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tLogi
 programming requires that the programmer 
onvert a probleminto a set of 
onstraints based on predi
ates. Choosing the predi
atesand introdu
ing appropriate 
onstraints 
an be intri
ate and error-prone.If the problem domain is stru
tured enough, we 
an let the program-mer express the problem in terms of more abstra
t, higher-level 
on-straints. A 
ompiler 
an then 
onvert the higher-level program into alogi
-programming formalism. The 
ompiler writer 
an experiment withalternative low-level representations of the higher-level 
onstraints in or-der to a
hieve a high-quality translation. The programmer 
an then takeadvantage of both a redu
tion in 
omplexity and an improvement in run-time speed for all problems within the domain.We apply this analysis to the domain of tabular 
onstraint-satisfa
tionproblems. Examples of su
h problems in
lude logi
 puzzles solvable on ahat
h grid and 
ombinatorial problems su
h as graph 
oloring and in-dependent sets. The proper abstra
tions for these problems are rows,
olumns, entries, and their intera
tions.We present a higher-level language, Constraint Lingo, dedi
ated toproblems in this domain. We also des
ribe how we translate programsfrom Constraint Lingo into lower-level logi
 formalisms su
h as the logi
 ofpropositional s
hemata. These translations require that we 
hoose among
ompeting lower-level representations in order to produ
e eÆ
ient results.The overall e�e
tiveness of our approa
h depends on the appropri-ateness of Constraint Lingo, our ability to translate Constraint Lingoprograms into high-quality representations in logi
 formalisms, and theeÆ
ien
y with whi
h logi
 engines 
an 
ompute answer sets.We 
omment on our 
omputational experien
e with these tools in solv-ing both graph problems and logi
 puzzles.1 Introdu
tionLogi
 programming was introdu
ed in the mid 1970s as a way to fa
ilitate
omputational problem solving and software development [1℄. The idea wasto regard logi
 theories as programs and formulas as representations of 
om-putational tasks, and to apply automated reasoning te
hniques, most notably,1



resolution with uni�
ation, as the 
omputational me
hanism. Resear
hers ex-pe
ted that logi
 programming would qui
kly be
ome a dominant programmingparadigm be
ause of its de
larative nature: it allows programmers to fo
us onmodeling problem spe
i�
ations in a de
larative way as theories and frees themfrom the need to des
ribe 
ontrol. These expe
tations were reinfor
ed by theemergen
e of Prolog [2℄. However, despite the initial ex
itement generated bylogi
 programming and its prominent role in the �fth-generation 
omputing ini-tiative in Japan, logi
 programming has been slow in winning broad a

eptan
eand has yet to live up to early expe
tations.This paper presents our attempt to address this problem. Logi
 program-ming requires the programmer to 
ast a problem into the language of predi
atesand their interrelations, a task that is often intri
ate and error-prone. It is moreprodu
tive to program with domain-appropriate abstra
tions that are automat-i
ally 
ompiled into eÆ
ient and 
orre
t low-level logi
 programs.We demonstrate this thesis in the restri
ted domain of 
onstraint-satisfa
-tion problems whose solutions have the stru
ture of a table. In this paper, wedes
ribe the Constraint Lingo language for expressing these tabular 
onstraint-satisfa
tion problems. We show how to translate programs in this language intoa variety of lower-level logi
 programs that 
an be run on standard logi
 engines.Low-level approa
hes to 
onstraint-satisfa
tion problems have been investi-gated for several years. First, 
onstraint-logi
 programming [3℄ has been usedwith great su

ess. Solvers su
h as ECLiPSe [4℄ 
an be used to represent andsolve su
h problems. Se
ond, re
ent resear
h has modeled 
onstraint-satisfa
tionproblems as DATALOG: programs for whi
h stable models represent solu-tions [5, 6℄. Programs su
h as smodels [7℄ 
ompute stable models [8℄ of su
hprograms. Third, 
onstraint-satisfa
tion problems 
an be modeled as disjun
-tive logi
 programs; dlv [9℄ 
an 
ompute answer sets of those programs. Fourth,the logi
 of propositional s
hemata forms an answer-set programming formal-ism that 
an be used for solving 
onstraint-satisfa
tion problems [10℄. Fifth,optimization programming solvers su
h as OPL [11℄ deal primarily with te
h-niques su
h as linear and integer programming, but also in
orporate 
onstraintprogramming and s
heduling. Together, we 
all programs that 
ompute solu-tions to logi
 programs in any of these formalisms \logi
 engines", even thoughsolvers in the �fth 
lass 
an be based on C++ or Java, and do not present apredi
ate-logi
 view to programmers.While these logi
-based formalisms for spe
ifying 
onstraints are expressive,they all su�er from the fa
t that they are awkward even for experien
ed pro-grammers and logi
ians to use. The problem is that the 
onne
tives o�eredby logi
 do not 
orrespond well to high-level 
onstraints o

urring in a
tualproblems, even when 
onne
tives in
lude the extended syntax implemented bysmodels or by ECLiPSe.Solving a 
onstraint-satisfa
tion problem should be a three-step pro
ess. (1)Represent a statement of the problem (often given informally as free text) insome high-level modeling language. We refer to this step as modeling or pro-gramming. (2) Translate this representation into a target formalism for whi
hgood automated reasoning te
hniques are available. We refer to this step as2




ompilation; it is usually fully automated. (3) Apply automated reasoning te
h-niques to the 
ompiled representation in order to 
onstru
t solutions to theoriginal problem if they exist. We refer to this step as 
omputation.The following �gure summarizes the 
ow of solving 
onstraint-satisfa
tionproblems and introdu
es some of our notation. A programmer represents prob-lem � as program P . An automati
 translator 
onverts P into Tr(P ). Alogi
 engine 
omputes the solution set Sol(Tr(P )) for Tr(P ). Ea
h modelM 2 Sol(Tr(P )) represents a solution to the Constraint Lingo program andhen
e to the original problem.
?? --

-
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12 3This three-step approa
h is not unique to 
onstraint satisfa
tion; it is quite
ommon in all 
omputational areas. (1) Using programming languages to solveproblems follows the same general pattern of programming, 
ompiling, and 
om-puting. (2) To retrieve information from a database, we �rst write a query insome query language (programming). This query is then analyzed, optimized,and transformed into a 
omputational plan, su
h as an expression in relationalalgebra. Finally, this plan is exe
uted and the answer is 
omputed. (3) A 
on-
rete example of the use of this approa
h in AI is propositional satis�abilityplanning [12℄. In the Bla
kBox approa
h [13℄, to solve a planning problem we�rst build its formal representation in a high-level planning language su
h asSTRIPS [14, 15℄ or PDDL [16℄, then 
ompile it into a propositional CNF the-ory, and �nally solve the original planning problem by using these propositionalsatis�ability programs to �nd models of the 
ompiled theory.From this perspe
tive, due to its limited repertoire of means to express
onstraints, logi
 formalisms should rather be viewed as low-level 
onstraint-modeling languages. In order to use them for solving 
onstraint problems, oneneeds a high-level modeling formalism tailored to the a
tual problems, 
oupledwith te
hniques to translate theories in this high-level formalism into logi
 pro-grams. An expressive language for representing 
onstraints should fa
ilitateprogramming, and good 
ompilation te
hniques should result in 
ode amenableto eÆ
ient pro
essing by any logi
 engine.In this paper we present a new 
onstraint-modeling language, ConstraintLingo, well suited for modeling tabular 
onstraint-satisfa
tion problems. Todemonstrate its utility, we show (1) how to en
ode logi
 puzzles and several3



