
On the problem of computing the well-founded semantics1Zbigniew Lonc2 and Miros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington KY 40506-0046, USAlonc, mirek@cs.engr.uky.eduAbstractThe well-founded semantics is one of the most widely studied and used semantics of logicprograms with negation. In the case of �nite propositional programs, it can be computedin polynomial time, more speci�cally, in O(jAt(P)j�size(P)) steps, where size(P) denotesthe total number of occurrences of atoms in a logic program P . This bound is achieved byan algorithm introduced by Van Gelder and known as the alternating-�xpoint algorithm.Improving on the alternating-�xpoint algorithm turned out to be di�cult. In this paper westudy extensions and modi�cations of the alternating-�xpoint approach. We then restrictour attention to the class of programs whose rules have no more than one positive occurrenceof an atom in their bodies. For programs in that class we propose a new implementation ofthe alternating-�xpoint method in which false atoms are computed in a top-down fashion.We show that our algorithm is faster than other known algorithms and that for a wideclass of programs it is linear and so, asymptotically optimal.1 IntroductionWell-founded semantics was introduced in [17] to provide 3-valued interpretations to logicprograms with negation. Since its introduction, the well-founded semantics has become oneof the most widely studied and most commonly accepted approaches to negation in logicprogramming [1, 9, 5, 6, 18, 3]. It was implemented in several top-down reasoning systems,most prominent of which is XSB [14].Well-founded semantics is closely related to the stable-model semantics [11], another majorapproach to logic programs with negation. The well-founded semantics approximates thestable-model semantics [17, 10]. Moreover, computing the well-founded model of propositionalprograms is polynomial [16] while computing stable models is NP-hard [12]. Consequently,evaluating the well-founded semantics can be used as an e�ective preprocessing technique inalgorithms to compute stable models [15]. In addition, as demonstrated by smodels [13], atpresent the most advanced and most e�cient system to compute stable models of DATALOG:programs, the well-founded semantics can be used as a powerful lookahead mechanism.Despite the importance of the well-founded semantics, the question of how fast it canbe computed has not attracted signi�cant attention. Van Gelder [16] described the so calledalternating-�xpoint algorithm. Van Gelder's algorithm runs in time O(jAt(P)j�size(P)), where1A preliminary version of this paper appeared in the Proceedings of CL 2000.2On leave from Warsaw University of Technology. 1

At(P) is the set of atoms occurring in a logic program P , jAt(P)j denotes the cardinality ofAt(P), and size(P) is the size of P (the total number of atom occurrences in P). Improvingon this algorithm turned out to be di�cult. The �rst progress was obtained in [2]. Thealgorithm described there, when restricted to programs whose rules contain at most two positiveoccurrences of atoms in their bodies, runs in time O(jAt(P)j4=3jP j2=3), where jAt(P)j standsfor the number of atoms in At(P) and jP j| for the number of rules in P . For programs whoserules have no more than one positive atom in the body a better estimate of O(jAt(P)j3=2jP j1=2)was obtained. For some classes of programs this is an asymptotically better estimate than theO(jAt(P)j � size(P)) estimate that holds for the algorithm by Van Gelder.A di�erent approach to computing the well-founded model was proposed in [18, 4]. Itis based on the notion of a program transformation [3]. The authors describe there severaltransformations that can be implemented in linear time and that simplify a program while(essentially) preserving the well-founded semantics. These transformations are: the positivereduction, success, negative reduction, and failure (PSNF transformations, for short). Theyallow one to compute in linear time the Kripke-Kleene semantics [8] of the program. Tocompute the well-founded semantics one also needs to detect the so-called positive loops. Thecomplexity of this task dominates the asymptotic complexity of the well-founded semanticscomputation. No improved algorithms for the positive-loop detection are o�ered in [4] so theworst-case asymptotic complexity of the algorithm presented there remains the same as thatof the alternating-�xpoint method. However, due to the use of PSNF transformations, thatsimplify the program, the algorithm based on program transformations may in practice runfaster. In contrast to the approach studied in [4], we focus here on the positive-loop detectiontask.The alternating-�xpoint algorithm works by successively improving lower approximationsT and F to the sets of atoms that are true and false (under the well-founded semantics),respectively. The algorithm starts with T = ;. Using this estimate, it computes the �rstestimate for F . Next, using this estimate, in turn, it computes a better estimate for T . Thealgorithm continues until further improvements are not possible. It returns the �nal sets Tand F as the well-founded semantics. The most time-consuming part of this algorithm is incomputing estimates to the set of atoms that are false (in this part, in particular, positiveloops are detected). In the Van Gelder algorithm, the best possible approximation (given thecurrent estimate for T) is always computed by using a bottom-up approach. A dual versionof the alternating-�xpoint algorithm, starting with F = ; and then alternatingly computingapproximations to T and F , is also possible.In this paper we focus on the problem of detecting positive loops and computing new falseatoms. We restrict our attention to the class of programs that have at most one positive atomin the body. We denote this class of programs by LP1. We show that for programs fromLP1, false atoms can be computed by means of a top-down approach by �nding atoms thatdo not have a proof. Moreover, we show that it is not necessary to �nd all atoms that can beestablished to be false at a given stage. Finding a proper subset (as long as it is not empty) isalso su�cient and results in a correct algorithm. We apply these techniques to design a versionof an alternating-�xpoint algorithm computing the well-founded semantics of programs fromthe class LP1. We demonstrate that the resulting algorithm is asymptotically better than theoriginal alternating-�xpoint algorithm by Van Gelder. Speci�cally, we show that our algorithmruns in time O(jAt(P)j2+size(P)). Thus, for programs with size(P) � jAt(P)j2, our algorithm2

