
Extremal problems in logic program-ming and stable model computationPawe l Cholewi�nski and Miros law Truszczy�nskiComputer Science DepartmentUniversity of KentuckyLexington, KY 40506-0046fpaweljmirekg@cs.engr.uky.eduAbstractWe study the following problem: given a class of (disjunctive) logic programsC, determine the maximum number of stable models (answer sets) of a pro-gram from C. We establish the maximum for the class of all logic programswith at most n clauses, and for the class of all logic programs of size at mostn. We also characterize the programs for which the maxima are attained.We obtain similar results for the class of all disjunctive logic programs withat most n clauses, each of length at most m, and for the class of all disjunc-tive logic programs of size at most n. Our results on logic programs havedirect implication for the design of algorithms to compute stable models.Several such algorithms, similar in spirit to the Davis-Putnam procedure,are described in the paper.1 IntroductionIn this paper we study extremal problems appearing in the context of �nitepropositional logic programs. Speci�cally, we consider the following problem:given a class of logic programs C, determine the maximum number of stablemodels a program in C may have. Extremal problems have been studied inother disciplines, especially in combinatorics and graph theory [1]. However,no such results for logic programming have been known so far.We will consider �nite propositional disjunctive logic programs built ofclauses of the forma1 _ : : : _ ak  b1; : : : ; bm;not(c1); : : : ;not(cn);where ai, bi and ci are atoms. In an e�ort to establish a semantics for dis-junctive logic programming, Gelfond and Lifschitz [5] introduced the notionof an answer set of a disjunctive program. It is well-known that for normallogic programs (each clause has exactly one atom in the head), answer setscoincide with stable models [4, 5]. We will denote the set of answer sets ofa disjunctive program P (stable models, if P is normal) by ST(P ) and wewill set s(P ) = jST(P )j:



Given a class C of disjunctive programs, our goal will be to determinethe value of maxfjST(P )j:P 2 Cg:We will also study the structure of extremal programs in C, that is, thoseprograms in C for which the maximum is attained.We will focus our considerations on the following classes of programs:1. DPn;m | the class of disjunctive programs with at most n clausesand with the length of each clause bounded by m,2. LPn | the class of normal logic programs with at most n clauses.We will establish the valuess(n) = maxfjST(P )j:P 2 LPngand d(n;m) = maxfjST(P )j:P 2 DPn;mg:We will show that s(n) = �(3n=3) (an exact formula will be given) andd(n;m) = mn, and we will characterize the corresponding extremal pro-grams. We will also study related classes of programs: the class of logicprograms of size (understood as the total number of atom occurrences) atmost n, the class of logic programs with n clauses and with at most oneliteral in the body of each clause and, �nally, the class of disjunctive logicprograms of size at most n.The motivation for this work comes from several sources. First of all,this work has been motivated by our e�orts to develop fast algorithms forcomputing stable models of logic programs. It turns out that bounding thenumber of stable models and search for extremal logic programs is intimatelyconnected to some recursive algorithms for computing stable models. Twobasic lemmas derived in Section 2 imply both the bounds on the numberof stable models, and a whole spectrum of algorithms to compute stablemodels. The lemmas imply the worst-case bounds on the size of the searchspace traversed by those algorithms. The algorithms show striking analogiesto the Davis-Putnam procedure for testing satis�ability of CNF formulas.One of these algorithms is similar to the algorithm recently described andstudied in [7, 8]. There are also some analogies with the algorithms describedin [9, 3].Additional motivation comes from considerations of expressive power oflogic programming and of representability issues. Both concepts help un-derstand the scope of applicability of logic programming as a knowledgerepresentation tool. Disjunctive logic programs with answer set semantics(logic programs with stable model semantics) can be viewed as encodings offamilies of sets, namely, of the families of their stable models. A family ofsets F is representable if there is a (disjunctive) logic program P such thatST(P ) = F :



