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It was expected that nonmonotonic logics would beable to model formal aspects of commonsense reason-ing and that their computational properties would bebetter than those of classical logic. Computationalcomplexity results obtained in recent years were, how-ever, discouraging. Decision problems associated withnonmonotonic reasoning, even when restricted to thepropositional case, are very complex. For example, inthe case of logic programming with stable model se-mantics they are NP-complete or co-NP-complete. Inthe case of default logic, they are �P2 -complete or �P2 -complete.However, the complexity results do not necessarily dis-qualify nonmonotonic logics as a computational knowl-edge representation mechanism. Decision problems inclassical logic are also highly computationally complex| NP- and co-NP-complete in the propositional case.These tasks become even more complex in the caseof quanti�ed Boolean formulas [MS72]. In the sametime, recent experimental results on satis�ability indi-cate that propositional logic can serve as a computa-tional tool, and is capable of handling large collectionsof variables and clauses [SLM92, SKC93]. Complexityresults alone are also insu�cient to determine whetherclassical logic or nonmonotonic logics are better suitedas the basis for an automated reasoning system. Inparticular, the results of [CDS94, GKPS95] show thathigher computational complexity of nonmonotonic log-ics may be o�set by more concise encodings than thosepossible with propositional logic.Hence, despite the tremendous progress in our un-derstanding of the basic principles of nonmonotoniclogics, a major question of their viability as a com-putational tool remains unresolved. Systematic im-plementation and experimentation e�ort is necessaryto provide us with better insights into the com-putational properties of nonmonotonic logics. De-spite evident importance of experimental studies ofnonmonotonic logics, there has been little work re-



ported in the literature. While several algorithmswere published and some implementations described[MW88, BNN+93, BNN+94, BEP94, NS95] the resultsare far from conclusive. This state of a�airs can beattributed to the lack of systematic experimentationwith implemented systems. A possible reason for thiswas the absence of commonly accepted benchmarkingsystems. In particular, a convincing and useful for ex-perimentation model of a random logic program hasyet to be proposed.To address the issue of benchmarks we developed asystem, called TheoryBase, generating propositionallogic programs and default theories [CMMT95]. Thissystem allows the users to systematically generate in-teresting families of logic programs and default theo-ries for experimentation. A key feature of TheoryBaseis that it provides an identi�er (label) for every theoryit generates. This can greatly facilitate experimentalcomparisons between implemented systems. Theory-Base has already been used by several research groupsaround the world. Most notably, Niemel�a and Simons[Nie95, NS95] used the ideas behind TheoryBase tostudy their implementation of a system for computingstable models of logic programs.In this paper we report on the project to designand implement a program, Default Reasoning SystemDeReS, that supports basic automated reasoning tasksfor default logic [Rei80] and for logic programmingwith stable model semantics [GL88]. We describe ba-sic features of DeReS. We also present experimentalresults obtained by running DeReS on default theoriesencoding graph problems generated by TheoryBase1.Our current version of DeReS is built around the no-tion of relaxed strati�cation [Cho95c, Cho95a]. Re-laxed strati�cation allows us to use a divide-and-conquer approach when computing extensions. Anoriginal default theory is partitioned into severalsmaller subtheories, called strata. The extensions ofthe original theory are then reconstructed from theextensions of its strata. The notion of relaxed strati�-cation considered here is a generalization of the origi-nal concept as introduced in [ABW88]. In particular, atheory strati�ed in our sense may possess no extension(stable model) or, if it does, not necessarily a uniqueone. In the paper, we show that applying relaxed strat-i�cation leads to dramatic speedups, especially whenthe strata are small.1To date, both systems: TheoryBase and DeReS, havebeen installed and tested in Bern, Ithaca, Karlsruhe, Lex-ington, Riverside and San Diego. They are currently avail-able by anonymous ftp from al.cs.engr.uky.edu. The �lenames are: TheoryBase.tar.gz and DeReS.tar.gz in thedirectory /cs/software/logic.