runs in linear time and is asymptotically optimal! It is also easy to see that when jP j > jAt(P)j,the asymptotic estimate of the running time of our algorithm is better than that of algorithmsby Van Gelder [16] and Berman et al. [2].As mentioned above, our approach is restricted to the class LP1. Applicability of ourmethod can, however, be slightly extended. Let us denote by LP+1 the class of these logicprograms that, after simplifying by means of PSNF transformations (or, equivalently, withrespect to the Kripke-Kleene semantics) fall into the class LP1. Since PSNF transformations(the Kripke-Kleene semantics) can be computed in linear time, the asymptotic estimate of therunning time of our method extends to all programs in the class LP+1 .The paper is organized as follows. In the next section we provide a brief review of the keynotions and terminology. In Section 3 we describe several modi�cations to the original VanGelder algorithm, we show their correctness and estimate their running time. The ultimatee�ect of our considerations there is a general template for an algorithm to compute the well-founded semantics. Any algorithm computing some (not necessarily all) atoms that can beestablished as false given a current estimate to the well-founded can be used with it. Onesuch algorithm, for programs from the class LP1, is described and analyzed in Section 4. Itconstitutes the main contribution of the paper and yields a new, currently asymptotically moste�cient algorithm for computing the well-founded semantics for programs in LP1. The lastsection contains conclusions.2 PreliminariesWe start by reviewing basic concepts and notation related to logic programs and the well-founded semantics, as well as some simple auxiliary results. In the paper we consider thepropositional case only.Let P be a normal logic program. By At(P) we denote the set of atoms occurring in P . LetM � At(P) (throughout the paper we often drop a reference to P from our notation, wheneverthere is no danger of ambiguity). By PM we denote the program obtained from P by removingall rules whose bodies contain negated literals of the form not(a), where a 2 M . Further,by P h we denote the program obtained from P by removing from the bodies of its rules allnegative literals. Clearly, the program (PM)h coincides with the Gelfond-Lifschitz reduct of Pwith respect to M (throughout the paper, we write P hM for (PM)h, to simplify notation). TheGelfond-Lifschitz operator on the algebra of all subsets of At, GL (following our convention,we omit the reference to P from the notation), is de�ned byGL(M) = LM(P hM);where LM(Q) stands for a least model of a Horn program Q.We now present characterizations of the well-founded semantics. We phrase them in thelanguage of operators and their �xpoints. All operators considered here are de�ned on thealgebra of subsets of At(P). We denote a least �xpoint (if it exists) of an operator O by lfp(O).It is well known that GL is antimonotone. Consequently, GL2 = GL�GL is monotone andhas a least �xpoint. The set of atoms that are true with respect to the well-founded semanticsof a program P , denoted by Twfs , is precisely the least �xpoint of the operator GL2, that is,Twfs = lfp(GL2) [16, 10]. The set of atoms that are false with respect to the well-founded3

semantics of a program P , denoted by Fwfs , is given by GL(Twfs) (throughout the paper, Xdenotes the complement of a set X with respect to At(P)).One can de�ne a dual operator to GL2 byA(M) = GL(GL(M)):It is easy to see that A is monotone and that its least �xpoint is Fwfs . Thus, Fwfs = lfp(A)and Twfs = GL(Fwfs).We close this section by discussing ways to compute GL(M) for a given �nite propositionallogic program P and a set of atoms M � At(P). A straightforward approach is to computethe Gelfond-Lifschitz reduct P hM and then to compute its least model. The resulting algorithmis asymptotically optimal as it runs in time linear in the size of the program. However, inthis paper we will use a di�erent approach, more appropriate for the computation of the well-founded semantics. Let P be a logic program with negation. We de�ne At�(P) = fnot(a): a 2At(P)g. For every set M � At(P) [At�(P), we de�ne true(M) = M \At(P). If we interpretliterals of At�(P) as new atoms, then for every set M � At(P), the program P [not(M) canbe viewed as a Horn program. Thus, it has a least model. It is easy to see thatGLP (M) = true(LM(P [not(M))):Here, P appearing at the left-hand side of the equation stands for the original logic program,while P appearing at the right-hand side of the equation stands for the same program butinterpreted as a Horn program. Thus, using the algorithm of Dowling and Gallier [7], theGelfond-Lifschitz reduct can be computed in time O(size(P) + jM j) = O(size(P)) (sinceM � At(P), jM j = O(size(P))).3 AlgorithmsThe departure point for our discussion of algorithms to compute the well-founded semantics isthe alternating-�xpoint algorithm from [16]. Using the terminology introduced in the previoussection it can be formulated as follows.Algorithm 1 (Van Gelder)F := ;;repeatT := true(LM(P [not(F)); (* or equivalently: T := GL(F); *)F := LM(P hT); (* or equivalently: GL(T); *)until no change in F ;return T and F .Let F 0 and F 00 be the values of the set F just before and just after an iteration of therepeat loop in Algorithm 1. Clearly,F 00 = GL(GL(F 0)) = A(F 0):Thus, after iteration i of the repeat loop, F = Ai(;). Consequently, it follows from our earlierremarks that when Algorithm 1 terminates, the set F that is returned satis�es F = Fwfs . Since4

