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Abstract. In this paper, we describe a language PS pb to model search
problems that are specified in terms of boolean combinations of pseudo-
boolean constraints. We then describe software tools that allow one to
use SAT solvers to compute solutions to instances of search problems
represented in the language PS pb .

1 Introduction

Recent research demonstrated that programs computing models of theories in
propositional languages, or SAT solvers, can be used to find solutions to a broad
class of search problems. Due to advances in the performance of SAT solvers,
that approach is now becoming practical for an ever expanding range of applica-
tions. Despite this computational potential of SAT solvers, the tools to support
and facilitate their use are lagging behind. They are ad hoc and problem spe-
cific. Typically, to use a SAT solver to compute solutions of a search problem
Π, a programmer develops a specialized program PΠ that generates, for each
instance of Π, a corresponding instance of the SAT problem. That approach
makes it difficult to reason about problem constraints as they are “hard-wired”
in the program PΠ . It also hinders the use of SAT solvers as general-purpose

computational mechanism. Different search problems (even equivalent but dif-
ferent representations of the same problem) require an associated specialized
“translator” program.

Our objective is to provide support for a more general and systematic ap-
proach to solving search problems by SAT solvers consisting of the following
three main steps:

1. Modeling: a programmer represents constraints of a search problem Π as a
theory PΠ in a high-level constraint language L, and constructs a description
DI of a specific instance I of the problem Π.

2. Compiling: a specialized program compiles the pair (DI , PΠ) into a theory
TΠ,I in some propositional target logic Ltgt so that solutions to problem Π
for an instance I correspond to models of TΠ,I and can be recovered from



them quickly. The compiling program depends only of L and Ltgt and not
on individual search problems.

3. Solving: a SAT solver for the logic Ltgt , that is, a program computing
models of theories in Ltgt , finds a model of TΠ,I (and so, also a solution to
Π for I), or determines that no models (solutions) exist.

In this paper we are concerned with the first two phases of that process. Our
objective is to design and implement tools that will support the use of existing

SAT solvers in the third one.
For the modeling language L in the first step, we design a language to model

search problems specified in terms of pseudo-boolean constraints and, more gen-
erally, boolean combinations of pseudo-boolean constraints. We call this language
the language of propositional schemata with pseudo-boolean constraints and de-
note it with PS pb . The language PS pb separates the specification of problem
constraints from the description of particular data instances. Users model con-
straints as clauses in the language PS pb and represent problem instances as
collections of ground atoms in the language PS pb . The language PS pb extends
the language PS+ [6], which did not allow arbitrary pseudo-boolean constraints.

Syntactically, PS pb clauses are similar to clauses of first-order logic, the only
essential difference is a broader class of logic expressions that serve as elemen-
tary building blocks (or “atoms”). Semantically, PS pb clauses are interpreted
as propositional schemata and represent sets of their propositional instantia-
tions (thus, our logic is not a version of first-order logic). Modeling constraints
as PSpb clauses makes it possible to automate reasoning about and reformu-
lation of problem specifications. It also makes the language PS pb an effective
programming front-end facilitating the use of SAT solvers and SAT(PB) solvers
(programs computing models of theories consisting of boolean combinations of
pseudo-boolean constraints) as computational engines.

We focus here on this latter aspect. To support finding models of PS pb the-
ories by means of SAT solvers, we introduce the propositional logic with pseudo-

boolean constraints, PLpb , and propose it for the target propositional logic Ltgt

for step 2. As we stated, PS pb clauses represent sets of their ground (proposi-
tional) instances. By grounding a PS pb representation of a search problem Π
and its instance I, we convert it to a theory in the logic PLpb . We describe
a grounder program, psgrnd, that automates the task. Our implementation of
psgrnd extends the scope and improves the performance of an earlier prototype
[6]. It is available at http://www.cs.uky.edu/psgrnd/.

