
Minimal number of permutations su�cient tocompute all extensions a �nite default theoryPawe l Cholewi�nski and Miros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0046pawel|mirek@cs.engr.uky.edu
AbstractIn this paper we analyze an algorithm for generating extensions of a defaulttheory. This algorithm considers all permutations (orderings) of defaults. Foreach permutation, it constructs a tentative extension incrementally, in each step�ring the �rst applicable default, where the applicability of a default is de�nedwith respect to the part of a tentative extension constructed so far. Whenno more defaults can be �red, an a posteriori consistency check is performedto test whether all defaults that were �red remain applicable with respect tothe �nal theory. If so, this theory is returned as an extension. Otherwise, thenext ordering is tried. Straightforward worst case analysis implies that thisalgorithm may have to inspect all n! permutations in order to be complete(here n is the number of defaults in an input default theory). In this paper weshow that this number can be signi�cantly reduced. Namely, we exhibit a setof � nbn=2c� � 0:8 � 2n=pn permutations whose inspection guarantees that thealgorithm will detect all extensions. In addition, we present a simple algorithmto generate all these permutations.1 IntroductionDefault logic introduced by Reiter [Rei80] is one of the most widely studied non-monotonic formalisms. It was proposed as a knowledge representation mechanism, asit often o�ers concise descriptions of various knowledge domains and commonsensereasoning situations. However, in order to be a full-blown knowledge representa-tion tool, algorithmic methods are needed to process default theories and computetheir extensions. Several algorithms to perform these tasks were proposed recently1

[MT93a, ALS94, Nie95, MNR95]. All these algorithms exploit known characteriza-tions of extensions of default theories in terms of sets of generating defaults, sets ofjusti�cations, or ordering of defaults. They search through the space of the appro-priate objects and identify those that indeed generate extensions. In the worst case,the size of the search space of each such algorithm is at least exponential. How-ever, some pruning is usually possible and results in substantial speedups | severalexperimental studies are now underway and preliminary results are being reported[NS95, CMMT95].In this paper we will analyze one of the basic algorithms to generate extensions.The algorithm works by considering all orderings (permutations) of the set of defaultsof a default theory. It was introduced in [MT93a] and further studied in [ALS94].We will show that by some simple modi�cations, the size of the search space forthis algorithm can be reduced from n! to � nbn=2c� � q2=� � 2n=pn � 0:8 � 2n=pn(throughout the paper, we assume that the set of defaults in an input default theoryhas cardinality n). We will also show that this value is best possible.Hence, the resulting algorithm constructs all extensions of a default theory byconsidering a search space that at the start of the algorithm's execution is guaranteedto have size o(2n). To the best of our knowledge, this is the only algorithm so farwith such property. Other algorithms start with the full search space consisting ofall subsets of the set of defaults, or of all subsets of the set of justi�cations. The sizeof the former of these search spaces is 2n, and can be even larger for the latter one(although in this latter case, it can sometimes be smaller).We will start with a brief description of basic algorithms for generating exten-sions. Only a general outline of the �rst two of them will be given here. The thirdof these algorithms, which is the main subject of this paper, will be described in detail.Select-defaults-and-check1. Select a set of defaults S � D. 2

2. Check if S is a set of generating defaults. If so, output the theory generated byS as an extension.3. Repeat until all subsets of D are considered or pruned.This is perhaps the most commonly studied algorithm. For its detailed descriptionsee [MT93a]. In the version given above, the algorithm inspects all 2n subsets of D.However, pruning techniques can be incorporated into this method to dynamicallyrestrict the search space during the execution of the program. For example, oncea set S of defaults is found to be generating, its proper subsets and supersets neednot be considered. This follows from the fact that extensions are incomparable andtherefore their generating sets must be incomparable too (see [MT93a] for details).Still, the initial search space has size 2n.Select-justi�cations-and-check1. Select a set of justi�cations J � j(D).2. Find the set of defaults S whose justi�cations belong to j(D).3. Compute the set of consequences E of W that can be derived by means ofdefaults in S (a default \�res" if its prerequisite has been derived earlier).4. If all justi�cations in J are consistent with E and every default not in S has atleast one justi�cation not consistent with E, then output E as an extension.5. Repeat until all subsets of j(D) are considered or pruned.Theoretical basis for this algorithm can be traced back to the concept of an ar-gumentation framework [Dun93, BTK93]. Recently, Niemel�a and Simmons [Nie95,NS95] presented a detailed description, analysis and implementation of the methodand performed an experimental study. They showed that the algorithm performs3