there is no change in F in the last iteration, when the algorithm terminates, we have T = Twfs .That is, Algorithm 1 is correct.We will now modify Algorithm 1. The basis for Algorithm 1 is the operator A. Thisoperator is not progressive. That is, M is not necessarily a subset of A(M). We will nowintroduce a related progressive operator, say B, and show that it can be used to replace A.Let P be a logic program and let T and F be two subsets of At(P). By PF;T we denote theprogram obtained from P by removing1. all rules whose heads are in F2. all rules whose bodies contain a positive occurrence of an atom from F3. all rules whose bodies contain a negated literal of the form not(a), where a 2 T .Clearly, PF;T � PT .We de�ne an operator B(F) as follows:B(F) = LM(P hF;T);where T = GL(F) and P hF;T abbreviates (PF;T)h. The following result gathers key propertiesof the operator B.Theorem 3.1 Let P be a normal logic program. Then:1. B is monotone2. For every F � At(P), A(F) � B(F)3. For every F � Fwfs , B(F) � Fwfs4. lfp(B) = Fwfs5. For every F � At(P), B(F) = F [(F n LM(P hF;T)), where T = GL(F).Proof: (1) Assume that F1 � F2. Set Ti = GL(Fi), i = 1; 2. Clearly, F2 � F1 and, byantimonotonicity of GL, T1 � T2. By the de�nition of PF;T , PF2;T2 � PF1;T1 . Consequently,LM(P hF2;T2) � LM(P hF1;T1) and, so, B(F1) � B(F2).(2) Let T = GL(F). Clearly, PF;T � PT . Thus, A(F) = LM(P hT) � LM(P hF;T) = B(F).(3) We have, LM(P hTwfs) = Fwfs . It follows that removing from P hTwfs rules with heads in Fwfsand those that contain an atom from Fwfs in their bodies does not change the least model.That is, LM(P hFwfs ;Twfs) = LM(P hTwfs):Since, Twfs = GL(Fwfs), B(Fwfs) = LM(P hFwfs ;Twfs). Let F � Fwfs . Then, by (1), B(F) �B(Fwfs). Thus, we haveB(F) � B(Fwfs) = LM(P hFwfs ;Twfs) = LM(P hTwfs) = Fwfs :(4) The least �xpoint of B is given by lfp(B) = SBi(;). By (3), lfp(B) � Fwfs . On theother hand, by (1) and (2), Ai(;) � Bi(;). Thus, Fwfs = lfp(A) � lfp(B). It follows thatlfp(B) = Fwfs . 5

(5) Let T = GL(F). Since PF;T has no rules with head in F , LM(P hF;T) � F and, consequently,F � B(F). Thus, the assertion follows. 2Theorem 3.1 allows us to prove the correctness of the following modi�cation of Algorithm1.Algorithm 2F := ;;repeatT := true(LM(P [not(F));�F := F n LM(P hF;T);F := F [�F ;until no change in F ;return T and F .By Theorem 3.1, each iteration of the repeat loop computes B(F) as the new value forthe set F . More formally, the set F just after iteration i, satis�es F = Bi(;). Thus, when thealgorithm terminates, the set F that is returned is the least �xpoint of B. Consequently, byTheorem 3.1(4), Algorithm 2 is correct.We will now modify Algorithm 2 to obtain a general template for an alternating-�xpointalgorithm to compute the well-founded semantics. The key idea is to observe that it is enoughto compute a subset of �F in each iteration and the algorithm will remain correct.Let us assume that for some operator �w de�ned for pairs (F;Q), where F � At(P) and Qis a Horn program such that At(Q) � F (the complement is, as always, evaluated with respectto At(P)), we have:(W1) �w(F;Q) � F n LM(Q)(W2) �w(F;Q) = ; if and only if F n LM(Q) = ;.Let F � At(P). By the de�nition of PF;T , At(P hF;T) � F . Thus, we de�ne Bw(F) =F [�w(F; P hF;T), where T = true(LM(P [not(F))). It is clear that for every F � At(P),F � Bw(F) � B(F), the latter inclusion follows from Theorem 3.1(5) and (W1). Consequently,for every i, Biw(;) � Bi(;):It follows that Biw(;) � lfp(B) = Fwfs . It also follows that there is the �rst i such thatBiw(;) = Bi+1w (;). Let us denote this set Biw(;) by F0. Then F0 � Fwfs . In the same time, bycondition (W2), B(F0) = F0. Since Fwfs is the least �xpoint of B, Fwfs � F0. It follows thata modi�cation of Algorithm 2 in which line�F := F n LM(P hF;T);is replaced by �F := �w(F; P hF;T);correctly computes the well-founded semantics of a program P . Thus, we obtain the followingalgorithm for computing the well-founded semantics.6

Algorithm 3F := ;;repeatT := true(LM(P [not(F));�F := �w(F; P hF;T);F := F [�F ;until no change in F ;return T and F .We will now re�ne Algorithm 3. Speci�cally, we will show that the sets T and F can becomputed incrementally.Let R be a Horn program. We de�ne the residual program of R, res(R), to be the Hornprogram obtained from R by removing all rules of R with the head in LM(R) and by removingfrom the bodies of the remaining rules those elements that are in LM(R). We have the followingtechnical result.Lemma 3.2 Let R be a Horn program and let M be a set of atoms such that M\head(R) = ;.Then LM(R [M) = LM(R) [LM(res(R) [M). 2Lemma 3.2 implies that (we treat here negated literals as new atoms and P as Horn programover the extended alphabet)LM(P [not(F [�F)) = LM(P [not(F)) [LM(res(P) [not(�F)):Thus, if the set F is expanded by new elements from �F , then the new set T can be computedby increasing the old set T by �T = true(LM(res(P) [not(�F))). Important thing tonote is that the increment �T can be computed on the basis of the residual program and theincrement �F . Similarly, we havePF[�F;T[�T = (PF;T)�F;�T :Thus, computing PF;T can also be done incrementally on the basis of the program consideredin the previous iteration by taking into account most recently computed increments �F and�T .This discussion implies that Algorithm 3 can be equivalently restated as follows:Algorithm 31 T := F := �T := �F := ;;2 R := P ; (*R will be treated as a Horn program *)3 Q := P ;4 repeat5 �T := true(LM(R [not(�F));6 R := res(R [not(�F));7 T := T [�T ;8 Q := Q�F;�T ; 7

