
Constraint Lingo: Towards high-level onstraintprogrammingRaphael Finkel, Vitor W. Marek and Miros law Truszzy�nskiJune 9, 2004AbstratLogi programming requires that the programmer onvert a probleminto a set of onstraints based on prediates. Choosing the prediatesand introduing appropriate onstraints an be intriate and error-prone.If the problem domain is strutured enough, we an let the program-mer express the problem in terms of more abstrat, higher-level on-straints. A ompiler an then onvert the higher-level program into alogi-programming formalism. The ompiler writer an experiment withalternative low-level representations of the higher-level onstraints in or-der to ahieve a high-quality translation. The programmer an then takeadvantage of both a redution in omplexity and an improvement in run-time speed for all problems within the domain.We apply this analysis to the domain of tabular onstraint-satisfationproblems. Examples of suh problems inlude logi puzzles solvable on ahath grid and ombinatorial problems suh as graph oloring and in-dependent sets. The proper abstrations for these problems are rows,olumns, entries, and their interations.We present a higher-level language, Constraint Lingo, dediated toproblems in this domain. We also desribe how we translate programsfrom Constraint Lingo into lower-level logi formalisms suh as the logi ofpropositional shemata. These translations require that we hoose amongompeting lower-level representations in order to produe eÆient results.The overall e�etiveness of our approah depends on the appropri-ateness of Constraint Lingo, our ability to translate Constraint Lingoprograms into high-quality representations in logi formalisms, and theeÆieny with whih logi engines an ompute answer sets.We omment on our omputational experiene with these tools in solv-ing both graph problems and logi puzzles.1 IntrodutionLogi programming was introdued in the mid 1970s as a way to failitateomputational problem solving and software development [1℄. The idea wasto regard logi theories as programs and formulas as representations of om-putational tasks, and to apply automated reasoning tehniques, most notably,1

resolution with uni�ation, as the omputational mehanism. Researhers ex-peted that logi programming would quikly beome a dominant programmingparadigm beause of its delarative nature: it allows programmers to fous onmodeling problem spei�ations in a delarative way as theories and frees themfrom the need to desribe ontrol. These expetations were reinfored by theemergene of Prolog [2℄. However, despite the initial exitement generated bylogi programming and its prominent role in the �fth-generation omputing ini-tiative in Japan, logi programming has been slow in winning broad aeptaneand has yet to live up to early expetations.This paper presents our attempt to address this problem. Logi program-ming requires the programmer to ast a problem into the language of prediatesand their interrelations, a task that is often intriate and error-prone. It is moreprodutive to program with domain-appropriate abstrations that are automat-ially ompiled into eÆient and orret low-level logi programs.We demonstrate this thesis in the restrited domain of onstraint-satisfa-tion problems whose solutions have the struture of a table. In this paper, wedesribe the Constraint Lingo language for expressing these tabular onstraint-satisfation problems. We show how to translate programs in this language intoa variety of lower-level logi programs that an be run on standard logi engines.Low-level approahes to onstraint-satisfation problems have been investi-gated for several years. First, onstraint-logi programming [3℄ has been usedwith great suess. Solvers suh as ECLiPSe [4℄ an be used to represent andsolve suh problems. Seond, reent researh has modeled onstraint-satisfationproblems as DATALOG: programs for whih stable models represent solu-tions [5, 6℄. Programs suh as smodels [7℄ ompute stable models [8℄ of suhprograms. Third, onstraint-satisfation problems an be modeled as disjun-tive logi programs; dlv [9℄ an ompute answer sets of those programs. Fourth,the logi of propositional shemata forms an answer-set programming formal-ism that an be used for solving onstraint-satisfation problems [10℄. Fifth,optimization programming solvers suh as OPL [11℄ deal primarily with teh-niques suh as linear and integer programming, but also inorporate onstraintprogramming and sheduling. Together, we all programs that ompute solu-tions to logi programs in any of these formalisms \logi engines", even thoughsolvers in the �fth lass an be based on C++ or Java, and do not present aprediate-logi view to programmers.While these logi-based formalisms for speifying onstraints are expressive,they all su�er from the fat that they are awkward even for experiened pro-grammers and logiians to use. The problem is that the onnetives o�eredby logi do not orrespond well to high-level onstraints ourring in atualproblems, even when onnetives inlude the extended syntax implemented bysmodels or by ECLiPSe.Solving a onstraint-satisfation problem should be a three-step proess. (1)Represent a statement of the problem (often given informally as free text) insome high-level modeling language. We refer to this step as modeling or pro-gramming. (2) Translate this representation into a target formalism for whihgood automated reasoning tehniques are available. We refer to this step as2

ompilation; it is usually fully automated. (3) Apply automated reasoning teh-niques to the ompiled representation in order to onstrut solutions to theoriginal problem if they exist. We refer to this step as omputation.The following �gure summarizes the ow of solving onstraint-satisfationproblems and introdues some of our notation. A programmer represents prob-lem � as program P . An automati translator onverts P into Tr(P). Alogi engine omputes the solution set Sol(Tr(P)) for Tr(P). Eah modelM 2 Sol(Tr(P)) represents a solution to the Constraint Lingo program andhene to the original problem.
?? --