graph problems in Constraint Lingo, (2) how to 
ompile Constraint Lingo pro-grams into several logi
 formalisms, and (3) how well logi
 engines 
omputeanswer sets for the 
ompiled programs.Our experien
e with Constraint Lingo (the 
urrent implementation, problemsuite, and do
umentation is available [17℄) supports our thesis. Although we �ndit hard to program 
onstraint-satisfa
tion problems dire
tly in logi
 formalism,we �nd that (1) it is quite easy (and even fun) to program these problems inConstraint Lingo, (2) 
ompilation is 
ompletely automated, and (3) the resultingprograms are eÆ
ient to run.This paper makes three 
ontributions:1. It proposes a te
hnique for using logi
 formalisms as 
omputational tools.We 
ontend that logi
 formalisms should preferably be used as 
omputa-tional ba
k-ends a

ompanying a more user-friendly high-level program-ming language. Programming ought to be done in this higher-level lan-guage; programs need to be 
ompiled to low-level representations and thenpro
essed.2. We illustrate our proposal by developing a spe
i�
 language for model-ing 
onstraint problems. We also illustrate 
ompilers into several 
ompu-tational logi
-based ba
k-ends and demonstrate the viability of our ap-proa
h.3. Our approa
h opens interesting resear
h dire
tions for 
onstraint-satisfa
tionprogramming:� design of high-level languages for logi
-programming appli
ation ar-eas,� design of 
ompilers and their optimizations,� design of software-development tools.This paper is organized as follows. We present tabular 
onstraint-satisfa
tionproblems and a parti
ular logi
 puzzle in Se
tion 2. We introdu
e the syntaxof Constraint Lingo and its semanti
s in Se
tion 3, applying it to a spe
i�
logi
 puzzle. We apply Constraint Lingo to graph problems in Se
tion 4. Weshow how Constraint Lingo is translated into smodels in Se
tion 5 and showsome 
ompiler optimizations for that translation in Se
tion 6. We show how
ompiled 
ode di�ers from smodels for other logi
 engines, in parti
ular, dlv inSe
tion 7.1 and ECLiPSe in Se
tion 7.2. We present results of timing studies inSe
tion 8 and �nal remarks in Se
tion 9.2 Tabular 
onstraint-satisfa
tion problemsThe Constraint Lingo language is tuned to tabular 
onstraint-satisfa
tion prob-lems (tCSPs), in whi
h it is 
onvenient to think about solutions as having a2-dimensional array stru
ture. Su
h problems spe
ify 
olumns in the tables by4



assigning them names and by indi
ating the domain of ea
h 
olumn, that is, theset of elements that 
an appear in the 
olumn. They also spe
ify the numberof rows. Further 
onstraints typi
ally relate entries in a single row or 
olumn,but more 
omplex 
onstraints are also possible.An attributemeans a pair (a;Da), where a is the name of the attribute andDa is its domain, a nonempty set of elements. For our purposes, all attributedomains are �nite. We 
ommonly refer to an attribute by its name. A tables
hema is a sequen
e of attributes with distin
t names.Let S = ha1; : : : ; ani be a table s
hema. We 
all any subset T � Da1 �: : :�Dan a table in s
hema S. We use the term table rather than relation,the standard term for a subset of a Cartesian produ
t, to emphasize intuitionsarising in the 
ontext of tCSPs. In parti
ular, we regard a table as a two-dimensional stru
ture 
onsisting of all its tuples written sequentially as rows.Likewise, a 
olumn is the sequen
e of elements from the domain of an attributeappearing in the appropriate position in all rows of the table. We denote theset of all tables in S by Tab(S).A 
onstraint 
 on tables in S is any subset of Tab(S)1. We say a tablesatis�es a 
onstraint if it is a member of the subset. A tabular 
onstraintsatisfa
tion problem (tCSP) 
onsists of a table s
hema S and a 
olle
tionC of 
onstraints on tables in Tab(S). Given a tCSP �, the set of solutionsto � 
onsists of all those tables in Tab(S) that satisfy all the 
onstraints inC. We denote this set as Sol(�) = T
2C 
. A 
onstraint 
 serves as a basi
building blo
k for 
onstraints on tables. While we only admit 
onjun
tions ofsu
h 
onstraints, it is possible to 
onsider \se
ond-order SQL", in whi
h answersto queries are sets of tables (rather than sets of re
ords, as in ordinary SQL). Asimilar idea has been pursued by others [18℄.The most 
ommon table 
onstraints are all-di�erent and all-used. A tableT 2 Tab(S) satis�es the all-di�erent property with respe
t to the attributea 2 S if no element of Da appears more than on
e in the 
olumn a of T . Atable T 2 Tab(S) satis�es the all-used property with respe
t to the attributea 2 S if ea
h element of Da appears at least on
e in the 
olumn a of T . Wesay that an attribute a 2 S is a key for a table T in S if T satis�es both theall-di�erent and all-used 
onstraints2 with respe
t to a.We are only interested in tCSPs with at least one key attribute. Withoutloss of generality, we assume that the �rst attribute in the s
hema, say a1, isso distinguished. This requirement implies that the number of rows in solutiontables is the 
ardinality of Da1 .This assumption is motivated by the following 
onsiderations. First, it isoften satis�ed by problems appearing in pra
ti
e, in parti
ular, by the puzzle andgraph problems dis
ussed in this paper. Se
ond, general 
onstraint-satisfa
tionproblems assume a �xed set of variables. In tCSPs, variables whose values needto be established 
orrespond to individual table entries. The s
hema determines1Usually su
h a 
onstraint is not given expli
itly as a set of relations but rather as a formulain some language.2We di�er here from database terminology, in whi
h only the all-di�erent 
onstraint isrequired for an attribute to be a key. 5



the number of 
olumns. In order to �x the number of variables of a tCSP, wehave to �x the number of rows. Designating an attribute as a key is one wayof doing so. Third, a 
lass of tables satisfying our assumption 
an be uniquelyde
omposed into 
olle
tions of 2-
olumn proje
tions on pairs of attributes. Thisproperty has impli
ations for translations of Constraint Lingo programs intolow-level logi
 formalisms. We dis
uss this matter in more detail in Se
tion 5.S
heduling problems are examples of tCSPs, with ea
h row in a solution tablerepresenting a single item of the s
hedule (su
h as time, lo
ation, resour
esneeded). Graph problems 
an also often be 
ast as tCSPs. For instan
e, asolution to a graph-
oloring problem is a table 
onsisting of two 
olumns, onefor verti
es and the other for 
olors. The rows in the table spe
ify the assignmentof 
olors to verti
es.Logi
 puzzles are good examples of tCSPs. Throughout this paper, we usethe \Fren
h Phrases, Italian Soda" puzzle (or Fren
h puzzle, for short)3 as arunning example to illustrate the syntax and the semanti
s of Constraint Lingo:Claude looks forward to every Wednesday night, for this is the nighthe 
an speak in his native language to the other members of the infor-mal Fren
h 
lub. Last week, Claude and �ve other people (three womennamed Jeanne, Kate, and Liana, and two men named Martin and Robert)shared a 
ir
ular table at their regular meeting pla
e, the Caf�e du Monde.Claude found this past meeting to be parti
ularly interesting, as ea
h ofthe six people des
ribed an up
oming trip that he or she is planning totake to a di�erent Fren
h-speaking part of the world. During the dis
us-sion, ea
h person sipped a di�erent 
avor of Italian soda, a spe
ialty atthe 
af�e. Using [: : :℄ the following 
lues, 
an you mat
h ea
h person withhis or her seat (numbered one through six [
ir
ularly℄) and determine the
avor of soda that ea
h drank, as well as the pla
e that ea
h plans to visit?1. The person who is planning a trip to Quebe
, who drank either blue-berry or lemon soda, didn't sit in seat number one.2. Robert, who didn't sit next to Kate, sat dire
tly a
ross from the personwho drank pea
h soda.3. The three men are the person who is going to Haiti, the one in seatnumber three, and Claude's brother.4. The three people who sat in even-numbered seats are Kate, Claude,and a person who didn't drink lemon soda, in some order.This puzzle 
an be viewed as a tCSP with the s
hema 
onsisting of �ve at-tributes: name, gender, position, soda and 
ountry (ea
h with its asso
iateddomain). The spa
e of possible solutions to this puzzle is given by the set of ta-bles whose rows des
ribe people and whose 
olumns des
ribe relevant attributes.The attributes name, position, soda and 
ountry are impli
itly required to bekey, but gender is not (it does not satisfy the all-di�erent property). There isonly one solution satisfying all nine 
lues of the Fren
h puzzle:3Copyright 1999, Dell Magazines; quoted by permission. We present only four of the nine
lues. 6