In the paper we also study the e�ects of di�erentpropositional theorem provers on the e�ciency ofDeReS. We observe that full theorem provers, whichcheck for global consistency when deciding whethera theory proves a formula, result in performing pro-hibitive amount of redundant computation. A weakernotion of a local prover, sound but not complete, canalso be used to correctly implement DeReS and resultsin substantial improvements in time performance.Our results show that there are classes of theories thatDeReS can handle very e�ciently. However, if relaxedstrati�cation does not yield a partition of an input the-ory into small strata, the e�ciency of DeReS may bepoor. In this context, it is interesting to relate ourwork to the work of Niemel�a and Simons [NS95]. Thetwo implementations are di�cult to compare as theyattack di�erent aspects of the same problem. Whileour research focused on techniques to exploit relaxedstrati�cation and limit the number of global consis-tency checks, Niemel�a and Simons studied techniquesto deal with individual strata. It seems that the nextgeneration implementations of nonmonotonic systems,in order to be e�ective in a large range of di�erent ap-plications, must combine the techniques developed inboth projects.The paper is organized as follows. In the next section,we describe DeReS. We brie
y describe basic proper-ties of relaxed strati�cation, introduce local proversand present the benchmark problem generator, Theo-ryBase. Then, in Section 3 we show how to use thesetools in our implementation of DeReS. We also presentand discuss the results of our experimentation. Thelast section contains conclusions.2 OVERVIEW OF DeReSDeReS is a comprehensive software package for non-monotonic reasoning. The focus of DeReS is on auto-mated reasoning with default logic and logic program-ming (although some other nonmonotonic formalismsare also supported). The programs are written in Cand run under UNIX operating system. The packagewas developed on a Sun SPARCstation 20 with theSunOS 5.4 operating system. Nevertheless, no specialfeatures of this environment are used and DeReS canbe installed on any machine running SYSV or BSDversion of UNIX. The main components of DeReS are:user interface | the module facilitating interactivework with stored default theories,scanner | the module accepting default theory,checking for errors, and building internal data



structures,default engine | a library of routines for reasoningwith a given default theory,provers | the module providing several proposi-tional theorem provers that can be called by thedefault engine module,graphical interface | an optional graphical inter-face for displaying the progress of computationand the results.DeReS computes extensions for �nite propositional de-fault theories. There are no syntactic restrictions onformulas which can occur in the input. In particu-lar, DeReS can compute the list of all extensions for agiven default theory or check whether a given defaulttheory has an extension. It also outputs basic timecharacteristics for each solved query { the total timespent processing the query and the number of calls topropositional provability routine. The user commu-nicates with DeReS via its shell, which accepts usercommands and starts desired tasks.We will now focus on the main aspects of DeReS. Wewill also provide a short overview of TheoryBase. Twomain questions that we study are:1. What is the e�ect of propositional provers on thee�ciency of DeReS?2. What is the role of relaxed strati�cation in e�-cient implementations of nonmonotonic logics?These questions are further expanded in Sections 2.1and 2.2. We discuss TheoryBase in Section 2.3. Sec-tion 3 contains the description of the experiments andour �ndings.2.1 Propositional proversThe prover module of DeReS system is used as apropositional provability oracle by all reasoning rou-tines. Since the computational complexity of basicdecision problems in nonmonotonic reasoning is veryhigh, special care is needed to design e�cient provers,or to design techniques to use provers more e�ciently.DeReS is equipped with the following propositionalprovability procedures:Full prover | sound and complete propositionaltableaux theorem prover,Local prover | local provability propositional tab-leaux theorem prover (sound but not complete),