-
66

Sol(�)
Tr(P) Sol(P)�P

Spei�ation Solution set Tabular onstraint-satisfation problemConstraint-Lingo programAnswer-set programming formalismSol(Tr(P))
12 3This three-step approah is not unique to onstraint satisfation; it is quiteommon in all omputational areas. (1) Using programming languages to solveproblems follows the same general pattern of programming, ompiling, and om-puting. (2) To retrieve information from a database, we �rst write a query insome query language (programming). This query is then analyzed, optimized,and transformed into a omputational plan, suh as an expression in relationalalgebra. Finally, this plan is exeuted and the answer is omputed. (3) A on-rete example of the use of this approah in AI is propositional satis�abilityplanning [12℄. In the BlakBox approah [13℄, to solve a planning problem we�rst build its formal representation in a high-level planning language suh asSTRIPS [14, 15℄ or PDDL [16℄, then ompile it into a propositional CNF the-ory, and �nally solve the original planning problem by using these propositionalsatis�ability programs to �nd models of the ompiled theory.From this perspetive, due to its limited repertoire of means to expressonstraints, logi formalisms should rather be viewed as low-level onstraint-modeling languages. In order to use them for solving onstraint problems, oneneeds a high-level modeling formalism tailored to the atual problems, oupledwith tehniques to translate theories in this high-level formalism into logi pro-grams. An expressive language for representing onstraints should failitateprogramming, and good ompilation tehniques should result in ode amenableto eÆient proessing by any logi engine.In this paper we present a new onstraint-modeling language, ConstraintLingo, well suited for modeling tabular onstraint-satisfation problems. Todemonstrate its utility, we show (1) how to enode logi puzzles and several3

graph problems in Constraint Lingo, (2) how to ompile Constraint Lingo pro-grams into several logi formalisms, and (3) how well logi engines omputeanswer sets for the ompiled programs.Our experiene with Constraint Lingo (the urrent implementation, problemsuite, and doumentation is available [17℄) supports our thesis. Although we �ndit hard to program onstraint-satisfation problems diretly in logi formalism,we �nd that (1) it is quite easy (and even fun) to program these problems inConstraint Lingo, (2) ompilation is ompletely automated, and (3) the resultingprograms are eÆient to run.This paper makes three ontributions:1. It proposes a tehnique for using logi formalisms as omputational tools.We ontend that logi formalisms should preferably be used as omputa-tional bak-ends aompanying a more user-friendly high-level program-ming language. Programming ought to be done in this higher-level lan-guage; programs need to be ompiled to low-level representations and thenproessed.2. We illustrate our proposal by developing a spei� language for model-ing onstraint problems. We also illustrate ompilers into several ompu-tational logi-based bak-ends and demonstrate the viability of our ap-proah.3. Our approah opens interesting researh diretions for onstraint-satisfationprogramming:� design of high-level languages for logi-programming appliation ar-eas,� design of ompilers and their optimizations,� design of software-development tools.This paper is organized as follows. We present tabular onstraint-satisfationproblems and a partiular logi puzzle in Setion 2. We introdue the syntaxof Constraint Lingo and its semantis in Setion 3, applying it to a spei�logi puzzle. We apply Constraint Lingo to graph problems in Setion 4. Weshow how Constraint Lingo is translated into smodels in Setion 5 and showsome ompiler optimizations for that translation in Setion 6. We show howompiled ode di�ers from smodels for other logi engines, in partiular, dlv inSetion 7.1 and ECLiPSe in Setion 7.2. We present results of timing studies inSetion 8 and �nal remarks in Setion 9.2 Tabular onstraint-satisfation problemsThe Constraint Lingo language is tuned to tabular onstraint-satisfation prob-lems (tCSPs), in whih it is onvenient to think about solutions as having a2-dimensional array struture. Suh problems speify olumns in the tables by4