name gender position soda 
ountry
laude man 6 tangelo haitijeanne woman 1 grapefruit ivorykate woman 4 kiwi tahitiliana woman 5 pea
h belgiummartin man 3 lemon quebe
robert man 2 blueberry martinique3 Syntax and Semanti
s of Constraint LingoThe syntax of Constraint Lingo is line-oriented. Every non-empty line of Con-straint Lingo 
onstitutes a de
laration or a 
onstraint. For better readability,de
larations usually pre
ede 
onstraints, but Constraint Lingo only requires thatevery atom be de
lared before use. Comments are pre�xed with the # 
hara
ter.The goal of a Constraint Lingo program P is to spe
ify a tCSP �. De
-larations of the program P des
ribe the s
hema of the problem � and imposeall-di�erent and all-used 
onstraints. Constraints of the program P des
ribe allother 
onstraints of the problem �. By spe
ifying a tCSP, a Constraint Lingoprogram P 
an be regarded as a representation of all tables in Sol(�).To des
ribe the set of tables that are solutions to a Constraint Lingo programP we pro
eed as follows. We �rst spe
ify the set of tables that is determinedby B, the de
laration part of P . We then des
ribe, for ea
h 
onstraint C in therest of P , whi
h of the tables spe
i�ed by the B satisfy it. Those tables thatsatisfy all 
onstraints 
onstitute solutions to P .3.1 De
larationsTwo di�erent types of attributes (
olumns) 
an be de
lared in Constraint Lingo.� CLASS 
lassname: member1 member2 : : :memberkThis syntax de
lares a 
lass attribute (
olumn) with the name 
lassname andthe domain 
onsisting of elements member1; member2; : : : ; memberk. Classesare 
olumns in whi
h every element is di�erent.For the Fren
h puzzle, for example, we haveCLASS name: 
laude jeanne kate liana martin robertCLASS soda: blueberry lemon pea
h tangelo kiwi grapefruitCLASS visits: quebe
 tahiti haiti martinique belgium ivoryIf the domain elements are all integers (our parser only allows nonnegativeintegers) in a range from �rst to last , we may spe
ify the 
lass by writing:CLASS 
lassname: �rst .. last [
ir
ular℄In the Fren
h puzzle, we writeCLASS position: 1 .. 6 
ir
ular7



The optional 
ir
ular keyword indi
ates that the range is intended to betreated with modular arithmeti
 so that last + 1 = �rst . We refer to 
lasses allof whose members are numeri
 as numeri
 
lasses; the others are list 
lasses.� PARTITION partitionname: member1 member2 : : :memberkThis syntax de
lares a partition attribute (
olumn) with the name partition-name and the domain 
onsisting of elements member1;member2; : : : ;memberk.Members of a partition attribute may o

ur any number of times (even 0) intheir 
olumn.In the Fren
h puzzle, we writePARTITION gender: men womenWe require that all 
lass and partition names be distin
t. We also requireat least one list 
lass (so we 
an be sure how many rows there are) and that thedomains of all list-
lass attributes be of the same 
ardinality. This requirement
orresponds to the restri
tion we impose on tCSPs that at least one attributemust be key. However, we often �nd it useful to let numeri
 
lasses in
ludevalues that turn out not to appear in the solution. We therefore let numeri

lasses have more values than other 
lasses.Ea
h attribute 
onstitutes a disjoint domain of elements. If we need thesame element (su
h as a number) in two attribute domains, we disambiguatethe domains in the 
onstraint part of the program by qualifying the element:attributename.element.Let B be the de
larations of a Constraint Lingo program P . These de
la-rations de�ne a table s
hema, say SB , whi
h 
onsists of all 
lass and partitionattributes. In addition, B imposes all-di�erent and all-used 
onstraints by des-ignating some attributes as list- and numeri
-
lass attributes. Spe
i�
ally, Brestri
ts the spa
e of tables in Tab(SB) to those that satisfy the all-di�erent
onstraint with respe
t to 
lass attributes and also the all-used 
onstraint withrespe
t to list-
lass attributes. Neither restri
tion applies to partition attributes.We denote this set of tables, whi
h 
onstitute the solution spa
e, as SS(B). Weregard ea
h table in this set as a model of de
larations in B and view the setSS(B) as providing the semanti
s for B.3.2 ConstraintsThe s
hema de�ned by de
larationsB introdu
es identi�ers (su
h as 
lass namesand domain members) that are then used in the 
onstraints found in the rest ofthe Constraint Lingo program. We dis
uss this syntax now. For ea
h 
onstraintwe introdu
e, we de�ne its semanti
s in the terms of tables in the set SS(B).3.2.1 RownamesConstraints often 
on
ern properties of table 
olumns and rows. To refer to
olumns we use their 
lass or partition names. To refer to a row we use arowname. A rowname may be any element of a 
lass domain, whi
h uniquely8



refers to one row be
ause of the all-di�erent 
onstraint and the disjoint natureof domain elements (ensured if ne
essary by qualifying them). In addition, wemay introdu
e a variable as a rowname:� VAR variablenameVariables must be distin
t from ea
h other and from all domain elements toavoid ambiguity.We now give the syntax and semanti
s of the 
onstraints in Constraint Lingogiven the set of de
larations B. When des
ribing the semanti
s we assume fornow that 
onstraints do not involve variables. We later lift this assumption.3.2.2 REQUIRED and CONFLICT� REQUIRED rowname1 rowname2 : : :A table from SS(B) satis�es a REQUIRED 
onstraint if the given rownames spe
-ify the same row, that is, if they appear in the same row of the table.We would en
ode a 
lue \The person traveling to Quebe
 drank blueberry soda"as REQUIRED quebe
 blueberry� REQUIRED rowname1 rowname2 [OR | XOR | IFF℄ rowname3 rowname4This embellished REQUIRED 
onstraint is satis�ed only by those tables fromSS(B) in whi
h rowname1 and rowname2 spe
ify the same row for, xor, i�growname3 and rowname4 spe
ify the same row, depending on the 
onne
tiveused. This 
onstraint gives the Constraint Lingo programmer a limited amountof propositional logi
. The e�e
t of the AND 
onne
tive is a
hieved by writingseparate 
onstraints, so we do not in
lude it in Constraint Lingo.For the Fren
h puzzle, we en
ode part of the �rst 
lue asREQUIRED quebe
 blueberry OR quebe
 lemon� CONFLICT rowname1 : : : [partitionelement1 : : :℄The CONFLICT 
onstraint ex
ludes those tables in SS(B) in whi
h any two ofthe given rownames spe
ify the same row. If partitionelements are spe
i�ed,the 
onstraint also disallows tables in whi
h those partitionelements are foundin any rows spe
i�ed by the given rownames.We partially en
ode the �rst Fren
h puzzle 
lue as:CONFLICT quebe
 1We 
ould use a partition element, for example, to stipulate that neither theperson drinking kiwi soda nor the person going to Belgium is a man:CONFLICT kiwi belgium menWe �nd that we use REQUIRED and CONFLICT most heavily. We now turn toless-frequently used 
onstraint types. 9



