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In this paper, we describe a language PS
pb to model

search problems that are specified in terms of boolean
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search problems represented in the language PS
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1. Introduction

Recent research demonstrated that programs
computing models of theories in propositional lan-
guages, or SAT solvers, can be used to find solu-
tions to a broad class of search problems. Due to
advances in the performance of SAT solvers, that
approach is now becoming practical for an ever ex-
panding range of applications. Despite this com-
putational potential of SAT solvers, the tools to
support and facilitate their use are lagging behind.
They are ad hoc and problem specific. Typically, to
use a SAT solver to compute solutions of a search
problem Π, a programmer develops a specialized
program PΠ that generates, for each instance of
Π, a corresponding instance of the SAT problem.

*This is an extended version of a paper presented at the
Third International Workshop on Modelling and Reformu-
lating Constraint Satisfaction Problems, Toronto, Canada,
September 2004.

That approach makes it difficult to reason about
problem constraints as they are “hard-wired” in
the program PΠ. It also hinders the use of SAT
solvers as general-purpose computational mecha-
nism. Different search problems (even equivalent
but different representations of the same problem)
require an associated specialized “translator” pro-
gram.

Our objective is to provide support for a more
general and systematic approach to solving search
problems by SAT solvers consisting of the follow-
ing three main steps:

1. Modeling: First, a programmer represents
constraints of a search problem Π as a the-
ory PΠ in a high-level constraint language L,
and constructs a description DI of a specific
instance I of the problem Π.

2. Compiling: Next, a specialized program com-
piles the pair (DI , PΠ) into a theory TΠ,I in
some propositional target logic Ltgt so that
solutions to problem Π for an instance I cor-
respond to models of TΠ,I and can be recov-
ered from them quickly. The compiling pro-
gram depends only of L and Ltgt and not on
individual search problems.

3. Solving: Finally, a solver for the logic Ltgt ,
that is, a program computing models of the-
ories in Ltgt , finds a model of TΠ,I (and so,
also a solution to Π for I), or determines that
no models (solutions) exist.

In this paper we are concerned with the first two
steps of that process. Our objective is to design
and implement tools that will support the use of
existing solvers (and their extensions) in the third
one.

For the modeling language L in step 1, we pro-
pose extension of the language PS+ [9]. Theo-
ries in PS+ consist of formulas that generalize
propositional schemata (clauses of predicate logic).
Our language extends PS+ with the ability to
model explicitly pseudo-boolean constraints. We re-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved



2 East et al. / Tools for modeling and solving search problems

fer to it as the language of propositional schemata
with pseudo-boolean constraints and denote it with
PSpb .

As PS+, the language PSpb separates the spec-
ification of problem constraints from the descrip-
tion of particular data instances. Users model con-
straints as clauses in the language PSpb and rep-
resent problem instances as collections of ground
atoms in the language PSpb .

Given a theory consisting of a program (clauses)
and data (ground atoms), we interpret PSpb

clauses as propositional schemata. They represent
sets of their propositional instantiations with re-
spect to all constants explicitly mentioned in the
data component of the theory. These instantia-
tions are formulas in the propositional logic with
pseudo-boolean constraints, PLpb , which is a direct
extension of propositional logic with propositional
pseudo-boolean constraints. In this work, we use
the logic PLpb as the logic Ltgt in step 2.

We consider models of the ground instantiation
of a PSpb theory T (models in the logic PLpb) to be
models of T . Consequently, models of a PSpb the-
ory T can be computed by grounding T and then
by finding models of the ground instantiation of
T . This latter task can be accomplished by off-the-
shelf SAT solvers and solvers of pseudo-boolean
constraints (sometimes after some additional sim-
ple transformation of the ground theory).

The logic PLpb extends the logic of pseudo-
boolean constraints and, consequently, also the
standard propositional logic. Thus, if the origi-
nal PSpb theory contains no pseudo-boolean con-
straints, grounding it yields a propositional theory
and off-the-shelf SAT solvers can be used in step
3. If the original PSpb theory contains no boolean
combinations of pseudo-boolean constraints (each
pseudo-boolean constraint forms a unit clause),
grounding it generates a collection of propositional
pseudo-boolean constraints that can be solved by
SAT(PB) solvers such as PBS [1], Pueblo [18] and
minisat+ [10] (we refer to [16] for more references).
For general PLpb theories there are simple trans-
formations that convert them into one of the forms
discussed above.

In the paper, we briefly discuss the language
PSpb , which serves as a programming front-end,
a modeling language, and the logic PLpb , a tar-
get logic for ground PSpb theories, a bridge to a
solver. The main objective of this paper is to de-
scribe a grounder program, psgrnd, that automates

the task of grounding. Our implementation of ps-
grnd extends the scope and improves the perfor-
mance of an earlier prototype [9]. It is available at
http://www.cs.uky.edu/psgrnd/.

We believe that using solvers dealing directly
with boolean combinations of pseudo-boolean con-
straints may be more effective than rewriting
a ground theory to eliminate such combinations
(which usually makes the theory larger) and using
SAT or SAT(PB) solvers on the rewritten theory.

To further facilitate the use of existing and fu-
ture solver programs, we designed a DIMACS-like
default output format for psgrnd and scripts to
translate it, whenever appropriate, into the DI-
MACS format [17] and to input formats of several
SAT(PB) solvers. Our main objective in design-
ing the psgrnd output format is to establish it as
the standard input format for future PLpb solvers.
Adopting it will make the use of the PSpb mod-
eling language and the psgrnd grounding program
more straightforward and direct.

