Extremal problems in logic program-
ming and stable model computation

Pawel Cholewinski and Mirostaw Truszczynski
Computer Science Department

University of Kentucky

Lexington, KY 40506-0046
{pawel|mirek } @cs.engr.uky.edu

Abstract

We study the following problem: given a class of (disjunctive) logic programs
C, determine the maximum number of stable models (answer sets) of a pro-
gram from C. We establish the maximum for the class of all logic programs
with at most n clauses, and for the class of all logic programs of size at most
n. We also characterize the programs for which the maxima are attained.
We obtain similar results for the class of all disjunctive logic programs with
at most n clauses, each of length at most m, and for the class of all disjunc-
tive logic programs of size at most n. Our results on logic programs have
direct implication for the design of algorithms to compute stable models.
Several such algorithms, similar in spirit to the Davis-Putnam procedure,
are described in the paper.

1 Introduction

In this paper we study extremal problems appearing in the context of finite
propositional logic programs. Specifically, we consider the following problem:
given a class of logic programs C, determine the maximum number of stable
models a program in C may have. Extremal problems have been studied in
other disciplines, especially in combinatorics and graph theory [1]. However,
no such results for logic programming have been known so far.

We will consider finite propositional disjunctive logic programs built of
clauses of the form

arV...Vag < by,...,bp,not(c1),...,not(c,),

where a;, b; and ¢; are atoms. In an effort to establish a semantics for dis-
junctive logic programming, Gelfond and Lifschitz [5] introduced the notion
of an answer set of a disjunctive program. It is well-known that for normal
logic programs (each clause has exactly one atom in the head), answer sets
coincide with stable models [4, 5]. We will denote the set of answer sets of
a disjunctive program P (stable models, if P is normal) by ST(P) and we
will set
s(P) = |ST(P)|.

Given a class C of disjunctive programs, our goal will be to determine
the value of
max{|ST(P)|: P € C}.

We will also study the structure of extremal programs in C, that is, those
programs in C for which the maximum is attained.
We will focus our considerations on the following classes of programs:
1. DPyp m — the class of disjunctive programs with at most n clauses
and with the length of each clause bounded by m,
2. LP, — the class of normal logic programs with at most n clauses.
We will establish the values

s(n) = max{|ST(P)|: P € LP,}

and
d(n,m) = max{|ST(P)|: P € DPpm}

We will show that s(n) = ©(3"3) (an exact formula will be given) and
d(n,m) = m", and we will characterize the corresponding extremal pro-
grams. We will also study related classes of programs: the class of logic
programs of size (understood as the total number of atom occurrences) at
most n, the class of logic programs with n clauses and with at most one
literal in the body of each clause and, finally, the class of disjunctive logic
programs of size at most n.

The motivation for this work comes from several sources. First of all,
this work has been motivated by our efforts to develop fast algorithms for
computing stable models of logic programs. It turns out that bounding the
number of stable models and search for extremal logic programs is intimately
connected to some recursive algorithms for computing stable models. Two
basic lemmas derived in Section 2 imply both the bounds on the number
of stable models, and a whole spectrum of algorithms to compute stable
models. The lemmas imply the worst-case bounds on the size of the search
space traversed by those algorithms. The algorithms show striking analogies
to the Davis-Putnam procedure for testing satisfiability of CNF formulas.
One of these algorithms is similar to the algorithm recently described and
studied in [7, 8]. There are also some analogies with the algorithms described
in [9, 3].

Additional motivation comes from considerations of expressive power of
logic programming and of representability issues. Both concepts help un-
derstand the scope of applicability of logic programming as a knowledge
representation tool. Disjunctive logic programs with answer set semantics
(logic programs with stable model semantics) can be viewed as encodings of
families of sets, namely, of the families of their stable models. A family of
sets F is representable if there is a (disjunctive) logic program P such that

ST(P) = F.