3.2.3 Other 
onstraint types� AGREE partitionelement: rowname1 : : :The AGREE 
onstraint is satis�ed by those tables in SS(B) in whi
h the rowsspe
i�ed by the given rownames have the given partitionelement in the 
olumnasso
iated with partitionelement.We use AGREE to indi
ate the genders of the six people:AGREE men: 
laude martin robertAGREE women: jeanne kate lianaWe also use AGREE along with VAR and CONFLICT for 
lue 3:VAR brotherCONFLICT brother 
laudeAGREE men: haiti 3 brotherCONFLICT haiti 3 brother� DIFFER partitionname: rowname1 rowname2 : : :This 
onstraint allows only those tables in SS(B) in whi
h the rows spe
i�edby the given rownames have di�erent elements in the 
olumn asso
iated withpartitionname.For example, we 
ould have a 
lue stating that the person visiting the IvoryCoast and the one drinking blueberry soda are of di�erent genders; we woulden
ode that 
lue as:DIFFER gender: ivory blueberry� SAME partitionname: rowname1 rowname2 : : :This 
onstraint allows only those tables in SS(B) in whi
h the rows spe
i�edby the given rownames have the same elements in the 
olumn asso
iated withpartitionname.To represent, for instan
e, that the person visiting the Ivory Coast has the samegender as the one drinking kiwi soda, we would write:SAME gender: ivory kiwi� USED elementThis 
onstraint disallows all those tables in SS(B) in whi
h the given elementdoes not appear in its asso
iated 
olumn. We employ this 
onstraint to for
e aparti
ular partition element or numeri
-
lass element to be used in a solution.The Fren
h puzzle tells us who are the men and who are the women, but if itonly told us that there is at least one man, we would en
ode that 
lue as:USED men 10



� USED n <= partitionelement <= mIn this 
onstraint, n and m must be nonnegative integers. Either the n <= orthe <= m or both may be absent. The default value for n is 1, and the defaultvalue of m is 1. This 
onstraint allows only those tables in SS(B) where thepartitionelement appears (in its asso
iated 
olumn) a number of times k su
hthat n � k � m.To en
ode a 
lue telling us there are at least 2 but not more than 3 women, wewould write:USED 2 <= women <= 3� MATCH rowname1 : : : rownamek , rowname01 : : : rowname0kThis 
onstraint allows only those tables in SS(B) in whi
h: (1) all the rowsspe
i�ed by the �rst set of rownames are distin
t, (2) all the rows spe
i�ed bythe se
ond set of rownames are distin
t, (3) those two sets of rows are identi
al.We en
ode the fourth 
lue by a 
ombination of MATCH and VAR:VAR unlemonMATCH 2 4 6, kate 
laude unlemonCONFLICT unlemon lemon� BEFORE 
lassname: rowname1 rowname2The given 
lassname must be a non-
ir
ular numeri
 
lass. Let v1 and v2 bethe elements in the 
olumn spe
i�ed by 
lassname and in the rows spe
i�ed byrowname1 and rowname2, respe
tively. The 
onstraint allows only those tablesin SS(B) in whi
h v1 < v2.We 
annot use BEFORE in the Fren
h puzzle, be
ause a 
ir
ular numeri
 
lassimplements a simple 
y
le (the largest element is followed by the least one) andhen
e does not inherit the order from the underlying set of numbers. Ignor-ing 
ir
ularity, we 
ould indi
ate that Jeanne is sitting in an earlier-numberedposition than the person going to Haiti by saying:BEFORE position: jeanne haiti� OFFSET [ + | * | +- | > | ! | !+- ℄ n 
lassname: rowname1 rowname2The given 
lassname must again be a non-
ir
ular numeri
 
lass. Let v1 and v2be the elements in the 
olumn spe
i�ed by 
lassname and in the rows spe
i�edby rowname1 and rowname2, respe
tively. The six variants of this 
onstraintallow only su
h tables in SS(B) where v1 + n = v2, v1 � n = v2, v1 � n = v2,v1 + n > v2, v1 + n 6= v2, or v1 � n 6= v2, respe
tively.Again, OFFSET makes no sense in the Fren
h puzzle be
ause position is a
ir
ular numeri
 
lass, but ignoring 
ir
ularity, we 
ould say that Kate is sittingin a position twi
e as large as Robert's by saying:OFFSET *2 position: robert kate11



3.2.4 VariablesWe have used variables intuitively in some of our examples above; we nowextend the des
ription of Constraint Lingo semanti
s when variables appear in
onstraints. Let P be a Constraint Lingo program with variables x1; : : : ; xk.We say that a table T , of the type spe
i�ed by the de
larations of P , satis�esP if there is a list 
lass C and elements v1; : : : ; vk (not ne
essarily distin
t)from the domain of this 
lass su
h that the table T satis�es the ConstraintLingo program obtained by removing all variable de
laration statements fromP and by instantiating in P every o

urren
e of xi with vi. In other words,we 
an asso
iate ea
h variable with some row, represented by a value in a list
lass. In the Fren
h puzzle, the variables unlemon and brother used in theexamples above both turn out to be asso
iated with Robert; we 
ould 
all thatrow robert, blueberry, or martinique, depending what list 
lass we wish touse as our 
lass C.3.2.5 Fren
h puzzleA 
omplete translation of the Fren
h puzzle 
lues is as follows.#1 REQUIRED quebe
 blueberry OR quebe
 lemonCONFLICT quebe
 1$2 OFFSET !+-1 position: robert kateOFFSET 3 position: pea
h#3 VAR brotherAGREE men: haiti 3 brotherCONFLICT brother 
laude#4 VAR unlemonMATCH 2 4 6, kate 
laude unlemonCONFLICT unlemon lemon3.2.6 SolutionsLet P be a Constraint Lingo program and let B denote all de
larations in P . Atable T 2 SS(B) is a solution to P if it satis�es all 
onstraints in P . We denotethe set of all solution tables for a Constraint Lingo program P by Sol(P ). AConstraint Lingo program en
odes a tCSP problem � if Sol(P ) = Sol(�).Let P be a �nite Constraint Lingo program with the de
laration 
omponentB. One 
an show, based on our dis
ussion above, that given a table T 2 SS(B),
he
king whether T satis�es all 
onstraints in P 
an be a

omplished in timepolynomial in the size of P and T . However, the tables in the set SS(B) havedimensions that are polynomial in the size of B (and so, in the size of P ). Itfollows that de
iding whether a �nite Constraint Lingo program has solutions isin the 
lass NP. In the next se
tion, we show a polynomial redu
tion of the graph12



3-
olorability problem to that of de
iding whether a Constraint Lingo programhas solutions. The problem to de
ide whether a �nite Constraint Lingo programhas solutions is therefore NP-
omplete.4 Applying Constraint Lingo to graph problemsDespite a restri
ted repertoire of operators aimed initially at solving logi
 prob-lems, Constraint Lingo is suÆ
ient to model su
h important 
ombinatorial prob-lems as independent sets, graph 
oloring, and �nding Hamiltonian 
y
les.An independent set of size k in a graph G = hV;Ei is a subset of V of sizek no two of whose elements share an edge in E. Given a positive integer k,the independent-set problem of size k in hV;Ei is to �nd an independent set ofsize at least k in hV;Ei. We represent the problem in the following ConstraintLingo program, setting, for 
on
reteness, v = jV j = 100 and k = 30, with edgesE = f(2; 5); (54; 97)g. There are two attributes: a 
lass vertex, to representverti
es of the graph (line 1 below) and a partition status, to indi
ate themembership of ea
h vertex in an independent set (line 2). We employ USED to
onstrain the independent set to have at least k elements (line 3). The REQUIRED
onstraints in lines 4 and 5 enfor
e the independent-set 
onstraint.1 CLASS vertex: 1..100 # v = 1002 PARTITION status: in out3 USED 30 <= in # k = 304 REQUIRED 2 out OR 5 out # edge (2,5): at least one vertex is out5 REQUIRED 54 out OR 97 out # edge (54,97): at least one vertex is outThe k-graph-
oloring problem is to �nd an assignment of k 
olors to verti
essu
h that verti
es sharing an edge are assigned di�erent 
olors. We use twoattributes, vertex and 
olor, to de�ne the set of verti
es and the 
olors touse. The following Constraint Lingo program en
odes the 3-
oloring problemfor the same graph as before. We enfor
e the 
oloring 
ondition by means ofDIFFER 
onstraints (lines 3 and 4). We use quali�ed notation in lines 3 and 4to disambiguate vertex.2 from 
olor.2. The other numbers in the programare already unambiguous, but quali�ed notation improves 
larity.1 CLASS vertex: 1..1002 PARTITION 
olor: 1..3 # looking for 3-
oloring3 DIFFER 
olor: vertex.2 vertex.5 # edge (2,5)4 DIFFER 
olor: vertex.54 vertex.97 # edge (54,97)The Hamiltonian-
y
le problem is to enumerate, without repetition, all theverti
es of an undire
ted graph in an order su
h that adja
ent verti
es in the listshare an edge, as do the �rst and last verti
es in the list. We use two numeri
attributes: vertex and index. We enfor
e the Hamiltoni
ity 
ondition usingthe 
onstru
t OFFSET: For every edge not in the graph, the positions of its endverti
es in the enumeration must not be 
onse
utive integers (with the last andthe �rst verti
es also regarded as 
onse
utive). For a spe
i�
 example, let us13