2. Logic PLpb

We start with the description of the logic PLpb

as it makes it easier later to introduce the logic
PSpb as a generalization of PLpb to the first-order
language. The logic PLpb extends the logic intro-
duced in [9], in which only cardinality constraints
(called there cardinality atoms) were allowed. All
basic ideas behind the logic proposed in [9] lift lit-
erally to our setting and we follow closely the pre-
sentation given there.

A pseudo-boolean constraint (pb-constraint, for
short) is an expression of the form

A = l{p1 = w1, . . . , pk = wk}u,

where p1, . . . , pk are atoms from some fixed set of
atoms At , w1, . . . , wk are integer weights associ-
ated with atoms p1, . . . , pk, respectively, and l and
u, where l ≤ u, are integers called the bounds. One
of the bounds, but not both, may be missing. In-
formally, this constraint is true if and only if the
sum of weights wi for atoms pi which are true is
comprised between l and u. If all weights are equal
to 1, we often drop them from the notation and
write A as l{p1, . . . , pk}u (in this case, we refer to
these pb-constraints as cardinality constraints).

Our notation for pb-constraints follows the one
used in lparse [19]. A different notation is used in
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[2], where a pb-constraint is seen as an integer-

programming constraint l ≤
∑k

i=1
piwi ≤ u, with

pis regarded as integer variables with the do-
main {0, 1} rather than propositional variables [3,
2]. Pseudo-boolean constraints generalize propo-
sitional clauses and often make modeling of ap-
plication problems more direct. Consequently, the
problem of computing assignments satisfying sets
of pseudo-boolean constraints has received much
attention in the SAT community and resulted in
several effective SAT(PB) solvers [16].

Pb-constraints can be combined into more com-
plex constraints. A pb-clause is an expression of
the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are (propositional) atoms or
pb-constraints1. We note that we write ‘,’ and
‘|’ for the conjunction and the disjunction oper-
ators, respectively. Since natural language con-
straints are typically given as implications, we also
use the “implication” notation for clauses in our
approach. Similar convention is used in logic pro-
gramming.

A set of atoms M ⊆ At satisfies a pb-constraint
A = l{p1 = w1, . . . , pk = wk}u, denoted by M |=
A, if

l ≤
∑

{i:pi∈M}

wi ≤ u,

with an obvious extension to the case when one
of l and u is missing. A set of atoms M satisfies
a pb-clause C, written as M |= C, if M satisfies
at least one atom or pb-constraint Bj or does not
satisfy at least one atom or pb-constraint Ai.

Since the logic PLpb extends the logic of pseudo-
boolean constraints, it also extends the clausal
propositional logic. But, there is a more direct re-
lationship. Indeed, every CNF clause

¬a1 ∨ . . . ∨ ¬am ∨ b1 ∨ . . . ∨ bn

has an equivalent representation in the logic PLpb

as an implication (we recall that in the logic PLpb

‘,’ and ‘|’ stand for ‘∧’ and ‘∨’, respectively)

a1, . . . , am → b1| . . . |bn.

1Most current SAT(PB) solvers do not accept such com-

plex constraints. They require that each pseudo-boolean
constraint represents a “unit” clause. Two exceptions are
aspps [9,8] (which, however, accepts only clauses built of
cardinality constraints) and wsatcc [14,15].

In other words, the clausal propositional logic is
simply a fragment of the logic PLpb .

To illustrate the use of the logic PLpb we will
consider the dominating-set problem. Let G =
(V,E) be an undirected graph. A set X ⊆ V is a
dominating set in G if every vertex of G is in X or
is adjacent to a vertex in X. Given an undirected
graph G, a weight function w assigning integers to
vertices, and an integer k, the problem is to find
a dominating set X such that the total weight of
vertices in X is at most k. To model the problem,
we define a PLpb theory D(G,w, k) as follows:

{pv = w(v): v ∈ V }k
pv | 1{pw: {v, w} ∈ E}, for every v ∈ V .

Since all the atoms in the pb-constraint in the
second rule have weights equal to 1, according to
the convention we mentioned earlier, we dropped
weights from the notation. It is clear that a set
of vertices X is a dominating set with the total
weight at most k if and only if the set of atoms
{pv: v ∈ X} is a model of D(G,w, k). This exam-
ple shows one of the advantages of the logic PLpb

over formalisms which do not allow boolean com-
binations of pb-constraints. There is a direct map-
ping of the constraint defining a dominating set to
a clause of the logic PLpb .

3. Language PSpb

The main question we deal with in this paper is
how to specify theories such as D(G,w, k) so that
problem specifications are described concisely by
means of finite programs that are independent of
particular data instances. The language we pro-
pose extends the language PS+ [9] by direct ways
to model general pb-constraints (only cardinality
constraints were addressed in [9]).

Understanding the language PSpb and, espe-
cially, its semantics is essential for the design of
the grounder. Thus, we will now outline main ideas
behind it. We follow closely the way in which the
language PS+ was described in [9] and refer to
that paper for more details.

