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Abstract

In this paper we analyze an algorithm for generating extensions of a default
theory. This algorithm considers all permutations (orderings) of defaults. For
each permutation, it constructs a tentative extension incrementally, in each step
firing the first applicable default, where the applicability of a default is defined
with respect to the part of a tentative extension constructed so far. When
no more defaults can be fired, an o posteriori consistency check is performed
to test whether all defaults that were fired remain applicable with respect to
the final theory. If so, this theory is returned as an extension. Otherwise, the
next ordering is tried. Straightforward worst case analysis implies that this
algorithm may have to inspect all n! permutations in order to be complete
(here n is the number of defaults in an input default theory). In this paper we
show that this number can be significantly reduced. Namely, we exhibit a set
of (LRT;? J) ~ 0.8 x 2"/y/n permutations whose inspection guarantees that the
algorithm will detect all extensions. In addition, we present a simple algorithm
to generate all these permutations.

1 Introduction

Default logic introduced by Reiter [Rei80] is one of the most widely studied non-
monotonic formalisms. [t was proposed as a knowledge representation mechanism, as
it often offers concise descriptions of various knowledge domains and commonsense
reasoning situations. However, in order to be a full-blown knowledge representa-
tion tool, algorithmic methods are needed to process default theories and compute

their extensions. Several algorithms to perform these tasks were proposed recently



[MT93a, ALS94, Nie95, MNR95]. All these algorithms exploit known characteriza-
tions of extensions of default theories in terms of sets of generating defaults, sets of
justifications, or ordering of defaults. They search through the space of the appro-
priate objects and identify those that indeed generate extensions. In the worst case,
the size of the search space of each such algorithm is at least exponential. How-
ever, some pruning is usually possible and results in substantial speedups — several
experimental studies are now underway and preliminary results are being reported
[NS95, CMMT95].

In this paper we will analyze one of the basic algorithms to generate extensions.
The algorithm works by considering all orderings (permutations) of the set of defaults
of a default theory. It was introduced in [MT93a] and further studied in [ALS94].
We will show that by some simple modifications, the size of the search space for
this algorithm can be reduced from n! to (\_TLT/LZJ) R \/2/7 x 2" /y/n = 0.8 x 2"/\/n
(throughout the paper, we assume that the set of defaults in an input default theory
has cardinality n). We will also show that this value is best possible.

Hence, the resulting algorithm constructs all extensions of a default theory by
considering a search space that at the start of the algorithm’s execution is guaranteed
to have size 0o(2™). To the best of our knowledge, this is the only algorithm so far
with such property. Other algorithms start with the full search space consisting of
all subsets of the set of defaults, or of all subsets of the set of justifications. The size
of the former of these search spaces is 2", and can be even larger for the latter one
(although in this latter case, it can sometimes be smaller).

We will start with a brief description of basic algorithms for generating exten-
sions. Only a general outline of the first two of them will be given here. The third

of these algorithms, which is the main subject of this paper, will be described in detail.

Select-defaults-and-check

1. Select a set of defaults S C D.



2. Check if S is a set of generating defaults. If so, output the theory generated by

S as an extension.
3. Repeat until all subsets of D are considered or pruned.

This is perhaps the most commonly studied algorithm. For its detailed description
see [MT93a]. In the version given above, the algorithm inspects all 2" subsets of D.
However, pruning techniques can be incorporated into this method to dynamically
restrict the search space during the execution of the program. For example, once
a set S of defaults is found to be generating, its proper subsets and supersets need
not be considered. This follows from the fact that extensions are incomparable and
therefore their generating sets must be incomparable too (see [MT93a] for details).

Still, the initial search space has size 2".

Select-justifications-and-check
1. Select a set of justifications J C j(D).
2. Find the set of defaults S whose justifications belong to j(D).

3. Compute the set of consequences E of W that can be derived by means of

defaults in S (a default “fires” if its prerequisite has been derived earlier).

