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single one of these extensions (one possible view) will be called a belief set, and the setof all of these possible views (given the initial knowledge) will be called a belief frame.Belief frames are not arbitrary collections of theories. Since agents are seeking possiblycomplete descriptions of the world, theories contained in other possible world views arediscarded. Hence, belief frames form antichains - no belief set is a proper subset ofanother in the same reasoning frame.The belief sets may not be available to the agent immediately. We assume that theagent will have to construct these belief sets by reasoning in a step by step constructionprocess generating a reasoning trace that �nds its limit in a belief set. A set of thesereasoning traces is called a reasoning frame. We will require that the limits of all tracesin a reasoning frame form a belief frame.These notions will be formalized as follows. A belief set will be de�ned as a logicaltheory (a set of sentences closed under classical deduction). A belief frame will be de�nedas a collection of theories forming an antichain. A reasoning trace will be de�ned as acountable increasing (under set inclusion) sequence of theories. The limit of a reasoningtrace is its union. A reasoning frame is de�ned as a set (or family) of reasoning traces.Given this conceptualization, two levels of speci�cation of the agent can be described.The most abstract level only de�nes the outcomes of the reasoning and abstracts fromthe way the outcome was found. A speci�cation at this level de�nes a belief frame,abstracting from any reasoning frame behind this belief frame. At the more speci�clevel of speci�cation a reasoning frame is de�ned. The set of traces represents thereasoning processes of the agent, their limits | the outcomes.The question studied in this paper is how variants of default logic can be used asspeci�cation languages for nonmonotonic reasoning at these two levels of abstraction.The problem whether a belief frame can be represented as the collection of extensionswas studied in [MTT96]. Complete results in the case of representability by defaulttheories with �nite sets of defaults were obtained there. While the general problem ofrepresentability remained unresolved, it was shown in [MTT96] that the default logicby Reiter is insu�cient for speci�cation of belief frames. Speci�cally, several examplesof belief frames were exhibited, which cannot be represented as families of extensions ofdefault theories. In the current paper we show that in�nitary default logic, a strongervariant of default logic, allowing in�nite sets of justi�cations, provides an adequatespeci�cation language. In particular, prerequisite-free in�nitary default logic providesan adequate speci�cation language for belief frames. Moreover, in�nitary default logicin general provides an adequate speci�cation language for reasoning frames.In Section 2 we will give the basic de�nitions and properties of in�nitary default logic(IDL), as a generalization of Reiter's default logic. For example, the notion of Reiterextension is generalized to the notion of an idl-extension, and a �xpoint constructionfor idl-extensions is given, generalizing the �xpoint construction in [Rei80]. We alsoformally de�ne the notions of a reasoning trace and frame there and relate these conceptsto in�nitary default theories.In Section 3 we focus on the prerequisite-free case. It is proven that the non-includingbelief frames are precisely the belief frames that can be obtained as the set of all idl-2



extensions of a prerequisite-free in�nitary default theory. This implies that, in contrastto Reiter's default logic, IDL is expressive enough to serve as an adequate speci�cationlanguage of belief frames.In Section 4 we focus on reasoning frames. It is established that for any reasoningframe there is an in�nitary default theory such that the �xpoint construction of its idl-extensions precisely provides the reasoning traces in the given reasoning frame. The ideais that by using the right prerequisites any given reasoning trace can be obtained.In Section 5 we discuss how the notions as presented depend on the initially givenset of facts. The notions of a belief set operator and a reasoning trace operator areintroduced to express this dependency. Conclusions and suggestions for further researchare given in Section 6.2 PreliminariesIn this section, we will introduce two key concepts of the paper: reasoning trace andreasoning frame. These concepts are designed to represent the reasoning process ofan agent that starts with some incomplete knowledge and, in a step-by-step processconstructs a sequence of theories, each providing a more complete picture of the situation(world). We will then introduce the in�nitary default logic and show that in�nitarydefault theories can be used to encode reasoning traces and frames of an agent. In thefollowing sections of the paper we will present a detailed study of this relationship.In this paper, by L we denote a language of propositional logic with a denumerableset of atoms At. By a theory we always mean a subset of L closed under propositionalprovability. We will often refer to a theory as a belief set.When specifying reasoning agents, collections of belief sets that form antichains (nobelief set is a proper subset of another) are of particular importance.De�nition 2.1 (Belief frame) A belief frame is a collection of belief sets (theories)such that no belief set is a proper subset of another.As discussed in the introduction, belief frames capture only the outcomes of thereasoning process and abstract from the way these outcomes were found. To get adetailed speci�cation of an agent we need to represent the process in which a belief setis constructed. In this paper, we propose to represent such a process by a sequence oftheories | a reasoning trace. Collections of such reasoning traces, in turn, will formreasoning frames. Throughout the paper we will use the following notational convention.If an upper case symbol, say E, stands for a sequence of theories, then the elements ofthe sequence will be referred to as E1; E2; : : :, and their union, S1i=1Ei will be denotedby E1.De�nition 2.2 (Reasoning trace and reasoning frame) Let T = hT1; T2; : : :i be asequence of theories from L. 3