3.1. Language PS+

Let us consider the following clauses in the lan-
guage of predicate logic (to stay consistent with
the notation used earlier, we write ‘,’ for ‘∧’ and
‘|’ for ‘∨’; ⊥ stands for a contradictory formula):
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r(X)|g(X)|b(X)
edge(X,Y ), r(X), r(Y ) → ⊥
edge(X,Y ), g(X), g(Y ) → ⊥
edge(X,Y ), b(X), b(Y ) → ⊥

These clauses can be viewed as a specification of
the graph 3-coloring problem. Indeed, given a set
of ground atoms

DG = {vtx (x): x ∈ V } ∪

{edge(x, y): {x, y} ∈ E},

specifying a graph, and some typing information
stating that X and Y can only be substituted with
constants in the extension of the relation symbol
vtx , these clauses offer a concise notation for the
following collection of their ground instantiations

r(x)|g(x)|b(x), for every x ∈ V
edge(x, y), r(x), r(y) → ⊥, for every x, y ∈ V
edge(x, y), g(x), g(y) → ⊥, for every x, y ∈ V
edge(x, y), b(x), b(y) → ⊥, for every x, y ∈ V .

Under an additional assumption that the truth val-
ues of the atoms of the form vtx (x) and edge(x, y)
are fully determined by the set DG (those in DG

are true and those not in DG are false), these
clauses can be rewritten as

r(x)|g(x)|b(x), for every x ∈ V
r(x), r(y) → ⊥, for every x and y such that
edge(x, y) ∈ DG

g(x), g(y) → ⊥, for every x and y such that
edge(x, y) ∈ DG

b(x), b(y) → ⊥, for every x and y such that
edge(x, y) ∈ DG.

This is a version of a familiar propositional encod-
ing of the problem of 3-coloring of the graph G.
It has the property that there is a one-to-one cor-
respondence between models of that theory and
3-colorings of G.

In [9], we described a formalism to model
search problems in a way generalizing the graph
3-coloring example. The language of that for-
malism is essentially a fragment of the standard
language of first-order logic with the signature
(Rd, Rp, C, V ), where Rd and Rp are disjoint sets of
relation symbols, and C and V are sets of constant
and variable symbols, respectively2. However, we

2The language also contains predefined relation symbols
==, <=, <, >= and > for the equality and arithmetic

comparisons, and predefined function symbols such as +,
−, ∗ and / to represent arithmetic operations. For these
symbols, we always assume their standard interpretation.
Consequently, we drop them from the signature.

distinguish two types of relation symbols depend-
ing on whether they belong to Rd or Rp. We use
relation symbols in Rd to represent data instances
of search problems and call them data relation
symbols. We call relation symbols in Rp program
relation symbols. In the graph-coloring example,
Rd = {vtx , edge} and Rp = {r, b, g}.

The definitions of terms, atoms, and ground
terms and atoms are standard. A clause in the lan-
guage is an expression of the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are atoms. As before, we write
clauses as implications rather than disjunctions.
We recall that we use ‘,’ and ‘|’ in place of ‘∧’ and
‘∨’.

Given a search problem, we model its particu-
lar computational instance by a data-program pair
(D,P ), where D is a set of ground atoms built of
data relation symbols and P is a program, that is, a
set of clauses specifying problem constraints. Pro-
grams also contain typing declarations. The state-
ments with the keyword pred define program rela-
tion symbols, specify their arities and the types of
the arguments. The statements with the keyword
var specify types of variables that appear in the
program. The types are given by unary data rela-
tion symbols. All typing declarations have global
scope in a given program. For the graph-coloring
example the typing declarations are of the form:

pred r(vtx )
pred g(vtx )
pred b(vtx )
var vtx X,Y

Let (D,P ) be a data-program pair. Typing spec-
ifies for each variable its domain (as the exten-
sion in D of the data predicate defining its type),
which in turn, for every clause in P determines
its set of ground instances. Since we assume, as in
the graph-coloring example above, that the exten-
sions of data relation symbols are fully specified by
the input data instance D, we simplify them away
from these ground instances. The union of all such
ground instances of all clauses in P is a proposi-
tional theory, whose models provide the semantics
for the data-program pair (D,P ).

To sum up, the formalism proposed in [9] is a
language for modeling constraints of search prob-
lems as programs, that is, sets of declarations and
clauses. The data-program pair, consisting of a
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program and a specification of a particular data
instance as a set of ground atoms, represents a
propositional theory — a collection of ground in-
stantiations of clauses in the program with respect
to constants specified in the data. Models of this
propositional theory correspond to problem solu-
tions.

3.2. Syntax of PSpb

We will now describe the language PSpb that
extends the formalism from [9] by means to model
arbitrary pb-constraints and their combinations.
A grammar providing a precise definition of the
syntax is available at http://www.cs.uky.edu/

psgrnd/.
The signature of the language of the logic PSpb

is (Rd, Rp, C, V,W ), where Rd, Rp, C and V are
as before, and where W is a set of weight-function
symbols. The only terms in the language are arith-
metic expressions built of constant and variable
symbols in C ∪ V . Clauses in the logic PSpb are
built of pb-constraints, which we view as con-
straints on sets of atoms. Thus, a set of atoms is a
basic concept in our language.

A weighted-set definition is an expression S of
the form p(t) = w(t′)[L] : d1(s1) : . . . : dm(sm),
where p is a program relation symbol, w is a
weight-function symbol, L is a list of variables, di,
1 ≤ i ≤ m, are data or predefined relation sym-
bols, and t, t′ and si, 1 ≤ i ≤ m, are tuples of terms
such that all variables appearing in t′ appear also
in t. We call the expression d1(s1) : . . . : dm(sm)
the condition of S. Intuitively, S stands for the
set of all expressions p(t) = w(t′), for which all
conditions di(si), 1 ≤ i ≤ m, hold. All variables
in L must also appear in t. It is possible for L
to be empty. In such case, we omit the list from
the notation altogether. It is also possible that
m = 0. In such case we omit the symbol ‘:’. If the
weight function is a constant function equal every-
where to 1, we omit it from the notation and write
p(t)[L] : d1(s1) : . . . : dm(sm).