9 �F := �w(F;Qh);10 F := F [�F ;11 until no change in F ;12 return T and F .We will now estimate the running time of Algorithm 3. Clearly line 1 requires constant time.Setting up appropriate data structures for programs R and Q (lines 2 and 3) takes O(size(P))steps. In each iteration, �T is computed and the current program R is replaced by the programres(R[not(�F)) (lines 5 and 6). By modifying the algorithm from [7] and assuming that R isalready stored in the memory (it is avaliable either as the result of the initialization in the caseof the �rst iteration or as a result of the computation in the previous iteration), both tasks canbe accomplished in O(size(Ro) + j�F j � size(Rn)) steps. Here Ro denotes the old version ofR and Rn denotes the new version of R. Consequently, the total time needed for lines 5 and 6over all iterations is given by O(size(P) + jAt(P)j � size(Rt)) = O(size(P)) (where Rt is theprogram R, when the algorithm terminates). The time needed for all lines 7 is proportional tothe number of iterations and is O(jAt(P)j) = O(size(P)).Given a logic program Q and sets of atoms �T and �F , it takes O(size(Q)�size(Q�F;�T)+j�T j+j�F j) steps to compute the program Q�F;�T in line 8. We assume here that Q is alreadyin the memory as a result of the initialization in the case of the �rst iteration, or as the resultof the computation in the previous iteration, otherwise. It follows that the total time over alliterations needed to execute line 8 is O(size(P) + jAt(P)j) = O(size(P)).Thus, we obtain that the running time of Algorithm 3 is given by O(size(P) + m), wherem is the total time needed to compute �w(F;Qh) over all iterations of the algorithm.In the standard (Van Gelder's) implementation of Algorithm 3, we compute the whole setF n LM(Qh) as �w(F;Qh). In addition, computation is performed in a bottom-up fashion.That is, we �rst compute the least model of Qh and then its complement with respect to F .Such approach requires O(size(Qh)) = O(size(P)) steps per iteration to execute line 9 andleads to O(jAt(P)j � size(P)) running-time estimate for the alternating-�xpoint algorithm.4 Procedure �wIn this section we will focus on the class of programs, LP1, that is, programs whose rules haveno more than one positive atom in their bodies. Assume that we have a procedure false that,given a Horn program Q 2 LP1, returns a subset of the set At(Q) n LM(Q). Assume alsothat false returns the empty set if and only if At(Q) = LM(Q). For every pair (F;Q), whereF � At(P) and Q is a Horn program such that At(Q) � F , we de�ne�w(F;Q) = false(Q):It is easy to see that this operator �w(F;Q) satis�es conditions (W1) and (W2). Consequently,it can be used in Algorithm 3. Clearly, the procedure �w and its computational properties aredetermined by the procedure false. In the remainder of the paper, we will describe a particularimplementation of the procedure false and estimate its running time. We will use this estimateto obtain a bound on the running time of the resulting version of Algorithm 3.A straightforward way to compute the least model of Q and so, to �nd At(Q) nLM(Q), is"bottom-up". That is, we start with atoms which are heads of rules with the empty bodies and8

use the rules of Q to compute all atoms in LM(Q) by iterating the van Emden-Kowalski oper-ator. An e�cient implementation of the process is provided by the Dowling-Gallier algorithm[7]. The approach we follow here in the procedure false is "top-down" and gives us, in general,only a part of the set At(Q) nLM(Q). More precisely, for an atom a we proceed \backwards"attempting to construct a proof or to demonstrate that no proof exists. In the process, weeither go back to an atom that is the head of a rule with empty body or we show that noproof exists. In the former case, a 2 LM(Q). In the latter one, none of the atoms consideredwhile searching for a proof of a are in LM(Q) (because Q 2 LP1 and each rule has at mostone antecedent). The problem is that we may �nd an atom a that does not have a proof onlyafter we look at all other atoms �rst. Thus, in the worst case, �nding one new false atom mayrequire time that is proportional to the size of Q.To improve the time performance, we look for proofs simultaneously for all atoms and growthe proofs \backwards" in a carefully controlled way. Namely, we never let one search to gettoo much ahead of the other searches. This controlled way of looking for proofs is the keyidea of our approach and leads to a better performance. We will now provide an informaldescription of the procedure false followed later by a formal speci�cation and an example.In the procedure, we make use of a new atom, say s, di�erent from all atoms occurring inQ. Further, we denote by head(r) the atom in the head of a rule r 2 Q and by tail(r) theatom which is either the unique positive atom in the body of r, if such an atom exists, or sotherwise. We call an atom a 2 At(Q) accessible if there are rules r1; : : : ; rk in Q such thattail(ri+1) = head(ri), for i = 1; : : : ; k � 1, tail(r1) = s and head(rk) = a. Clearly, the leastmodel LM(Q) of Q is precisely the set of all accessible atoms.In each step of the algorithm, the set of atoms from At(Q) is partitioned into potentiallyfalse sets or pf-sets, for short. We say that a set v � At(Q) is a pf-set if for each pair ofdistinct atoms a; b 2 v there are rules r1; : : : ; rk in Q such that tail(ri+1) = head(ri) 2 v, fori = 1; : : : ; k � 1, tail(r1) = b and head(rk) = a. It is clear that if v is a pf-set then either allits elements are accessible (belong to the least model of Q) or none of them does (they areall false). Clearly, singleton sets consisting of individual atoms in At(Q) are pf-sets. In thealgorithm, with each pf-set we maintain its cardinality.Current information about the state of all top-down searches and about the dependenciesamong atoms, that were discovered so far, is maintained in a directed graph G. The vertexset of this graph, say S, consists of fsg and of a family of pf-sets forming a partition ofthe set At(Q). The edges of G are speci�ed by a partial function pred : S ! S. We writepred(v) = unde�ned if pred is unde�ned for v. Thus, the set of edges of G is given byf(pred(v); v): pred(v) 6= unde�nedg. Since pred is a partial function, it is easy to see that theconnected components of the graph G are unicyclic graphs or trees rooted in those vertices v forwhich pred(v) is unde�ned. Throughout the algorithm we always have pred(fsg) = unde�ned.Thus, the connected component of G containing fsg is always a tree and fsg is its root.If w and v are two di�erent pf-sets, the existence of the edge (w; v) in G means that wehave already discovered a rule in the original program whose head is in v and whose tail is inw. Thus, if vertices in w are accessible, then so are the vertices in v. A pf-set that is the rootof a tree forming a component of G is called an active pf-set. If v is an active pf-set then norule r with head(r) 2 v and tail(r) 62 v has been detected so far. Thus, v is a candidate for aset of atoms which does not intersect the least model of Q. Let us note that even though fsg9