Important issues are: (1) to find properties of representable families of sets,
(2) given a representable family of sets F, to find possibly concise logic
program representations of F. Related problems in default logic have been
studied in [6].

It is well-known [5] that every representable family of sets must be an
antichain. Our study of extremal problems in logic programming provide
additional conditions. Namely, every family of sets representable by a pro-
gram from DP,, ,, must have size bounded by m" and every family of sets
representable by a logic program from £P,, must have size bounded by 3"/3.
The best bound known previously for families of sets representable by logic
programs from LP, was = 0.8 x 2"/ /n.

In addition, the results of this paper allow some comparison of the ex-
pressive power of different classes of programs. For example, there is a dis-
junctive logic program of size n with @(2”/ 2) answer sets while the largest
cardinality of a family of sets representable by a logic program of size n is
only ©(2"/%). This might be interpreted as evidence of stronger expressive
power of disjunctive logic programs.

2 Normal logic programs

In this section we study extremal problems for normal (non-disjunctive)
logic programs. We will determine the value of the function s(n) and we
will provide a characterization of all programs in the class LP,, which have
s(n) stable models. No bounds on the length of a clause are needed in this
case. It is well known that each stable model of a program P is a subset
of the set of heads of P. Consequently, s(n) < 2™. This bound can easily
be improved. Stable models of a program form an antichain. Since the
size of the largest antichain in the algebra of subsets of an n-element set is
(Ln72J) ~ 0.8 X 2" /4/n, clearly, s(n) < 0.8 x 2™ //n. We will still improve on
this bound by showing that s(n) = ©(3"/3) ~ ©(209%") << 0.8 x 2"/\/n.
We obtain similar results for the class EP,% of logic programs with n clauses
each of which has at most one literal in the body, and for the class LP], of
all logic programs with at most n atom occurrences.

Our approach is based on the following versions of the notion of reduct.
In the next section, these reducts will be used to design algorithms for com-
puting stable models.

Definition 2.1 Let P be a logic program and q be an atom which occurs in
P. The positive reduct of P with respect to g, denoted as P(q™"), is a logic
program obtained from P by:

1. Remowing all clauses with head q.

2. Removing all clauses with not(q) in the body.

3. Remowing q from the bodies of all remaining clauses.
The negative reduct of P with respect to g, denoted by P(q™), is the logic
program obtained from P by:

1. Remowing all clauses with head q.
2. Remowving all clauses with q in the body.
3. Removing not(q) from the bodies of all remaining clauses.

Intuitively speaking, P(q") and P(q™) are the programs implied by P and
sufficient to determine all those stable models of P that contain q (P(q")),
and all those stable models of P that do not contain ¢ (P(g¢~)). Formally,
we have the following lemma.

Lemma 2.1 Let P be a logic program and q be an atom in P. If M is a
stable model of P then

1. if g € M then M \ {q} is a stable model of P(q*),

2. if ¢ ¢ M then M is a stable model of P(q™).

Observe that the implication in the statement of the lemma cannot be
reversed. Due to nonmonotonicity of stable model semantics, not every
stable model of the reduct (P(¢") or P(q™)) gives rise to a stable model of
P.

As a corollary, we obtain a recursive bound on the number of stable
models in P (recall that s(P) stands for the cardinality of the family of
stable models of P).

Corollary 2.2 For any logic program P and any atom q in P

s(P) < s(P(¢")) + s(P(¢7): (1)
It is also clear that these last two results imply a recursive algorithm to
compute stable models. These applications of Lemma 2.1 and Corollary 2.2
will be discussed in the next section.
Similarly, we will define now two reducts implied by P and a clause r
from P: P(r*) and P(r).