onsider a graph missing only two edges: (2,5) and (54,97). The 
orrespondingConstraint Lingo program follows.1 CLASS vertex: 1..1002 CLASS index: 1..100 
ir
ular3 OFFSET !+-1 index: vertex.2 vertex.5 # no edge (2,5)4 OFFSET !+-1 index: vertex.54 vertex.97 # no edge (54,97)Other 
ombinatorial problems 
an often be posed in a similar fashion inConstraint Lingo.5 Translation of Constraint Lingo into smodelsWe demonstrate 
ompiling Constraint Lingo programs into the formalism ofsmodels [7℄, that is, we 
onstru
t an smodels program Tr(P ). All our 
ode fortranslating Constraint Lingo, along with over 150 Constraint Lingo programs,is available to the interested reader [17℄.Smodels is an extension of logi
 programming with negation with the se-manti
s of stable models. We assume that the reader is familiar both with thesyntax of smodels and with its semanti
s.Following our earlier dis
ussion, solutions to a Constraint Lingo program Pare tables in the s
hema de�ned by P . The set of all tables determined by thede
laration part B of P is denoted by SS(B). To 
apture the semanti
s of P ,we need to represent tables from SS(P ).Tables with n 
olumns 
orrespond naturally to n-ary predi
ates, so a straight-forward approa
h is to use an n-ary predi
ate symbol, say sol , and to designTr(P ) so that extensions of sol in stable models of Tr(P ) 
orrespond pre
iselyto tables in SS(P ).Although straightforward, this approa
h has a disadvantage. The arity ofsol is the number of attributes of �, whi
h 
an be very high. Smodels programsinvolving predi
ates of high arity lead to ground programs whose size makespro
essing impra
ti
al. Happily, n-ary tables 
an be represented by 
olle
tionsof their two-
olumn subtables if the tables have at least one key attribute. Ta-bles spe
i�ed by Constraint Lingo programs fall into this 
ategory. We takeadvantage of this representation to design the translation Tr(P ). We now de-s
ribe this translation; for reasons of spa
e, we omit formal statements of itskey properties and outlines of 
orre
tness proofs.Let P be a Constraint Lingo program with de
larations B. We assumethat B spe
i�es a s
hema S = (a1; : : : ; an) where, for some 1 � ` � k � n,a1; : : : ; a` are list-
lass attributes, a`+1; : : : ; ak are numeri
-
lass attributes, andthe remaining ak+1; : : : ; an are partition attributes. In parti
ular, a1 is a list-
lass attribute.We now spe
ify the translation Tr(P ). The language of Tr(P ) is given by(1) the 
onstants forming the domains of attributes of the s
hema S, (2) thepredi
ate symbols domai , 1 � i � n, and (3) the predi
ate symbols 
rossai;aj ,1 � i � k and i < j � n. The predi
ate symbols domai represent attribute14



domains in Tr(P ), and the predi
ate symbols 
rossai;aj represent two-
olumnsubtables of the solution table (whi
h together determine the solution table).In the 
ase of the Fren
h puzzle, for example, the domain predi
ates in
ludename(�) and soda(�); the 
ross-
lass predi
ates in
lude name soda(�,�) andvisits position(�,�).(1) For every 
lass and partition attribute a 2 P we introdu
e the 
orre-sponding predi
ate doma and in
lude in Tr(P ) fa
ts doma(v) for every elementv from the domain of a as des
ribed by P . For example, we in
lude the fa
tname(
laude).(2) For every two list-
lass attributes ai, aj , 1 � i < j � `, we in
lude in theprogram Tr(P ) the following rules:1f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):1f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, the �rst of these two rules states that for every element vi of thedomain of ai there is exa
tly one element vj from the domain of aj su
h that
rossai;aj (vi; vj) holds (belongs to a stable model). The se
ond rule states thesymmetri
 
onstraint.For instan
e, we have1 {visits_position(Visits,X):visits(Visits)} 1 :- position(X) .This rule means that given a position (su
h as 2), there is at least and at most1 lo
ation (it turns out to be Martinique) su
h that the person in that position(it turns out to be Robert) plans to visit that lo
ation.(3) For every list-
lass attribute ai, 1 � i � `, and numeri
-
lass attributeaj , `+ 1 � j � k, we in
lude in the program Tr(P ) the following rules:1f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):The �rst of these two rules states that for every element vi of the domain of aithere is exa
tly one element vj from the domain of aj su
h that 
rossai ;aj (vi; vj)holds (belongs to a stable model). The se
ond rule states that for every elementvj of the domain of aj there is at most one element vi from the domain of aisu
h that 
rossai;aj (vi; vj) holds (belongs to a stable model). This requirementis weaker then the previous one, a result of the fa
t that aj is a numeri
-
lassattribute. We do not require that every element of a numeri
-
lass domain havea mat
h in the domain of ai in 
rossai;aj , but we still need to require that noelement has more than one mat
h.(4) For every two numeri
-
lass attributes ai, aj , ` + 1 � i < j � k wein
lude in the program Tr(P ) the following rules:15



0f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, these 
lauses enfor
e the all-di�erent 
onstraint for ai and aj inthe two-
olumn table represented by 
rossai;aj (the only 
onstraint required ofnumeri
-
lass attributes).(5) For every list-
lass attribute a and every partition attribute p, we needto guarantee that atoms of the form 
rossa;p(va; vp) de�ne a fun
tion (not ne
-essarily a bije
tion) that maps elements of the domain of a to elements from thedomain of p. The following rule embodies this guarantee.1f
rossa;p(A;P ) : domp(P )g1 :{ doma(A):(6) For every numeri
-
lass attribute a and every partition attribute p, theatoms 
rossa;p(va; vp) need only de�ne a partial fun
tion. We in
lude in Tr(P )the 
lause: 0f
rossa;p(A;P ) : domp(P )g1 :{ doma(A):(7) Not every 
olle
tion of two-
olumn tables 
an be 
onsistently 
ombinedinto a single table. In order to a
hieve 
onsisten
y, we enfor
e a transitivityproperty. For every three 
lass attributes ah, ai and aj , 1 � h < i < j � k, wein
lude in Tr(P ) the rules:
rossah;ai(Vh; Vi) :{ 
rossah;aj (Vh; Vj); 
rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):
rossah;aj (Vj ; Vj) :{ 
rossah;ai(Vh; Vi); 
rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):
rossai;aj (Vh; Vj) :{ 
rossah;ai(Vh; Vi); 
rossah;aj (Vh; Vj);domah(Vh); domaj (Vj); domaj (Vj):For instan
e, we in
lude the rulename_visits(Name,Visits) :-name(Name), visits(Visits), position(Position),name_position(Name,Position) ,position_visits(Position,Visits) .This rule says that if a person (like Robert) is in some position (like 2), and thatposition is asso
iated with some planned destination to visit (like Martinique),then that person plans to visit that destination.Partitions require a more permissive version of the transitivity property. Forevery two 
lasses ai, ai, and every partition attribute p, we in
lude in Tr(P )only two rules: 16