Important issues are: (1) to �nd properties of representable families of sets,(2) given a representable family of sets F , to �nd possibly concise logicprogram representations of F . Related problems in default logic have beenstudied in [6].It is well-known [5] that every representable family of sets must be anantichain. Our study of extremal problems in logic programming provideadditional conditions. Namely, every family of sets representable by a pro-gram from DPn;m must have size bounded by mn and every family of setsrepresentable by a logic program from LPn must have size bounded by 3n=3.The best bound known previously for families of sets representable by logicprograms from LPn was � 0:8� 2n=pn.In addition, the results of this paper allow some comparison of the ex-pressive power of di�erent classes of programs. For example, there is a dis-junctive logic program of size n with �(2n=2) answer sets while the largestcardinality of a family of sets representable by a logic program of size n isonly �(2n=4). This might be interpreted as evidence of stronger expressivepower of disjunctive logic programs.2 Normal logic programsIn this section we study extremal problems for normal (non-disjunctive)logic programs. We will determine the value of the function s(n) and wewill provide a characterization of all programs in the class LPn which haves(n) stable models. No bounds on the length of a clause are needed in thiscase. It is well known that each stable model of a program P is a subsetof the set of heads of P . Consequently, s(n) � 2n. This bound can easilybe improved. Stable models of a program form an antichain. Since thesize of the largest antichain in the algebra of subsets of an n-element set is� nbn=2c� � 0:8� 2n=pn, clearly, s(n) � 0:8� 2n=pn. We will still improve onthis bound by showing that s(n) = �(3n=3) � �(20:538n) << 0:8 � 2n=pn.We obtain similar results for the class LP2n of logic programs with n clauseseach of which has at most one literal in the body, and for the class LP 0n ofall logic programs with at most n atom occurrences.Our approach is based on the following versions of the notion of reduct.In the next section, these reducts will be used to design algorithms for com-puting stable models.De�nition 2.1 Let P be a logic program and q be an atom which occurs inP . The positive reduct of P with respect to q, denoted as P (q+), is a logicprogram obtained from P by:1. Removing all clauses with head q.2. Removing all clauses with not(q) in the body.3. Removing q from the bodies of all remaining clauses.The negative reduct of P with respect to q, denoted by P (q�), is the logicprogram obtained from P by:



1. Removing all clauses with head q.2. Removing all clauses with q in the body.3. Removing not(q) from the bodies of all remaining clauses.Intuitively speaking, P (q+) and P (q�) are the programs implied by P andsu�cient to determine all those stable models of P that contain q (P (q+)),and all those stable models of P that do not contain q (P (q�)). Formally,we have the following lemma.Lemma 2.1 Let P be a logic program and q be an atom in P . If M is astable model of P then1. if q 2M then M n fqg is a stable model of P (q+),2. if q 62M then M is a stable model of P (q�).Observe that the implication in the statement of the lemma cannot bereversed. Due to nonmonotonicity of stable model semantics, not everystable model of the reduct (P (q+) or P (q�)) gives rise to a stable model ofP . As a corollary, we obtain a recursive bound on the number of stablemodels in P (recall that s(P ) stands for the cardinality of the family ofstable models of P ).Corollary 2.2 For any logic program P and any atom q in Ps(P ) � s(P (q+)) + s(P (q�)): (1)It is also clear that these last two results imply a recursive algorithm tocompute stable models. These applications of Lemma 2.1 and Corollary 2.2will be discussed in the next section.Similarly, we will de�ne now two reducts implied by P and a clause rfrom P : P (r+) and P (r�).De�nition 2.2 Let r = q  a1; : : : ; ak;not(b1); : : : ;not(bl) be a clause ofa logic program P . The positive reduct of P with respect to r, denoted asP (r+), is a logic program obtained from P by:1. Removing all clauses with head in p 2 fq; a1; : : : ; ak; b1; : : : ; blg.2. Removing all clauses with at least one of not(q); not(a1); not(ak);b1; : : : ; bl in the body.3. Removing all of q; a1; : : : ; ak;not(b1); : : : ;not(bl) from the bodies ofall remaining clauses.The negative reduct of P with respect to r, denoted as P (r�), is a logicprogram obtained from P by deleting r, that is P (r�) = P n frg.Let us recall that a logic program clause r is generating for a set of atomsS if every atom occurring positively in the body of r is in S and every atomoccurring negated in r is not in S. Using the concept of a generating clause,