Each weighted-set definition S is a “template”
for sets of weighted atoms. Variables appearing in
S that are not in the list L appearing in S are
free. Grounding them (replacing with constants)
yields different instances of the template S. Vari-
ables that appear in the list L of S are bound in
S. Grounding bound variables in an instance of S,
yields elements of the set defined by that instance.

We formalize these intuitions below, when we for-
mally define the notion of grounding.

A first-order pb-constraint (or pb-constraint, if
there is no ambiguity) is any expression

l{S1; . . . ; Sk}u,

where l and u are terms and S1, . . . , Sk are
weighted-set definitions. Intuitively, the meaning
of a predicate pb-constraint l{S1; . . . ; Sk}u is that
the total weight of all atoms that are true in the
union of the sets specified by the set definitions
S1, . . . , Sk is at least l and no more than u (we will
shortly make this intuition precise). A (first-order)
pb-clause is an expression of the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are (first-order) atoms or pb-
constraints.

We represent an instance of a search problem as
a set D of ground atoms specifying the extensions
of data relation symbols in Rd. The set D also
contains expressions of the form w(c1, . . . , ck) = u,
where w is a k-ary weight-function symbol in W ,
c1, . . . , ck are constants that occur in ground atoms
listed in D, and u is an integer. These expressions
define a weight function w (we assume that argu-
ment tuples not listed explicitly do not belong to
the domain of w). We call such sets D data sets.

We represent the constraints specifying the
search problem itself by a collection of pb-clauses,
and typing and declaration statements. The latter
have the same format as that we introduced earlier
when discussing the graph-coloring example. We
call such collections programs.

We call a pair (D,P ), where D is a data set and
P is a program, a data-program pair.

3.3. Semantics of PSpb

We will now define models of data-program
pairs. The definition is based on the interpretation
of clauses as propositional schemata, that is, as
shorthands for sets of ground propositional clauses.

Let (D,P ) be a data-program pair. First, we
consider a weighted-set definition S of the form
p(t) = w(t′)[L] : d1(s1) : . . . : dm(sm) appearing in
a pb-clause of a data-program pair (D,P ). Let ϑ
be a ground substitution whose domain contains
all free variables in S and does not contain any
variables that are bound in S (we note that the
sets of free and bound variables are disjoint). By
Sϑ we denote the set of expressions of the form
p(tϑϑ′) = v, where
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1. ϑ′ is a ground substitution with the domain
consisting of all variables that are bound in
S such that for every i, 1 ≤ i ≤ m, di(siϑϑ′)
holds (we note that term tuples siϑϑ′ are
ground and, since data relation symbols are
fully specified by a data-program pair, this
latter condition can be verified efficiently)

2. v is an integer to which the weight expression
w(t′ϑϑ′) evaluates. That is, we evaluate the
term tuple t′ϑϑ′, which is ground (perform-
ing arithmetic operations, if necessary) and
look up in D the value of the function w for
the resulting tuple of the ground arguments
(we recall that weight functions are fully de-
fined in the data component D). The whole
expression is undefined if w is undefined for
the term t′ϑϑ′.

To specify the meaning of a pb-clause C occur-
ring in the program P of the data-program pair
(D,P ), we ground C and replace it with a set
of propositional pb-clauses. Let us consider a pb-
constraint A = l{S1; . . . ; Sk}u appearing in C.
We start by renaming all bound variables by new
unique names different from any other variable
name in the clause (the renaming does not change
the meaning of any of the set definitions in A). In
this way, the sets of bound and free variables in C
are disjoint. Let ϑ be a ground substitution whose
domain contains all free variables and none of the
bound ones. We define Aϑ as follows:

1. Aϑ = ⊥, if lϑ or uϑ are not integers
2. Aϑ = ⊥, if for some 1 ≤ i ≤ k, Siϑ is unde-

fined
3. Aϑ = ⊥ if for some 1 ≤ i < j ≤ k and

w 6= w′, there are expressions a = w and
a = w′, in Siϑ and Sjϑ, respectively.

4. Aϑ = lϑ{S1ϑ ∪ . . . ∪ Skϑ}uϑ, otherwise. In
this case, lϑ and uϑ are integer constants, and
S1ϑ∪ . . .∪Skϑ is a set of ground expressions
of the form a = w.

It is clear that Aϑ is a propositional pb-
constraint. Applying ϑ to all atoms in C pro-
duces a propositional pb-clause Cϑ. We now de-
fine grnd(D,P ) to consist of all propositional pb-
clauses of the form Cϑ, where C is a pb-clause
in P and ϑ is a ground substitution that contains
in its domain all free variables in C and none of
C’s bound variables. We define a set M of ground
atoms to be a model of (D,P ) if it is a model of
grnd(D,P ).

Given a mapping assigning to an instance I of
a search problem Π a data set DI , we say that a
program P solves Π if for every instance I, solu-
tions to Π for I correspond to models of the data-
program pair (DI , P ).

4. Psgrnd

Models of a data-program pair (D,P ) are mod-
els of a PLpb theory grnd(D,P ). Consequently,
they can be computed by solvers for the logic
PLpb . To facilitate use of such solvers in com-
puting solutions to search problems represented
in the language PSpb as data-program pairs, we
implemented a program psgrnd. Given a data-
program pair (D,P ), psgrnd outputs its grounding
grnd(D,P )3.