is a root of a tree in G it is never active as it is not a pf-set in the �rst place.We let active pf-sets grow by gluing them with other pf-sets. However, we allow to growonly these active pf-sets whose cardinalities are the least. In each iteration of the algorithmthe value of the variable size is a lower bound for the cardinalities of active pf-sets. To growan active pf-set v, we look for rules with heads in v and with tails in pf-sets other than v(not necessarily active) or in fsg. The dependencies between pf-sets discovered in this wayare represented as new directed edges in G. Pf-sets that appear in the same cycle are gluedtogether (in the procedure cycle). Since fsg is not an active pf-set, it never becomes an elementof a cycle in G.If, when attempting to grow a pf-set v we discover a rule with head in v and with the tailin a vertex of the tree of G rooted in fsg, then v is from now on ignored (all its vertices belongto the least model of Q). Indeed, v gets connected to a tree of G rooted in fsg. Consequently,it cannot become a member of a cycle in G in the future and is never again considered by theprocedure cycle.The main loop (lines 6-23) of the algorithm false below starts by incrementing size fol-lowed by a call to the procedure cycle(S; pred; size; L). This procedure scans the graph G andidenti�es all its cycles. It then modi�es G by considering each cycle and by gluing its pf-setsinto a single pf-set. This pf-set becomes the root of its tree in G and so, it becomes active. Theprocedure cycle computes the cardinality of each new active pf-set. Finally, it creates a list Lso that it consists of active pf-sets of cardinality size. If no such set is found (L is empty), wemove on to the next iteration of the main loop and increment size by 1.For each active pf-set v 2 L we consider the tail of each rule with head in v (lines 9-22).If there is a rule r with head(r) 2 v and tail(r) 62 v then it is detected (line 15). The valuepred(v) is set to this element in S that contains tail(r) (it may be that this set is fsg). Wealso set the variable success to true (line 16). The pf-set v stops to be active. We move on tothe next active pf-set on L.If such a rule r does not exist then success = false and v is a set of cardinality sizeconsisting of atoms which are not in the least model of Q. This set is returned by the procedurefalse (line 21). Hence, for an active pf-set considered in the loop 6-23, either we �nd a pf-setpred(v) 2 S n fvg (and we have to consider the next pf-set on L) or v is returned as a set ofatoms which are not in the least model of Q (and the procedure false terminates). Thus, theprocedure false is completed if either a nonempty set v of atoms which are not in the leastmodel of Q is found or, after some passes of the loop 6-23, the graph G has no active pf-sets. Inthe latter case G is a tree with the root in fsg. Thus, At(Q) = LM(Q) and v = ; is returned(line 24).In the procedure false, as formally described below, an input program Q is represented bylists IN(a), a 2 At(Q), of all atoms b such that b is the body of some rule with the head a. Ifthere is a rule with the head a and empty body, we insert s into the list IN(a).We also use an operation next on lists and elements. Let l be a list and w be an element,either belonging to l or having a special value unde�ned. Thennext(w; l) = (the next element after w in l if w 2 lthe �rst element in l if w is unde�ned:The value unde�ned should not be mixed with nil which indicates the end of a list.Finally, we use a procedure �ndset(w;S) which, for an atom w and a collection S of disjointsets, one of which contains w, �nds the name of the set in S containing w (it follows from our10

assumptions that such a set is unique). Elements of S are maintained as linked lists. Eachelement on such a list has a pointer to the head of the list. The head serves as the identi�erfor the list. When the procedure �ndset(w;S) is called, it returns the head of the list to whichw belongs.1 procedure false(Q);2 S := ffxg : x 2 At(Q)g [ffsgg;3 for v 2 S do pred(v) := unde�ned;4 for x 2 At(Q) do fw(x) := unde�ned; cardinality(x) := 1g;5 size := 0;6 while size < jAt(Q)j do7 fsize := size + 1;8 cycle(S; pred; size; L);9 for all v 2 L do10 fsuccess := false;11 u := next(u; v);12 while u 6= nil and not success do13 w(u) := next(w(u); IN(u));14 while w(u) 6= nil and not success do15 fif �ndset(w(u);S) 6= v16 then fsuccess := true; pred(v) := �ndset(w(u);S)g17 else w(u) := next(w(u); IN(u))18 end while (14)g;19 if not success then u := next(u; v)20 end while (12)g;21 if not success then return v (* the procedure terminates *)22 end for (9)g23 end while (6)g;24 return v = ;25 end false;We will now illustrate the operation of the algorithm. Let us consider the following Hornlogic program Q:a b a a c c a a e d ef d e f d f e g g j j gi j j h k j k h h kThis program is represented as a graph, GQ, in Fig. 1. The vertices of this graph correspondto the atoms of the program. In addition, GQ has an auxiliary vertex s =2 At(Q). An edge (x; y),where x; y 2 At(Q), represents the clause y x from Q. An edge (s; y), where y 2 At(Q),represents the clause y . When illustrating the algorithm, we assume that atoms from At(Q)(atoms a; : : : ; k in our example) appear on the lists IN(x), x 2 At(Q), in the alphabetical order.We also assume that whenever s belongs to a list IN(x), it appears as the �rst atom on thelist. 11