rossai;p(Vi; Vp) :{ 
rossai;aj (Vi; Vj); 
rossaj ;p(Vj ; Vp);domai(Vi); domaj (Vj); domp(Vp):
rossaj ;p(Vj ; Vp) :{ 
rossai;aj (Vi; Vj); 
rossai ;p(Vi; Vp);domai(Vi); domaj (Vj); domp(Vp):Given these de�nitions and 
onstraints, the attribute and 
ross-
lass pred-i
ates appearing in a stable model of Tr(P ) uniquely determine a table thatsatis�es the requirements of the de
larations given by the Constraint Lingo pro-gram P . Conversely, ea
h su
h table determines a stable model of the programTr(P ).The remaining part of the Constraint Lingo program 
onsists of 
onstraintsspe
i�ed by keywords su
h as REQUIRED and CONFLICT. To 
ontinue the de-s
ription of the translation, we spe
ify how these individual 
onstraints arerepresented in the syntax of smodels.(8) CONFLICT ma mb, where ma mb are elements of the domains of 
lassesa and b, respe
tively. The role of this 
onstraint in Constraint Lingo is to elim-inate tables that 
ontain rows with elements ma and mb in their 
orresponding
olumns. For ea
h su
h 
onstraint, we add the following rule to Tr(P ).:{ 
rossa;b(ma;mb):In our 
ase, we have:- position_visits(1,quebe
) .This rule means that no solution (the left-hand side is empty) may pla
e 1 andquebe
 in the same row.We extend this translation when the list of 
on
i
ting elements is longerthan 2 elements; ea
h pair of elements on the list gives rise to a 
onstraint onthe relevant 
ross-
lass predi
ate.(9) REQUIRED ma mb. For ea
h su
h 
onstraint, we add the following ruleto Tr(P ). 
rossa;b(ma;mb):For instan
e, REQUIRED quebe
 blueberry would be translated as:soda_visits(blueberry,quebe
) .This fa
t indi
ates that any solution must pla
e blueberry and quebe
 in thesame row.Again, we extend this translation when more than two members are listed.(10) VAR x. One list 
lass, say a, is sele
ted arbitrarily. The variable x ismeant to represent exa
tly one (unspe
i�ed as yet) element of that 
lass. Weintrodu
e a new predi
ate variablex that holds just for that one element andbuild a rule that enfor
es that 
onstraint:1fvariablex(X) : doma(X)g1:17



We represent the unlemon variable by using name as the arbitrarily 
hosen 
lassand translating to:1 {variable_unlemon(X):name(X)} 1 .(11) USED n <= partitionelement <= m. One list 
lass, say a, is sele
tedarbitrarily. There must be between n and m elements ma in the domain of
lass a for whi
h 
rossa;p(ma; partitionelement) holds, where p is the partitionto whi
h partitionelement belongs. We build the following rule to enfor
e this
onstraint: nf
rossa;p(A; partitionelement) : doma(A)gm:For instan
e, we would translate USED 2 <= women <= 3 as:2 {gender_visits(women,Visits) : visits(Visits)} 3 .(12) Similar translations are easy to design for all the remaining 
onstru
tsof Constraint Lingo. For the sake of brevity, we do not dis
uss them here. Theinterested reader may a
quire our 
ompiler [17℄ and inspe
t its output.We believe our translation is 
orre
t: Let P be a Constraint Lingo program.For every table T 2 Sol(P ), there is a stable model M of Tr(P ) su
h thatM represents T . Conversely, for every stable model of Tr(P ) there is a tableT 2 Sol(P ) su
h that M represents T .6 Optimizing the smodels translationAs 
ompiler writers have known for years, there are many di�erent 
orre
t trans-lations for a given 
ode fragment. High-quality 
ompilers attempt to generate
ode that is espe
ially eÆ
ient (in spa
e and/or in time). Code optimizationis also possible for Constraint Lingo. As we developed our 
ompiler, we triedvarious alternative translations, settling on ones that give the fastest exe
utionunder smodels. In addition to minor adjustments to the translated 
ode, wehave also experimented with two fundamentally di�erent approa
hes to Tr(P ).We 
all the �rst new approa
h the prime-
lass representation. We arbi-trarily 
hoose the �rst list 
lass as \prime". We generate 
ross-
lass predi
atesin Tr(P ) only for pairs one of whose members is the prime 
lass. We no longerneed rules for transitivity, redu
ing the number of rules in the theory. However,
onstraints between elements of non-prime (\oblique") attributes generate more
omplex rules, be
ause they must be related via the prime 
lass.In the Fren
h puzzle, if name is prime, we translate CONFLICT quebe
 1 to:- position_name(1, N), visits_name(quebe
, N), name(N) .In other words, instead of using the atom position visits(1,quebe
)(whi
h is no longer available) we represent this 
onstraint by joining posi-tion name(1, N) and visits name(quebe
, N). We 
an dire
tly spe
ify 
on-straints involving members of the prime 
lass and members of oblique 
lasses.18



Our 
ompiler uses a 3�3 
ase statement to 
over all 
ases where the two mem-bers parti
ipating in a 
onstraint belong to the prime 
lass, an oblique 
lass, orare variables.Instead of 
hoosing the prime 
lass arbitrarily, we have implemented a vari-ant 
alled the spe
ial-handle translation in whi
h the prime 
lass is 
hosenafter a �rst pass through the Constraint Lingo program to derive a weightedvalue for ea
h 
lass based on how often it is referen
ed and in what ways. Thistranslation often generates the fastest 
ode. We have tried other representationsas well, but they don't behave as well as the ones we have introdu
ed.We present some 
omparisons of these optimizations with our original 
odein Se
tion 8.7 Other logi
 enginesWe have des
ribed the smodels translation in some detail. Constraint Lingo isnot spe
i�
, however, to smodels; we also have translators that 
onvert programsinto other logi
 formalisms. Ea
h logi
 formalism requires that the translatorwriter study its syntax and semanti
s in order to generate a quality translation.This e�ort is often quite extensive. We 
laim that the person trying to solvea tCSP should not be required to expend this e�ort; it is all done on
e and isembedded in the translators.We now tou
h on two of the logi
 engines beside smodels that we have used:disjun
tive-logi
 programming and 
onstraint-logi
 programming. In interests ofspa
e, we do not dis
uss a third logi
 engine: the logi
 of propositional s
hemataand its solver aspps [10℄.7.1 Translation into disjun
tive logi
 programmingThe dlv logi
 engine [19℄ a

epts mu
h the same syntax as smodels, so ourtranslation into dlv looks similar for most of Constraint Lingo. However, dlvdoes not have 
ardinality 
onstraints, so the rules that guarantee uniqueness of
ross-
lass predi
ate solutions are more 
omplex than the one shown in Se
tion 5for smodels. For instan
e, we would translate USED 3 <= men in the Fren
hpuzzle as:
ounter(0) .
ounter(1) .
ounter(2) .
ounter(3) .
ounter(4) .
ounter(5) .atleastmen(none, 0) .atleastmen(
laude, N) :- atleastmen(none, N), N < 1, 
ounter(N) .atleastmen(
laude, M) :- atleastmen(none, N), M = N+1,gender_person(men,
laude), N < 1, 
ounter(N) .atleastmen(jeanne, N) :- atleastmen(
laude, N), N < 2, 
ounter(N) .19