assigning them names and by indiating the domain of eah olumn, that is, theset of elements that an appear in the olumn. They also speify the numberof rows. Further onstraints typially relate entries in a single row or olumn,but more omplex onstraints are also possible.An attributemeans a pair (a;Da), where a is the name of the attribute andDa is its domain, a nonempty set of elements. For our purposes, all attributedomains are �nite. We ommonly refer to an attribute by its name. A tableshema is a sequene of attributes with distint names.Let S = ha1; : : : ; ani be a table shema. We all any subset T � Da1 �: : :�Dan a table in shema S. We use the term table rather than relation,the standard term for a subset of a Cartesian produt, to emphasize intuitionsarising in the ontext of tCSPs. In partiular, we regard a table as a two-dimensional struture onsisting of all its tuples written sequentially as rows.Likewise, a olumn is the sequene of elements from the domain of an attributeappearing in the appropriate position in all rows of the table. We denote theset of all tables in S by Tab(S).A onstraint on tables in S is any subset of Tab(S)1. We say a tablesatis�es a onstraint if it is a member of the subset. A tabular onstraintsatisfation problem (tCSP) onsists of a table shema S and a olletionC of onstraints on tables in Tab(S). Given a tCSP �, the set of solutionsto � onsists of all those tables in Tab(S) that satisfy all the onstraints inC. We denote this set as Sol(�) = T2C . A onstraint serves as a basibuilding blok for onstraints on tables. While we only admit onjuntions ofsuh onstraints, it is possible to onsider \seond-order SQL", in whih answersto queries are sets of tables (rather than sets of reords, as in ordinary SQL). Asimilar idea has been pursued by others [18℄.The most ommon table onstraints are all-di�erent and all-used. A tableT 2 Tab(S) satis�es the all-di�erent property with respet to the attributea 2 S if no element of Da appears more than one in the olumn a of T . Atable T 2 Tab(S) satis�es the all-used property with respet to the attributea 2 S if eah element of Da appears at least one in the olumn a of T . Wesay that an attribute a 2 S is a key for a table T in S if T satis�es both theall-di�erent and all-used onstraints2 with respet to a.We are only interested in tCSPs with at least one key attribute. Withoutloss of generality, we assume that the �rst attribute in the shema, say a1, isso distinguished. This requirement implies that the number of rows in solutiontables is the ardinality of Da1 .This assumption is motivated by the following onsiderations. First, it isoften satis�ed by problems appearing in pratie, in partiular, by the puzzle andgraph problems disussed in this paper. Seond, general onstraint-satisfationproblems assume a �xed set of variables. In tCSPs, variables whose values needto be established orrespond to individual table entries. The shema determines1Usually suh a onstraint is not given expliitly as a set of relations but rather as a formulain some language.2We di�er here from database terminology, in whih only the all-di�erent onstraint isrequired for an attribute to be a key. 5

the number of olumns. In order to �x the number of variables of a tCSP, wehave to �x the number of rows. Designating an attribute as a key is one wayof doing so. Third, a lass of tables satisfying our assumption an be uniquelydeomposed into olletions of 2-olumn projetions on pairs of attributes. Thisproperty has impliations for translations of Constraint Lingo programs intolow-level logi formalisms. We disuss this matter in more detail in Setion 5.Sheduling problems are examples of tCSPs, with eah row in a solution tablerepresenting a single item of the shedule (suh as time, loation, resouresneeded). Graph problems an also often be ast as tCSPs. For instane, asolution to a graph-oloring problem is a table onsisting of two olumns, onefor verties and the other for olors. The rows in the table speify the assignmentof olors to verties.Logi puzzles are good examples of tCSPs. Throughout this paper, we usethe \Frenh Phrases, Italian Soda" puzzle (or Frenh puzzle, for short)3 as arunning example to illustrate the syntax and the semantis of Constraint Lingo:Claude looks forward to every Wednesday night, for this is the nighthe an speak in his native language to the other members of the infor-mal Frenh lub. Last week, Claude and �ve other people (three womennamed Jeanne, Kate, and Liana, and two men named Martin and Robert)shared a irular table at their regular meeting plae, the Caf�e du Monde.Claude found this past meeting to be partiularly interesting, as eah ofthe six people desribed an upoming trip that he or she is planning totake to a di�erent Frenh-speaking part of the world. During the disus-sion, eah person sipped a di�erent avor of Italian soda, a speialty atthe af�e. Using [: : :℄ the following lues, an you math eah person withhis or her seat (numbered one through six [irularly℄) and determine theavor of soda that eah drank, as well as the plae that eah plans to visit?1. The person who is planning a trip to Quebe, who drank either blue-berry or lemon soda, didn't sit in seat number one.2. Robert, who didn't sit next to Kate, sat diretly aross from the personwho drank peah soda.3. The three men are the person who is going to Haiti, the one in seatnumber three, and Claude's brother.4. The three people who sat in even-numbered seats are Kate, Claude,and a person who didn't drink lemon soda, in some order.This puzzle an be viewed as a tCSP with the shema onsisting of �ve at-tributes: name, gender, position, soda and ountry (eah with its assoiateddomain). The spae of possible solutions to this puzzle is given by the set of ta-bles whose rows desribe people and whose olumns desribe relevant attributes.The attributes name, position, soda and ountry are impliitly required to bekey, but gender is not (it does not satisfy the all-di�erent property). There isonly one solution satisfying all nine lues of the Frenh puzzle:3Copyright 1999, Dell Magazines; quoted by permission. We present only four of the ninelues. 6