surprisingly well. This can be attributed mostly to some interesting pruning tech-niques used in the implementation. However, at the beginning, the algorithm facesthe search space of all subsets of the set of all justi�cations. The size of this searchspace can be smaller than 2n. However, it is easy to give examples of default theo-ries with n defaults, for which the set of justi�cations has at least n elements and,consequently, the set of all subsets of the set of justi�cations has size at least 2n.Finally, we will describe, this time in more detail, the algorithm which we studyin this paper. The main advantage of this algorithm is its close relationship to somebasic intuitions behind default reasoning. Namely, the idea of a default reasoning isto process defaults according to our current state of knowledge. We start with W asall that is known. We use this current state of our knowledge to �nd an applicabledefault and extend the theory constructed so far. We continue this way until no moreapplicable defaults remain.This method is incorporated in the algorithm given below. To break ties betweendefaults that can be chosen at a given stage we use an ordering of defaults and alwayschoose the �rst applicable one. Clearly, the problem with this approach is that somefacts derived later in the process may \block" defaults used earlier. Therefore a �nalconsistency check is needed (step 5, below).Select-ordering-and-checkInput: A �nite default theory (D;W) with jDj = nOutput: A list of all extensions of (D;W).1. Select a permutation d1; : : : ; dn of D.2. Mark all defaults in D available.3. Set S := W .4. Repeat until no longer possible: �nd the smallest i such that di is markedavailable and is applicable with respect to S (that is, the prerequisite of di is4

a consequence of S and every justi�cation of di is consistent with S). Mark diused and add its consequent to S.5. If every justi�cation of every used default is consistent with S, output Cn(S)as an extension.6. Repeat all these steps until all permutations are used.The following result was proved in [MT93a].Theorem 1.1 The algorithm Select-ordering-and-check correctly �nds all exten-sions of a given default theory.Despite its simplicity, Select-ordering-and-check algorithm is computationallycomplex. It requires inspecting all n! permutations of the set of defaults. In such formit cannot be competitive with the two algorithms described before. In [MT93a], it isshown that it su�ces to consider only 2n permutations to guarantee that all extensionsof a default theory will be found (in other words, to guarantee the completeness ofthe method).In the next section, we will show that there is a set of permutations Xn of size� nbn=2c� � 0:8 � 2n=pn that also guarantees the completeness of the select-ordering-and-check method. We will describe an algorithm to e�ciently construct the set Xnand we will show that Xn cannot in general be further reduced without sacri�cing thecompleteness property (although using pruning techniques, for some default theoriesit may be possible to �nd all extensions by considering only a fraction of permutationsin the set Xn).2 ResultsWe start by recalling a property of the algorithm Select-ordering-and-check provedin [MT93a]. It involves the notion of the set of generating defaults. For the de�nition5

of this concept, as well as of other concepts from default logic the reader is referredto [MT93a].Theorem 2.1 Let (D;W) be a �nite default theory. Let d1; : : : ; dn be a permutationof defaults in D. If for some k, 0 � k � n, fd1; : : : dkg is the set of generatingdefaults for an extension S of (D;W), then the execution of the steps (2) - (5) ofSelect-ordering-and-check algorithm will produce and output S. 2This theorem implies a corollary which is the basis for the results of our paper.Corollary 2.2 Let (D;W) be a default theory and let jDj = n. Let X be any set ofpermutations such that(�) each subset of D appears as a pre�x (in some ordering) in at least one permutationfrom X.Then, the algorithm Select-ordering-and-check restricted to the set of permuta-tions X correctly �nds all extensions of (D;W).Proof: It follows from Theorem 1.1 that any output of the algorithmSelect-ordering-and-check (and, hence, also of its modi�ed version) is an extension. To complete theproof we need to show that every extension of (D;W) will be found by the modi�edSelect-ordering-and-check algorithm. To this end, let us consider an extension Sof (D;W). Let G � D be the set of generating defaults for S. By condition (�), thereis a permutation � in X such that the defaults in G form a pre�x of �. By Theorem2.1, S will be the output produced by the Select-ordering-and-check algorithmafter it processes the permutation �. 2Corollary 2.2 yields a method to improve the performance of the algorithm Select-ordering-and-check. Namely, we need to �nd (and use in the algorithm) the mini-mum size set of permutations A satisfying condition (�).6