4. If all justifications in J are consistent with £ and every default not in S has at

least one justification not consistent with £, then output £ as an extension.
5. Repeat until all subsets of j(D) are considered or pruned.

Theoretical basis for this algorithm can be traced back to the concept of an ar-
gumentation framework [Dun93, BTK93]. Recently, Niemeld and Simmons [Nie95,
NS95] presented a detailed description, analysis and implementation of the method

and performed an experimental study. They showed that the algorithm performs



surprisingly well. This can be attributed mostly to some interesting pruning tech-
niques used in the implementation. However, at the beginning, the algorithm faces
the search space of all subsets of the set of all justifications. The size of this search
space can be smaller than 2". However, it is easy to give examples of default theo-
ries with n defaults, for which the set of justifications has at least n elements and,
consequently, the set of all subsets of the set of justifications has size at least 2.

Finally, we will describe, this time in more detail, the algorithm which we study
in this paper. The main advantage of this algorithm is its close relationship to some
basic intuitions behind default reasoning. Namely, the idea of a default reasoning is
to process defaults according to our current state of knowledge. We start with W as
all that is known. We use this current state of our knowledge to find an applicable
default and extend the theory constructed so far. We continue this way until no more
applicable defaults remain.

This method is incorporated in the algorithm given below. To break ties between
defaults that can be chosen at a given stage we use an ordering of defaults and always
choose the first applicable one. Clearly, the problem with this approach is that some
facts derived later in the process may “block” defaults used earlier. Therefore a final

consistency check is needed (step 5, below).

Select-ordering-and-check
Input: A finite default theory (D, W) with |D|=n
Output: A list of all extensions of (D, W).

1. Select a permutation dy,...,d, of D.
2. Mark all defaults in D available.
3. Set S :=W.

4. Repeat until no longer possible: find the smallest 7 such that d; is marked
available and is applicable with respect to S (that is, the prerequisite of d; is
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a consequence of S and every justification of d; is consistent with S). Mark d;

used and add its consequent to S.

5. If every justification of every used default is consistent with S, output Cn(S)

as an extension.

6. Repeat all these steps until all permutations are used.
The following result was proved in [MT93a).

Theorem 1.1 The algorithm Select-ordering-and-check correctly finds all exten-

stons of a given default theory.

Despite its simplicity, Select-ordering-and-check algorithm is computationally
complex. It requires inspecting all n! permutations of the set of defaults. In such form
it cannot be competitive with the two algorithms described before. In [MT93a], it is
shown that it suffices to consider only 2" permutations to guarantee that all extensions
of a default theory will be found (in other words, to guarantee the completeness of
the method).

In the next section, we will show that there is a set of permutations X,, of size
(|_n72j) ~ 0.8 x 2"/y/n that also guarantees the completeness of the select-ordering-
and-check method. We will describe an algorithm to efficiently construct the set X,
and we will show that X,, cannot in general be further reduced without sacrificing the
completeness property (although using pruning techniques, for some default theories
it may be possible to find all extensions by considering only a fraction of permutations

in the set X,,).

2 Results

We start by recalling a property of the algorithm Select-ordering-and-check proved
in [MT93a]. It involves the notion of the set of generating defaults. For the definition



of this concept, as well as of other concepts from default logic the reader is referred

to [MT93a).

Theorem 2.1 Let (D, W) be a finite default theory. Let dy,...,d, be a permutation
of defaults in D. If for some k, 0 < k < n, {dy,...dy} is the set of generating
defaults for an extension S of (D, W), then the execution of the steps (2) - (5) of

Select-ordering-and-check algorithm will produce and output S. O
This theorem implies a corollary which is the basis for the results of our paper.

Corollary 2.2 Let (D, W) be a default theory and let |D| = n. Let X be any set of

permutations such that

(%) each subset of D appears as a prefiz (in some ordering) in at least one permutation

from X.

Then, the algorithm Select-ordering-and-check restricted to the set of permuta-

tions X correctly finds all extensions of (D, W).