The logic PLpb extends the logic of pseudo-boolean constraints and, conse-
quently, also the standard propositional logic. If the original PS pb theory con-
tains no pseudo-boolean atoms, grounding it with psgrnd yields a propositional
theory and off-the-shelf SAT solvers can be used in step 3. If the original PS pb

theory contains no boolean combinations of pseudo-boolean atoms (each pseudo-
boolean atom forms a unit clause), the psgrnd program generates a collection of
propositional pseudo-boolean constraints and they can be solved by SAT(PB)
solvers such as PBS [1], SATZOO [7] and SATURN [11]. Finally, if all pseudo-
boolean atoms in the original PS pb theory are cardinality atoms (all weights are



equal to 1), then psgrnd outputs a propositional theory with cardinality atoms
and solvers such as aspps [6] and wsatcc [10] can be used to compute its models.

To further facilitate the use of existing and future solver programs, we de-
signed a DIMACS-like default output format for psgrnd and scripts to translate
it, whenever appropriate, into the DIMACS format and to input formats of sev-
eral SAT(PB) solvers. Our main objective in designing the psgrnd format is to
establish it as the standard input format for future PLpb solvers, as adopting
it will make the use of the PS pb modeling language and the psgrnd grounding
program even more straightforward and direct.

2 Logic PLpb

We start with the description of the logic PLpb as it makes it easier later to
introduce the logic PS pb as a generalization of PLpb to the first-order language.
A pseudo-boolean atom (pb-atom, for short) is an expression of the form

A = l{p1 = w1, . . . , pk = wk}u,

where p1, . . . , pk are atoms from some fixed set At , w1, . . . , wk are integer weights

associated with atoms p1, . . . , pk, respectively, and l and u, where l ≤ u, are
integers called the bounds. One of the bounds, but not both, may be missing. If
all weights are equal 1, we often drop them from the notation and write A as
l{p1, . . . , pk}u (in this case, we refer to these pb-atoms as cardinality atoms).

Pb-atoms are just a different notation for pseudo-boolean constraints [2], that

is, integer-programming constraints l ≤
∑k

i=1
piwi ≤ u, where pis are now re-

garded as integer variables with the domain {0, 1} rather than propositional
variables as before. Propositional clauses can be represented as pseudo-boolean
constraints [3, 2]. Since pseudo-boolean constraints often make modeling of ap-
plication problems more direct, the problem of computing assignments satisfying
sets of pseudo-boolean constraints has received much attention in the SAT com-
munity and resulted in several effective SAT(PB) solvers [2, 13, 1, 11, 7].

Pb-atoms can be combined into more complex constraints. A pb-clause is an
expression of the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are (propositional) atoms or pb-atoms4. We note that we
write ‘,’ and ‘|’ for the conjunction and the disjunction operators, respectively.
We also use the “implication” notation for clauses in our approach.

A set of atoms M ⊆ At satisfies a pb-atom A = l{p1 = w1, . . . , pk = wk}u,
denoted by M |= A, if

l ≤
∑

{i : pi∈M}

wi ≤ u,

4 Most current SAT(PB) solvers do not accept such complex constraints. They require
that each pseudo-boolean constraint represents a “unit” clause. Two exceptions are
aspps [6] and wsatcc [10]. However, they only accept clauses built of cardinality
atoms.



with an obvious extension to the case when one of l and u is missing. A set of
atoms M satisfies a pb-clause C, written as M |= C, if M satisfies at least one
(pb-)atom Bj or does not satisfy at least one (pb-)atom Ai.

Since the logic PLpb extends the logic of pseudo-boolean constraints, it also
extends the clausal propositional logic. But, there is a more direct relationship.
Indeed, every CNF clause

¬a1 ∨ . . . ∨ ¬am ∨ b1 ∨ . . . ∨ bn

has an equivalent representation in the logic PLpb as an implication (we recall
that in the logic PLpb ‘,’ and ‘|’ stand for ‘∧’ and ‘∨’, respectively)

a1, . . . , am → b1| . . . |bn.

In other words, the clausal propositional logic is simply a fragment of the logic
PLpb .

To illustrate the use of the logic PLpb we will consider the dominating-set

problem. Let G = (V,E) be an undirected graph. A set X ⊆ V is a dominating

set in G if every vertex of G is in X or is adjacent to a vertex in X. Given an
undirected graph G, a weight function w assigning integers to vertices, and an
integer k, the problem is to find a dominating set X such that the total weight
of vertices in X is at most k. To model the problem, we define a PLpb theory
D(G,w, k) as follows:

{pv = w(v) : v ∈ V }k
pv | 1{pw : {v, w} ∈ E}, for every v ∈ V .