(i) The sequence T is a reasoning trace if:(a) Ti � Ti+1 for i = 0; 1; : : :(b) Ti = Ti+1 implies Ti = Tj for j > i.(ii) The union of a reasoning trace T is called the limit of T .(iii) A collection T of reasoning traces is called a reasoning frame if for every T; S 2 T :(a) T0 = S0.(b) If T1 � S1, then T = S.It is easy to see that the limit of a reasoning trace is a theory, that is, it is closedunder propositional provability, and that the limits of reasoning traces in a reasoningframe form a belief frame, that is, form an antichain.De�nition 2.3 (Belief frame of a reasoning frame) Let T be a reasoning frame.The belief frame BT associated with T is de�ned by:BT = fT1:T 2 T gIn this paper we will show that the language of generalized default logic can beused to describe speci�cations of an agent both on the level of belief frames as wellas reasoning frames. Some results in this direction were already obtained in [MTT96],where the problem of encoding belief frames by default theories was studied in detail.In addition to a number of positive results, it is proved in [MTT96] that not every beliefframe can be represented as the family of all extensions of a default theory. In this paperwe will generalize default logic by allowing in�nite sets of justi�cations. Then we willprove that in�nitary default logic is powerful enough to serve as a speci�cation languagefor arbitrary belief and reasoning frames.An in�nitary default (idl-default, for short) is an expression d:d = �: �� ; (1)where � and � are formulas from L, and � is a set, possibly in�nite, of formulas fromL. The formula � is called the prerequisite of d (p(d), in symbols) and � is called theconsequent of d (c(d), in symbols). The set of formulas � is called the justi�cation set ofd and is denoted by j(d). If p(d) is a tautology, d is called prerequisite-free. In such case,p(d) is usually omitted from the notation of d. This terminology is naturally extendedto a set of defaults D. Namely, the prerequisite, consequent and justi�cation sets of D,in symbols p(D), c(D) and j(D) are de�ned by:p(D) = [d2Dfp(d)g; c(D) = [d2Dfc(d)g; j(D) = [d2D j(d):4



A pair (D;W ), where D is a set of idl-defaults and W � L is a set of formulas, iscalled an in�nitary default theory (or IDT). Rules with in�nite sets of justi�cations wereconsidered in [Fer91] in the context of logic programs.We will now generalize the notion of an extension, introduced by Reiter [Rei80] forstandard default theories, to the case of IDTs. To this end, we will introduce the conceptof an S-trace. This notion is closely related to the �xpoint construction of extensionspresented by Reiter [Rei80].De�nition 2.4 Let (D;W ) be an IDT. Let S � L be a theory. By the S-trace of (D;W )we mean the sequence E of theories de�ned recursively as follows:1. E0 = Cn(W ),2. for every integer n � 0:En+1 = Cn(En [ fc(d): d 2 D; p(d) 2 En and for all 
 2 j(d), :
 =2 Sg):The notion of an S-trace allows us to introduce the notion of an idl-extension of anIDT.De�nition 2.5 Let (D;W ) be an IDT. A set S � L is an idl-extension of (D;W ) ifS = E1;where E is the S-trace for (D;W ).Clearly, each standard (�nitary) default theory (with each default having only �nitelymany justi�cations) is, in particular, an IDT. Moreover, it is easy to see that if anIDT happens to be �nitary, then the notion of an idl-extension coincides with that ofextension. Therefore, throughout the paper we will refer to the idl-extensions simply asextensions.We will denote by ext(D;W ) the collections of all extensions of an IDT (D;W ). Thecollection of all S-traces of (D;W ), where S 2 ext(D;W ) will be denoted by tr(D;W ).There are several alternative characterizations of standard default theories [MT93].We will now generalize one of them to the case of in�nitary default theories. It can bestated in terms of the reduct of the set of defaults. A default d (a set of defaults D) isapplicable with respect to a theory S (is S-applicable) if S 6` :
 for every 
 2 j(d) (j(D),respectively). By the reduct DS of D with respect to S we mean the set of monotoneinference rules:DS = (�� : for some � � L, �: �� 2 D; and �: �� is S-applicable) :Each set B of standard monotone inference rules determines a formal proof system,denoted by PC+B, in which derivations are built by means of propositional provabilityand rules in B. The corresponding provability operator will be denoted by `B and theconsequence operator by CnB(�) [MT93]. In particular, each set DS determines theprovability operator `DS and the consequence operator CnDS(�).5