the intuition behind the de�nitions of P (r+) and P (r�) is as follows. Thereduct P (r+) allows us to compute all those stable models of P for which ris a generating clause, while the reduct P (r�) allows us to compute all thosestable models of P for which r is not generating. More formally, we havethe following lemma.Lemma 2.3 Let r = q  a1; : : : ; ak;not(b1); : : : ;not(bl) be a clause of alogic program P . If M is a stable model of P then2. if fa1; : : : ; akg �M and fb1; : : : ; blg \M = ; then M n fq; a1; : : : ; akgis a stable model of P (r+),2. otherwise M is a stable model of P (r�).Also in the case of this lemma, the implication in its statement cannotbe replaced by equivalence, due to the nonmonotonic nature of the stablemodel semantics. That is, not every stable model of the reduct (P (r+) orP (r�)) gives rise to a stable model of P .As before, we have a corollary providing a recursive bound on the numberof stable models. A corresponding algorithmic implications will be discussedin Section 3.Corollary 2.4 For any logic program P and any clause r of Ps(P ) � s(P (r+)) + s(P (r�)): (2)We will now introduce the class of canonical logic programs and deter-mine for them the number of their stable models . We will use canonicalprograms to characterize extremal logic programs in the class LPn.De�nition 2.3 Let A = fa1; a2; : : : ; akg be a set of atoms. By c(ai) wedenote the clausec(ai) = ai  not(a1); : : : ;not(ai�1);not(ai+1); : : : ;not(ak):A canonical logic program over A, denoted by CP [A], is the logic programcontaining exactly k clauses c(a1); : : : ; c(ak), that isCP [A] = k[i=1fc(ai)g:Intuitively, the program CP [A] \works" by selecting exactly one atomfrom A. Formally, CP [A] has exactly k stable models of the formMi = faig,for i = 1; : : : ; k.De�nition 2.4 Let P be a logic program and A be the set of atoms whichappear in P . Program P is a 2; 3; 4-program if A can be partitioned intopairwise disjoint sets A1; : : : ; Al such that 2 � jAij � 4 for i = 1; : : : ; l, andP = l[i=1CP [Ai]:



Roughly speaking, a 2; 3; 4-program is a program which arises as a unionof independent canonical programs of sizes 2, 3 or 4. A 2; 3; 4-program isstrati�ed in the sense of [2] and the canonical programs are its strata. Stablemodels of a 2; 3; 4-program can be obtained by selecting (arbitrarily) stablemodels for each stratum independently and, then, forming their unions. Bythe signature of a 2; 3; 4-program P we mean the triple h�2; �3; �4i, where�i, i = 2; 3; 4, is the number of canonical programs over an i-element setappearing in P .Up to isomorphism, a 2; 3; 4-program is uniquely determined by its signa-ture. Other basic properties of 2; 3; 4-programs are gathered in the followingproposition.Proposition 2.5 Let P be a 2; 3; 4-program with n clauses and the signatureh�2; �3; �4i. Then:1. n = 2�2 + 3�3 + 4�4,2. s(P ) = 2�23�34�4 .As a direct corollary to Proposition 2.5, we obtain a result describing2; 3; 4-programs with n clauses and maximum possible number of stablemodels. For k � 1, let us de�ne A(k) to be the unique (up to isomorphism)2; 3; 4-program with the signature h0; k; 0i, and C(k) and C 0(k) to be theunique (up to isomorphism) 2; 3; 4-programs with the signatures h2; k� 1; 0iand h0; k� 1; 1i, respectively. Finally, for k � 0, let us de�ne B(k) to be theunique (up to isomorphism) 2; 3; 4-program with the signature h1; k; 0i.Corollary 2.6 Let P be a 2; 3; 4-program with n clauses and maximumnumber of stable models. Then,1. if n = 3k for some k � 1, P = A(k),2. if n = 3k + 1 for some k � 1, P = C(k) or C 0(k),3. if n = 3k + 2 for some k � 0, P = B(k).Consequently, the maximum number of stable models of an 2; 3; 4-programswith n clauses is given bys0(n) = 8><>: 3 � 3bn=3c�1 for n � 0 mod 34 � 3bn=3c�1 for n � 1 mod 36 � 3bn=3c�1 for n � 2 mod 3Corollary 2.6 implies thats(n) � s0(n) = �(3n=3): (3)We will now show that, in fact, s(n) = s0(n). Moreover, we will also de-termine the class of all extremal programs. We will call an atom q occurringin P redundant if q is not the head of a clause in P .Let P be a logic program. By P we denote the logic program obtainedfrom P by removing all negated occurrences of redundant atoms. Let En be