4.1. Description

This section describes the program psgrnd. Our
implementation is a major enhancement of a pro-
totype program described in [9]. It is based on
a formal grammar for the language of the logic
PSpb . Both the grammar and the psgrnd pro-
gram are available at http://www.cs.uky.edu/

psgrnd/. To generate the parser source code, we
processed this grammar by the Bison utility [12].
We wrote the code of psgrnd in C++ and compiled
it both under UNIX and Windows environment.
We used gcc 3.3 compiler for UNIX and Microsoft
Visual Studio 6.0 compiler for Windows XP. The
main improvements with respect to the earlier ver-
sion of the grounder program include the capabil-
ity to process weight constraints (when all weights
are positive) and an option to execute the complete
one-atom lookahead (we will explain this concept
later) to reduce the size of the propositional theory
produced by the grounder.

The output from the grounder program when
executed on a data-program pair (D,P ) is a set
of ground instantiations of pb-clauses in P com-
puted with respect to data specification in D. It
also includes the set of atoms whose logical value
was determined by the grounder and those that

3There are some minor differences between the grounding

as we described it and what we implemented in psgrnd.
Namely, in the cases (1) - (3) of the definition of Aϑ, the
grounder produces an error message and terminates with
failure.
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the grounder determined to be irrelevant (they
may assume any logical value in any model of the
pair (D,P )). Some of the most important options
of the program include output in human-readable
form, output in the DIMACS and PBS format (for
input data-program pairs without pb-constraints
and for input data-program pairs with all pb-
constraints forming unit clauses, respectively), dis-
abling lookahead, and disabling propagation.

This implementation of the grounder is often
much faster than the previous implementation due
to carefully designed memory management mod-
ule. Moreover, information about data predicates
is reorganized before parsing clauses by replacing
linked lists of possible values with sorted arrays.
This allows us to use binary search during parsing
and grounding clauses. The benefits of using bi-
nary search exceed additional cost associated with
sorting data.

Furthermore, when generating ground instances
of clauses of PSpb programs, we ground variables
in the order of minimal cost. This eliminates early
those variable instantiations which do not lead to
valid ground clauses.

Another improvement in efficiency comes from
storing names and other multi-character symbols
appearing in user input in a symbol table and rep-
resenting every name in data structures by its cor-
responding number. As a result, we can often re-
place inefficient string comparisons with compar-
isons between two integers.

Previous versions of the program used a binary
search tree to store names of ground atoms dur-
ing grounding process. The current version uses a
balanced binary tree data structure for this pur-
pose. In many applications, the number of ground
atoms is large (measured in millions). We believe
that the use of a balanced binary tree is needed to
maintain the set of ground atoms and to search it
efficiently.

During the grounding process, when a new
clause, say r, is added to the collection of ground
clauses and r contains only one atom, psgrnd trig-
gers unit propagation. It follows a general format
of unit propagation for propositional CNF theories
[6], modified to handle the case of pb-constraints.
When there are no more truth values to propa-
gate and no contradictory pb-clause (empty an-
tecedent and empty consequent) was derived, the
unit propagation process terminates. If a contra-
dictory clause was derived, the theory is inconsis-

tent, the whole grounding process terminates and
a single contradictory clause is returned.

When grounding is complete, psgrnd has an op-
tion to perform a complete one-atom lookahead
(called also failed literal rule in literature on SAT
solvers [13]). For every ground atom with an unde-
termined truth value, the grounder assigns to this
atom a truth value (first true, then false) and ten-
tatively propagates it. If this tentative propagation
results in an inconsistency, the atom must have the
opposite truth value and permanent propagation
is later performed on this atom with its assigned
value. If a tentative propagation terminates with-
out a conflict, the program restores the theory to
its previous state. A complete one-atom lookahead
is costly (runs in time O(n2), where n is the num-
ber of ground atoms) but sometimes results in a
much smaller theory.

4.2. Experimental results

We will now briefly discuss the performance of
psgrnd. The key question is how fast it can process
data-program pairs leading to large ground theo-
ries with millions of atoms and clauses. We tested
psgrnd (version of June 4, 2004, used with the
lookahead option) on data-program pairs (Dn, P ),
where P is a program consisting of two simple
clauses, each with four variables over the same do-
main, and Dn specifies this single domain as the
integer range (1..n).

pred p(num,num,num,num).

pred q(num,num,num,num).

var num A,B,C,D.

p(A,B,C,D)|q(A,B,C,D).

p(A,B,C,D),q(A,B,C,D)-> .

The ground theory for a data-program pair
(Dn, P ) consists of 2n4 ground atoms and 2n4

ground clauses. Thus, even for small values of
n, the ground theory is large, which poses a
challenge for grounding programs (for instance,
grnd(D50, P ) has over 12 million atoms and 12 mil-
lion clauses). We compared psgrnd with its earlier
and restricted version [9], which we call here old-
psgrnd (version of June 4, 2003). We also compared
psgrnd with lparse (version 1.0.13), a state-of-the-
art program for grounding DATALOG¬ programs.
For that comparison, we replaced the program P
with an equivalent DATALOG¬ program of a sim-
ilar structure to P .

num(1..n).

p(A,B,C,D) :- num(A;B;C;D), not q(A,B,C,D).

q(A,B,C,D) :- num(A;B;C;D), not p(A,B,C,D).
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The results for n = 10, 20, 30, 40, and 50 are

shown in Table 1.