atleastmen(jeanne, M) :- atleastmen(
laude, N), M = N+1,gender_person(men,jeanne), N < 2, 
ounter(N) .atleastmen(kate, N) :- atleastmen(jeanne, N), N < 3, 
ounter(N) .atleastmen(kate, M) :- atleastmen(jeanne, N), M = N+1,gender_person(men,kate), N < 3, 
ounter(N) .atleastmen(liana, N) :- atleastmen(kate, N), N < 4, 
ounter(N) .atleastmen(liana, M) :- atleastmen(kate, N), M = N+1,gender_person(men,liana), N < 4, 
ounter(N) .atleastmen(martin, N) :- atleastmen(liana, N), N < 5, 
ounter(N) .atleastmen(martin, M) :- atleastmen(liana, N), M = N+1,gender_person(men,martin), N < 5, 
ounter(N) .atleastmen(robert, N) :- atleastmen(martin, N), N < 6, 
ounter(N) .atleastmen(robert, M) :- atleastmen(martin, N), M = N+1,gender_person(men,robert), N < 6, 
ounter(N) .:- not atleastmen(robert, 3) .We have sorted the people; Robert turns out to be the last one. So thepredi
ate atleastmen(robert,N) indi
ates that at least N of the people weremen. The last rule then 
onstrains this 
ount.Existen
e is assured by disjun
tive rules, su
h asposition_visits(1, quebe
) v position_visits(1, tahiti) vposition_visits(1, haiti) v position_visits(1, martinique) vposition_visits(1, belgium) v position_visits(1, ivory).Disjun
tions also assist in generating good 
ode for the MATCH 
onstraint.The prime-
lass and spe
ial-handle 
ompile-time optimizations of Se
tion 6also apply to disjun
tive logi
 programming. Further details of the translation
an be found in our 
ompiler [17℄.7.2 Translation into 
onstraint-logi
 programmingOur approa
h to solving tabular CSP problems is di�erent from the 
lassi
alapproa
h in the logi
 
ommunity, whi
h is to dire
tly represent su
h problems as
onstraints in 
onstraint-programming languages. The logi
 puzzles solved byDoug Edmunds [20℄, for example, are all hand-
oded. Our experien
e, however,is that it is far easier to program su
h problems in Constraint Lingo and thentranslate them into whatever form is appropriate for the 
omputational engine.In keeping with that approa
h, we have built a translator from Constraint Lingoto ECLiPSe. Complete details 
an be found in our 
ompiler [17℄.The resulting ECLiPSe program is a single rule with many 
lauses on itsright-hand side. We represent ea
h row of the result table by an integer indexranging from 1 to the number of rows. In the Fren
h puzzle, the 
lasses name,visits, and position are represented as multiple 
lauses of a single rule, asfollows:Name = [Claude, Jeanne, Kate, Liana, Martin, Robert℄,Name :: 1..6,alldifferent(Name), 20



Visits = [Quebe
, Tahiti, Haiti, Martinique, Belgium, Ivory℄,Visits :: 1..6,alldifferent(Visits),Position = [Position1, Position2, Position3, Position4, Position5,Position6℄,Position :: 1..6,alldifferent(Position),If there is no numeri
 
lass, we break symmetry by sele
ting one 
lass (su
has name) as prime and assigning ea
h member to a parti
ular row:Claude = 1, Jeanne = 2, Kate = 3, Liana = 4, Martin = 5, Robert = 6,If one is available, we sele
t a numeri
 
lass as prime and use its elementsas row numbers. (A numeri
 
lass is only available if all its elements are used.)In the 
ase of the Fren
h puzzle, position, whi
h is numeri
, is a better prime
lass than name, whi
h is not. Order 
onstraints involving a numeri
 
lass aremu
h more eÆ
ient to represent if that 
lass is prime.Complex Constraint Lingo 
onstraints su
h asREQUIRED quebe
 blueberry OR quebe
 lemonare represented simply asQuebe
 #= Blueberry #\/ Quebe
 #= LemonBe
ause position is the prime 
lass,CONFLICT quebe
 1is represented as1 #\= Quebe
If we sele
t name as the prime 
lass instead, then this 
onstraint be
omesPosition1 #\= Quebe
Ordering relations involving a numeri
 prime 
lass are quite easy. For instan
e,OFFSET !+-1 position: robert katebe
omesRobert + 1 #\= Kate #/\ Robert - 1 #\= Kate #/\Robert + 1 - 6 #\= Kate #/\ Robert - 1 + 6 #\= KateIf the ordering relation is with respe
t to an oblique 
lass, the 
ode is 
lumsierand lengthier, in
luding parts like this:
21



(Robert #= Position1 #/\ Kate #= Position1) #\/(Robert #= Position1 #/\ Kate #= Position3) #\/(Robert #= Position1 #/\ Kate #= Position4) #\/(Robert #= Position1 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position2) #\/(Robert #= Position2 #/\ Kate #= Position4) #\/(Robert #= Position2 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position6) #\/ ...Partitions are 
lumsy to represent. For gender, we introdu
e the following:Gender = [Gender1, Gender2, Gender3, Gender4, Gender5, Gender6℄,Gender :: ['Men', 'Women'℄Then we translate 
onstraints su
h asAGREE men: 
laudeinto (Claude #= 1 #/\ Gender1 #= 'Men' #\/Claude #= 2 #/\ Gender2 #= 'Men' #\/Claude #= 3 #/\ Gender3 #= 'Men' #\/Claude #= 4 #/\ Gender4 #= 'Men' #\/Claude #= 5 #/\ Gender5 #= 'Men' #\/Claude #= 6 #/\ Gender6 #= 'Men')The eÆ
ien
y of ECLiPSe is quite sensitive to the heuristi
s expli
itly indi-
ated in the translated program; we have found that the best all-around 
hoi
e isto use the fd global library and to spe
ify the \o

urren
e/indomain/
omplete"heuristi
 
ombination. It is likely that hand-tuning the programs would makethem faster.8 EÆ
ien
y testsWe have experimented with the following logi
 engines and representations:smodels4 (
ross-
lass, prime-
lass, spe
ial-handle), dlv5 (
ross-
lass, spe
ial-han-dle), ECLiPSe6, and aspps (
ross-
lass, spe
ial-handle). Our tests in
lude (1)about 150 puzzles from Dell Logi
 Puzzles and Randall L. Whipkey [21℄ en
odedin Constraint Lingo, (2) the independent-set graph problem on random graphswith 52 verti
es and 100 edges, looking for 25 independent verti
es, and (3) the3-
oloring problem on large random graphs.All our tests ignore the time to 
ompile Constraint Lingo programs (the
ompiler takes negligible time) and the grounding time for the logi
 engine(usually also negligible).4lparse version 1.0.11; smodels version 2.275version BEN/Apr 18 2002. This version of dlv does not in
lude 
ardinality 
onstraints,unlike smodels and aspps.6version 5.4, build 41 22



Our �rst 
on
lusion is that the spe
ial-handle translation is usually far betterthan the 
ross-
lass translation. The following shows a few extreme examplesof this trend; times are in se
onds:puzzle logi
 engine 
ross-
lass spe
ial-handle
omedian aspps 33 0.1food
ourt dlv 117 0.4employee smodels 38 0.4Choosing the right translation is a matter of optimization. Even an expertlogi
 programmer might 
reate 
ross-
lass programs, be
ause they often leadto shorter rules. Automati
ally performing this optimization leads to far moreeÆ
ient 
ode. We 
ontinue to �nd new optimizations.Our se
ond 
on
lusion is that no one logi
 engine 
onsistently outperformsthe others, although aspps tends to be slightly faster than the others, andECLiPSe tends to be slightly slower, failing to �nish in a reasonable amountof time on a few puzzles. The following table 
ompares the logi
 engines on ourhardest puzzles; in all 
ases we show times for the spe
ial-handle translation,ex
ept for ECLiPSe, where the translation is 
ompletely di�erent. We mark the\winner" in ea
h 
ase with a box; di�eren
es in time less than 0.05 se
onds aremost likely insigni�
ant. We make no 
laim that our translations are optimal.These tests are not meant to demonstrate superiority of one logi
 engine overanother, only to show the feasibility of our approa
h.puzzle aspps smodels dlv ECLiPSe
ard 0.00 0.01 0.01 0.02
omedian 0.05 0.12 2.29 0.78employee 0.24 0.44 3.12 |
ight 0.01 0.00 0.01 0.04food
ourt 0.17 0.54 0.41 3.13fren
h 0.00 0.03 0.08 0.13jazz 0.00 0.04 0.03 0.02molly 0.03 0.04 0.15 0.33post 0.00 0.02 0.04 0.51ridge 11.56 8.14 0.76 |sevendates 0.03 0.05 0.05 0.04The independent-set problem is represented, as shown in Se
tion 4, by aREQUIRED 
onstraint for ea
h edge and a single USED 
onstraint. Both asppsand smodels provide a notation that allows us to translate USED in P into asingle 
ardinality 
onstraint in Tr(P ). These logi
 engines enfor
e 
ardinality
onstraints during the sear
h pro
ess, whi
h leads to very eÆ
ient sear
h. In
ontrast, neither dlv nor ECLiPSe provides 
ardinality 
onstraints, so we pro-gram USED by expli
itly 
ounting how many times the desired member is usedand then 
onstraining that total. We 
an 
ount dire
tly in ECLiPSe and indi-re
tly by extra rules in dlv. In both 
ases, this generate-and-
he
k strategy (asopposed to a built-in 
onstru
t) leads to slower sear
hes.23