Definition 2.2 Let r = q < a1, ...,a;,not(by),...,not(b) be a clause of
a logic program P. The positive reduct of P with respect to r, denoted as
P(r™), is a logic program obtained from P by:
1. Removing all clauses with head in p € {q,a1,...,a5,b1,...,b;}.
2. Removing all clauses with at least one of not(q), not(ay), not(ay),
bi,...,b in the body.
3. Removing all of q,a1,...,ak,not(by),...,not(b;) from the bodies of
all remaining clauses.
The negative reduct of P with respect to r, denoted as P(r~), is a logic
program obtained from P by deleting r, that is P(r—) = P\ {r}.

Let us recall that a logic program clause r is generating for a set of atoms
S if every atom occurring positively in the body of r is in S and every atom
occurring negated in 7 is not in S. Using the concept of a generating clause,

the intuition behind the definitions of P(r™) and P(r~) is as follows. The
reduct P(r™) allows us to compute all those stable models of P for which r
is a generating clause, while the reduct P(r) allows us to compute all those
stable models of P for which r is not generating. More formally, we have
the following lemma.

Lemma 2.3 Let r = q < ay,...,a5,n0t(b1),...,not(b;) be a clause of a
logic program P. If M is a stable model of P then
2. if{ar,...,ag} C M and {by,...,0} "M =0 then M \{q,a1,...,ar}
is a stable model of P(r™),
2. otherwise M is a stable model of P(r~).

Also in the case of this lemma, the implication in its statement cannot
be replaced by equivalence, due to the nonmonotonic nature of the stable
model semantics. That is, not every stable model of the reduct (P(r™) or
P(r—)) gives rise to a stable model of P.

As before, we have a corollary providing a recursive bound on the number
of stable models. A corresponding algorithmic implications will be discussed
in Section 3.

Corollary 2.4 For any logic program P and any clause r of P
s(P) < s(P(r")) + s(P(r)). (2)

We will now introduce the class of canonical logic programs and deter-
mine for them the number of their stable models . We will use canonical
programs to characterize extremal logic programs in the class LP,,.

Definition 2.3 Let A = {ai,a2,...,a5} be a set of atoms. By c(a;) we
denote the clause

c(a;) = a; < not(ay),...,not(a;—1),not(a;t+1),...,not(ag).

A canonical logic program over A, denoted by CP[A], is the logic program
containing exactly k clauses c(ay),...,clag), that is

k
CP[A] = U{C(az’)}-

Intuitively, the program CP[A] “works” by selecting exactly one atom
from A. Formally, C'P[A] has exactly k stable models of the form M; = {a;},
fori=1,...,k.

Definition 2.4 Let P be a logic program and A be the set of atoms which
appear in P. Program P is o 2,3,4-program if A can be partitioned into
pairwise disjoint sets Ay, ..., A; such that 2 < |A;| <4 fori=1,...,l, and

Roughly speaking, a 2, 3,4-program is a program which arises as a union
of independent canonical programs of sizes 2, 3 or 4. A 2, 3,4-program is
stratified in the sense of [2] and the canonical programs are its strata. Stable
models of a 2, 3,4-program can be obtained by selecting (arbitrarily) stable
models for each stratum independently and, then, forming their unions. By
the signature of a 2,3,4-program P we mean the triple (A2, A3, \4), where
Ai, © = 2,3,4, is the number of canonical programs over an i-element set
appearing in P.

Up to isomorphism, a 2, 3, 4-program is uniquely determined by its signa-
ture. Other basic properties of 2, 3, 4-programs are gathered in the following
proposition.

Proposition 2.5 Let P be a 2,3, 4-program with n clauses and the signature
(A2, A3, A\g). Then:

1. n=2X o 4+ 3A3 + 4\,

2. s(P) = 2*23%34M,

As a direct corollary to Proposition 2.5, we obtain a result describing
2,3,4-programs with n clauses and maximum possible number of stable
models. For k > 1, let us define A(k) to be the unique (up to isomorphism)
2,3, 4-program with the signature (0, k,0), and C(k) and C'(k) to be the
unique (up to isomorphism) 2, 3, 4-programs with the signatures (2, k —1,0)
and (0, k — 1,1), respectively. Finally, for k > 0, let us define B(k) to be the
unique (up to isomorphism) 2, 3, 4-program with the signature (1, %, 0).

