In M. Gelfond, N. Leone, and G. Pfeifer, ed-itors, Logic Programming and Nonmonotonic Reasoning, Proceedings of the5th International Conference, LPNMR99, volume 1730 of Lecture Notes inComputer Science. Springer-Verlag, 1999.[Tru01] M. Truszczy�nski. Computing large and small stable models. Theory andPractice of Logic Programming, 2001. To appear.