It is clear that a set of vertices X is a dominating set with the total weight at
most k if and only if the set of atoms {pv : v ∈ X} is a model of D(G,w, k). This
example shows one of the advantages of the logic PLpb over formalisms which
do not allow boolean combinations of pb-atoms. There is a direct mapping of
the constraint defining a dominating set to a clause of the logic PLpb .

3 Language PS pb

The main question we deal with in this paper is how to specify theories such
as D(G,w, k) so that problem specifications are described concisely by means of
finite programs that are independent of particular data instances.

Let us consider the following clauses in the language of predicate logic (to
stay consistent with the notation used earlier, we write ‘,’ for ‘∧’ and ‘|’ for ‘∨’):

r(X)|g(X)|b(X)
edge(X,Y ), r(X), r(Y ) → ⊥
edge(X,Y ), g(X), g(Y ) → ⊥
edge(X,Y ), b(X), b(Y ) → ⊥



These clauses can be viewed as a specification of the graph 3-coloring problem.
Indeed, given a set of ground atoms

DG = {vtx (x) : x ∈ V } ∪ {edge(x, y) : {x, y} ∈ E},

specifying a graph, and some typing information stating that X and Y can
only be substituted with constants in the extension of the relation symbol vtx ,
these clauses offer a concise notation for the following collection of their ground
instantiations

r(x)|g(x)|b(x), for every x ∈ V
edge(x, y), r(x), r(y) → ⊥, for every x, y ∈ V
edge(x, y), g(x), g(y) → ⊥, for every x, y ∈ V
edge(x, y), b(x), b(y) → ⊥, for every x, y ∈ V .

Under an additional assumption that the truth values of the atoms of the form
vtx (x) and edge(x, y) are fully determined by the set DG (those in DG are true
and those not in DG are false), these clauses can be rewritten as

r(x)|g(x)|b(x), for every x ∈ V
r(x), r(y) → ⊥, for every x and y such that edge(x, y) ∈ DG

g(x), g(y) → ⊥, for every x and y such that edge(x, y) ∈ DG

b(x), b(y) → ⊥, for every x and y such that edge(x, y) ∈ DG.

This is a version of a familiar propositional encoding of the problem of 3-coloring
of the graph G. It has the property that there is a one-to-one correspondence
between models of that theory and 3-colorings of G.

In [6], we described a formalism to model search problems in a way gener-
alizing the graph 3-coloring example. The language of that formalism is essen-
tially a fragment of the standard language of first-order logic with the signature

(Rd, Rp, C, V ), where Rd and Rp are disjoint sets of relation symbols, and C
and V are sets of constant and variable symbols, respectively5. However, we
distinguish two types of relation symbols depending on whether they belong to
Rd or Rp. We use relation symbols in Rd to represent data instances of search
problems and call them data relation symbols. We call relation symbols in Rp

program relation symbols. In the graph-coloring example, Rd = {vtx , edge} and
Rp = {r, b, g}.

The definitions of terms, atoms, and ground terms and atoms are standard.
A clause in the language is an expression of the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are atoms. As before, we write clauses as implications rather
than disjunctions. We recall that we use ‘,’ and ‘|’ in place of ‘∧’ and ‘∨’.

5 The language also contains predefined relation symbols ==, <=, <, >= and > for
the equality and arithmetic comparisons, and predefined function symbols such as +,
−, ∗ and / to represent arithmetic operations. For these symbols, we always assume
their standard interpretation. Consequently, we drop them from the signature.



Given a search problem, we model its particular computational instance by
a data-program pair (D,P ), where D is a set of ground atoms built of data
relation symbols and P is a program, that is, a set of clauses specifying problem
constraints. Programs also contain typing declarations. The statements with the
keyword pred define program relation symbols, specify their arities and the types
of the arguments. The statements with the keyword var specify types of variables
that appear in the program. The types are given by unary data relation symbols.
For the graph-coloring example the typing declarations are of the form:

pred r(vtx )
pred g(vtx )
pred b(vtx )
var vtx X,Y

Let (D,P ) be a data-program pair. Typing specifies for each variable its
domain (as the extension in D of the data predicate defining its type). That
in turn, for every clause in P determines its set of ground instances. Since we
assume, as in the graph-coloring example above, that the extensions of data
relation symbols are fully specified by the input data instance D, we simplify
them away from these ground instances. The union of all such ground instances
of all clauses in P is a propositional theory, whose models provide the semantics
for the data-program pair (D,P ).