the class of all programs P such that1. P is A(k), if n = 3k (k � 1), or2. P is B(k), if n = 3k + 2 (k � 0), or3. P is C(k) or C 0(k), if n = 3k + 1 (k � 1).Theorem 2.7 If P is an extremal logic program with n � 2 clauses, thenP has s0(n) stable models. That is, for any n � 2s(n) = s0(n):In addition, the extremal programs in LPn are exactly the programs in En.Theorem 2.7 can be proved by induction on n. The next lemma estab-lishes the basis for the induction.Lemma 2.8 Let P be an extremal program with n clauses. Then, for someatoms a1; : : : ; an:1. if n = 2, P = CP [fa1; a2g] (= B(0)),2. if n = 3, P = CP [fa1; a2; a3g] (= A(1)),3. if n = 4, P = CP [fa1; a2; a3; a4g] (= C 0(1)),or P = CP [fa1; a2g] [ CP [fa3; a4g] (= C(1)).The induction step, as well as the main steps of the argument, are pro-vided by the following lemma. Its proof relies on Lemmas 2.1 and 2.3 thatestablish recursive dependencies between the number of stable models of Pand of its reducts. The details will be given in the full version of the paper.Lemma 2.9 Let n � 5. Assume that every extremal program with n0 < nclauses, and with no negated occurrences of redundant atoms is a 2; 3; 4-program. If P is an extremal program with n � 5 clauses and no negatedoccurrences of redundant atoms, then:1. P contains no two clauses with the same head;2. P contains no atoms that appear only positively in P ;3. P contains no clauses of the form q  p;4. P is a 2; 3; 4-program;Lemmas 2.8 and 2.9 imply that if P is an extremal program for the classLPn and if P has no negated occurrences of redundant atoms, then P is a2; 3; 4-program. Consequently, by Corollary 2.6, it follows that P is eitherA(k), C(k) or C 0(k), or B(k), depending on whether n = 3k, 3k + 1 or3k + 2. In addition, we have that s(n) = s0(n) = �(3n=3). Hence, Theorem2.7 follows.The general bound of Theorem 2.7 can still be slightly improved (low-ered) if the class of programs is further restricted. Since there are extremalprograms for the whole class LPn with no more than 2 literals in the body ofeach clause, the only reasonable restriction is to limit the number of literal



occurrences in the body to at most 1. The class of programs with n clausesand satisfying this restriction will be denoted by LP2n.Denote by P (k) a 2; 3; 4-program with signature hk; 0; 0i. Clearly, P (k) 2LP2n. We have the following result.Theorem 2.10 For every program P 2 LP2n, s(P ) � 2bn=2c. Moreover,there are programs in LP2n for which this bound is attained. Program P (k)is a unique (up to isomorphism) extremal program with n = 2k clauses, andevery extremal program with n = 2k + 1 clauses can be obtained by addingone more clause to P (k) of one of the following forms: p  a, a  , anda not(b), where p is an arbitrary atom (may or may not occur in P (k)),and a and b are atoms not occurring in P (k).Next, we will consider the class LP 0n of all logic programs with the totalsize (number of literal occurrences in the bodies and heads) at most n. Lets0(n) be de�ned as the maximum number of stable models for a program inLP 0n. We have the following result.Theorem 2.11 s0(n) = �(2n=4).Finally, let us observe that every antichain F of sets of atoms is repre-sentable by a logic program.Theorem 2.12 For every antichain F of �nite sets there is a logic pro-gram P such that ST(P ) = F . Moreover, there exists such P with at mostPB2F jBj clauses and total size at most jFj �PB2F jBj.On one hand this theorem states that logic programs can encode anyantichain F . On the other, the encoding that is guaranteed by this result isquite large (in fact, larger than the explicit encoding of F). In the same time,our earlier results show that often substantial compression can be achieved.In particular, there are antichains of the total size of �(n3n=3) that canbe encoded by logic programs of size �(n). More in-depth understanding ofapplicability of logic programming as a tool to concisely represent antichainsof sets remains an open area of investigation.3 Applications in stable model computationIn this section we will describe algorithms for computing stable models oflogic programs. These algorithms are recursive and are implied by Lemmas2.1 and 2.3. They select an atom (or a clause, in the case of Lemma 2.3)and compute the corresponding reducts. According to Lemmas 2.1 and 2.3,stable models of P can be reconstructed from stable models of the reducts.However, it is not, in general, the case that every stable model of a reductimplies a stable model of P (see the comments after Lemma 2.3). Therefore,all candidates for stable models for P , that are produced out of the stable