df-lookup | table lookup method for disjunction-free theories.Full prover, implemented using the propositional tab-leaux method, allows DeReS to work with arbitrarypropositional theories. Local prover is also based onthe tableaux method. It di�ers from the full proverin that it does not, in general, perform global con-sistency checks. Finally, a df-lookup prover is a tablelookup method applicable to disjunction-free theories.A default theory (D;W ) is disjunction-free if all for-mulas in W , all prerequisites, justi�cations and con-clusions of defaults in D are conjunctions of literals.For disjunction-free theories provability problems canbe decided by determining membership of a literal a ina set of literals T (assuming that T does not containcontradictory literals | in such a case, the df-lookupreturns true). The df-lookup can be implemented torun in time O(1), which results in dramatic perfor-mance improvement. The class of disjunction-free de-fault theories is simple yet quite powerful. In particu-lar, it subsumes the class of extended logic programs.We will now describe the idea behind a local prover.Although this approach does not improve the worstcase complexity of the reasoning algorithms it usuallyyields signi�cant speedups. Let L be any propositionallanguage. Consider a propositional theory T containedin L. Let ' be a formula in L and let Var(') denotethe set of propositional variables in the formula '.A theory T proves a formula ' (in symbols, T j= ') instandard propositional logic if either the informationcontained in T and concerning the propositional vari-ables occurring in ' allows us to derive ', or if T isinconsistent. This observation motivates the followingde�nitions.De�nition 2.1 Let T be a set of propositional formu-las. The incidence graph GT is a simple undirectedgraph GT = (T;E) such that for any ';  2 Tf';  g 2 E if and only if Var(') \ Var( ) 6= ;Let ' 2 T . By T' we denote the set of vertices of theconnected component of GT which contains '.Intuitively, local provability of ' by a theory T meansthat ' is entailed by the part of T consisting of formu-las containing variables relevant to ', and not becauseT contains inconsistent data. A careful formalizationof this idea yields the following de�nition.De�nition 2.2 A theory T locally proves a formula' (denoted T j=loc ') if (T [ f'g)' n f'g j= '.



Let us consider now standard propositional provabil-ity routines, such as tableaux or resolution based al-gorithms. Suppose we want to use them to answer thequery T j=loc '. The modi�cations required in thesealgorithms to implement local provability are very sim-ple. All one has to do is to block expanding the tab-leaux tree or the resolution list by formulas which haveno common variables with the variables mentioned inthe structure (the tree or the list) so far. This way theprover remains restricted to the component of GT[f'gcontaining the formula '.Clearly, local provers are faster than full provers as,in general, they do not consider all formulas in the in-put theory. The exact amount of savings depends onthe structure of the underlying theory T and the in-put formula ' or, more precisely, on the structure ofthe incidence graph GT[f'g. We gather some imme-diate consequences of De�nition 2.2 in the followingtheorem.Theorem 2.1 For arbitrary theory T and formula 'the following holds:1. If T j=loc ' then T j= '2.2. If T is consistent thenT j= ' if and only if T j=loc ':3. If GT[f'g is connected thenT j= ' if and only if T j=loc ':4. T j= ' if and only if either T is inconsistent orT j=loc '. 2Theorem 2.1 yields a technique to compute extensionsusing a local prover directly. Let (D;W ) be an in-put default theory. Assume that the task is to �ndan extension (or generate all of them). To simplifythe discussion, we will assume that each default in Dhas at least one justi�cation. Under this assumption,(D;W ) has either a unique inconsistent extension (ifW is inconsistent), or all extensions of (D;W ) are con-sistent (ifW is consistent). Hence, a single call to a fullpropositional prover is su�cient to decide which of thetwo possibilities holds. If it is the �rst one, we stop.So, from now on we will assume that W is consistent.It is well known that extensions of a default theory(D;W ) are determined by the sets of formulas of theform W [ c(U), where U � D and c(U) consists of2Eliminating global consistency checks by local proversis analogous to omitting occur check in logic programming.

the consequents of defaults in U ([MT93]). In orderto verify whether W [ c(U) generates an extension,DeReS has to decide several provability problems ofthe form W [ c(U) ` '. If W [ c(U) is consistent, thelocal prover can be used instead of the full prover.To search through all such sets, DeReS considers sys-tematically all subsets U of D, starting with U = ;.ThenW [c(U) =W which, by our assumption, is con-sistent. Hence, the local prover can be used to decideif W [ c(U) generates an extension. Each next set ofdefaults, say U 0, is obtained from the current set U byremoving or adding one default, say d. In the �rst case,the resulting set of formulas W [ c(U 0) is consistentand the local prover can be used to decide whether itgenerates an extension. In the second case, W [ c(U 0)is consistent if and only if W [ c(U) 6` :c(d). SinceW [ c(U) is consistent, this condition can be tested bya call to the local prover. If W [ c(U 0) is inconsistent,DeReS removes U 0, as well as all its supersets, fromthe search space and backtracks to W [ c(U). Oth-erwise, W [ c(U 0) is consistent and, again, the localprover can be used to test whether W [ c(U 0) is anextension.2.2 Relaxed strati�cationTo improve e�ciency of reasoning with default logicone can check if a given theory belongs to a subclassfor which reasoning can be performed faster. A com-mon technique is to stratify a theory. Strati�cationconsists of partitioning a given theory into a sequenceof smaller theories for which extensions can be com-puted faster. This approach was studied in the cases oflogic programming [CH82, ABW88, VG88, Prz88] andautoepistemic logic [Gel87, MT91]. Some results ofapplying this approach to default logic were obtainedby Etherington [Eth88] and Kautz and Selman [KS89].DeReS uses a relaxed variant of strati�cation applica-ble to arbitrary default theories. That is, no syntac-tic restrictions on formulas appearing in defaults areimposed. Instead more restrictive conditions on de-pendencies between defaults are required. Strata arecomputed as strong components of a directed graphcapturing dependencies between defaults in a defaulttheory. See [Cho95c] and [Cho95a] for details on re-laxed strati�cation for default theories.Given an input default theory (D;W ) and its re-laxed strati�cation D1; : : : ; Dk, DeReS builds exten-sions gradually, dealing with consecutive strata \oneat a time". DeReS assumes a �xed linear order (topo-logical sort) of strata. The nodes of the search tree arepairs (Di; E) where Di is the current stratum and E isan extension for the default theory (D1[: : :[Di�1;W ).