The following table shows the number of se
onds for several logi
 engines to
ompute the �rst model of a theory representing the independent-set problemlooking for I independent verti
es on a random graph with a V verti
es and Eedges. Again, we ignore 
ompilation and grounding time.V E I aspps smodels dlv ECLiPSe100 200 40 0.01 1.08 1.61 60100 200 44 18.99 25.19 148.6 394We 
ontinue to sear
h for translations that perform better than our 
urrentones. Our experien
e reinfor
es our belief that eÆ
ient solution of 
onstraint-satisfa
tion problems depends on a 
arefully designed 
ompilation; even expe-rien
ed logi
 programmers are unlikely to a
hieve eÆ
ient programs withoutenormous e�ort.9 Dis
ussion and 
on
lusionsLogi
 programming was introdu
ed with a promise of dramati
ally 
hangingthe way we program. Logi
 programming is de
larative. The programmer 
ansolve a problem by en
oding its spe
i�
ations in some logi
 formalism and theninvoking automated reasoning te
hniques for that logi
 to produ
e a solution.Control details are no longer the programmer's responsibility.However, despite attra
tive features stemming from its de
larative nature,logi
 programming has not yet gained a widespread a

eptan
e in the program-ming world. This disappointing result seems to hold both for logi
-programmingimplementations based on proof-�nding te
hniques (Prolog and its extensionsthat handle 
onstraint programming, su
h as ECLiPSe) and to newly emergingapproa
hes based on satis�ability testing and model 
omputation (answer-setprogramming [6, 5℄).This state of a�airs is due to the fa
t that logi
-programming formalismsare too low-level to be used without great e�ort and require that programmershave a signi�
ant logi
 ba
kground. In order to be su

essful, a de
larativeprogramming language should be aligned with language 
onstru
ts often usedwhen problems are des
ribed in free text. We suggest that programs in su
ha high-level language should be automati
ally 
ompiled to programs in low-level languages su
h as 
urrent implementations of logi
 programming (Prolog,ECLiPSe, smodels, and so forth) and then solved by the 
orresponding solvers.Our main 
ontribution is a high-level de
larative language, Constraint Lingo,designed to 
apture tabular 
onstraint-satisfa
tion problems. Constraint Lingois simple. It uses two 
onstru
ts, CLASS and PARTITION, to de�ne the frameworkin whi
h a given problem is des
ribed, and 10 
onstru
ts to des
ribe 
onstraints,all of them well attuned to free-text des
riptions of 
onstraint problems.We don't 
laim that Constraint Lingo is the best possible language for thispurpose. Its line-oriented 
ommands, ea
h starting with a 
apitalized keyword,may appear a throwba
k to languages like Basi
. Constraint Lingo has a limited24



repertoire of 
onne
tives and arithmeti
 operations; it has no general-purposearithmeti
 or Boolean expressions.Despite these limitations, Constraint Lingo is an expressive language inwhi
h one 
an des
ribe a diverse 
olle
tion of tabular 
onstraint-satisfa
tionproblems. We have used it to represent over 150 logi
 puzzles ranging in dif-�
ulty from one to �ve stars and involving a large variety of 
onstraints, aswell as several graph problems over randomly-generated graphs of various sizes.Thanks to its simpli
ity and aÆnity to free-text 
onstraint spe
i�
ations, pro-gramming in Constraint Lingo is easy and frees the programmer from manytedious and error-prone tasks.Constraint Lingo provides a 
omputational as well as a des
riptive fa
ility.We 
ompile Constraint Lingo programs into exe
utable 
ode in a variety oflow-level logi
 programming languages.Eviden
e shows that our approa
h is pra
ti
al. Programs we obtain byautomati
ally 
ompiling Constraint Lingo programs 
losely resemble those thatprogrammers have written dire
tly. Our 
omputational results are en
ouragingand show that programs produ
ed by 
ompiling Constraint Lingo programsperform well when pro
essed by various 
omputational engines.We 
ontinue to evolve Constraint Lingo and its asso
iated tools. Re
entdevelopments in
lude the following, all available in the most re
ent release ofthe software [17℄.� Other 
onstraints. New syntax allows mappings between rows; thesemappings 
an be de
lared to be nonre
exive, symmetri
, asymmetri
,and/or onto. This fa
ility lets us represent some 
omplex 
onstraints,su
h as \Everyone has a hero in the room; Jeanne's hero is Kate, butKate's hero is not Jeanne." Two maps 
an be de
lared to di�er on ev-ery row, so we 
an indi
ate 
onstraints su
h as \Nobody's hero is his orher tennis partner." We also have introdu
ed syntax to indi
ate that thevalues of two partitions taken together a
t as a key, so we 
an indi
ate
onstraints su
h as \although a every 
oor has several rooms and everywing has several rooms, ea
h room has a unique 
ombination of 
oor andwing."� Problem-
onstru
tion tools. We have built a T
l/Tk [22℄ front endto our Constraint Lingo pa
kage that allows us to build problems by (1)
onstru
ting the desired solution, (2) introdu
ing 
onstraints, (3) ensuringthat the 
onstraints so far are not 
ontradi
tory (leading to no solutions)and are 
onsistent with the desired solution, (4) identifying undesired so-lution 
omponents, (5) identifying super
uous 
onstraints. We have usedthese tools to build extremely diÆ
ult puzzles, perhaps beyond humanability to solve.� Explanations. We have instrumented the grounder and solver of asppsto generate a log �le that we then 
onvert into a set of steps that a hu-man 
an follow to solve the problem. We have introdu
ed new Constraint25



Lingo syntax that allows the programmer to spe
ify how 
ross-
lass pred-i
ates are to be expressed in English. An explanation of the Fren
h puzzlein
ludes deriving a 
on
i
t between martinique and 6, and the Englishexpression is, \to be 
onsistent [explaining how this result follows fromthe previous results℄, the person sitting in seat 6 doesn't plan to visitMartinique [an English 
lause℄."We are 
onsidering other enhan
ements as well. The 
urrent support forvariables is limited and might be extended to support universal quanti�
ation.Our implementation does not support data-input operations. It provides onlyrestri
ted support for logi
al and arithmeti
 operations. We need better supportfor arithmeti
 if Constraint Lingo is to be appli
able in modeling and solvingreal-life operations-resear
h problems. However, as we 
ontemplate extensionsto Constraint Lingo, we want to be 
areful to preserve its simpli
ity, whi
h, webelieve, is its main strength.A similar approa
h, �nding helpful higher-level abstra
tions, might well behelpful in other stru
tured domains, su
h as planning and s
heduling. We havebegun to look at both.10 A
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