Proof: It follows from Theorem 1.1 that any output of the algorithm Select-ordering-
and-check (and, hence, also of its modified version) is an extension. To complete the
proof we need to show that every extension of (D, W) will be found by the modified
Select-ordering-and-check algorithm. To this end, let us consider an extension S
of (D, W). Let G C D be the set of generating defaults for S. By condition (x), there
is a permutation o in X such that the defaults in G form a prefix of 0. By Theorem
2.1, S will be the output produced by the Select-ordering-and-check algorithm
after it processes the permutation o. O

Corollary 2.2 yields a method to improve the performance of the algorithm Select-
ordering-and-check. Namely, we need to find (and use in the algorithm) the mini-

mum size set of permutations A satisfying condition (x).



We start by deriving a lower bound for such a set of permutations. Let us consider

the set of propositional variables {p,...,p,}. Define defaults d; by

Mz
d; = —2
bi
For a subset P of {pi,...,pp} define pp = Vyep—p. Let k = |n/2] + 1. It is easy

to check that the default theory ({d;:1 < i < n},{pp:|P| = k}) has exactly (

n
Ln/2J)
extensions, each corresponding to a subset of the set of defaults of size |n/2|. Hence,

in order to guarantee the completeness of the algorithm Select-ordering-and-check,
the set of permutations it uses must have at least (Ln72 J) elements.

Notice that the default theory described above has its objective part, W, of size
exponential in n — the cardinality of the set of defaults. This raises an interesting
question: is there a default theory of size (measured as the total number of occurrences
of propositional letters) polynomial in n and having (LnT/L2 J) extensions? We have only
partial results on this subject. Namely, assume that n = rt for some integers r and t.
Partition the set of propositional atoms {p;, ..., p,} into r disjoint subsets Q1, ..., @,
each of size t. For each of these disjoint sets ); of atoms apply the construction
described above. Denote by (Dg,, Wy,) the resulting default theory. Clearly, each
(Dg,, Wg,) has (Lt/tZJ) extensions and the size of Wy, is (Ltﬂtj“)([t/ﬂ +1).

Next, define D = U;_; Do, and W = U;_; Wy,. Since the sets ); are disjoint, it

follows that the number of extensions of (D, W) is

(1)
t

(Lt/2J + 1> (lt/2] + D).

Notice now that if ¢ is selected so that (

and the size of W is

t\ o . . 9
Lt/2J) ~ n, then the size of W is O(n?)
and the number of extensions of (D, W) is 2", where ¢, < 1 and ¢, — 1. Hence,
our construction yields a default theory with n defaults, the total size polynomial in

n, and with the number of extensions that is close to the desired bound of (|_n72]) R

0.8 x 2/ /.



In the remaining part of the paper we will construct the set of (Lnr/bﬂ) permuta-
tions satisfying the condition (x). We will study this issue in abstract, combinatorial
terms. A collection X of permutation of {1,...,n} is called complete if each subset of
{1,...,n} appears as a prefix (in some ordering) in at least one permutations from X.
Our goal is to construct a complete set of permutations of {1,...,n} of size (Ln72J)'

We will first provide a simple proof that for every n the minimum size of a com-

n

ln/2]
hence, implies a method to construct a minimum complete set, this method cannot

plete set of permutations is indeed ( ) Although our proof is inductive and,
be directly incorporated into Select-ordering-and-check algorithm. In the last
part of the paper, we will adapt a technique from [Knu73] to describe an alternative
method, and show that it can be used to improve the Select-ordering-and-check
algorithm.

We start with a simple technical lemma — a corollary to the celebrated Hall’s

theorem [Hal35], see also [Bol78§].

Lemma 2.3 Let G = (VUU, E) be a bipartite graph with vertex classes V and U in
which all the vertices in V' have the same degree, and all the vertices in U have the

same degree. If (U| > |V, then the mazimum matching in G covers all vertices in V.

Proof: Let us denote |V| = ny, |U| = ny, and let ky, ky be the degrees of vertices in
V and U respectively. Since ny < ny and nyky = nyky, we have ky > ky.