The children of this node are of the form (Di+1; E0)where Di+1 is the next stratum and E0 is an extensionfor the default theory (Di; E). It is known [Cho95c]that all such extensions are precisely the extensions for(D1 [ : : : [ Di;W ). DeReS uses an additional (local)search tree to �nd extensions for each default theory(Di; E).2.3 TheoryBaseTo test and experiment with an automated reasoningsystem, one requires a diversi�ed collection of bench-mark theories. In our case, to test DeReS, we neededdefault theories and logic programs. They shouldbe easily generated, realistic and meaningful. Theyshould be easy to reproduce and disseminate to fa-cilitate experimental comparisons of di�erent imple-mentations of nonmonotonic reasoning systems. Theserequirements prompted another project { TheoryBase[CMMT95]. TheoryBase automatically generates fam-ilies of default theories and logic programs. It is basedon the observation that graph problems such as ex-istence of colorings, kernels and hamiltonian cyclescan be encoded as default theories and logic programs,with extensions (stable models) corresponding to com-binatorial objects in question. Hence, the TheoryBase�rst generates a graph and then produces an encoding| a default theory or a logic program | of a com-binatorial problem for this particular graph. Severalsuch encodings were described in [CMMT95]. Mostimportant of them are:1. existence of a kernel in a directed graph,2. existence of a vertex k-coloring in a graph,3. existence of a hamiltonian cycle in a directedgraph.In order to generate graphs, TheoryBase uses thesystem, Stanford GraphBase, developed by Knuth[Knu93]. This software system can generate a largevariety of graphs, each with a unique identi�er. Thesystem of Stanford GraphBase identi�ers is extendedin TheoryBase to default theories and logic programs.Each default theory and logic program generated byTheoryBase receives an identi�er which allows for aneasy reconstruction of the corresponding theory or pro-gram.TheoryBase can easily be extended by new encodingsof combinatorial problems as default theories, logicprograms, disjunctive logic programs, as well as propo-sitional theories. Our intention is for TheoryBase toevolve into a commonly accepted benchmarking sys-tem to support research in automated reasoning.

3 RESULTSIn this section we discuss some of the experiments thatwere run on DeReS. The test theories were generatedby TheoryBase and their identi�ers are provided here.Two main questions that we studied were:1. the impact of a propositional prover on the e�-ciency of DeReS, and2. the impact of relaxed strati�cation on the e�-ciency of DeReS.In our tests we focused on two tasks: to decide theexistence of extensions, and to generate all extensionsof an input default theory.In the presentation of the results we use the follow-ing notation: timef denotes the CPU time for queriesprocessed with full propositional tableaux, timel de-notes the CPU time for queries processed with lo-cal propositional tableaux, timea denotes CPU timefor queries processed with df-lookup prover. Further,NCPP stands for the number of calls to propositionalprovability routine, CAND stands for the number ofcandidate theories tested for an extension. We denotethe total number of extensions for the input theory byEXT. Clearly, NCPP, CAND and EXT do not dependon the choice of prover. By D we denote the set ofdefaults of default theories used in experimentation.We set N = jDj. Finally, V and E denote the vertexset and the edge set of the graphs underlying defaulttheories used in experimentation.All times are given in seconds. A bar ({) symbol in ta-bles indicates that the program was running for morethan 2 hours without reaching the �nal answer andthen was interrupted. To capture the reasoning timewe measure the CPU time from the point when an in-put default theory is already represented and stored,together with its relaxed strati�cation, as a DeReSdata structure to the point when the answer is re-turned.3.1 Computing graph kernels with DeReSWe start our presentation of the experiments withDeReS with the problem of computing kernelsin graphs. We considered the family of graphsGn;m = board(n;m; 0; 0; 5; 3; 1) from Stanford Graph-Base. The graph Gn;m is the graph of chess-knightmoves on a wrapped n � m chessboard. Moreover,the edges are directed according to the lexicographicalorder on the pairs of coordinates for the chess-boardsquares.