We start by deriving a lower bound for such a set of permutations. Let us considerthe set of propositional variables fp1; : : : ; png. De�ne defaults di bydi = :Mpipi :For a subset P of fp1; : : : ; png de�ne 'P = Wp2P :p. Let k = bn=2c + 1. It is easyto check that the default theory (fdi: 1 � i � ng; f'P : jP j = kg) has exactly � nbn=2c�extensions, each corresponding to a subset of the set of defaults of size bn=2c. Hence,in order to guarantee the completeness of the algorithmSelect-ordering-and-check,the set of permutations it uses must have at least � nbn=2c� elements.Notice that the default theory described above has its objective part, W , of sizeexponential in n | the cardinality of the set of defaults. This raises an interestingquestion: is there a default theory of size (measured as the total number of occurrencesof propositional letters) polynomial in n and having � nbn=2c� extensions? We have onlypartial results on this subject. Namely, assume that n = rt for some integers r and t.Partition the set of propositional atoms fp1; : : : ; png into r disjoint subsets Q1; : : : ; Qr,each of size t. For each of these disjoint sets Qi of atoms apply the constructiondescribed above. Denote by (DQi;WQi) the resulting default theory. Clearly, each(DQi;WQi) has � tbt=2c� extensions and the size of WQi is � tbt=2c+1�(bt=2c+ 1).Next, de�ne D = Sri=1DQi and W = Sri=1WQi. Since the sets Qi are disjoint, itfollows that the number of extensions of (D;W) is tbt=2c!rand the size of W is tbt=2c+ 1!(bt=2c+ 1)r:Notice now that if t is selected so that � tbt=2c� � n, then the size of W is O(n2)and the number of extensions of (D;W) is 2cnn, where cn < 1 and cn �! 1. Hence,our construction yields a default theory with n defaults, the total size polynomial inn, and with the number of extensions that is close to the desired bound of � nbn=2c� �0:8� 2n=pn. 7

In the remaining part of the paper we will construct the set of � nbn=2c� permuta-tions satisfying the condition (�). We will study this issue in abstract, combinatorialterms. A collection X of permutation of f1; : : : ; ng is called complete if each subset off1; : : : ; ng appears as a pre�x (in some ordering) in at least one permutations fromX.Our goal is to construct a complete set of permutations of f1; : : : ; ng of size � nbn=2c�.We will �rst provide a simple proof that for every n the minimum size of a com-plete set of permutations is indeed � nbn=2c�. Although our proof is inductive and,hence, implies a method to construct a minimum complete set, this method cannotbe directly incorporated into Select-ordering-and-check algorithm. In the lastpart of the paper, we will adapt a technique from [Knu73] to describe an alternativemethod, and show that it can be used to improve the Select-ordering-and-checkalgorithm.We start with a simple technical lemma { a corollary to the celebrated Hall'stheorem [Hal35], see also [Bol78].Lemma 2.3 Let G = (V [U;E) be a bipartite graph with vertex classes V and U inwhich all the vertices in V have the same degree, and all the vertices in U have thesame degree. If jU j � jV j, then the maximum matching in G covers all vertices in V .Proof: Let us denote jV j = nV , jU j = nU , and let kV ; kU be the degrees of vertices inV and U respectively. Since nV � nU and nV kV = nUkU , we have kV � kU .By Hall's theorem, G has a matching which covers V if and only if for any J � V ,j�(J)j � jJ j (�(J) denotes the set of vertices in U , adjacent to at least one vertex ofJ). Suppose that there is a subset J � V for which j�(J)j < jJ j. There are at leastkV jJ j edges incident to �(J). Since j�(J)j < jJ j, there must be at least one vertex in�(J) which has degree at least kV + 1. But all vertices in U have degree kU � kV , soa contradiction follows. 2We will use now Lemma 2.3 to show that the minimum size of a complete set ofpermutations of n elements is � nbn=2c�. 8