Corollary 2.6 Let P be a 2,3,4-program with n clauses and mazimum
number of stable models. Then,

1. if n =3k for some k > 1, P = A(k),

2. ifn=3k+1 for some k >1, P=C(k) or C'(k),

3. if n =3k +2 for some k >0, P = B(k).
Consequently, the mazimum number of stable models of an 2,3, 4-programs
with n clauses is given by

33311 for n=0mod 3
so(n) =< 433171 for n=1mod 3
6+ 3/31=1 for n=2mod 3

Corollary 2.6 implies that
s(n) > so(n) = O(3"/?), (3)

We will now show that, in fact, s(n) = sg(n). Moreover, we will also de-
termine the class of all extremal programs. We will call an atom ¢ occurring
in P redundant if ¢ is not the head of a clause in P.

Let P be a logic program. By P we denote the logic program obtained
from P by removing all negated occurrences of redundant atoms. Let &, be

the class of all programs P such that
1. Pis A(k), ifn =3k (k> 1), or
2. Pis B(k),ifn=3k+2 (k>0),or
3. Pis C(k) or C'(k), if n=3k+1 (k>1).

Theorem 2.7 If P is an extremal logic program with n > 2 clauses, then
P has so(n) stable models. That is, for any n > 2

s(n) = so(n).
In addition, the extremal programs in LPy, are exactly the programs in &.

Theorem 2.7 can be proved by induction on n. The next lemma estab-
lishes the basis for the induction.

Lemma 2.8 Let P be an extremal program with n clauses. Then, for some
atoms ay,...,0n:
1 ifn=2, P= CP[{a1,az2}] (= B(0)),
2. if n =3, P=CP[{a1,a2,a3}] (= A(1)),
3. ifn =4, P= CP[{a1,as,a3,a4}] (= C'(1)),
or P = CP[{a1,a2}] UCP[{as,as}] (= C(1)).

The induction step, as well as the main steps of the argument, are pro-
vided by the following lemma. Its proof relies on Lemmas 2.1 and 2.3 that
establish recursive dependencies between the number of stable models of P
and of its reducts. The details will be given in the full version of the paper.

Lemma 2.9 Let n > 5. Assume that every extremal program with n' < n
clauses, and with no negated occurrences of redundant atoms is a 2,3,4-
program. If P is an extremal program with n > 5 clauses and no negated
occurrences of redundant atoms, then:

1. P contains no two clauses with the same head;

2. P contains no atoms that appear only positively in P;

3. P contains no clauses of the form q < p;

4. P is a 2,3,4-program;

Lemmas 2.8 and 2.9 imply that if P is an extremal program for the class
LP,, and if P has no negated occurrences of redundant atoms, then P is a
2,3, 4-program. Consequently, by Corollary 2.6, it follows that P is either
A(k), C(k) or C'(k), or B(k), depending on whether n = 3k, 3k + 1 or
3k + 2. In addition, we have that s(n) = so(n) = ©(3"/?). Hence, Theorem
2.7 follows.

The general bound of Theorem 2.7 can still be slightly improved (low-
ered) if the class of programs is further restricted. Since there are extremal
programs for the whole class LP,, with no more than 2 literals in the body of
each clause, the only reasonable restriction is to limit the number of literal

occurrences in the body to at most 1. The class of programs with n clauses
and satisfying this restriction will be denoted by LP2.

Denote by P(k) a 2, 3, 4-program with signature (k, 0,0). Clearly, P(k) €
LPZ. We have the following result.