To compute kernels in the graphs Gn;m =board(n;m; 0; 0; 5; 3; 1) the encodings with identi-�ers kernel:board n;m; 0; 0; 5; 3; 1 were generated byTheoryBase.3 In particular, we studied the graphsG8;m. The size of these graphs grows proportionallyto m. The same holds for the size of the TheoryBaseencodings of the kernel existence problem for thesegraphs. We propose this sequence of default theoriesas a benchmark problem for non-monotonic reasoning.In Table 1 we show times which DeReS needed to �ndone kernel in graphs G8;m = board(8;m; 0; 0; 5; 3; 1),for m = 2; 4; 6; 8; 10. In Table 2 we show the times re-quired to compute all the kernels. In both cases timegrows exponentially with the size of the underlying de-fault theory. In the same time, this example illustratesthat DeReS is capable to deal with default theoriescontaining hundreds of defaults. It is due to the e�ec-tive use of relaxed strati�cation in the encoding �3ker ,which results in the partition of the theory into rel-atively small clusters. Consequently, the provabilityroutine performs very e�ciently and the answers arefound within seconds.Let us look more closely at times corresponding to dif-ferent provability routines. In all cases, the total timerequired to decide all relevant provability problems us-ing the df-lookup prover is proportional to the totalnumber of calls to the prover. Hence, the time per callis constant. The total time grows exponentially and isof the order �(3N=56) (recall that N is the number ofdefaults in D). That is, it grows at a much smaller ratethan the theoretical bound O(N2 2N ) [MT93]. Simi-larly, the times timea(m) for �nding one extension areof the order �(2N=56). These speedups are due to thefact that we were able to stratify input default theoriesinto chains of clusters of defaults and construct exten-sions by considering several subproblems of small sizesinstead of one large set set of defaults.When tableau provers are used, the times are largerbecause more time is needed for each call to proposi-tional provability. In the case of local prover, the timerequired for a single call grows proportionally with mwhich implies the total time of the order �(N 3N=56).Full propositional prover scans the input theory O(m)times per each query. Consequently, the time neededto solve each such query is O(m2) (quadratic in the sizeof theory), and the total time of �nding all extensionsis of the order �(N2 3N=56).These results show that e�ciency of provers have sub-3Since the theories are saved as UNIX �les, the sys-tem of TheoryBase identi�ers uses underscores instead ofparentheses.