name gender position soda ountrylaude man 6 tangelo haitijeanne woman 1 grapefruit ivorykate woman 4 kiwi tahitiliana woman 5 peah belgiummartin man 3 lemon queberobert man 2 blueberry martinique3 Syntax and Semantis of Constraint LingoThe syntax of Constraint Lingo is line-oriented. Every non-empty line of Con-straint Lingo onstitutes a delaration or a onstraint. For better readability,delarations usually preede onstraints, but Constraint Lingo only requires thatevery atom be delared before use. Comments are pre�xed with the # harater.The goal of a Constraint Lingo program P is to speify a tCSP �. De-larations of the program P desribe the shema of the problem � and imposeall-di�erent and all-used onstraints. Constraints of the program P desribe allother onstraints of the problem �. By speifying a tCSP, a Constraint Lingoprogram P an be regarded as a representation of all tables in Sol(�).To desribe the set of tables that are solutions to a Constraint Lingo programP we proeed as follows. We �rst speify the set of tables that is determinedby B, the delaration part of P . We then desribe, for eah onstraint C in therest of P , whih of the tables spei�ed by the B satisfy it. Those tables thatsatisfy all onstraints onstitute solutions to P .3.1 DelarationsTwo di�erent types of attributes (olumns) an be delared in Constraint Lingo.� CLASS lassname: member1 member2 : : :memberkThis syntax delares a lass attribute (olumn) with the name lassname andthe domain onsisting of elements member1; member2; : : : ; memberk. Classesare olumns in whih every element is di�erent.For the Frenh puzzle, for example, we haveCLASS name: laude jeanne kate liana martin robertCLASS soda: blueberry lemon peah tangelo kiwi grapefruitCLASS visits: quebe tahiti haiti martinique belgium ivoryIf the domain elements are all integers (our parser only allows nonnegativeintegers) in a range from �rst to last , we may speify the lass by writing:CLASS lassname: �rst .. last [irular℄In the Frenh puzzle, we writeCLASS position: 1 .. 6 irular7

The optional irular keyword indiates that the range is intended to betreated with modular arithmeti so that last + 1 = �rst . We refer to lasses allof whose members are numeri as numeri lasses; the others are list lasses.� PARTITION partitionname: member1 member2 : : :memberkThis syntax delares a partition attribute (olumn) with the name partition-name and the domain onsisting of elements member1;member2; : : : ;memberk.Members of a partition attribute may our any number of times (even 0) intheir olumn.In the Frenh puzzle, we writePARTITION gender: men womenWe require that all lass and partition names be distint. We also requireat least one list lass (so we an be sure how many rows there are) and that thedomains of all list-lass attributes be of the same ardinality. This requirementorresponds to the restrition we impose on tCSPs that at least one attributemust be key. However, we often �nd it useful to let numeri lasses inludevalues that turn out not to appear in the solution. We therefore let numerilasses have more values than other lasses.Eah attribute onstitutes a disjoint domain of elements. If we need thesame element (suh as a number) in two attribute domains, we disambiguatethe domains in the onstraint part of the program by qualifying the element:attributename.element.Let B be the delarations of a Constraint Lingo program P . These dela-rations de�ne a table shema, say SB , whih onsists of all lass and partitionattributes. In addition, B imposes all-di�erent and all-used onstraints by des-ignating some attributes as list- and numeri-lass attributes. Spei�ally, Brestrits the spae of tables in Tab(SB) to those that satisfy the all-di�erentonstraint with respet to lass attributes and also the all-used onstraint withrespet to list-lass attributes. Neither restrition applies to partition attributes.We denote this set of tables, whih onstitute the solution spae, as SS(B). Weregard eah table in this set as a model of delarations in B and view the setSS(B) as providing the semantis for B.3.2 ConstraintsThe shema de�ned by delarationsB introdues identi�ers (suh as lass namesand domain members) that are then used in the onstraints found in the rest ofthe Constraint Lingo program. We disuss this syntax now. For eah onstraintwe introdue, we de�ne its semantis in the terms of tables in the set SS(B).3.2.1 RownamesConstraints often onern properties of table olumns and rows. To refer toolumns we use their lass or partition names. To refer to a row we use arowname. A rowname may be any element of a lass domain, whih uniquely8