Proposition 2.1 Let D be a set of idl-defaults,and let W and S be subsets of L. Then,S is an extension if and only if S = CnDS(W ).Let us introduce one more useful notion. A default d is generating for a theory Sif p(d) 2 S and S 6` :
 for every 
 2 �. The set of all defaults from D which aregenerating for S is denoted by GD(D;S).Once the reduct is computed the distinction between in�nitary and standard defaultsdisappears. This explains why many of the properties of default logic remain true in thein�nitary case. In particular, we have the following results.Proposition 2.2 Let (D;W ) be an IDT. Then:1. If S is an extension of (D;W ), then S is a belief set (theory).2. The operator CnDS(W ) is monotone in D and W , and antimonotone in S.3. The collection ext(D;W ) is a belief frame. That is, if T1; T2 2 ext(D;W ) andT1 � T2, then T1 = T2.4. If S is an extension of (D;W ) then S = Cn(W [ c(GD(D;S))).5. If all defaults in D are prerequisite-free then S is an extension of (D;W ) if andonly if S = Cn(W [ c(GD(D;S))).Parts (1) and (3) of Proposition 2.2 show that IDTs can be used to represent beliefframes. The next result shows that they can also be used to represent reasoning frames.Proposition 2.3 Let (D;W ) be an IDT.1. Let S be a theory in L. If E is the S-trace for (D;W ) then E is a reasoning trace.2. The collection of reasoning traces tr(D;W ) is a reasoning frame.We can now formally introduce the notions of representability of belief frames andreasoning frames by default theories.De�nition 2.6 Let T be a family of theories contained in L. The family T is repre-sentable by an IDT � if ext(�) = T . Similarly, if T is a family of reasoning traces,then it is representable by an IDT � if tr(�) = T .The notion of representability by default theories was studied in [MT93, MTT96].A complete description of families of theories that are representable by default theorieswith a �nite set of defaults was given there. However, the general question of repre-sentability by general default theories remained unsettled. The main di�erence betweena standard and an in�nitary default is that the latter can encode an in�nite set of con-straints determining its applicability (in the form of in�nite sets of justi�cations). Ourresults in the next section show that the in�nitary default logic is more expressive thanthe default logic by Reiter. In particular, we show that every family of theories satisfy-ing the necessary condition for the representability, described in Proposition 2.2(3), isrepresentable by an in�nitary default theory.6



3 Representability of belief frames by IDTsWe start with the result that allows us to replace any IDT with an equivalent IDT inwhich all defaults are prerequisite-free.Theorem 3.1 For every IDT �, there is a prerequisite-free IDT �0 equivalent to �.Proof: Let � = (D;W ). By a quasi-proof from D and W we mean any proof from Win the system PC +Dm, whereDm = (�� : for some � � L, �: �� 2 D) :For every quasi-proof � from D and W , let D� be the set of all defaults used in �. Foreach such proof �, de�ne d� = : j(D�)V cons(D�)(observe that D� is �nite and, so, d� is well-de�ned). Next, de�neE = fd�: � is a quasi-proof from Wg:Each default in E is prerequisite-free. Put �0 = (E;W ). We will show that �0 hasexactly the same extensions as (D;W ). To this end, we will show that for every theoryS and for every formula ', W `DS ' i� W `ES ':Assume �rst that W `DS '. Then, there is a quasi-proof � of ' such that all defaultsin D� are applicable with respect to S. Moreover, W [ c(D�) ` '. Observe thatc(d�) ` c(D�). Since d� is prerequisite-free and S-applicable, W `ES W [ c(D�). Hence,W `ES '.To prove the converse implication, observe that since all defaults inE are prerequisite-free, f':W `ES 'g = Cn(W [ c(ES)):Hence, it is enough to show that W `DS W [ c(ES):Clearly, for every ' 2 W , W `DS '. Consider then ' 2 c(ES). It follows that there isa quasi-proof � such that d� is S-applicable and c(d�) = '. Consequently, all defaultsoccurring in � are S-applicable. Thus, for every default d 2 D�,W `DS c(d):Since ' = V c(D�), W `DS ':7