Theorem 2.10 For every program P € LP2, s(P) < 2"/2. Moreover,
there are programs in LP? for which this bound is attained. Program P(k)
is a unique (up to isomorphism) extremal program with n = 2k clauses, and
every extremal program with n = 2k + 1 clauses can be obtained by adding
one more clause to P(k) of one of the following forms: p < a, a <, and
a < not(b), where p is an arbitrary atom (may or may not occur in P(k)),
and a and b are atoms not occurring in P(k).

Next, we will consider the class LP], of all logic programs with the total
size (number of literal occurrences in the bodies and heads) at most n. Let
s'(n) be defined as the maximum number of stable models for a program in
LP!,. We have the following result.

Theorem 2.11 s'(n) = ©(2"/%).

Finally, let us observe that every antichain F of sets of atoms is repre-
sentable by a logic program.

Theorem 2.12 For every antichain F of finite sets there is a logic pro-
gram P such that ST(P) = F. Moreover, there exists such P with at most
Y per |B| clauses and total size at most |F| X Y pcr|B].

On one hand this theorem states that logic programs can encode any
antichain F. On the other, the encoding that is guaranteed by this result is
quite large (in fact, larger than the explicit encoding of F). In the same time,
our earlier results show that often substantial compression can be achieved.
In particular, there are antichains of the total size of ©(n3"/3) that can
be encoded by logic programs of size ©(n). More in-depth understanding of
applicability of logic programming as a tool to concisely represent antichains
of sets remains an open area of investigation.

3 Applications in stable model computation

In this section we will describe algorithms for computing stable models of
logic programs. These algorithms are recursive and are implied by Lemmas
2.1 and 2.3. They select an atom (or a clause, in the case of Lemma 2.3)
and compute the corresponding reducts. According to Lemmas 2.1 and 2.3,
stable models of P can be reconstructed from stable models of the reducts.
However, it is not, in general, the case that every stable model of a reduct
implies a stable model of P (see the comments after Lemma 2.3). Therefore,
all candidates for stable models for P, that are produced out of the stable

STABLE_MODELS_A(P)
Input: a finite logic program P;
Returns: family @ of all stable models of P;

IMPLIED_SET(P, M, Fy);
if (|Pp| = 0) then return {M}
else

Q = 0;

q := SELECT_ATOM(F,);

Py = Py(q");

L := STABLE_MODELS_A(DP);

for all N € L do if 1S_.STABLE(Fp, {¢} UN)
then Q :=QU{M U{q} UN};

Py = Py(q);
L := STABLE_MODELS_A(F;);

for all N € L do if 1S_.STABLE(FPy, N) then Q := QU {M UN};

return Q);

Figure 1: Algorithm for computing stable models by splitting on atoms.

models of the reduct, must be tested for stability for P. To this end, an
auxiliary procedure 1S_STABLE is used. Calling IS_STABLE for a set of atoms
M and a logic program P returns true if M is a stable model of P, and it
returns false, otherwise.

In our algorithms we use yet another auxiliary procedure IMPLIED_SET.
This procedure takes one input parameter, a logic program P, and outputs
a set of atoms M and a logic program Py (modified P) with the following
properties:

1. M is a subset of every stable model of P, and

2. stable models of P are exactly the unions of M and stable models of

Py.
There are several specific choices for the procedure IMPLIED_SET. A trivial
option is to return M = () and Py = P. Another possibility is to output
as M the set of atoms true in the well-founded semantics and as Py the
residual program for P (see [9, 3]). However, in general, there are many
other, intermediate, ways to compute M and P, in polynomial time so that
conditions (1) and (2) above are satisfied.

We will now describe the algorithms. We adopt the following notation.
For a logic program clause r, by head(r) we denote the head of r and by
positivebody(r), the set of atoms occurring positively in the body of r.