i

dc f j k

ab e h

s

gFigure 1: Graph GQ representing program Q.In the algorithm false, the current state of knowledge about the possibility of proving anatom from Q is represented by the graph G. Initially, G consists of isolated vertices. Indeed,line 3 of the algorithm sets pred(x) to unde�ned, for every vertex x of S (see Fig. 2 (left)). Allof the vertices of G, except for fsg are active pf-sets. The procedure cycle (line 8), called withsize = 1, puts all of them on the list L.The algorithm considers next (line 9) all elements on the list L, that is, all vertices of Gthat are active pf-sets and have cardinality equal to size. During the �rst iteration of theloop 6-23, L consists of all vertices of G, except for fsg (that is, singleton sets fxg, wherex 2 At(Q) = V (GQ)nfsg). For each vertex v of G on L, the algorithm looks for a back rule forv, that is, a rule in Q with the head in v and the tail in a pf-set other than v or in fsg. In ourgraphical representation of Q by means of the graph GQ, a back rule for v corresponds to anedge (referred to as a back edge) in GQ with the head in v and the tail in a vertex of G otherthan v (possibly in fsg). To �nd a back rule (edge) for v, all atoms u of Q (equivalently, allvertices u of GQ) that belong to v are considered (the loop 12-20). For each such atom u, thealgorithm searches for the �rst atom on the list IN(u) that does not belong to v. Let us recallthat IN(u) is the list of atoms that are the tails of rules with the head u or, in the terms ofthe graph GQ, that are the tails of edges with the head u. If such an atom is found, togetherwith u it determines a back rule (edge) r for v. The algorithm sets pred(v) to be equal to thepf-set containing the tail of r (line 16). That is, an edge from pred(v) to v is added to G. Thealgorithm moves then on to the next element of the list L.In our example, in the �rst iteration of the loop 6-23, a back rule is found for every elementon L, that is, for every vertex of G other than fsg. For instance, for the vertex fdg, thealgorithm considers atoms on the list IN(d) = (e; f) (let us recall that atoms on lists IN(x)are arranged alphabetically with the exception of the special atom s which, if present on alist, is always its �rst element). The �rst atom on the list, e does not belong to fdg. Thus, itde�nes, together with d a back rule for fdg, d e. The resulting graph G is shown in Fig. 2on the right.Let us note that when scanning the list IN(d) in subsequent iterations the algorithmresumes the scan with the �rst atom that has not been looked at yet (cf. the de�nition ofthe operation next). Thus, the next time d is considered as an element of an active pf-set forwhich a back rule is searched for, the scan of IN(d) will start with f . The same holds true forall lists IN(x), x 2 At(Q). Consequently, each atom on each of these lists is considered justonce. Such an approach still guarantees that �nding back rules works correctly (that is, thatthey are found by the algorithm whenever they exist). Indeed, when an atom on a list IN(x)12

{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ f }{ d}{ c }

{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ }{ d}{ c } f

Figure 2: Graph G initially (left side) and after the �rst iteration of the loop 6-23 (on theright).is considered, it either de�nes a back rule with the head x (and, thus, cannot de�ne any newback rule with the head x in the future) or it is in the same active pf-set as x (and, thus, itneither de�nes a back rule now nor it will de�ne it in the future, as it will remain in the samepf-set as x till the algorithm terminates).The second iteration of the loop 6-23 starts with the procedure cycle contracting each cyclein the graph G to a single vertex. The resulting graph is shown in Fig. 3 on the left. Theprocedure cycle then creates a new list L. It consists of all active pf-sets of cardinality 2. Inour case, L contains fg; jg and fh; kg (fd; e; fg is also active but has cardinality 3).Continuing with the second iteration, the algorithm next considers each vertex on L (theloop 9-22) and looks for back rules. In this iteration, a back rule is found for each of the nodeson L and the modi�ed graph G is given in Fig. 3 on the right.
{ d,e,f } { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k} { b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k}Figure 3: Graph G after the execution of the procedure cycle in the second iteration of theloop 6-23 (left) and after the second iteration of the loop 6-23 (right).In the third iteration, the procedure cycle contracts the only cycle in G to a single activepf-set of cardinality 4 (Figure 4, left side). It also creates a new list L. This time it consistsof active pf-sets of cardinality 3. There is just one such set - fd; e; fg. Subsequently, thealgorithm false looks for a back rule for fd; e; fg. It starts by considering edges ending in d(line 11; we assume that v is represented by the list (d; e; f)). It scans the list IN(d) startingat the �rst atom that has not been inspected so far, that is, f . However, since f belongs tothe same pf-set as d, f does not specify a back rule. Since there are no more atoms on thelist IN(d), we move on to the next iteration of the loop 12-20 and consider atom e. We haveIN(e) = (f; g). Since f was already considered (and yielded a back rule for feg) in the �rstiteration, we consider g. Since g =2 fd; e; fg, it de�nes a back rule for fd; e; fg, d g.13

{ d,e,f } { g,h,j,k} { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ b} { a}