refers to one row beause of the all-di�erent onstraint and the disjoint natureof domain elements (ensured if neessary by qualifying them). In addition, wemay introdue a variable as a rowname:� VAR variablenameVariables must be distint from eah other and from all domain elements toavoid ambiguity.We now give the syntax and semantis of the onstraints in Constraint Lingogiven the set of delarations B. When desribing the semantis we assume fornow that onstraints do not involve variables. We later lift this assumption.3.2.2 REQUIRED and CONFLICT� REQUIRED rowname1 rowname2 : : :A table from SS(B) satis�es a REQUIRED onstraint if the given rownames spe-ify the same row, that is, if they appear in the same row of the table.We would enode a lue \The person traveling to Quebe drank blueberry soda"as REQUIRED quebe blueberry� REQUIRED rowname1 rowname2 [OR | XOR | IFF℄ rowname3 rowname4This embellished REQUIRED onstraint is satis�ed only by those tables fromSS(B) in whih rowname1 and rowname2 speify the same row for, xor, i�growname3 and rowname4 speify the same row, depending on the onnetiveused. This onstraint gives the Constraint Lingo programmer a limited amountof propositional logi. The e�et of the AND onnetive is ahieved by writingseparate onstraints, so we do not inlude it in Constraint Lingo.For the Frenh puzzle, we enode part of the �rst lue asREQUIRED quebe blueberry OR quebe lemon� CONFLICT rowname1 : : : [partitionelement1 : : :℄The CONFLICT onstraint exludes those tables in SS(B) in whih any two ofthe given rownames speify the same row. If partitionelements are spei�ed,the onstraint also disallows tables in whih those partitionelements are foundin any rows spei�ed by the given rownames.We partially enode the �rst Frenh puzzle lue as:CONFLICT quebe 1We ould use a partition element, for example, to stipulate that neither theperson drinking kiwi soda nor the person going to Belgium is a man:CONFLICT kiwi belgium menWe �nd that we use REQUIRED and CONFLICT most heavily. We now turn toless-frequently used onstraint types. 9

3.2.3 Other onstraint types� AGREE partitionelement: rowname1 : : :The AGREE onstraint is satis�ed by those tables in SS(B) in whih the rowsspei�ed by the given rownames have the given partitionelement in the olumnassoiated with partitionelement.We use AGREE to indiate the genders of the six people:AGREE men: laude martin robertAGREE women: jeanne kate lianaWe also use AGREE along with VAR and CONFLICT for lue 3:VAR brotherCONFLICT brother laudeAGREE men: haiti 3 brotherCONFLICT haiti 3 brother� DIFFER partitionname: rowname1 rowname2 : : :This onstraint allows only those tables in SS(B) in whih the rows spei�edby the given rownames have di�erent elements in the olumn assoiated withpartitionname.For example, we ould have a lue stating that the person visiting the IvoryCoast and the one drinking blueberry soda are of di�erent genders; we wouldenode that lue as:DIFFER gender: ivory blueberry� SAME partitionname: rowname1 rowname2 : : :This onstraint allows only those tables in SS(B) in whih the rows spei�edby the given rownames have the same elements in the olumn assoiated withpartitionname.To represent, for instane, that the person visiting the Ivory Coast has the samegender as the one drinking kiwi soda, we would write:SAME gender: ivory kiwi� USED elementThis onstraint disallows all those tables in SS(B) in whih the given elementdoes not appear in its assoiated olumn. We employ this onstraint to fore apartiular partition element or numeri-lass element to be used in a solution.The Frenh puzzle tells us who are the men and who are the women, but if itonly told us that there is at least one man, we would enode that lue as:USED men 10