STABLE_MODELS_R(P)
Input: a finite logic program P;
Returns: family @ of all stable models of P;

IMPLIED_SET(P, M, Fy);
if (|Pp| = 0) then return {M}
else

Q = 0;

7 := SELECT_CLAUSE(F));

Py = Py(r™);

L := STABLE_MODELS_R(DP);

for all N € L do if 1S_STABLE(Fy, N U positivebody(r) U {head(r)})
then Q := QU {M U N U positivebody(r) U {head(r)}};

P, =P, (7“7);
L := STABLE_MODELS_R(F%);

for all N € L do if 1S_.STABLE(FPy, N) then Q := QU {M UN};

return Q;

Figure 2: Algorithm for computing stable models by splitting on clauses.

First we will discuss an algorithm based on splitting the original program
(that is, computing the reducts) with respect to a selected atom. The cor-
rectness of this method is guaranteed by Lemma 2.1. We call this algorithm
STABLE_MODELS_A.

In this algorithm, to compute stable models for an input program P we
first simplify it to a program Py by executing the procedure IMPLIED_SET. A
set of atoms M contained in all stable models of P is also computed. Due to
our requirements on the IMPLIED_SET procedure, at this point, to compute
all models of P, we need to compute all models of Py and expand each by M.
To this end, we select an atom occurring in Fp, say ¢, by calling a procedure
SELECT_ATOM. Then, we compute the reducts Py(¢q") and Py(g). For both
reducts we compute their stable models. Each of these stable models gives
rise to a set of atoms {g} UN (in the case of stable models for Py(¢")) or N
(in the case of stable models for Py(¢~)). Each of these sets is a candidate
for a stable model for Py. Calls to the procedure IS_.STABLE determine those
that are. These sets, expanded by M, are returned as the stable models of
P. We present the pseudocode for this algorithm in Figure 1.

The second algorithm, STABLE_MODELS_R, is similar. It is based on
Lemma 2.3. That is, instead of trying to find stable models of P among the
sets of atoms implied by the stable models of P(q") and P(q~), we search

for stable models of P using stable models of P(r*) and P(r~), where r is
a clause of P. The correctness of this approach follows by Lemma 2.3. The
pseudocode is given in Figure 2.

Algorithms STABLE_MODELS_A and STABLE_MODELS_R can be merged
together into a hybrid method, which we call STABLE_MODELS_H (Figure
3). Here, in each recursive call to STABLE_MODELS_H we start by decid-
ing whether the splitting (reduct computation) will be performed with re-
spect to an atom or to a clause. This is done by invoking the function SE-
LECT_MODE(“atom”,“clause”). Depending on the outcome, the algorithm
follows the approach of either STABLE_MODELS_A or STABLE_MODELS_R.
That is, either an atom or a clause is selected, the corresponding reducts
are computed and recursive calls to STABLE_MODELS_H are made.

All three algorithms provide a convenient framework for experimenta-
tion with different heuristics for pruning the search space of all subsets of
the set of atoms. In general, the performance of these algorithms depends
heavily on how the selection routines SELECT_ATOM, SELECT_CLAUSE and
SELECT_MODE are implemented. Although any selection strategy yields a
correct algorithm, some approaches are more efficient than others. In partic-
ular, the proof of Theorem 2.7 implies selecting techniques for the algorithm
STABLE_MODELS_H guaranteeing that the algorihm terminates after the total
of at most O(3™/3) recursive calls.

Let us also observe that the recursive dependencies given in Lemmas 2.1
and 2.3 indicate that in order to keep the search space (number of recursive
calls) small, selection heuristics should attempt to keep the total size of
P(gt)UP(g™) or P(rt)U P(r~) as small as possible.

The presented algorithms compute all stable models for the input pro-
gram P. They can be easily modified to handle other tasks associated with
logic programming. That is, they can be tailored to compute one stable
model, determine whether stable model for P exists, as well as answer
whether an atom is true or false in all stable models of P (cautious rea-
soning), or in one model of P (brave reasoning). All these tasks can be
accomplished by adding a suitable stop function and by halting the algo-
rithm as soon as the query can be answered.