2Proposition 2.2 implies that for every in�nitary default theory (D;W ), its family ofextensions ext(D;W ) is a belief frame (cf. parts (1) and (3)). To answer the questionwhether the converse is true as well, by Theorem 3.1 we can concentrate on prerequisite-free IDT's. It turns out that every belief frame is representable by a (prerequisite-free)IDT.Theorem 3.2 Let T be a family of belief sets. Then the following statements are equiv-alent:(i) T is a belief frame,(ii) T is representable by a prerequisite-free IDT.Proof: It su�ces to prove that any belief frame is representable by a prerequisite-freeIDT. To this end, let us consider a belief frame T . If T = ; then take any (Reiter) defaulttheory without extensions. If T = fTg, then de�ne D = ;. Clearly, ext(D; T ) = T .Hence, assume that T contains at least two theories. Since no theory in T is a propersubtheory of another, it follows that all theories contained in T are consistent.For every S; T 2 T such that S 6= T , de�ne 'S;T to be any formula belonging toS n T . For every T 2 T , de�neDT = ( : f:'S;T :S 2 T ; S 6= Tg' : ' 2 T) :Finally, de�ne D = [T2T DT :We will show that ext(D; ;) = T .Consider T 2 T . Then DT = f :' :' 2 Tg. Hence, CnDT (;) = T and T is anextension of (D; ;).Conversely, let T be an extension of (D; ;). We have just proved that T � ext(D; ;).Consequently, (D; ;) has at least two extensions. It follows that Cn(;) is not an extensionof (D; ;) (the theory Cn(;) is a subset of every extension of (D;W )). In particular,T 6= Cn(;). Consequently, the set DT is not empty.Consider a set S 2 T . Observe that all defaults in DS have the same set of justi�-cations. Consequently, either all of them are generating for T or none. It follows thatT is the union of a nonempty (since DT 6= ;) family of theories in T . If T is the unionof at least two theories, than DT = ;, a contradiction. Hence, T = S, for some S 2 T .That is, T 2 T . 2Theorem 3.2 and the results in [MTT96] imply that in�nitary default logic is a morepowerful knowledge representation formalism than that of default logic. In other words,allowing in�nite justi�cation sets leads to a more expressive representation formalism.8



Corollary 3.3 There are families of theories representable by an IDT but not repre-sentable by a standard default theory.As another corollary, we obtain the result already proved in [MTT96].Proposition 3.4 Let T be a �nite non-including family of theories. Then T is repre-sentable by a default theory (possibly with in�nite set of defaults).4 Representability of reasoning frames by IDTsIn the previous section we proved that any antichain of theories (belief frame) can berepresented by a prerequisite-free IDL-theory. In this section we will look not onlyat the outcomes of a reasoning process (the belief frame), but also at the process inwhich these outcomes are constructed. Note that by using prerequisites that logicallydepend on consequents of other defaults, it is possible to express constraints on theorder in which states occur in a trace. Using this observation, we will study the questionwhether in�nitary default logic can be used as a speci�cation language for collections oftraces | reasoning frames. In the main result of this section we will show that everyreasoning frame is representable by an IDT.Theorem 4.1 Let T be a collection of reasoning traces. Then the following statementsare equivalent:(i) T is a reasoning frame,(ii) T is representable by an IDT.Proof: If there is an IDT � such that T = tr(�), then T is a reasoning frame byProposition 2.3. To prove the converse implication, we proceed as follows. If T isempty, we can take � to be any default theory without extensions. So suppose thatT 6= ;. Take any trace T 2 T , and de�ne W = T0. As T is a reasoning frame, we havethat W = S0 for all traces S 2 T .Consider a trace T 2 T . Then T is increasing, and may become constant from acertain index on. We de�ne this index kT bykT = ( minfi:Ti = Ti+1g if there exists an i with Ti = Ti+11 otherwiseNow for 0 < i < kT , de�ne  i;T to be any formula in Ti n Ti�1, and de�ne  0 as anyformula in T0. These formulae will serve as prerequisites for defaults that will \�re" inorder to form Ti+1.For the justi�cations of rules, we will use the same construction as used in the proofof Theorem 3.2. For any S 2 T such that S 6= T , de�ne 'S;T to be any formula belonging9