{ s }

{ i }

{ c }

{ g,h,j,k}Figure 4: Graph G after the execution of the procedure cycle in the third iteration of the loop6-23 (left) and after the third iteration of the loop 6-23 (right).The resulting graph G is shown in Figure 4 (on the right). It has no cycles. So, the onlything done by the procedure cycle in the iteration 4 is that it puts on L active pf-sets ofcardinality 4. There is just one such set in G, fg; h; j; kg. The algorithm false looks for a backedge for fg; h; j; kg and does not �nd any. The variable success remains false. The algorithmreturns fg; h; j; kg and terminates (line 21). Let us note that this set is a proper subset of theset At(Q) n LM(Q).The following theorem formally establishes two key properties of the procedure false.Theorem 4.1 1. The procedure false returns a set v such that v � At(Q) n LM(Q).2. false returns the empty set if and only if At(Q) n LM(Q) = ;.Proof: (1) The statement is trivially true if false returns the empty set. Thus assume that thereturned set v 6= ;. It means that the value of the variable success is false after all passes ofthe loop 12-20 for some active pf-set v in the list L. Thus every rule in Q with the head in vhas been considered.Suppose there is a rule r in Q with head(r) = u 2 v and tail(r) = b 62 v. This rulewas considered by the procedure false when u = head(r) was a member of some active pf-set,say y. Since larger pf-sets are obtained by gluing smaller ones, y � v. While r was beingconsidered, the value of w(u) in the loop 14-18 was b and the value of v was y. Consequently,�ndset(b;S) 6= y in line 15 because y � v and b 62 v so b 62 y. Hence the value of successwas set to true and pred(y) was de�ned to be, say, z = �ndset(b;S) in line 16. The pf-set ystopped to be active. Recall that v is active when the procedure stops. Hence y had to beglued with other pf-sets to obtain v. This is, however, impossible because if y were glued withsome other pf-sets to form a larger pf-set x then pred(y) = z � x. Notice that b 2 z � x � v.We have got a contradiction with b 62 v.Hence, there are no rules r in Q with head(r) 2 v and tail(r) 62 v. Thus no atom in v isaccessible so v � At(Q) n LM(Q).(2) Suppose false returns the empty set and consider the last pass of the loop 6-23, for size =jAt(Q)j. If the list L is empty then no vertex of G is an active pf-set. Hence, G is a tree withthe root fsg. Thus all atoms in At(Q) are accessible and consequently LM(Q) = At(Q).If the list L is nonempty then it contains one pf-set v = At(Q). The empty set is returnedby the procedure false so the value of the variable success in line 16 is true for v = At(Q). Itmeans that for some rule r in Q with head(r) = u, w(u) = tail(r) 62 v = At(Q) so w(u) = s.14

Hence, u is accessible and, consequently, all atoms in At(Q) are accessible. That is, we haveAt(Q) n LM(Q) = ;.The converse of the implication proved above follows immediately from the �rst part of thetheorem. 2We shall now consider the procedure cycle a little bit more carefully. The procedure canbe informally written in the following form.procedure cycle(S; pred; size; L)1. Initialize L to empty.2. Find all cycles C1; C2; : : : ; Cp in the graph G. Put C = fC1; C2; : : : ; Cpg.3. For every cycle C = fv1; : : : ; vqg, C 2 C, do (i)-(iv).(i) set vC := v1 [: : : [vq;(ii) compute cardinality(vC) (sum up the cardinalities of all vertices in C);(iii) update the function pred | for every i = 1; : : : ; q, if pred(z) = vi (forsome z 2 S) then pred(z) := vC ;(iv) update the set S | S := (S � fv1; : : : ; vqg) [fvCg; (* vC becomesan active pf-set *)4. For every vertex of G that is an active pf-set, if cardinality(v) = size, insert vinto the list L.Since G is a directed graph whose connected components are either unicyclic graphs or trees,step 2 of the procedure cycle can be implemented in O(jSj) time. Since pf-sets are representedas linked lists, with each node on the list pointing to the head of the list, step (i) can beimplemented to take O(jvC j) steps. The time needed for step (ii) is, clearly, O(jCj). Eachexecution of step (iv) takes also O(jCj). Finally, the running time of each execution of step(iii) is O(mC), where mC is the size of the connected component of the graph G containingC. Thus, an iteration of the loop 3 for a cycle C 2 C takes O(jCj + mC + jvC j). Clearly,jCj � mC . Moreover, PC2CmC � jSj � 1 � jAt(Q)j and PC2C jvC j � jAt(Q)j (they are alldisjoint subsets of At(Q)). Thus, the total time needed for the loop 3 is O(jAt(Q)j). It is easyto see that the time needed for the loop 4 is also O(jAt(Q)j). Consequently, the running timeof the procedure cycle is O(jAt(Q)j).We are now in a position to estimate the running time of the procedure false.Lemma 4.2 If the procedure false(Q) returns a nonempty set v, then the running time of falseis O(jvj � jAt(Q)j). If false(Q) returns the empty set then its running time is O(jAt(Q)j2).Proof: Let jAt(Q)j = n and jvj = k. As we have already observed the procedure cycle runs intime O(n). It is not hard to see that, since we represent all sets occurring in the procedurefalse as linked lists, with each node on a list pointing to the head of the list, the operations:�ndset and next require a constant time.First assume that the output v of the procedure false is nonempty. Let us estimate thenumber of passes of the while and for loops in the procedure. Clearly, the loop 6-23 is executedk times. Hence the total running time of all calls of the procedure cycle is O(kn). The numberof passes of the loop 9-22 is not larger than jL1j+ jL2j+ : : : + jLkj, where Li denotes the listL in an iteration i of the loop. Since Li is a list of disjoint pf-sets of cardinality i, jLij � n, for15