The general structure of our algorithms is similar to well-known Davis-
Putnam method for satisfiability problem. The IMPLIED_SET procedure cor-
responds to the, so called, unit-propagation phase of Davis-Putnam algo-
rithm. In this phase necessary and easy-to-compute conclusions of the cur-
rent state are drawn to reduce the search space. If the answer is still un-
known then a guess is needed and two recursive calls are performed to try
both possibilities. But there are also differences. First, in our case, splitting
can also be done with respect to a clause. The second difference is due to
nonmonotonicity of stable semantics for logic programs. When a recursive
call in Davis-Putnam procedure returns an answer, this answer is guaranteed
to be correct. There is no such guarantee in the case of stable models. Each
answer (stable model) returned by a recursive call in our algorithms must

STABLE_MODELS_H(P)
Input: a finite logic program P;
Returns: family @ of all stable models of P;

IMPLIED_SET(P, M, P);
if (|Po| = 0) then return {M}
else

Q=0

split_mode := SELECT_MODE(“atom”, “clause”);

if (split_-mode = “atom”) then

begin
¢ := SELECT_ATOM(F,);
Py = Py(q");

L := STABLE_MODELS_H (P);

for all N € L do if 1IS_STABLE(Fy, {¢}UN) then) := QU{MU{q}UN};
Py = Py(q);

L := STABLE_MODELS_H(P,);

for all N € L do if 1S_STABLE(Fp, N) then @ := QU {M UN};

end
else (x split_mode = “clause” x)
begin
7 := SELECT_CLAUSE(DR);
Py = Py(rt);

L := STABLE_MODELS_H(P});
for all N € L do if 1S_STABLE(Fy, N U positivebody(r) U {head(r)})
then @ := Q U {M U N U positivebody(r) U {head(r)}};
P, =P (7“7);
L := STABLE_MODELS_H(P);
for all N € L do if 1S_STABLE(Fp, N) then @ := QU {M UN},
end
return Q);

Figure 3: Hybrid algorithm for computing stable models.

be additionally tested (by IS_STABLE procedure) to see whether it is a stable
model for the original program.

4 Disjunctive logic programs

In this section, we will focus on the class of disjunctive logic programs DP,, p,.
For a set of atoms {ay,...,an}, let us denote by d(ay, ..., ay,) the disjunctive
clause of the form

arV...Vag <.

By D(n,m), we will denote the disjunctive logic program consisting of n
clauses:

d(alyl, e ,al,m)

d(an,h cee 7an,m)7

with all atoms a; ; — distinct. It is clear that every set of the form
{aijpi=1,...,n, 1 <i; <m}

is an answer set for D(n,m), and that all answer sets for D(n, m) are of this
form. Hence,
|ST(D(n,m))| = m".

Consequently, general upper bounds on the number of answer sets for dis-
junctive programs in such classes that allow clauses of arbitrary length do
not exist.
Turning attention to the class DP(n,m), it is now clear that, since
D(n,m) € DP(n,m),
d(n,m) > m".

The main result of this section shows that, in fact,

d(n,m) =m"
and the program D(n,m) is the only (up to isomorphism) extremal program
in this class.

Counsider a clause d of the form

ayV...Vag < by,...,bp,not(c1),...,not(c,).

By d we will denote the clause obtained from d by moving all negated
atoms to the head. That is, d* is of the form:

a1V...VapVer V... Ve, < bi,...,bpy.
Let D be a disjunctive program. Define
Dt ={d":d € D}.
Lemma 4.1 For every disjunctive logic program D, ST(D) C ST(D*).

Lemma 4.1 allows us to restrict our search for disjunctive programs with
the largest number of answer sets to those that do not contain negated
occurrences of atoms. Let D € DP(n,m) be a disjunctive logic program
without any occurrences of negated atoms. Let D' be a subset of D consisting
of all the clauses with the empty body. Each minimal model for D can be
obtained by the following procedure:

1. Pick a minimal model M’ of D’

2. Reduce D\ D' by removing clauses satisfied by M’ as well as atoms

in the bodies that are satisfied by M’. Call the resulting program D".