To sum up, the formalism proposed in [6] is a language for modeling con-
straints of search problems as programs, that is, sets of declarations and clauses.
The data-program pair, consisting of a program and a specification of a particu-
lar data instance as a set of ground atoms, represents a propositional theory —
a collection of ground instantiations of clauses in the program with respect to
constants specified in the data. Models of this propositional theory correspond
to problem solutions.

We will now describe the language PS pb that extends the formalism from [6]
by means to model arbitrary pb-atoms and their combinations. Due to lack of
space, our description is rather informal. A grammar providing a precise defini-
tion of the syntax is available at http://www.cs.uky.edu/psgrnd/.

The signature of the language of the logic PS pb is (Rd, Rp, C, V,W ), where
Rd, Rp, C and V are as before, and where W is a set of weight-function symbols.
The only terms in the language are arithmetic expressions built of constant and
variable symbols in C ∪ V . We extend, however, the concept of an atom.

A weighted-set definition is an expression S of the form p(t) = w(t′)[L] :
d1(s1) : . . . : dm(sm), where p is a program relation symbol, w is a weight-
function symbol, L is a list of variables, di, 1 ≤ i ≤ m, are data or predefined
relation symbols, and t, t′ and si, 1 ≤ i ≤ m, are tuples of terms such that all
variables appearing in t′ appear also in t. We call the expression d1(s1) : . . . :
dm(sm) the condition of S. Intuitively, S stands for the set of all expressions
p(t) = w(t′), for which all conditions di(si), 1 ≤ i ≤ m, hold. We note that it
is possible for L to be empty. In such case, we omit the list from the notation
altogether. It is also possible that m = 0. In such case we omit the symbol ‘:’.



If the weight function is a constant function equal everywhere to 1, we omit it
from the notation and write p(t)[L] : d1(s1) : . . . : dm(sm).

Each weighted-set definition S is a “template” for sets of weighted atoms.
Variables appearing in S that are not in the list L appearing in S are free.
Grounding them (replacing with constants) yields different instances of the tem-
plate S. Variables that appear in the list L of S are bound in S. Grounding
bound variables in an instance of S, yields elements of the set defined by that
instance. We formalize these intuitions below, when we formally define the notion
of grounding.

A first-order pb-atom (or simply pb-atom, if there is no ambiguity) is any
expression

l{S1; S2; . . . ; Sk}u,

where l and u are terms and S1, S2, . . . , Sk are weighted-set definitions. Intu-
itively, the meaning of a predicate pb-atom l{S1; S2; . . . ; Sk}u is that the total
weight of all atoms that are true in the union of the sets specified by the set
definitions S1, . . . , Sk is at least l and no more than u (we will shortly make this
intuition precise). A pb-clause is an expression of the form

C = A1, . . . , As → B1| . . . |Bt,

where all Ai and Bi are atoms or pb-atoms.
We represent an instance of a search problem as a set D of ground atoms

specifying the extensions of data relation symbols in Rd. The set D also contains
expressions of the form w(c1, . . . , ck) = u, where w is a k-ary weight-function
symbol in W , c1, . . . , ck are constants that occur in ground atoms listed in D,
and u is an integer. These expressions define a weight function w (we assume
that argument tuples not listed explicitly do not belong to the domain of w).
We call such sets D data sets.

We represent the constraints specifying the search problem itself by a collec-
tion of pb-clauses, and typing and declaration statements. The latter have the
same format as that we introduced earlier when discussing the graph-coloring
example. We call such collections programs.

We call a pair (D,P ), where D is a data set and P is a program, a data-

program pair. We will now define models of data-program pairs. The definition
is based on the interpretation of clauses as propositional schemata, that is, as
shorthands for sets of ground propositional clauses.