Proposition 2.4 Let N = f1; 2; : : : ; ng and Xn be a minimum cardinality of a com-plete set of permutations of N . ThenjXnj = nbn=2c!:Proof: Since N = f1; 2; : : : ; ng contains � nbn=2c� di�erent subsets of cardinality bn=2cand no two di�erent subsets of the same cardinality can be pre�xes of the samepermutation, jXnj � � nbn=2c�.We have to show that, in fact, a complete set of permutations of size � nbn=2c� exists.In the proof we will show how to construct such a set of permutations. Let A be anarray with � nbn=2c� rows and n columns. We will �ll the entries in A with integers fromf1; 2; : : : ; ng so that each row of A will contain a permutation of N and, for everysubset Y of f1; 2; : : : ; ng, there will be a row r(Y) in A in which elements of Y appearin the �rst jY j positions.First, consider all subsets Y1; Y2; : : : ; Yl of N of cardinality equal to dn=2e. Clearly,l = � ndn=2e� = � nbn=2c�. Insert the elements of Yi, in any order, in the �rst dn=2epositions of row i.The partially �lled matrix A has the property that every subset of N of cardinalitydn=2e appears in the �rst dn=2e positions of some row of A. Consider an integer j,1 � j � dn=2e � 1. Assume that the elements of A are arranged so that every subsetof N of cardinality k, where j + 1 � k � dn=2e, appears in the �rst k positions insome row of A. We will show how to rearrange the elements of A so that the sameholds for every subset of N of cardinality k, where j � k � dn=2e.Let A1; A2; : : : ; Al, l = � nj+1�, be all the subsets of N of cardinality j + 1, andlet B1; B2; : : : ; Bm, m = �nj�, be all the subsets of N of cardinality j. Consider thebipartite graph G = (U [V;E), where U = fA1; A2; : : : ; Alg, V = fB1; B2; : : : ; Bmgand fAi; Bjg 2 E if and only if Bj � Ai. Clearly all vertices in U have degree j + 1,and all vertices in V have degree n� j. Since n� j � j + 1, Lemma 2.3 implies thatG contains a matching, say M , covering V .9

56

46

45

36

35

34

26

25

24

23

16

15

14

13

12

231456 123456

124356124356

251346 125346

126345

134256143256

135246153246

136245 136245

145236451236

164235 146235

156234

234561243561

235461

236451263451

245361

246351462351

456123564123

356412

364512

345612 345612

346512

356412

256341

Figure 1: Finding permutations covering all subsets of size 2 for n = 6.For each edge fAi; Bjg 2 M �nd the row in A which contains elements of Ai inits �rst j + 1 positions. Next, permute these elements so that the elements of Bjoccur in the �rst j positions. Since M is a matching, no row of A will be permutedtwice and the whole operation is well-de�ned. Observe also that permuting rowsof A in this fashion preserves the property that every subset of N of cardinality k,j + 1 � k � dn=2e, appears as a pre�x in some row of A. This operation only forcesthe same property to hold for sets of cardinality j. In Figure 1 we illustrate thisconstruction for n = 6 and j = 2. Vertices on the right correspond to all subsets ofsize 2. Vertices on the left correspond to permutations covering all subsets of size 3.The edges of the matching (shown in bold) indicate the permutations which need tobe modi�ed in order to guarantee that all subsets of size 2 are covered, as well. Theresults of the modi�cations are shown in the leftmost column.By applying the above procedure for j = dn=2e � 1; dn=2e � 2; : : : ; 1, we obtain arearrangement of the matrix A such that every subset of N of cardinality k, 1 � k �dn=2e, appears as a pre�x in some row of A.10

Notice that the last bn=2c positions in each row are not �lled in. For each row,�ll in these remaining positions with the elements of N which do not appear in thisrow yet. Clearly, every subset of N of cardinality bn=2c appears in some row of Aas its su�x. Proceeding as before, we can rearrange the last bn=2c positions in eachrow so that every subset of N of cardinality k, 1 � k � bn=2c, appears as a su�x insome row of A. This, however, simply means that each subset of N of cardinality k,dn=2e < k � n is a pre�x in some row of A.Hence, after all these steps, A contains in its rows � nbn=2c� permutations of N andevery subset of N appears as a pre�x in some row of A. 2The proof of Proposition 2.4 implies a method to generate a minimum size com-plete set of permutations. The straightforward implementation of this method isbased on Hopcroft-Karp method for �nding matchings. It leads to a complicated al-gorithm which runs in �(2npn) space and requires �(2 3n2 n 14) time per permutation.Since it constructs all permutations \at once", if added to Select-ordering-and-check algorithm it would result in impractical space requirements.A much better approach is not to compute all the permutations at once but togenerate one permutation at a time. This way one can generate all the needed permu-tations inO(n) space and O(n) time per permutation. A possible way of implementingthis task can be based on the following construction described in [Knu73] pp.567-568.We consider a set P of paths which start in point (0; 0) and end in point (n; r), wherer � 0. Each path consists of n segments, with the ith segment joining the point(i�1; j) with (i; j+1) or (i; j�1) (the latter being allowed only if j � 1). Hence, thepath never goes through grid points (i; j) with negative j. There are exactly � nbn=2c�such paths and they correspond to all permutations of f1; 2; : : : ; ng such that everysubset of f1; 2; : : : ; ng appears as pre�x of at least one of the permutations.For each path p from P we construct a permutation of f1; 2; : : : ; ng as follows. Weuse three lists L1; L2 and L3 which are initially empty. For i = 1; 2; : : : ; n, if the i-thstep of p goes up, we put number i into list L2; if the step goes down, we put i into11