Table 1

Hand-made program, large ground theories, CPU time in
seconds

grounder psgrnd old-psgrnd lparse

n = 10 0.09 23.68 0.15

n = 20 1.8 509.30 2.51

n = 30 10.59 2995.87 12.87

n = 40 36.43 - 40.48

n = 50 94.76 - 102.88

The results indicate that psgrnd is at least two

orders of magnitude faster than its earlier version,

which timed out (the limit was set at 3600 sec of

CPU time). It is also slightly faster than lparse. We

conducted these experiments on a machine with

3.2GHz Intel Pentium processor, 1Gb memory and

running Slackware 9.0 Linux kernel 2.4.25.
We also experimented with programs encoding

more typical search problems. We present here re-
sults for the graph coloring problem for certain
simplex graphs with 5n vertices and 11n−4 edges,
for n = 5000, 10000, 15000 and 20000 (the ground
theory in this last case has 300000 atoms and
1059998 clauses). For psgrnd we used the following
program

pred r(vtx).

pred g(vtx).

pred b(vtx).

var vtx X,Y.

r(X) | g(X) | b(X).

edge(X,Y), r(X), r(Y) -> .

edge(X,Y), g(X), g(Y) -> .

edge(X,Y), b(X), b(Y) -> .

The equivalent program for lparse is

r(X) :- vtx(X), not g(X), not b(X).

b(X) :- vtx(X), not r(X), not g(X).

g(X) :- vtx(X), not r(X), not b(X).

:- edge(X,Y), r(X), r(Y).

:- edge(X,Y), g(X), g(Y).

:- edge(X,Y), b(X), b(Y).

The results in Table 2 show that psgrnd signif-

icantly outperforms old-psgrnd and is faster than

lparse (the latter program causes segmentation

fault when run for n = 20000).

Table 2

Graph-coloring problem

grounder psgrnd old-psgrnd lparse

n = 5000 1.14 > 1000 1.84

n = 10000 2.28 > 1000 3.74

n = 15000 3.43 > 1000 5.70

n = 20000 4.51 > 1000 seg fault

4.3. Program usage

The program psgrnd is invoked from a UNIX
command line in the following way

psgrnd [−d dataF ileList] − r ruleF ile

[−c constantList] [output] [flags]

The list dataFileList is optional and consists of one
or more data files:

dataF ile1 dataF ile2 . . . dataF ileN

Altogether they specify the “data” component of
the problem description. The file ruleFile contains
the “program” component of the problem descrip-
tion.

The output is of the form

[−o outputForSolver]

[−m humanReadableOutput]

The file outputForSolver contains the file that can
be processed by a solver and the file human-
ReadableOutput contains the same output but in
human-readable form. If -o option is not specified,
the default output file is out.aspps. If -m option is
not specified, no human-readable output is gener-
ated.

An optional constantList is a list of value assign-
ments for symbolic constants appearing in data
files or in a rule file. Assuming the names of con-
stants are n1, . . . , nM and the corresponding val-
ues are v1, . . . , vM , the constantList has the fol-
lowing form:

n1 = v1 n2 = v2 . . . nM = vM

Flags −d, −r, and −c may be dropped, but
in this case they should be dropped altogether
and the data files should always precede the rule
file. Psgrnd has several options specifying output
formats and processing instructions. We refer to
http://www.cs.uky.edu/psgrnd/ for details.



East et al. / Tools for modeling and solving search problems 9

The program psgrnd can currently produce its
output in several formats. The default format is
designed for the case of general theories in the logic
PLpb . It is accepted by solvers aspps [9,8] (if all
pb-constraints in the ground theory are cardinality
constraints) and wsatcc [14,15].

To support the use of existing SAT solvers
and SAT(PB) solvers, we developed simple scripts
translating the psgrnd format into the DIMACS
format [17] (if the ground theory contains no pb-
constraints) and into input formats of SAT(PB)
solvers [16] (if all clauses containing pb-constraints
are unit clauses). The scripts generating DIMACS
and PBS [1] formats are already integrated as op-
tions of psgrnd (−dimacs or −D, and −pbs or −P ,
respectively). The other scripts will be integrated
in the future.

We will now briefly describe the default output
format for psgrnd. Our objectives are to estab-
lish that format as the standard input format for
solvers for the logic PLpb and to support the use
of PSpb as a programming front-end for existing
and future SAT(PB) solvers.

The default output format for psgrnd has the
following properties. The output file starts with a
header line
p n of prop atoms n of pb constr n of rules

The next n of rules lines represent clauses of the
ground program. Propositional atoms are repre-
sented by positive integers. Pseudo-boolean con-
straints are represented in the form

[ l u a1 = w1 . . . ak = wk ]

where l and u are integers representing the lower
and the upper bound, respectively, a1, . . . , ak are
integers representing propositional atoms, and
w1, . . . , wk are integer positive weights assigned to
these atoms. Cardinality constraints (special case
of pseudo-boolean constraints where all weights
are equal to 1) are represented as expressions

{ l u a1 . . . ak }

with the meaning of l, u, and a1, . . . , ak as above.
When the lower bound is missing, the number of
0 is output in its place. When the upper bound
is missing, the sum of weights of the propositional
atoms in the pb-constraint is output in its place.
Clauses of the ground program contain first a set
of atoms and pb-constraints in the body (possi-
bly empty), next a comma and, finally, a set of
atoms and pb-constraints (possibly empty) in the

head. Within sets of atoms and pb-constraints in
the body and in the head, propositional atoms are
followed by cardinality constraints, and then by
other pb-constraints.