Let (D,P ) be a data-program pair. First, we consider a weighted-set defini-
tion S of the form p(t) = w(t′)[L] : d1(s1) : . . . : dm(sm) appearing in a pb-clause
of a data-program pair (D,P ). Let ϑ be a ground substitution whose domain
contains all free variables in S and does not contain any variables that are bound
in S (we note that the sets of free and bound variables are disjoint). By Sϑ we
denote the set of expressions of the form p(tϑϑ′) = v, where

1. ϑ′ is a ground substitution with the domain consisting of all variables that
are bound in S such that for every i, 1 ≤ i ≤ m, di(siϑϑ′) holds (we note
that term tuples siϑϑ′ are ground and, since data relation symbols are fully



specified by a data-program pair, this latter condition can be verified effi-
ciently)

2. v is an integer to which the weight expression w(t′ϑϑ′) evaluates. That is,
we evaluate the term tuple t′ϑϑ′, which is ground (performing arithmetic
operations, if necessary) and look up in D the value of the function w for the
resulting tuple of the ground arguments (we recall that weight functions are
fully defined in the data component D). The whole expression is undefined
if w is undefined for the term t′ϑϑ′.

To specify the meaning of a pb-clause C occurring in the program P of the
data-program pair (D,P ), we ground C and replace it with a set of propositional
pb-clauses. Let us consider a pb-atom A = l{S1; . . . ; Sk}u appearing in C. We
start by renaming all bound variables by new unique names different from any
other variable name in the clause (the renaming does not change the meaning of
any of the set definitions in A). In this way, the sets of bound and free variables
in C are disjoint. Let ϑ be a ground substitution whose domain contains all free
variables and none of the bound ones. We define Aϑ as follows:

1. Aϑ = ⊥, if lϑ or uϑ are not integers
2. Aϑ = ⊥, if for some 1 ≤ i ≤ k, Siϑ is undefined
3. Aϑ = ⊥ if for some 1 ≤ i < j ≤ k and w 6= w′, there are expressions a = w

and a = w′, in Siϑ and Sjϑ, respectively.
4. Aϑ = lϑ{S1ϑ ∪ . . . ∪ Skϑ}uϑ, otherwise. In this case, lϑ and uϑ are integer

constants, and S1ϑ ∪ . . . ∪ Skϑ is a set of ground expressions of the form
a = w.

It is clear that Aϑ is a propositional pb-atom. Applying ϑ to all atoms in C
produces a propositional pb-clause Cϑ. We now define grnd(D,P ) to consist of
all propositional pb-clauses of the form Cϑ, where C is a pb-clause in P and ϑ
is a ground substitution that contains in its domain all free variables in C and
none of C’s bound variables. We define a set M of ground atoms to be a model

of (D,P ) if it is a model of grnd(D,P ).
Given a mapping assigning to an instance I of a search problem Π a data

set DI , we say that a program P solves Π if for every instance I, solutions to
Π for I correspond to models of the data-program pair (DI , P ).

4 Psgrnd

Models of a data-program pair (D,P ) are models of a PLpb theory grnd(D,P ).
Consequently, they can be computed by SAT solvers for the logic PLpb . To facil-
itate use of such solvers in computing solutions to search problems represented
in the language PS pb as data-program pairs, we implemented a program psgrnd.
Given a data-program pair (D,P ), psgrnd outputs its grounding grnd(D,P )6.

6 There are some minor differences between the grounding as we described it and what
we implemented in psgrnd. Namely, in the cases (1) - (3) of the definition of Aϑ, the
grounder produces an error message and terminates with failure.



This section describes the program psgrnd. Our implementation is a major
enhancement of a prototype program described in [6]. It is based on a formal
grammar for the language of the logic PS pb . Both the grammar and the ps-

grnd program are available at http://www.cs.uky.edu/psgrnd/. To generate
the parser source code, we processed this grammar by the Bison utility [9]. We
wrote the code of psgrnd in C++ and compiled it both under UNIX and Win-
dows environment. We used gcc 3.3 compiler for UNIX and Microsoft Visual
Studio 6.0 compiler for Windows XP. The main improvements with respect to
the earlier version of the grounder program include the capability to process
weight constraints and an option to execute the complete single-atom lookahead
to reduce the size of the propositional theory produced by the grounder.