stantial e�ect on the performance of DeReS. One gen-eral lesson is that local provers should be used insteadof full provers, especially in view of the fact that localprovers do not impose any restrictions on input theo-ries. Although our results were obtained for full andlocal tableaux provers, we believe the same speedupswould be obtained if any other full prover is replacedby its local version. That is, consistency checks per-formed each time when the prover is called can andshould be avoided.Secondly, even though the theories that arise in thisexample are very simple, both local and full tableauxprovers are outperformed by the df-lookup prover.This indicates that when using DeReS as a knowl-edge representation tool, it is useful to encode domainknowledge as a disjunction-free theory, as this allowsDeReS to refer to the df-lookup prover when reason-ing.To discuss in more detail the e�ects of relaxed strat-i�cation, we will consider the same class of graphsbut the kernel existence problem will be encodeddi�erently. This time, we will use the encod-ing �1ker , also described in [CMMT95]. The cor-responding theories generated by TheoryBase haveidenti�ers kernel:b:board n;m; 0; 0; 5; 3; 1 . Table 3contains the experimental results. It is clearthat DeReS performs much worse on these theo-ries. The lack of good strati�cation for the theorieskernel:b:board n;m; 0; 0; 5; 3; 1 is to blame. Hence,encoding domain knowledge in DeReS, as in anyother knowledge representation language, requiressome skill. In the case of DeReS, the same problem canbe encoded e�ciently (�3ker) and ine�ciently (�1ker).A general lesson is that while encoding domain knowl-edge in DeReS, encodings that admit �ne strati�cationshould be used.3.2 Coloring ladder graphsIn [NS95], the problem to �nd a 3-coloring of a lad-der graph was proposed as a benchmark for testingnon-monotonic reasoning systems. The ladder graph,Ln, is de�ned as follows. Its vertices are points(x; y) in the real plane such that, x = 0; 1; : : : ; n andy = 0; 1. Two vertices are joined by an edge if theeuclidean distance between them equals 1. Graph Lncan be generated using The Stanford GraphBase andhas label board(n; 2; 0; 0; 1; 0; 0). We use default the-ory chrom3(G) from [CMMT95] to encode 3-coloringsfor graph G. These encodings were generated us-ing TheoryBase system and have TheoryBase labelscolor3:board n; 2; 0; 0; 1; 0; 0 .DeReS times obtained for the query �nd one extension



kernel.board 8;m; 0; 0; 5; 3; 1 , one solutionm jV j jEj N NCPP CAND timef timel timea2 16 64 112 1939 851 2.34 0.14 0.014 32 128 224 14804 6845 69.95 1.45 0.076 48 192 336 121249 56298 1532.87 16.49 0.578 64 256 448 308910 143677 { 53.40 1.4510 80 320 560 1982796 921464 { 421.74 9.14Table 1: Searching for a kernel in board(8;m; 0; 0; 5; 3; 1).kernel.board 8;m; 0; 0; 5; 3; 1 , all solutionsm jV j jEj N NCPP CAND timef timel timea EXT2 16 64 112 3337 1473 4.03 0.24 0.02 24 32 128 224 65704 30016 365.59 6.70 0.32 66 48 192 336 421082 192175 5239.54 57.34 1.90 58 64 256 448 4130579 1888829 { 720.22 18.97 13410 80 320 560 31630658 14466688 { 6819.35 141.74 267Table 2: Computing all kernels in board(8;m; 0; 0; 5; 3; 1).are shown in Table 4. In this case, the number of callsto propositional provability routine and the number oftested candidates grow linearly with respect to the size(the number of vertices) of the graph. All three proverswhich we use behave in the same way as in the previousexample. That is, df-lookup prover runs in constanttime per call, local tableau prover in linear time andfull tableau prover in quadratic time. Consequently,the time for �nding an extension (coloring of the laddergraph Ln) is �(n) for df-lookup prover, �(n2) for localtableau and �(n3) for full tableau method.Hence, when e�cient provability method is used,DeReS can �nd a 3-coloring for a ladder graph withina second even when the corresponding encoding con-tains almost 15 thousand defaults. The success ofDeReS is again due to the structure of the encodingused | it allows for strati�cation into small strata.The method for computing stable models of logic pro-grams, developed in [NS95], also did very well for thisparticular class of problems. Hence, both our resultsand the results in [NS95] indicate that the 3-coloringproblem for ladder graphs is too easy to serve as auseful benchmark problem for nonmonotonic reason-ing systems. This is due to the large number of 3-colorings that the ladder graphs admit. Hence, anysearch method is likely to �nd a 3-coloring quickly.In fact, there are 3n�1 non-isomorphic 3-colorings forLn. This yields 2 � 3n extensions for default theorycolor3.board n,2,0,0,1,0,0 . This is also the reason whywe did not provide time for the task of �nding all ex-tensions of theories color3.board n,2,0,0,1,0,0 . Times