By Hall’s theorem, G' has a matching which covers V' if and only if for any J C V,
IT(J)| > |J| (I'(J) denotes the set of vertices in U, adjacent to at least one vertex of
J).

Suppose that there is a subset J C V' for which |['(J)| < |J|. There are at least
ky|J| edges incident to I'(.J). Since |I'(J)| < |J], there must be at least one vertex in
['(J) which has degree at least ky + 1. But all vertices in U have degree ky < ky, so
a contradiction follows. O

We will use now Lemma 2.3 to show that the minimum size of a complete set of

permutations of n elements is (Lnr/bz J)'



Proposition 2.4 Let N ={1,2,...,n} and X,, be a minimum cardinality of a com-

plete set of permutations of N. Then

%= ()

Proof: Since N = {1,2,...,n} contains (\_TLT/ZZJ) different subsets of cardinality |[n/2]
and no two different subsets of the same cardinality can be prefixes of the same
permutation, |X,| > (LnT/L2J)'

We have to show that, in fact, a complete set of permutations of size (Ln%J) exists.
In the proof we will show how to construct such a set of permutations. Let A be an
array with (LnT/L2 J) rows and n columns. We will fill the entries in A with integers from
{1,2,...,n} so that each row of A will contain a permutation of N and, for every
subset Y of {1,2,...,n}, there will be a row r(Y") in A in which elements of Y appear
in the first |Y'| positions.

First, consider all subsets Y7, Y5, ..., Y, of N of cardinality equal to [n/2]. Clearly,
[ = ([n721) = (\_nT/ZZJ)' Insert the elements of Y;, in any order, in the first [n/2]
positions of row .

The partially filled matrix A has the property that every subset of N of cardinality
[n/2] appears in the first [n/2] positions of some row of A. Consider an integer j,
1<j<[n/2] —1. Assume that the elements of A are arranged so that every subset
of N of cardinality k, where 7 +1 < k < [n/2], appears in the first £ positions in
some row of A. We will show how to rearrange the elements of A so that the same
holds for every subset of N of cardinality k, where j < k < [n/2].

Let A, Ay, ..., A, | = (jil), be all the subsets of N of cardinality 7 + 1, and
let By, Bs,...,B,, m = (T;), be all the subsets of N of cardinality j. Consider the
bipartite graph G = (U UV, E), where U = {Ay, As, ..., A}, V = {By,Bs, ..., By}
and {4;, B;} € E if and only if B; C A;. Clearly all vertices in U have degree j + 1,
and all vertices in V' have degree n — j. Since n — 7 > 7 4+ 1, Lemma 2.3 implies that

G contains a matching, say M, covering V.
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Figure 1: Finding permutations covering all subsets of size 2 for n = 6.

For each edge {A;, B;} € M find the row in A which contains elements of 4, in
its first j + 1 positions. Next, permute these elements so that the elements of B;
occur in the first 5 positions. Since M is a matching, no row of A will be permuted
twice and the whole operation is well-defined. Observe also that permuting rows
of A in this fashion preserves the property that every subset of N of cardinality &,
J+ 1<k <[n/2], appears as a prefix in some row of A. This operation only forces
the same property to hold for sets of cardinality 7. In Figure 1 we illustrate this
construction for n = 6 and 7 = 2. Vertices on the right correspond to all subsets of
size 2. Vertices on the left correspond to permutations covering all subsets of size 3.
The edges of the matching (shown in bold) indicate the permutations which need to
be modified in order to guarantee that all subsets of size 2 are covered, as well. The
results of the modifications are shown in the leftmost column.

By applying the above procedure for j = [n/2] — 1, [n/2] —2,...,1, we obtain a
rearrangement of the matrix A such that every subset of NV of cardinality k, 1 < k <

[n/2], appears as a prefix in some row of A.
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Notice that the last |n/2] positions in each row are not filled in. For each row,
fill in these remaining positions with the elements of N which do not appear in this
row yet. Clearly, every subset of N of cardinality |[n/2]| appears in some row of A
as its suffix. Proceeding as before, we can rearrange the last |n/2] positions in each
row so that every subset of NV of cardinality k£, 1 < k < |n/2]|, appears as a suffix in
some row of A. This, however, simply means that each subset of N of cardinality &,
[n/2] < k < nis a prefix in some row of A.