The output from the grounder program when executed on a data-program
pair (D,P ) is a set of ground instantiations of pb-clauses in P computed with
respect to data specification in D. It also includes the set of atoms whose logical
value was determined by the grounder and those that the grounder determined
to be irrelevant (they may assume any logical value in any model of the pair
(D,P )). Some of the most important options of the program include output in
human-readable form, output in the DIMACS format (for input data-program
pairs without pb-atoms), disabling lookahead, and disabling propagation.

This implementation of the grounder is often much faster than the previous
implementation due to carefully designed memory management module. More-
over, information about data predicates is reorganized before parsing clauses by
replacing linked lists of possible values with sorted arrays. This allows us to use
binary search during parsing and grounding clauses. The benefits of using binary
search exceed additional cost associated with sorting data.

Furthermore, when generating ground instances of clauses of PS pb programs,
we ground variables in the order of minimal cost. This eliminates early those
variable instantiations which do not lead to valid ground clauses.

Another improvement in efficiency comes from storing names and other multi-
character symbols appearing in user input in a symbol table and representing
every name in data structures by its corresponding number. As a result, we can
often replace inefficient string comparisons with comparisons of two integers.

Previous versions of the program used a binary search tree to store names
of ground atoms during grounding process. The current version uses a balanced
binary tree data structure for this purpose. In many applications, the number
of ground atoms is large (measured in millions). We believe that the use of a
balanced binary tree is needed to maintain the set of ground atoms and to search
it efficiently.

During the grounding process, when a new clause, say r, is added to the
collection of ground clauses and r contains only one atom, say A, psgrnd triggers
unit propagation. It follows a general format of unit propagation for propositional
CNF theories, modified to handle the case of pb-atoms. When there are no more
truth values to propagate and no contradictory pb-clause (empty antecedent
and empty consequent) was derived, the unit propagation process terminates. If a



contradictory clause was derived, the theory is inconsistent, the whole grounding
process terminates and a single contradictory clause is returned.

When grounding is complete, psgrnd has an option to perform a complete
one-atom lookahead. For every ground atom with an undetermined truth value,
the grounder assigns to this atom a truth value (first true, then false) and ten-
tatively propagates it. If this tentative propagation results in an inconsistency,
the atom must have the opposite truth value and permanent propagation is later
performed on this atom with its assigned value. If a tentative propagation ter-
minates without a conflict, the program restores the theory to its previous state.
A complete one-atom lookahead is costly (runs in time O(n2), where n is the
number of ground atoms) but sometimes results in a much smaller theory.

We will now briefly discuss the performance of psgrnd. The key question is
how fast it can process data-program pairs leading to large ground theories with
millions of atoms and clauses. We tested psgrnd on data-program pairs (Dn, P ),
where P is a program consisting of two simple clauses, each with four variables
over the same domain, and Dn specifies this single domain as the integer range
(1..n). The ground theory for a data-program pair (Dn, P ) consists of 2n4 ground
atoms and 2n4 ground clauses. Thus, even for small values of n, the ground
theory is large, which poses a challenge for grounding programs (for instance,
grnd(D50, P ) has over 12 million atoms and 12 million clauses). We compared
psgrnd with its earlier and restricted version [6], which we call here old-psgrnd.
We also compared psgrnd with lparse, a state-of-the-art program for grounding
DATALOG¬ programs (for that comparison, we replaced the program P with
an equivalent DATALOG¬ program of a similar structure to P ). The results for
n = 10, 20, 30, 40 and 50 are shown in Table 1.

Table 1. Hand-made program, large ground theories, CPU time in seconds

grounder n = 10 n = 20 n = 30 n = 40 n = 50

psgrnd 0.09 1.8 10.59 36.43 94.76
old-psgrnd 23.68 509.30 2995.87 - -
lparse 0.15 2.51 12.87 40.48 102.88

The results indicate that psgrnd is at least two orders of magnitude faster
then its earlier version, which timed out (the limit was set at 3600 sec of CPU
time). It is also slightly faster than lparse. We conducted these experiments
on a machine with 3.2GHz Intel Pentium processor, 1Gb memory and running
Slackware 9.0 Linux kernel 2.4.25.

We also experimented with programs encoding more typical search problems.
For lack of space, we only provide results for the graph coloring problem for cer-
tain simplex graphs with 5n vertices and 11n − 4 edges, for n = 5000, 10000,
15000 and 20000 (the ground theory in this last case has 300000 atoms and
1059998 clauses). The results in Table 2 show that psgrnd significantly outper-



forms old-psgrnd and is faster than lparse (the latter program causes segmenta-
tion fault when run for n = 20000).