to �nd a single extension are short but the list of allsolutions is exponentially large.3.3 Computing with DeReS when noextensions existTo get a complete picture of the performance of an au-tomated reasoning method (or any search-based algo-rithm) it is necessary to test the method on instancesfor which solution do not exist and, hence, the methodhas to run a complete search. As a benchmark for suchtests we use the problem of �nding kernels in directedcycles with odd number of vertices. Such graphs haveno kernels and, consequently, default theories which weuse to encode this problem have no extensions. Theobjective of this experiment was to �nd out how longwill it take for DeReS to answer that no solution ex-ists. In this case the reasoning time is the same forthe query �nd one extension and for the query �nd allextensions.We use directed cycles Cn of odd length. In Stan-ford GraphBase Cn is labeled board(n; 0; 0; 0; 1; 1; 1).To encode kernels we use the TheoryBase encod-ing �3ker and the resulting theories have labelskernel.board n,0,0,0,1,1,1 . In this case, intermediateextensions exist for all strata but the last one. Hence,the entire D must be analyzed before the conclusionthat no extensions exist can be drawn. Times neededby DeReS to conclude that no solution exists are shownin Table 5. Since in this case whole set of defaultsmust be considered to �nd out that there are no ex-



kernel.b.board 4;m; 0; 0; 5; 3; 1 , one solutionm jV j jEj N NCPP CAND timef timel timea2 8 32 32 52931 2351 8.34 1.28 0.133 12 48 48 241868873 9814692 { { 438.464 16 64 64 { { { { {Table 3: Searching for a kernel in board(4;m; 0; 0; 5; 3; 1).color3.board n; 2; 0; 0; 1; 0; 0 , one solutionn jV j jEj N NCPP CAND timef timel timea200 400 598 2994 7988 2594 1427.50 6.45 0.18400 800 1198 5994 15988 5194 { 28.72 0.34600 1200 1798 8994 23988 7794 { 68.74 0.50800 1600 2398 11994 31988 10394 { 128.17 0.681000 2000 2998 14994 39988 12994 { 209.14 0.84Table 4: Finding a coloring for Ln = board(n; 2; 0; 0; 1; 0; 0).tensions number of calls to propositional provabilityprocedure is not constant. It grows linearly { 100 ad-ditional nodes in the cycle require exactly 3000 extracalls to propositional provability routine. This yieldslinear reasoning time, O(N), when df-lookup prover isused and quadratic, O(N2) reasoning time, in the caseof local tableau method. The results presented in thissection show that relaxed strati�cation plays a criticalrole also when determining that no solutions exist.Also in this case it is important to use an appropri-ate encoding. Representing the existence of kernelproblem for graphs board(n; 0; 0; 0; 1; 1; 1) by theorieswith the labels kernel.b.board n,0,0,0,1,1,1 (�1ker in[CMMT95]) leads to a dramatic loss of performance(cf. Table 6).4 CONCLUSIONSWe have presented several experimental results of us-ing default logic to solve problems from a domain ofindependent interest { graph theory. In our study wefocused on the following two aspects of default reason-ing:1. how the ability to stratify a default theory a�ectsthe computational time,2. which methods of propositional provability aresuitable as an oracle for default reasoning.Consequently, we did not consider any speci�c methodof dealing with a single cluster of defaults. We useda generic reduct-based algorithm to compute exten-sions for a single stratum of defaults. We expect that

relaxed strati�cation would a�ect the performance ofDeReS in the same way for any other method to pro-cess clusters. This claim, however, still needs to becon�rmed experimentally.The results presented in this paper con�rmed thetheoretical results on relaxed strati�cation given in[Cho95c]. That is, using relaxed strati�cation we wereable to �nd extensions for default theories consistingof hundreds and thousands of defaults. Of course, thislevel of performance is not guaranteed unless the in-put theory admits a �ne strati�cation, that is, whenthere is a constant bound on the size of the largest stra-tum. We showed that relaxed strati�cation, in general,does not eliminate the exponential time complexitybut rather reduces the complexity so that substantialinstances can be solved in reasonable time.We investigated three di�erent methods of implement-ing provability procedure which is used as an oracle indefault reasoning. The three algorithms which we usedcould have solved a single provability query in amor-tized times O(1), O(N) and O(N2) per query. Ourresults did not depend on any particular algorithm forpropositional provability. The same (up to constants)results can be obtained under the assumption that wehave three provers which run in constant, linear andquadratic time per query. Two important conclusionsare:(1) Performance of DeReS and other nonmonotonicsystems can be dramatically improved if local proversare used allowing us to reduce the number of globalconsistency checks.(2) To keep reasoning time as small as possible, thesimplest prover which can handle the class of formulas
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