3. Pick a minimal model M" of D".

4. Output M' U M" as a minimal model of D.
Clearly, D' and D" are in DP(n',m) and DP(n”, m), respectively, where
|D'| =n' and |D"| = n". If n’ < n and n” < n then, by induction, one can
show that |ST(D)| < m™ and that DP(n,m) is the only (up to isomorphism)
program for which the inequality becomes equality. Cases n’ = nandn” =n
can be handled directly. The details of the argument will be provided in the
full version of the paper. Thus, we have the following theorem.

Theorem 4.2 For every integers m > 1 and n > 1, and for every program
D € DP(n,m), |ST(D)| < m™. Moreover, the program D(n,m) is the only
program in the class DP(n,m) for which the bound of m™ is reached. In
particular, d(n,m) =m™.

Finally, we will consider the class DP,, of all logic programs with the
total size (number of literal occurrences in the bodies and heads) at most n.
Let d’'(n) be defined as the maximum number of answer sets for a disjunctive
program in DP,,. We have the following result.

Theorem 4.3 For every n > 2, d'(n) = ©(2"/?).

Compared with the estimate from Theorem 2.11 for the function s'(n),
the function d’'(n) is much larger (it is, roughly the square of s'(n)). Con-
sequently, there are antichains representable by disjunctive logic programs
with the cardinality of the order of the square of the cardinality of largest
antichains representable by logic programs of the same total size. This may
be an additional argument for disjunctive logic programs as a knowledge
representation mechanism.

5 Conclusions

In this paper, we studied extremal problems appearing in the area of logic
programming. Specifically, we were interested in the maximum number of
stable models (answer sets) a program (disjunctive program) from a given
class may have. We have studied several classes in detail. We determined
the maximum number of stable models for logic programs with n clauses,
logic programs with n clauses, each of length at most 2, and for logic pro-
grams of total size at most n. In some of these cases we also characterized
the extremal programs, that is, the programs for which the maxima are at-
tained. Similar results were obtained for disjunctive logic programs. Our
results have interesting algorithmic implications. Several algorithms, having
a flavor of Davis-Putnam procedure, for computing stable model semantics
are presented in the paper.

Extremal problems for logic programming have not been studied so far.
This paper shows that they deserve more attention. They are interesting in
their own right and have interesting computational and knowledge represen-
tation applications.

References

[1]
2]

B. Bollobés. Eztremal Graph Theory. Academic Press, 1978.

P. Cholewinski. Reasoning with stratified default theories. In Pro-
ceedings of LPNMR’95, Lecture Notes in Computer Science 928, pages
273-286, Berlin, 1995. Springer-Verlag.

W. Chen, T. Swift, and D.S. Warren. Efficient top-down computation
of queries under the well-founded semantics. Journal of Logic Program-
ming, 24:161-200, 1994.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
Proceedings of the 5th international symposium on logic programming,
pages 1070-1080, Cambridge, MA, 1988. MIT Press.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365-385, 1991.

W. Marek, J. Treur and M. Truszczyniski. Representability by default
theories. In Proceedings of the Fourth International Symposium on Ar-
tificial Intelligence and Mathematics, pages 105-108, 1996.

I. Niemela. Towards efficient default reasoning. In Proceedings of IJCAI-
95, pages 312-318. Morgan Kaufmann, 1995.

I. Niemelad and P. Simmons. Evaluating an algorithm for default reason-
ing. In Proceedings of the IJCAI-95 Workshop on Applications and Im-
plementations of Nonmonotomic Reasonigs Systems, pages 66-72, 1995.

V.S. Subrahmanian, D. Nau and C. Vago. WFS + branch bound =
stable models. IEEE Transactions on Knowledge and Data Engineering,
7:362-377, 1995.