After lines representing clauses, there are lines
containing description of propositional atoms in
the form

c atom number atom name

Atoms appearing in the rules are assigned positive
numbers starting with 1. Atoms determined dur-
ing grounding to be true are assigned number 0.
Atoms that the grounder determined to be irrel-
evant (they may assume any logical value in any
model) are assigned number -1. In general, if a line
starts with a ‘c’ character, it is considered a com-
ment, not a part of the ground program.

5. Examples

We will now consider several search problems
and describe PSpb programs that solve them. All
relevant data relation symbols and weight func-
tion symbols appear in typing statements and
in clauses of programs solving search problems.
Therefore, we will only describe programs and
omit a detailed discussion of the data representa-
tion schemata.

We start with the dominating set problem,
which we discussed earlier. The program solving
the problem consists of the following statements
and clauses:

pred in(vtx).

var vtx X,Y.

{in(X)=w(X)[X]}k.

in(X) | 1{in(Y)[Y]: edge(X,Y)}.

The first clause captures the constraint that the
sum of weights of selected vertices is at most k.
The second clause represents the constraint defin-
ing a dominating set: every vertex belongs to the
set or at least one of its neighbors does4. This pro-
gram (given a data set) grounds to the PLpb theory
we described in Section 2. We note that following
the grammar of the syntax of the language PSpb

accepted by psgrnd, we complete each declaration
and each clause with a period ‘.’. We also note that
the constant k appearing in the first clause and

4We assume here that every edge {x, y} of an input graph
is represented both as edge(x, y) and edge(y, x).
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specifying the bound on the total weight of a dom-
inating set needs to be specified at the command
line when calling psgrnd.

The next problem we discuss is the n×n magic
square problem. To solve it we can use the follow-
ing PSpb program.

pred in(index,index,entry).

var index I,J.

var entry K.

1 {in(I,J,K)[K]} 1.

1 {in(I,J,K)[I,J]} 1.

n*(n*n+1)/2 {in(I,J,K)=w(K)[J,K]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,J,K)=w(K)[I,K]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,I,K)=w(K)[I,K]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,n+1-I,K)=w(K)[I,K]} n*(n*n+1)/2.

The first two clauses are unit cardinality con-
straints that ensure that (1) there is exactly one
value K (from the range (1..n2) defined in the
data set) for every position (I, J) in the array, and
that (2) every value K is placed in some position
(I, J). The remaining four clauses describe the ba-
sic problem constraints that each row, column and
two main diagonals have entries that sum up to
the same value n(n2 + 1)/2. As before, the con-
stant n needs to be specified at the command line,
when calling psgrnd.

Next, we consider the Schur problem: given in-
tegers k and n, find an assignment of 1, . . . , n into
k bins so that each bin is sum-free (if x and y are
in a bin, x + y is not). We can solve that problem
with the following program.

pred in(num,bin).

var num M,N.

var bin B.

1{in(M,B)[B]}.

in(M,B), in(N,B), in(M+N,B) -> .

The first clause captures the requirement that
each integer M (in the range specified in the data
set), is assigned to some bin B. The second clause
describes the Schur constraint.

Data-program pairs with these three programs
ground to theories in the logic PLpb . In the last two
cases, these theories consist of pseudo-boolean con-
straints forming only unit clauses and SAT(PB)
solvers can be used to compute their models (solu-
tions to the corresponding instances of the search
problems). Since PSpb is a modeling language, the
same constraint can be sometimes modeled in sev-
eral ways. For example, PSpb allows us to write
the first clause as

in(M,B)[B].

The meaning of this clause is similar to the one
used before. The difference is that it grounds to
a collection of propositional clauses of the form
in(m, 1)| . . . |in(m, k) rather than to propositional
pb-constraints of the form 1{in(m, 1), . . . , in(m, k)}.
Clearly, both types of ground expressions have the
same semantics. However, now the corresponding
data-program pairs ground to propositional CNF
theories and standard SAT solvers can be used for
computing solutions.

To better illustrate the capabilities of the lan-
guage PSpb , our final example concerns a more
complex problem. Namely, we will present two en-
codings of the 15-puzzle problem. In this problem
integers 0, 1, . . . , 15 are placed in a 4×4 array, each
number appearing precisely once. A move consists
of swapping 0 with the content of a neighboring
cell (neighboring cells must be in the same row
or in the same column; sharing a “corner” is not
enough). The goal is to find a sequence of moves
that result in a configuration arranged in the row-
major order (0, 1, 2, 3 in the first row, 4, 5, 6, 7 in
the second row, etc.). The first encoding does not
use pb-constraints or cardinality constraints.

% Declare program predicates

pred in(time,pos,pos,entry).

pred move(time,pos,pos).

% Declare variables

var time T.

var pos U,V,X,Y.

var entry A,B.

% For each time T, define an assignment of numbers

% 0, 1, ..., 15 to 16 locations in the array

% Choose at least one number for entry (X,Y)

in(T,X,Y,A)[A].

% No entry (X,Y) contains two different numbers

in(T,X,Y,A), in(T,X,Y,B) -> A==B.

% Each number A appears in at least one entry

in(T,X,Y,A)[X,Y].

% At time T=0, computed assignment must coincide

% with the initial assignment (note: in the

% presence of other constraints, the second

% constraint is redundant)

in(0,X,Y,A) -> in0(X,Y,A).

in0(X,Y,A) -> in(0,X,Y,A).