each i = 1; 2; : : : ; k. Hence the number of passes of the loop 9-22 can be very roughly estimatedby kn. The loop 12-20 is executed at mostkXi=1 Xv2Li jvj � kntimes. This inequality follows from the fact that the sets v in the lists Li are disjoint subsetsof atoms so Pv2Li jvj � n. The estimation of the number of passes of the loop 14-18 is a littlebit more complicated. First notice that in each execution of the loop we check a rule of theprogram Q and rules are checked only one time. The rules r checked in the loop have eitherboth the head and the tail in some pf-set v 2 S or head(r) 2 v and tail(r) is in some otherpf-set u 2 S. In the latter case pred(v) is de�ned in line 16. The number of executions of line16 is not larger than the number of passes of the loop 9-22 so it is bounded by kn. Whenthe procedure returns the output, the pf-sets have cardinalities not larger than k. Hence thenumber of rules with both the head and the tail in the same pf-set that has been checkedbefore the procedure stops is not larger thanXu2S juj(juj � 1) � (k � 1)Xu2S juj � (k � 1)n:Thus the number of passes of the loop 14-18 in the whole procedure false is less than2kn. It follows that if the output v of false is nonempty then the running time of false isO(jvj � jAt(Q)j).Now consider the case when the procedure false returns the empty set. Clearly the numberof passes of the loop 6-23 is n so it takes O(n2) time for all executions of the procedure cycle.Since the rules are checked in the loop 14-18 only one time, the number of passes of this loopis not larger than the number m of rules in Q. Obviously m � n2 so the running time of falsein this case is O(jAt(Q)j2). 2By Lemma 4.2 and considerations in Section 3 we get an estimation of the running time ofAlgorithm 3.Theorem 4.3 If P is a program whose rules have at most one positive atom in the body thenAlgorithm 3 can be implemented such that its running time is O(jAt(P)j2 + size(P)). 25 ConclusionsThe method for computing the well-founded semantics described in this paper is a re�nementof the basic alternating-�xpoint algorithm. The key idea is to use a top-down search whenidentifying atoms that are false. Our method is designed to work with programs whose ruleshave at most one positive atom in their bodies (class LP1). Its running time is O(jAt(P)j2 +size(P)) (where P is an input program). Thus, our algorithm is an improvement over otherknown methods to compute the well-founded semantics for programs in the class LP1. Ouralgorithm runs in linear time for the class of programs P 2 LP1 for which size(P) � jAt(P)j2.However, it is not a linear-time algorithm in general. It is an open question whether a linear-time algorithm for computing the well-founded semantics for programs in the class LP1 exists.Our results extend to the class LP+1 . However, the extension is straightforward and theclass LP+1 is still rather narrow. Moreover, it is not speci�ed syntactically (it is described by16

means of the Kripke-Kleene semantics). The question arises whether our top-down approachto positive-loop detection can be generalized to any class of programs signi�cantly extendingthe class LP1 and possessing a simple syntactic description.Finally, let us note that the general problem of computing the well-founded semantics stillremains a challenge. No signi�cant improvement over the alternating-�xpoint algorithm ofVan Gelder has been obtained for the class of arbitrary �nite propositional logic programs.AcknowledgmentsThis research was supported by the NSF grants CDA-9502645 and IRI-9619233.References[1] J.J. Alferes, C.V. Dam�asio, and L.M. Pereira. A logic programming system for nonmono-tonic reasoning. Journal of Automated Reasoning, 14:93{147, 1995.[2] K. Berman, J. Schlipf, and J.Franco. Computing the well-founded semantics faster. InLogic Programming and Nonmonotonic Reasoning (Lexington, KY, 1995), volume 928 ofLecture Notes in Computer Science, pages 113{125, Berlin, 1995. Springer.[3] S. Brass and J. Dix. Characterizations of the disjunctive well-founded semantics: con
uentcalculi and iterated GCWA. Journal of Automated Reasoning, 20(1):143{165, 1998.[4] S. Brass and J. Dix and B. Freitag and U. Zukowski. Transformation-based bottom-upcomputation of the well-founded model. Manuscript.[5] W. Chen, T. Swift, and D.S. Warren. E�cient top-down computation of queries underthe well-founded semantics. Journal of Logic Programming, 24(3):161{199, 1995.[6] W. Chen and D.S. Warren. Tabled evaluation with delaying for general logic programs.Journal of the ACM, 43(1):20{74, 1996.[7] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�ability ofpropositional Horn formulae. Journal of Logic Programming, 1(3):267{284, 1984.[8] M.C. Fitting, Kripke-Kleene semantics for logic programs. Journal of Logic Programming2:295{312, 1985.[9] M.C. Fitting. Well-founded semantics, generalized. In Logic programming (San Diego,CA, 1991), MIT Press Series in Logic Programming, pages 71{84, Cambridge, MA, 1991.MIT Press.[10] M.C. Fitting. Fixpoint semantics for logic programming { a survey. Theoretical ComputerScience. To appear.[11] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski andK. Bowen, editors, Proceedings of the 5th International Symposium on Logic Programming,pages 1070{1080, Cambridge, MA, 1988. MIT Press.17

[12] W. Marek and M. Truszczy�nski. Autoepistemic logic. Journal of the ACM, 38(3):588{619,1991.[13] I. Niemel�a and P. Simons. E�cient implementation of the well-founded and stable modelsemantics. In Proceedings of JICSLP-96. MIT Press, 1996.[14] P. Rao, I.V. Ramskrishnan, K. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: Asystem for e�ciently computing well-founded semantics. In Proceedings of LPNMR'97,pages 430{440. Berlin: Springer-Verlag, 1997. Lecture Notes in Computer Science, 1265.[15] V.S. Subrahmanian, D. Nau, and C. Vago. WFS + branch bound = stable models. IEEETransactions on Knowledge and Data Engineering, 7:362{377, 1995.[16] A. Van Gelder. The alternating �xpoints of logic programs with negation. In ACMsymposium on principles of database systems, pages 1{10, 1989.[17] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logicprograms. Journal of the ACM, 38(3):620{650, 1991.[18] U. Zukowski, S. Brass, and B. Freitag. Improving the alternating �xpoint: the transfor-mation approach. In Proceedings of LPNMR'97, pages 40{59. Berlin: Springer-Verlag,1997. Lecture Notes in Computer Science, 1265.

18