stable models a(P )Input: a �nite logic program P ;Returns: family Q of all stable models of P ;implied set(P;M;P0);if (jP0j = 0) then return fMgelseQ := ;;q := select atom(P0);P1 := P0(q+);L := stable models a(P1);for all N 2 L do if is stable(P0; fqg [N)then Q := Q [ fM [ fqg [Ng;P2 := P0(q�);L := stable models a(P2);for all N 2 L do if is stable(P0; N) then Q := Q [ fM [Ng;return Q;Figure 1: Algorithm for computing stable models by splitting on atoms.models of the reduct, must be tested for stability for P . To this end, anauxiliary procedure is stable is used. Calling is stable for a set of atomsM and a logic program P returns true if M is a stable model of P , and itreturns false, otherwise.In our algorithms we use yet another auxiliary procedure implied set.This procedure takes one input parameter, a logic program P , and outputsa set of atoms M and a logic program P0 (modi�ed P ) with the followingproperties:1. M is a subset of every stable model of P , and2. stable models of P are exactly the unions of M and stable models ofP0.There are several speci�c choices for the procedure implied set. A trivialoption is to return M = ; and P0 = P . Another possibility is to outputas M the set of atoms true in the well-founded semantics and as P0 theresidual program for P (see [9, 3]). However, in general, there are manyother, intermediate, ways to compute M and P0 in polynomial time so thatconditions (1) and (2) above are satis�ed.We will now describe the algorithms. We adopt the following notation.For a logic program clause r, by head(r) we denote the head of r and bypositivebody(r), the set of atoms occurring positively in the body of r.



stable models r(P )Input: a �nite logic program P ;Returns: family Q of all stable models of P ;implied set(P;M;P0);if (jP0j = 0) then return fMgelseQ := ;;r := select clause(P0);P1 := P0(r+);L := stable models r(P1);for all N 2 L do if is stable(P0; N [ positivebody(r) [ fhead(r)g)then Q := Q [ fM [N [ positivebody(r) [ fhead(r)gg;P2 := P0(r�);L := stable models r(P2);for all N 2 L do if is stable(P0; N) then Q := Q [ fM [Ng;return Q;Figure 2: Algorithm for computing stable models by splitting on clauses.First we will discuss an algorithm based on splitting the original program(that is, computing the reducts) with respect to a selected atom. The cor-rectness of this method is guaranteed by Lemma 2.1. We call this algorithmstable models a.In this algorithm, to compute stable models for an input program P we�rst simplify it to a program P0 by executing the procedure implied set. Aset of atoms M contained in all stable models of P is also computed. Due toour requirements on the implied set procedure, at this point, to computeall models of P , we need to compute all models of P0 and expand each byM .To this end, we select an atom occurring in P0, say q, by calling a procedureselect atom. Then, we compute the reducts P0(q+) and P0(q�). For bothreducts we compute their stable models. Each of these stable models givesrise to a set of atoms fqg[N (in the case of stable models for P0(q+)) or N(in the case of stable models for P0(q�)). Each of these sets is a candidatefor a stable model for P0. Calls to the procedure is stable determine thosethat are. These sets, expanded by M , are returned as the stable models ofP . We present the pseudocode for this algorithm in Figure 1.The second algorithm, stable models r, is similar. It is based onLemma 2.3. That is, instead of trying to �nd stable models of P among thesets of atoms implied by the stable models of P (q+) and P (q�), we search