Table 2. Graph-coloring problem

grounder n = 5000 n = 10000 n = 15000 n=20000

psgrnd 1.14 2.28 3.43 4.51
old-psgrnd >1000 >1000 >1000 >1000
lparse 1.84 3.74 5.70 seg fault

The program psgrnd is invoked from a UNIX command line in the following
way

psgrnd [−d dataF ileList] − r ruleF ile [−c constantList] [output] [flags]

where optional dataFileList is one or more data files

dataF ile1 dataF ile2 . . . dataF ileN

and output is of the form

[−o outputForSolver] [−m humanReadableOutput]

If -o option is not specified, the default output file is out.aspps. An optional
constantList is a list of value assignments for symbolic constants which have to
be provided for a particular problem encoding

name1 = value1 name2 = value2 . . . nameM = valueM

Flags −d, −r , and −c may be dropped, but in this case they should be dropped
altogether and the data files should always precede the rule file. Psgrnd has
several options specifying output formats and processing instructions. We refer
to http://www.cs.uky.edu/psgrnd/ for details.

The program psgrnd can currently produce its output in several formats. The
default format is designed for the case of general theories in the logic PLpb . It
is accepted by solvers aspps [6] and wsatcc [10] (if all pb-atoms in the ground
theory are cardinality atoms).

To support the use of existing SAT solvers and SAT(PB) solvers, we devel-
oped simple scripts translating the psgrnd format into DIMACS format (if the
ground theory contains no pb-atoms) and into input formats of SAT(PB) solvers
PBS [1], SATZOO [7] and SATURN [11] (if all clauses containing pb-atoms are
unit clauses). The script generating DIMACS format is already integrated as an
option of psgrnd. The other scripts will be integrated in the near future.

We will now briefly describe the default output format for psgrnd. Our ob-
jectives are to establish that format as the standard input format for solvers for



the logic PLpb and to support the use of PS pb as a programming front-end for
existing and future SAT(PB) solvers.

The default output format for psgrnd has the following properties. The output
file starts with a header line

p number of propositional atoms number of pb atoms number of rules

Next number of rules lines represent clauses of the ground program. Propo-
sitional atoms are represented by positive integers. Pseudo-boolean atoms are
represented in the form

[ l u a1 = w1 . . . ak = wk ]

where l and u are integers representing the lower and the upper bound, respec-
tively, a1, . . . , ak are integers representing propositional atoms, and w1, . . . , wk

are integer weights assigned to these atoms. Cardinality atoms (special case of
pseudo-boolean atoms where all weights are equal to 1) are represented as ex-
pressions

{ l u a1 . . . ak }

with the meaning of l, u, and a1, . . . , ak as above. Clauses of the ground program
contain first (possibly empty) set of atoms in the body, next a comma and, finally,
a (possibly empty) set of atoms in the head. Within sets of atoms in the body
and in the head, propositional atoms are followed by cardinality atoms, and then
by other pb-atoms. After lines representing clauses, there are lines containing
description of propositional atoms in the form

c atom number atom name

Atoms appearing in the rules are assigned positive numbers starting with 1.
Atoms determined during grounding to be true are assigned number 0. Atoms
that the grounder determined to be irrelevant (they may assume any logical
value in any model) are assigned number -1. In general, if a line starts with a ‘c’
character, it is considered a comment, not a part of the ground program.

5 Examples

We will now consider several search problems and describe PS pb programs that
solve them. All relevant data relation symbols and weight function symbols ap-
pear in typing statements and in clauses of programs solving search problems.
Therefore, we will only describe programs and omit a detailed discussion of the
data representation schemata.

We start with the dominating set problem, which we discussed earlier. The
program solving the problem consists of the following statements and clauses:

pred in(vtx).

var vtx X,Y.

{in(X)=w(X)[X]}k.

in(X) | 1{in(Y)[Y]: edge(X,Y)}.