list L1 and move the currently largest element of list L2 into list L3. The resultingpermutation is equal to the concatenation of the �nal contents of L1; L2 and L3, eachlist in increasing order (see [Knu73]).All the paths from P can be generated recursively. This leads to an algorithmwhich searches a binary tree T . This tree T has depth n and � nbn=2c� leaves. Each pathfrom P corresponds to a root-to-leaf path in T . Therefore, the whole algorithm canbe implemented to run in O(n) space and will require O(1) time per each generatedpath from P. Since the algorithm converting each path into a permutation runs inlinear time, this approach requires O(n) time per each permutation. This methodof generating permutations from Xn can easily be incorporated into the algorithmSelect-ordering-and-check. Namely, after generating a permutation from Xn, thesteps (2) - (5) of the algorithm Select-ordering-and-check should be executed.Then, the next permutation from Xn should be generated, the steps (2) - (5) exe-cuted, and the whole process should be repeated until all permutations from Xn areconsidered.3 ConclusionsIn this paper we presented an algorithm that computes all extensions of a defaulttheory after searching through the search space of permutations (orderings) of defaultsof size � 0:8 � 2n=pn. This is the �rst algorithm by date, guaranteeing that allextensions will be found, and considering in the worst case signi�cantly less candidatesthan 2n.Versions of the algorithm Select-ordering-and-check and the correspondinganalogues of Theorem 1.1 are known for other objects considered as models of beliefsets determined by a default theory: rational extensions and constraint extensions[MT93b, MT95], as well. The main result of this paper holds for these other cases, too.That is, the set of permutations constructed in the previous section guarantees thecompleteness of the select-ordering-and-check method for computing weak, rational12

and constraint extensions.It is also interesting to note that the methods used in this paper can be generalized.Let t be an integer such that 0 � t � n. Modifying the arguments used in the paperone can produce a set of permutations of the size �nt� such that every subset off1; : : : ; ng of cardinality not greater than t appears as a pre�x in at least one of thepermutations in the set. This yields an algorithm to compute extensions of a defaulttheory if bounds on the number of generating defaults are known.References[ALS94] G. Antoniou, E. Langetepe, and V. Sperschneider. New proofs in defaultlogic theory. Annals of Mathematics and Arti�cial Intelligence, 12:215{230, 1994.[Bol78] B. Bollob�as. Extremal Graph Theory. Academic Press, 1978.[BTK93] A. Bondarenko, F. Toni, and R.A. Kowalski. An assumption-based frame-work for non-monotonic reasoning. In A. Nerode and L. Pereira, editors,Logic programming and non-monotonic reasoning. Proceedings of the Sec-ond International Workshop, pages 171{189. MIT Press, 1993.[CMMT95] P. Cholewi�nski, W. Marek, A. Mikitiuk, and M. Truszczy�nski. Defaultreasoning system | an implementation of default reasoning. In prepara-tion., 1995.[Dun93] P.M. Dung. On the acceptability of arguments and its fundamental rolein nonmonotonic reasoning and logic programming (extended abstract).In Proceedings International Joint Conference on Arti�cial Intelligence,pages 852{859, Los Altos, CA, 1993. Morgan Kaufmann. To appear inArti�cial Intelligence.[Hal35] P. Hall. On representatives of subsets. J. of London Math. Soc., 10:26{30,1935.[Knu73] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.[MNR95] W. Marek, A. Nerode, and J. B. Remmel. Rule systems, well-orderingsand forward chaining. Submitted for publication., 1995.[MT93a] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependentreasoning. Berlin: Springer-Verlag, 1993.13

[MT93b] A. Mikitiuk and M. Truszczy�nski. Rational default logic and disjunc-tive logic programming. In A. Nerode and L. Pereira, editors, Logicprogramming and non-monotonic reasoning. Proceedings of the SecondInternational Workshop, pages 283{299. MIT Press, 1993.[MT95] A. Mikitiuk and M. Truszczy�nski. Constrained and rational default logics.In Proceedings of IJCAI-95. Morgan Kaufmann, 1995.[Nie95] I. Niemel�a. Towards e�cient default reasoning. In Proceedings of IJCAI-95, pages 312{318. Morgan Kaufmann, 1995.[NS95] I. Niemel�a and P. Simmons. Evaluating an algorithm for default rea-soning. In Proceedings of the IJCAI-95 Workshop on Applications andImplementations of Nonmonotomic Reasonigs Systems, 1995.[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132,1980.

14