for stable models of P using stable models of P (r+) and P (r�), where r isa clause of P . The correctness of this approach follows by Lemma 2.3. Thepseudocode is given in Figure 2.Algorithms stable models a and stable models r can be mergedtogether into a hybrid method, which we call stable models h (Figure3). Here, in each recursive call to stable models h we start by decid-ing whether the splitting (reduct computation) will be performed with re-spect to an atom or to a clause. This is done by invoking the function se-lect mode(\atom",\clause"). Depending on the outcome, the algorithmfollows the approach of either stable models a or stable models r.That is, either an atom or a clause is selected, the corresponding reductsare computed and recursive calls to stable models h are made.All three algorithms provide a convenient framework for experimenta-tion with di�erent heuristics for pruning the search space of all subsets ofthe set of atoms. In general, the performance of these algorithms dependsheavily on how the selection routines select atom, select clause andselect mode are implemented. Although any selection strategy yields acorrect algorithm, some approaches are more e�cient than others. In partic-ular, the proof of Theorem 2.7 implies selecting techniques for the algorithmstable models h guaranteeing that the algorihm terminates after the totalof at most O(3n=3) recursive calls.Let us also observe that the recursive dependencies given in Lemmas 2.1and 2.3 indicate that in order to keep the search space (number of recursivecalls) small, selection heuristics should attempt to keep the total size ofP (q+) [ P (q�) or P (r+) [ P (r�) as small as possible.The presented algorithms compute all stable models for the input pro-gram P . They can be easily modi�ed to handle other tasks associated withlogic programming. That is, they can be tailored to compute one stablemodel, determine whether stable model for P exists, as well as answerwhether an atom is true or false in all stable models of P (cautious rea-soning), or in one model of P (brave reasoning). All these tasks can beaccomplished by adding a suitable stop function and by halting the algo-rithm as soon as the query can be answered.The general structure of our algorithms is similar to well-known Davis-Putnam method for satis�ability problem. The implied set procedure cor-responds to the, so called, unit-propagation phase of Davis-Putnam algo-rithm. In this phase necessary and easy-to-compute conclusions of the cur-rent state are drawn to reduce the search space. If the answer is still un-known then a guess is needed and two recursive calls are performed to tryboth possibilities. But there are also di�erences. First, in our case, splittingcan also be done with respect to a clause. The second di�erence is due tononmonotonicity of stable semantics for logic programs. When a recursivecall in Davis-Putnam procedure returns an answer, this answer is guaranteedto be correct. There is no such guarantee in the case of stable models. Eachanswer (stable model) returned by a recursive call in our algorithms must



stable models h(P )Input: a �nite logic program P ;Returns: family Q of all stable models of P ;implied set(P;M;P0);if (jP0j = 0) then return fMgelse Q := ;;split mode := select mode(\atom",\clause");if (split mode = \atom") thenbeginq := select atom(P0);P1 := P0(q+);L := stable models h(P1);for allN 2 L do if is stable(P0; fqg[N) then Q := Q[fM[fqg[Ng;P2 := P0(q�);L := stable models h(P2);for all N 2 L do if is stable(P0; N) then Q := Q [ fM [Ng;endelse (� split mode = \clause" �)beginr := select clause(P0);P1 := P0(r+);L := stable models h(P1);for all N 2 L do if is stable(P0; N [ positivebody(r) [ fhead(r)g)then Q := Q [ fM [N [ positivebody(r) [ fhead(r)gg;P2 := P0(r�);L := stable models h(P2);for all N 2 L do if is stable(P0; N) then Q := Q [ fM [Ng;endreturn Q;Figure 3: Hybrid algorithm for computing stable models.be additionally tested (by is stable procedure) to see whether it is a stablemodel for the original program.4 Disjunctive logic programsIn this section, we will focus on the class of disjunctive logic programsDPn;m.For a set of atoms fa1; : : : ; amg, let us denote by d(a1; : : : ; am) the disjunctiveclause of the form a1 _ : : : _ ak  :By D(n;m), we will denote the disjunctive logic program consisting of nclauses: d(a1;1; : : : ; a1;m)



� � �d(an;1; : : : ; an;m);with all atoms ai;j | distinct. It is clear that every set of the formfai;ji : i = 1; : : : ; n; 1 � ij �mgis an answer set for D(n;m), and that all answer sets for D(n;m) are of thisform. Hence, jST(D(n;m))j = mn:Consequently, general upper bounds on the number of answer sets for dis-junctive programs in such classes that allow clauses of arbitrary length donot exist.Turning attention to the class DP(n;m), it is now clear that, sinceD(n;m) 2 DP(n;m), d(n;m) � mn:The main result of this section shows that, in fact,d(n;m) = mnand the program D(n;m) is the only (up to isomorphism) extremal programin this class.Consider a clause d of the forma1 _ : : : _ ak  b1; : : : ; bm;not(c1); : : : ;not(cn):By d+ we will denote the clause obtained from d by moving all negatedatoms to the head. That is, d+ is of the form:a1 _ : : : _ ak _ c1 _ : : : _ cn  b1; : : : ; bm:Let D be a disjunctive program. De�neD+ = fd+: d 2 Dg:Lemma 4.1 For every disjunctive logic program D, ST(D) � ST(D+).Lemma 4.1 allows us to restrict our search for disjunctive programs withthe largest number of answer sets to those that do not contain negatedoccurrences of atoms. Let D 2 DP(n;m) be a disjunctive logic programwithout any occurrences of negated atoms. LetD0 be a subset ofD consistingof all the clauses with the empty body. Each minimal model for D can beobtained by the following procedure:1. Pick a minimal model M 0 of D02. Reduce D nD0 by removing clauses satis�ed by M 0 as well as atomsin the bodies that are satis�ed byM 0. Call the resulting program D00.3. Pick a minimal model M 00 of D00:



4. Output M 0 [M 00 as a minimal model of D.Clearly, D0 and D00 are in DP(n0;m) and DP(n00;m), respectively, wherejD0j = n0 and jD00j = n00. If n0 < n and n00 < n then, by induction, one canshow that jST(D)j � mn and that DP (n;m) is the only (up to isomorphism)program for which the inequality becomes equality. Cases n0 = n and n00 = ncan be handled directly. The details of the argument will be provided in thefull version of the paper. Thus, we have the following theorem.Theorem 4.2 For every integers m � 1 and n � 1, and for every programD 2 DP(n;m), jST(D)j � mn. Moreover, the program D(n;m) is the onlyprogram in the class DP(n;m) for which the bound of mn is reached. Inparticular, d(n;m) = mn.Finally, we will consider the class DPn of all logic programs with thetotal size (number of literal occurrences in the bodies and heads) at most n.Let d0(n) be de�ned as the maximum number of answer sets for a disjunctiveprogram in DPn. We have the following result.Theorem 4.3 For every n � 2, d0(n) = �(2n=2).Compared with the estimate from Theorem 2.11 for the function s0(n),the function d0(n) is much larger (it is, roughly the square of s0(n)). Con-sequently, there are antichains representable by disjunctive logic programswith the cardinality of the order of the square of the cardinality of largestantichains representable by logic programs of the same total size. This maybe an additional argument for disjunctive logic programs as a knowledgerepresentation mechanism.5 ConclusionsIn this paper, we studied extremal problems appearing in the area of logicprogramming. Speci�cally, we were interested in the maximum number ofstable models (answer sets) a program (disjunctive program) from a givenclass may have. We have studied several classes in detail. We determinedthe maximum number of stable models for logic programs with n clauses,logic programs with n clauses, each of length at most 2, and for logic pro-grams of total size at most n. In some of these cases we also characterizedthe extremal programs, that is, the programs for which the maxima are at-tained. Similar results were obtained for disjunctive logic programs. Ourresults have interesting algorithmic implications. Several algorithms, havinga 
avor of Davis-Putnam procedure, for computing stable model semanticsare presented in the paper.Extremal problems for logic programming have not been studied so far.This paper shows that they deserve more attention. They are interesting intheir own right and have interesting computational and knowledge represen-tation applications.



References[1] B. Bollob�as. Extremal Graph Theory. Academic Press, 1978.[2] P. Cholewi�nski. Reasoning with strati�ed default theories. In Pro-ceedings of LPNMR'95, Lecture Notes in Computer Science 928, pages273{286, Berlin, 1995. Springer-Verlag.[3] W. Chen, T. Swift, and D.S. Warren. E�cient top-down computationof queries under the well-founded semantics. Journal of Logic Program-ming, 24:161{200, 1994.[4] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InProceedings of the 5th international symposium on logic programming,pages 1070{1080, Cambridge, MA, 1988. MIT Press.[5] M. Gelfond and V. Lifschitz. Classical negation in logic programs anddisjunctive databases. New Generation Computing, 9:365{385, 1991.[6] W. Marek, J. Treur and M. Truszczy�nski. Representability by defaulttheories. In Proceedings of the Fourth International Symposium on Ar-ti�cial Intelligence and Mathematics, pages 105{108, 1996.[7] I. Niemel�a. Towards e�cient default reasoning. In Proceedings of IJCAI-95, pages 312{318. Morgan Kaufmann, 1995.[8] I. Niemel�a and P. Simmons. Evaluating an algorithm for default reason-ing. In Proceedings of the IJCAI-95 Workshop on Applications and Im-plementations of Nonmonotomic Reasonigs Systems, pages 66-72, 1995.[9] V.S. Subrahmanian, D. Nau and C. Vago. WFS + branch bound =stable models. IEEE Transactions on Knowledge and Data Engineering,7:362{377, 1995.