� USED n <= partitionelement <= mIn this onstraint, n and m must be nonnegative integers. Either the n <= orthe <= m or both may be absent. The default value for n is 1, and the defaultvalue of m is 1. This onstraint allows only those tables in SS(B) where thepartitionelement appears (in its assoiated olumn) a number of times k suhthat n � k � m.To enode a lue telling us there are at least 2 but not more than 3 women, wewould write:USED 2 <= women <= 3� MATCH rowname1 : : : rownamek , rowname01 : : : rowname0kThis onstraint allows only those tables in SS(B) in whih: (1) all the rowsspei�ed by the �rst set of rownames are distint, (2) all the rows spei�ed bythe seond set of rownames are distint, (3) those two sets of rows are idential.We enode the fourth lue by a ombination of MATCH and VAR:VAR unlemonMATCH 2 4 6, kate laude unlemonCONFLICT unlemon lemon� BEFORE lassname: rowname1 rowname2The given lassname must be a non-irular numeri lass. Let v1 and v2 bethe elements in the olumn spei�ed by lassname and in the rows spei�ed byrowname1 and rowname2, respetively. The onstraint allows only those tablesin SS(B) in whih v1 < v2.We annot use BEFORE in the Frenh puzzle, beause a irular numeri lassimplements a simple yle (the largest element is followed by the least one) andhene does not inherit the order from the underlying set of numbers. Ignor-ing irularity, we ould indiate that Jeanne is sitting in an earlier-numberedposition than the person going to Haiti by saying:BEFORE position: jeanne haiti� OFFSET [+ | * | +- | > | ! | !+- ℄ n lassname: rowname1 rowname2The given lassname must again be a non-irular numeri lass. Let v1 and v2be the elements in the olumn spei�ed by lassname and in the rows spei�edby rowname1 and rowname2, respetively. The six variants of this onstraintallow only suh tables in SS(B) where v1 + n = v2, v1 � n = v2, v1 � n = v2,v1 + n > v2, v1 + n 6= v2, or v1 � n 6= v2, respetively.Again, OFFSET makes no sense in the Frenh puzzle beause position is airular numeri lass, but ignoring irularity, we ould say that Kate is sittingin a position twie as large as Robert's by saying:OFFSET *2 position: robert kate11

3.2.4 VariablesWe have used variables intuitively in some of our examples above; we nowextend the desription of Constraint Lingo semantis when variables appear inonstraints. Let P be a Constraint Lingo program with variables x1; : : : ; xk.We say that a table T , of the type spei�ed by the delarations of P , satis�esP if there is a list lass C and elements v1; : : : ; vk (not neessarily distint)from the domain of this lass suh that the table T satis�es the ConstraintLingo program obtained by removing all variable delaration statements fromP and by instantiating in P every ourrene of xi with vi. In other words,we an assoiate eah variable with some row, represented by a value in a listlass. In the Frenh puzzle, the variables unlemon and brother used in theexamples above both turn out to be assoiated with Robert; we ould all thatrow robert, blueberry, or martinique, depending what list lass we wish touse as our lass C.3.2.5 Frenh puzzleA omplete translation of the Frenh puzzle lues is as follows.#1 REQUIRED quebe blueberry OR quebe lemonCONFLICT quebe 1$2 OFFSET !+-1 position: robert kateOFFSET 3 position: peah#3 VAR brotherAGREE men: haiti 3 brotherCONFLICT brother laude#4 VAR unlemonMATCH 2 4 6, kate laude unlemonCONFLICT unlemon lemon3.2.6 SolutionsLet P be a Constraint Lingo program and let B denote all delarations in P . Atable T 2 SS(B) is a solution to P if it satis�es all onstraints in P . We denotethe set of all solution tables for a Constraint Lingo program P by Sol(P). AConstraint Lingo program enodes a tCSP problem � if Sol(P) = Sol(�).Let P be a �nite Constraint Lingo program with the delaration omponentB. One an show, based on our disussion above, that given a table T 2 SS(B),heking whether T satis�es all onstraints in P an be aomplished in timepolynomial in the size of P and T . However, the tables in the set SS(B) havedimensions that are polynomial in the size of B (and so, in the size of P). Itfollows that deiding whether a �nite Constraint Lingo program has solutions isin the lass NP. In the next setion, we show a polynomial redution of the graph12