Hence, after all these steps, A contains in its rows (Ln72 J) permutations of /N and
every subset of N appears as a prefix in some row of A. O

The proof of Proposition 2.4 implies a method to generate a minimum size com-
plete set of permutations. The straightforward implementation of this method is
based on Hopcroft-Karp method for finding matchings. It leads to a complicated al-
gorithm which runs in ©(2"/n) space and requires @(Q%ni) time per permutation.
Since it constructs all permutations “at once”, if added to Select-ordering-and-
check algorithm it would result in impractical space requirements.

A much better approach is not to compute all the permutations at once but to
generate one permutation at a time. This way one can generate all the needed permu-
tations in O(n) space and O(n) time per permutation. A possible way of implementing
this task can be based on the following construction described in [Knu73] pp.567-568.
We consider a set P of paths which start in point (0,0) and end in point (n, ), where
r > 0. Each path consists of n segments, with the i¢th segment joining the point
(i—1,7) with (4,7 4+1) or (i, —1) (the latter being allowed only if j > 1). Hence, the
path never goes through grid points (7, j) with negative j. There are exactly (Ln72J)
such paths and they correspond to all permutations of {1,2,...,n} such that every
subset of {1,2,...,n} appears as prefix of at least one of the permutations.

For each path p from P we construct a permutation of {1,2,...,n} as follows. We
use three lists Ly, Ly and L3 which are initially empty. For i =1,2,... n, if the i-th

step of p goes up, we put number 7 into list Ls; if the step goes down, we put ¢ into
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list L; and move the currently largest element of list Lo into list Ls. The resulting
permutation is equal to the concatenation of the final contents of L, L, and L3, each
list in increasing order (see [Knu73)).

All the paths from P can be generated recursively. This leads to an algorithm
which searches a binary tree 1". This tree 17" has depth n and (Ln72 J) leaves. Each path
from P corresponds to a root-to-leaf path in 7. Therefore, the whole algorithm can
be implemented to run in O(n) space and will require O(1) time per each generated
path from P. Since the algorithm converting each path into a permutation runs in
linear time, this approach requires O(n) time per each permutation. This method
of generating permutations from X, can easily be incorporated into the algorithm
Select-ordering-and-check. Namely, after generating a permutation from X,,, the
steps (2) - (5) of the algorithm Select-ordering-and-check should be executed.
Then, the next permutation from X, should be generated, the steps (2) - (5) exe-
cuted, and the whole process should be repeated until all permutations from X,, are

considered.

3 Conclusions

In this paper we presented an algorithm that computes all extensions of a default
theory after searching through the search space of permutations (orderings) of defaults
of size ~ 0.8 x 2"/y/n. This is the first algorithm by date, guaranteeing that all
extensions will be found, and considering in the worst case significantly less candidates
than 2".

Versions of the algorithm Select-ordering-and-check and the corresponding
analogues of Theorem 1.1 are known for other objects considered as models of belief
sets determined by a default theory: rational extensions and constraint extensions
[MT93b, MT95], as well. The main result of this paper holds for these other cases, too.
That is, the set of permutations constructed in the previous section guarantees the

completeness of the select-ordering-and-check method for computing weak, rational

12



and constraint extensions.

It is also interesting to note that the methods used in this paper can be generalized.

Let t be an integer such that 0 < ¢ < n. Modifying the arguments used in the paper

one can produce a set of permutations of the size (

n

t) such that every subset of

{1,...,n} of cardinality not greater than ¢ appears as a prefix in at least one of the

permutations in the set. This yields an algorithm to compute extensions of a default

theory if bounds on the number of generating defaults are known.
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