to S1nT1. Since T is a reasoning frame and S 6= T , S1 6� T1. Hence, 'S;T can indeedbe found. Now de�neDT = ( i;T : f:'S;T :S 2 T ; S 6= Tg� :� 2 Ti+1 n Ti; 0 � i < kT) :Finally, de�ne D = [T2T DT :We will show that tr(D;W ) = T .Consider T 2 T . First observe that, by de�nition, T0 = W = Cn(W ). Furthermore,the set of defaults in D which are applicable for T1 is exactly DT . It follows thatfc(d): d 2 D; p(d) 2 Ti; d is T1{applicableg = f�:� 2 Ti+1 n T0g:As T0 � Ti, we have thatTi+1 = Cn(Ti [ fc(d): d 2 D; p(d) 2 Ti; d is T1{applicableg):From this we conclude that T 2 tr(D;W ).For the converse, suppose that T 2 tr(D;W ). If none of the defaults in D are T1{applicable, then Ti = W for all i. Consider an S 2 T . Then, we have S 2 tr(D;W ).Now, since S1 � W and extensions form an antichain, S1 = W . Hence, S = T andT 2 T .So suppose there is a T1{applicable default in D. Then there exists a trace S 2 Tsuch that all defaults in DS are T1{applicable. We will show by induction that Si � Ti.Indeed, if i = 0, then S0 =W = T0. For the induction step, observe thatTi+1 = Cn(Ti [ fc(d): d 2 D; p(d) 2 Ti; d is T1{applicableg) �Cn(Si [ fc(d): d 2 D; p(d) 2 Si; d 2 DSg)Since S 2 tr(D;W ) and DS is exactly the set of defaults of D which are S1{applicable,the last term is equal to Si+1.Now we have that S1 � T1. Moreover, since both S1 and T1 are extensions of(D;W ), it follows that S1 = T1. But then a default is S1{applicable if and only if itis T1{applicable, so that Si = Ti for all i, or S = T . We conclude that T 2 T . 2As was the case in the construction of an IDL-theory in the previous section, we againhave considerable freedom in choosing the formulae 'S;T . A second source of freedomcomes from the choice of the prerequisites in the above construction. Thus, in generalthere are many di�erent theories which all specify the same reasoning frame.One could ask if �nitary representability of the belief frame of a reasoning frameimplies that the reasoning frame itself has a �nitary representation. A cardinality ar-gument shows that this is not the case. Speci�cally, let us consider the belief frame B10



consisting of all complete theories over the set of atoms fp1; p2; : : :g. This belief framehas a �nitary representation (see [MTT96], Corollary 5.5). It is easy to see that thereare more than continuum reasoning frames with belief frame B. On the other hand,there is only continuum many �nitary default theories.Until now, we have looked at the speci�cation of belief sets and reasoning frameswhich represent the reasoning process of an agent from a given set of initial facts. Inthe next section we will take a broader perspective and look at the di�erent belief setsand reasoning frames an agent may have when varying the set of initial facts.5 Varying the initial factsIn the preceding sections we have seen that in�nitary default logic can be used for thespeci�cation of belief frames and reasoning frames. These two notions are a formalization(at two levels of abstraction) of the reasoning process of an agent from a �xed initialsituation. This initial situation is described by (part of) the intersection of theoriesin a belief frame, or the common �rst point in the traces of a reasoning frame. Thus,a belief frame or reasoning frame gives no information about the reasoning process ofthe same agent from di�erent sets of initial facts. In order to take into account thesedi�erent initial situations, we consider belief set operators and reasoning trace operators(see [EHT95, EHT96]).De�nition 5.1 (Belief set operators and reasoning trace operators)1. A belief set operator is a function which assigns a collection of belief sets to eachX � L.2. A reasoning trace operator is a function which assigns a collection of reasoningtraces to each X � L.We would like to specify these operators using (in�nitary) default logic, and anobvious way of doing this is using families of sets of defaults, indexed by sets of formulae.De�nition 5.21. Let B be a belief set operator. The operator B is representable by an indexed familyof sets of defaults (DX)X�L if for all X � L: B(X) = ext(DX ; X).2. Let F be a reasoning trace operator. The operator F is representable by an indexedfamily of sets of defaults (DX)X�L if for all X � L: F(X) = tr(DX ; X).Given the results in the previous sections, the following is easy to see:Proposition 5.1 11