The first clause captures the constraint that the sum of weights of selected
vertices is at most k. The second clause represents the constraint defining a
dominating set: every vertex belongs to the set or at least one of its neighbors
does7. This program (given a data set) grounds to the PLpb theory we described
in Section 2. We note that following the grammar of the syntax of the language
PSpb accepted by psgrnd, we complete each declaration and each clause with
a period ‘.’. We also note that the constant k appearing in the first clause and
specifying the bound on the total weight of a dominating set needs to be specified
at the command line when calling psgrnd.

The next problem we discuss is the n × n magic square problem. To solve it
we can use the following PS pb program.

pred in(index,index,entry).

var index I,J.

var entry K.

1 {in(I,J,K)[K]} 1.

1 {in(I,J,K)[I,J]} 1.

n*(n*n+1)/2 {in(I,J,K)=w(K)[J]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,J,K)=w(K)[I]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,I,K)=w(K)[I]} n*(n*n+1)/2.

n*(n*n+1)/2 {in(I,n+1-I,K)=w(K)[I]} n*(n*n+1)/2.

The first two clauses are unit cardinality atoms that ensure that (1) there is
exactly one value K (from the range (1..n2) defined in the data set) for every
position (I, J) in the array, and that (2) every value K is placed in some position
(I, J). The remaining four clauses describe the basic problem constraints that
each row, column and two main diagonals have entries that sum up to the same
value n(n2+1)/2. As before, the constant n needs to be specified at the command
line, when calling psgrnd.

Finally, we consider the Schur problem: given integers k and n, find an as-
signment of 1, . . . , n into k bins so that each bin is sum-free (if x and y are in a
bin, x + y is not). We can solve that problem with the following program.

pred in(num,part).

var num M,N.

var bin B.

1{in(M,B)[B]}.

in(M,B), in(N,B), in(M+N,B) -> .

The first clause captures the requirement that each integer M (in the range
specified in the data set), is assigned to some bin B. The second clause describes
the Schur constraint.
7 We assume here that every edge {x, y} of an input graph is represented both as

edge(x, y) and edge(y, x).



Data-program pairs with these three programs ground to theories in the logic
PLpb . In the last two cases, these theories consist of pseudo-boolean constraints
and SAT(PB) solvers can be used to compute their models (solutions to the
corresponding instances of the search problems). The full syntax of PS pb , not
discussed here due to the lack of space, allows us to write the first clause as

in(M,B)[B].

The meaning of this clause is similar to the one used before. The difference is that
it grounds to a collection of propositional clauses of the form in(m, 1)| . . . |in(m, k)
rather than to propositional pb-atoms of the form 1{in(m, 1), . . . , in(m, k)}.
Clearly, both types of ground expressions have the same semantics. However,
now the corresponding data-program pairs ground to propositional CNF theo-
ries and standard SAT solvers can be used for computing solutions.

6 Conclusions, related and future work

We defined a language PS pb for modeling search problems specified by boolean

combinations of pseudo-boolean constraints. Based on a formal grammar of
PSpb , we designed and implemented a program psgrnd that converts specifi-
cations of search problems in the language PS pb into theories in the logic PLpb .
The theories generated by psgrnd can be output in formats accepted by current
SAT solvers for CNF theories and by solvers for more general PLpb theories (at
present, under some syntactic restrictions). In this way, the psgrnd program fa-
cilitates the use of SAT solvers as a general computational mechanism for finding
solutions to search problems modeled in the language PS pb .

Other researchers also studied the problem of modeling propositional and
pseudo-boolean constraints. The closest to our work are the language ESO (the
existential fragment of the second-order logic) [5, 4] and the language QPROP,
extending the language of propositional logic with finite quantification [8]. Each
of these languages is a restricted version of our language in that they do not
admit pseudo-boolean constraints.

This paper represents work in progress. In the near future, we will extend the
language PSpb with optimization statements, and will allow negative integers in
pb-atoms. We will also provide concise ways to define weight functions in terms
of arithmetic expressions.

As we mentioned at the beginning, representing search problems in the lan-
guage PSpb makes it possible to reason about them. Two important problems
stemming from that possibility are: (1) to develop automated techniques to
rewrite problem specifications so that to improve the performance of SAT solvers
on the corresponding ground theories produced by psgrnd, and (2) to design a
class of SAT solvers whose heuristics could be customized to a particular ground
theory based on properties of its high level specification in the language PS pb .
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