3-olorability problem to that of deiding whether a Constraint Lingo programhas solutions. The problem to deide whether a �nite Constraint Lingo programhas solutions is therefore NP-omplete.4 Applying Constraint Lingo to graph problemsDespite a restrited repertoire of operators aimed initially at solving logi prob-lems, Constraint Lingo is suÆient to model suh important ombinatorial prob-lems as independent sets, graph oloring, and �nding Hamiltonian yles.An independent set of size k in a graph G = hV;Ei is a subset of V of sizek no two of whose elements share an edge in E. Given a positive integer k,the independent-set problem of size k in hV;Ei is to �nd an independent set ofsize at least k in hV;Ei. We represent the problem in the following ConstraintLingo program, setting, for onreteness, v = jV j = 100 and k = 30, with edgesE = f(2; 5); (54; 97)g. There are two attributes: a lass vertex, to representverties of the graph (line 1 below) and a partition status, to indiate themembership of eah vertex in an independent set (line 2). We employ USED toonstrain the independent set to have at least k elements (line 3). The REQUIREDonstraints in lines 4 and 5 enfore the independent-set onstraint.1 CLASS vertex: 1..100 # v = 1002 PARTITION status: in out3 USED 30 <= in # k = 304 REQUIRED 2 out OR 5 out # edge (2,5): at least one vertex is out5 REQUIRED 54 out OR 97 out # edge (54,97): at least one vertex is outThe k-graph-oloring problem is to �nd an assignment of k olors to vertiessuh that verties sharing an edge are assigned di�erent olors. We use twoattributes, vertex and olor, to de�ne the set of verties and the olors touse. The following Constraint Lingo program enodes the 3-oloring problemfor the same graph as before. We enfore the oloring ondition by means ofDIFFER onstraints (lines 3 and 4). We use quali�ed notation in lines 3 and 4to disambiguate vertex.2 from olor.2. The other numbers in the programare already unambiguous, but quali�ed notation improves larity.1 CLASS vertex: 1..1002 PARTITION olor: 1..3 # looking for 3-oloring3 DIFFER olor: vertex.2 vertex.5 # edge (2,5)4 DIFFER olor: vertex.54 vertex.97 # edge (54,97)The Hamiltonian-yle problem is to enumerate, without repetition, all theverties of an undireted graph in an order suh that adjaent verties in the listshare an edge, as do the �rst and last verties in the list. We use two numeriattributes: vertex and index. We enfore the Hamiltoniity ondition usingthe onstrut OFFSET: For every edge not in the graph, the positions of its endverties in the enumeration must not be onseutive integers (with the last andthe �rst verties also regarded as onseutive). For a spei� example, let us13

onsider a graph missing only two edges: (2,5) and (54,97). The orrespondingConstraint Lingo program follows.1 CLASS vertex: 1..1002 CLASS index: 1..100 irular3 OFFSET !+-1 index: vertex.2 vertex.5 # no edge (2,5)4 OFFSET !+-1 index: vertex.54 vertex.97 # no edge (54,97)Other ombinatorial problems an often be posed in a similar fashion inConstraint Lingo.5 Translation of Constraint Lingo into smodelsWe demonstrate ompiling Constraint Lingo programs into the formalism ofsmodels [7℄, that is, we onstrut an smodels program Tr(P). All our ode fortranslating Constraint Lingo, along with over 150 Constraint Lingo programs,is available to the interested reader [17℄.Smodels is an extension of logi programming with negation with the se-mantis of stable models. We assume that the reader is familiar both with thesyntax of smodels and with its semantis.Following our earlier disussion, solutions to a Constraint Lingo program Pare tables in the shema de�ned by P . The set of all tables determined by thedelaration part B of P is denoted by SS(B). To apture the semantis of P ,we need to represent tables from SS(P).Tables with n olumns orrespond naturally to n-ary prediates, so a straight-forward approah is to use an n-ary prediate symbol, say sol , and to designTr(P) so that extensions of sol in stable models of Tr(P) orrespond preiselyto tables in SS(P).Although straightforward, this approah has a disadvantage. The arity ofsol is the number of attributes of �, whih an be very high. Smodels programsinvolving prediates of high arity lead to ground programs whose size makesproessing impratial. Happily, n-ary tables an be represented by olletionsof their two-olumn subtables if the tables have at least one key attribute. Ta-bles spei�ed by Constraint Lingo programs fall into this ategory. We takeadvantage of this representation to design the translation Tr(P). We now de-sribe this translation; for reasons of spae, we omit formal statements of itskey properties and outlines of orretness proofs.Let P be a Constraint Lingo program with delarations B. We assumethat B spei�es a shema S = (a1; : : : ; an) where, for some 1 � ` � k � n,a1; : : : ; a` are list-lass attributes, a`+1; : : : ; ak are numeri-lass attributes, andthe remaining ak+1; : : : ; an are partition attributes. In partiular, a1 is a list-lass attribute.We now speify the translation Tr(P). The language of Tr(P) is given by(1) the onstants forming the domains of attributes of the shema S, (2) theprediate symbols domai , 1 � i � n, and (3) the prediate symbols rossai;aj ,1 � i � k and i < j � n. The prediate symbols domai represent attribute14