1. A belief set operator B is representable by an indexed family of sets of (prerequisite-free) defaults i� B(X) is a belief frame for all X � L.2. A reasoning trace operator F is representable by an indexed family of sets of de-faults i� F(X) is a reasoning frame for all X � L.In principle, this is a valid way of specifying belief set operators and reasoning traceoperators. However, it is intuitively not very likely that an agent should use a (com-pletely) di�erent set of defaults in every situation. Instead, it seems more plausible thatthe agent has one set of defaults which it uses regardless of the initial facts (meaningthat DX = DY for all X; Y ). This leads to a di�erent representability question: given abelief set operator B, does there exist a set of (prerequisite-free) defaults D, such thatfor all X � L we have B(X) = ext(D;X) (and similarly for reasoning trace operators).It seems that this is a non-trivial question; we will leave this for future research.6 ConclusionsIn [MTT96] the usefulness of Reiter's Default Logic for specifying multiple belief setsof an agent was investigated. It was established that every �nite non-including familyof belief sets is representable by a default theory. However, examples of denumerablyin�nite non-including families were constructed that are not representable by a defaulttheory. In the current paper these results are extended in two manners. Firstly, a newvariant of default logic was introduced, In�nitary Default Logic, that allows to representevery non-including family of belief sets, independent of its cardinality.Secondly, not only the representability of families of belief sets as an outcome ofdefault reasoning processes was investigated, but also the representability of defaultreasoning traces constructing these belief sets. Here a positive answer was also obtainedfor in�nitary default logic, whereas Reiter's Default Logic fails for the non-�nite case.Thus speci�cation of default reasoning is made possible at two levels of abstrac-tion. For speci�cation at the level of families of belief sets that are the outcomes ofdefault reasoning processes (abstracting from the reasoning traces constructing them),prerequisite-free in�nitary default theories are adequate means. Using them no commit-ment is made to any particular traces to construct the belief sets. For speci�cation atthe level of reasoning traces general in�nitary default theories are adequate means. Theyspecify both the families of belief sets that are the outcomes and the traces constructingthem.It is interesting to note that from a representation viewpoint, the only role playedby the prerequisites lies in guiding the construction process. Of course, even whenspecifying only belief sets, it may be the case that an IDL-theory with prerequisites existswhich is more compact than a prerequisite-free theory. However, this would also give aspeci�cation at a lower level of abstraction since it not only speci�es the outcomes of thereasoning but also the way outcomes are generated. One can then choose to commit tothis particular speci�cation of the traces, but one could also consider the speci�cation12



as meant only to specify the outcomes and give a di�erent speci�cation for the traces.One way of changing the speci�cation for the traces is by introducing so-called lemmadefault rules are (see e.g. [Sch92]). This causes conclusions to be added earlier in atrace.A speci�cation language for belief set operators and reasoning trace operators basedon temporal logic was introduced in [ET96].Further issues for research include representability of belief set operators and rea-soning trace operators using default logic (as mentioned in Section 5) and the generalquestion of representability using �nitary default logic (with in�nite sets of defaults).References[EHT95] J. Engelfriet, H. Herre and J. Treur. Nonmonotonic Belief State Frames andReasoning Frames (extended abstract). In C. Froidevaux, J. Kohlas (eds), Pro-ceedings of the European Conference on Symbolic and Quantitative Approachesto Reasoning and Uncertainty, Lecture Notes in Arti�cial Intelligence, Vol.946, Springer-Verlag, 1995, pp. 189{196.[EHT96] J. Engelfriet, H. Herre and J. Treur. Nonmonotonic Reasoning with Multi-ple Belief Sets. To appear in Proceedings of the International Conference onFormal and Applied Practical Reasoning, 1996.[ET96] J. Engelfriet and J. Treur. Speci�cation of Nonmonotonic Reasoning. Toappear in Proceedings of the International Conference on Formal and AppliedPractical Reasoning, 1996.[Fer91] A. Ferry. Enriched nonmonotonic rule system. Master of Science Dissertation,University of Kentucky, 1991.[MT93] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent rea-soning. Berlin: Springer-Verlag, 1993.[MTT96] W. Marek, J. Treur, and M. Truszczy�nski. Representability by default theories.In Proceedings of the Fourth International Symposium on Arti�cial Intelligenceand Mathematics, 1996.[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132,1980.[Sch92] T. Schaub. On constrained default theories. In B. Neumann (ed.), Proceedingsof the European Conference on Arti�cial Intelligence, 1992, pp. 304{308
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