% For each time T<t, select exactly one location

% neighboring with 0 for the swap

% Select at least one location for the swap

T<t -> move(T,X,Y)[X,Y].

% Select at most one location for the swap

T<t, move(T,X,Y), move(T,U,V) -> X==U.

T<t, move(T,X,Y), move(T,U,V) -> Y==V.
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% The location selected must neighbor

% the location with 0

in(T,X,Y,0), move(T,U,V) ->

abs(X-U)+abs(Y-V)==1.

% Do not undo the last move

in(T,X,Y,0), in(T+2,X,Y,0) ->.

% Assignment at time T+1 must correspond to the

% assignment at time T modulo swapped values

% Number in entry (X,Y) at time T+1 was in this

% entry at time T, or there was 0 at time T, or

% that entry was chosen for the swap

T<t, in(T+1,X,Y,A) ->

in(T,X,Y,A) | in(T,X,Y,0) | move(T,X,Y).

% If at time T we chose (X,Y) to move 0,

% 0 is in that location at time T+1

T<t, move(T,X,Y) -> in(T+1,X,Y,0).

% Specify the goal configuration

% 0 1 2 3

% 4 5 6 7

% 8 9 10 11

% 12 13 14 15

in(t,1,1,0). in(t,1,2,1). in(t,1,3,2). in(t,1,4,3).

in(t,2,1,4). in(t,2,2,5). in(t,2,3,6). in(t,2,4,7).

in(t,3,1,8). in(t,3,2,9). in(t,3,3,10).in(t,3,4,11).

in(t,4,1,12).in(t,4,2,13).in(t,4,3,14).in(t,4,4,15).

For this program and a set of data representing
the initial configuration, psgrnd can produce out-
put in the DIMACS format and the output theory
can be later processed by a SAT solver.

The second encoding of the 15-puzzle problem
uses cardinality constraints. There are two differ-
ences only. They concern the way in which we
model constraints defining an assignment of num-
bers in the array and determining the location for
the swap. We only present encoding of these con-
straints below.

% For each time T, define an assignment of numbers

% 0, 1, ..., 15 to 16 locations in the array

% Each location contains exactly one number

1{in(T,X,Y,A)[A]}1.

% Each number is in exactly one locattion

1{in(T,X,Y,A)[X,Y]}1.

% For each time T<t, select exactly one location

% neighboring with 0 for the swap

T<t -> 1{move(T,X,Y)[X,Y]}1.

in(T,X,Y,0), move(T,U,V) ->

abs(X-U)+abs(Y-V)==1.

For this theory, psgrnd cannot produce output in
the DIMACS format. However, the output theory
can be later processed by SAT(PB) solvers such as
PBS.

We run psgrnd for both encodings of the 15-
puzzle problem using the following set of data.

time(0..t).

pos(1..4).

entry(0..15).

in0(1,1,1). in0(1,2,5). in0(1,3,2). in0(1,4,7).

in0(2,1,8). in0(2,2,4). in0(2,3,3). in0(2,4,11).

in0(3,1,9). in0(3,2,13). in0(3,3,15). in0(3,4,0).

in0(4,1,12). in0(4,2,10). in0(4,3,6). in0(4,4,14).

Since this initial configuration requires 19 moves
to reach the goal, we specified the constant t in
the command line as 19. For the first encoding,
we obtained a ground theory in the DIMACS for-
mat with 45103 rules. The size of the output file
was 834739 bytes. For the second encoding, we
obtained a theory in the PBS format. The out-
put consisted of two files. One of them had 3133
rules in the DIMACS format and the file size was
107246 bytes. The second file had 125096 bytes
and contained 956 pb-constraints. Thus, using pb-
constraints can significantly reduce the size of the
output theory both in terms of the number of
ground rules and disk space used.

6. Conclusions, related and future work

We defined a language PSpb for modeling search
problems specified by boolean combinations of
pseudo-boolean constraints. Based on a formal
grammar of PSpb , we designed and implemented
a program psgrnd that converts specifications of
search problems in the language PSpb into theories
in the logic PLpb . The theories generated by psgrnd
can be output in formats accepted by current SAT
solvers for CNF theories and by solvers for more
general PLpb theories (at present, under some syn-
tactic restrictions). In this way, the psgrnd pro-
gram facilitates the use of SAT and SAT(PB)
solvers as a general computational mechanism for
finding solutions to search problems modeled in
the language PSpb .

Currently psgrnd allows only positive weights.
There is a script translating theories with negative
weights into a form accepted by psgrnd. This script
will be in the future integrated with our grounder
to make it more convenient for the user.

Other researchers also studied the problem of
modeling propositional and pseudo-boolean con-
straints. The closest to our work are the language
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ESO (the existential fragment of the second-order
logic) [5,4] and the language QPROP, extend-
ing the language of propositional logic with finite
quantification [11]. Each of these languages is a
restricted version of our language in that they do
not admit pseudo-boolean constraints. A study of
generalization of techniques for SAT to cardinality
and pseudo-boolean constraints was recently pub-
lished in [7].

As we mentioned at the beginning, represent-
ing search problems in the language PSpb makes
it possible to reason about them. Two important
problems stemming from that possibility are: (1)
to develop automated techniques to rewrite prob-
lem specifications to improve the performance of
solvers on the corresponding ground theories pro-
duced by psgrnd, and (2) to design a class of solvers
whose heuristics could be customized to a partic-
ular ground theory based on properties of its high
level specification in the language PSpb .
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