domains in Tr(P), and the prediate symbols rossai;aj represent two-olumnsubtables of the solution table (whih together determine the solution table).In the ase of the Frenh puzzle, for example, the domain prediates inludename(�) and soda(�); the ross-lass prediates inlude name soda(�,�) andvisits position(�,�).(1) For every lass and partition attribute a 2 P we introdue the orre-sponding prediate doma and inlude in Tr(P) fats doma(v) for every elementv from the domain of a as desribed by P . For example, we inlude the fatname(laude).(2) For every two list-lass attributes ai, aj , 1 � i < j � `, we inlude in theprogram Tr(P) the following rules:1frossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):1frossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, the �rst of these two rules states that for every element vi of thedomain of ai there is exatly one element vj from the domain of aj suh thatrossai;aj (vi; vj) holds (belongs to a stable model). The seond rule states thesymmetri onstraint.For instane, we have1 {visits_position(Visits,X):visits(Visits)} 1 :- position(X) .This rule means that given a position (suh as 2), there is at least and at most1 loation (it turns out to be Martinique) suh that the person in that position(it turns out to be Robert) plans to visit that loation.(3) For every list-lass attribute ai, 1 � i � `, and numeri-lass attributeaj , `+ 1 � j � k, we inlude in the program Tr(P) the following rules:1frossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0frossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):The �rst of these two rules states that for every element vi of the domain of aithere is exatly one element vj from the domain of aj suh that rossai ;aj (vi; vj)holds (belongs to a stable model). The seond rule states that for every elementvj of the domain of aj there is at most one element vi from the domain of aisuh that rossai;aj (vi; vj) holds (belongs to a stable model). This requirementis weaker then the previous one, a result of the fat that aj is a numeri-lassattribute. We do not require that every element of a numeri-lass domain havea math in the domain of ai in rossai;aj , but we still need to require that noelement has more than one math.(4) For every two numeri-lass attributes ai, aj , ` + 1 � i < j � k weinlude in the program Tr(P) the following rules:15

0frossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0frossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, these lauses enfore the all-di�erent onstraint for ai and aj inthe two-olumn table represented by rossai;aj (the only onstraint required ofnumeri-lass attributes).(5) For every list-lass attribute a and every partition attribute p, we needto guarantee that atoms of the form rossa;p(va; vp) de�ne a funtion (not ne-essarily a bijetion) that maps elements of the domain of a to elements from thedomain of p. The following rule embodies this guarantee.1frossa;p(A;P) : domp(P)g1 :{ doma(A):(6) For every numeri-lass attribute a and every partition attribute p, theatoms rossa;p(va; vp) need only de�ne a partial funtion. We inlude in Tr(P)the lause: 0frossa;p(A;P) : domp(P)g1 :{ doma(A):(7) Not every olletion of two-olumn tables an be onsistently ombinedinto a single table. In order to ahieve onsisteny, we enfore a transitivityproperty. For every three lass attributes ah, ai and aj , 1 � h < i < j � k, weinlude in Tr(P) the rules:rossah;ai(Vh; Vi) :{ rossah;aj (Vh; Vj); rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):rossah;aj (Vj ; Vj) :{ rossah;ai(Vh; Vi); rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):rossai;aj (Vh; Vj) :{ rossah;ai(Vh; Vi); rossah;aj (Vh; Vj);domah(Vh); domaj (Vj); domaj (Vj):For instane, we inlude the rulename_visits(Name,Visits) :-name(Name), visits(Visits), position(Position),name_position(Name,Position) ,position_visits(Position,Visits) .This rule says that if a person (like Robert) is in some position (like 2), and thatposition is assoiated with some planned destination to visit (like Martinique),then that person plans to visit that destination.Partitions require a more permissive version of the transitivity property. Forevery two lasses ai, ai, and every partition attribute p, we inlude in Tr(P)only two rules: 16

rossai;p(Vi; Vp) :{ rossai;aj (Vi; Vj); rossaj ;p(Vj ; Vp);domai(Vi); domaj (Vj); domp(Vp):rossaj ;p(Vj ; Vp) :{ rossai;aj (Vi; Vj); rossai ;p(Vi; Vp);domai(Vi); domaj (Vj); domp(Vp):Given these de�nitions and onstraints, the attribute and ross-lass pred-iates appearing in a stable model of Tr(P) uniquely determine a table thatsatis�es the requirements of the delarations given by the Constraint Lingo pro-gram P . Conversely, eah suh table determines a stable model of the programTr(P).The remaining part of the Constraint Lingo program onsists of onstraintsspei�ed by keywords suh as REQUIRED and CONFLICT. To ontinue the de-sription of the translation, we speify how these individual onstraints arerepresented in the syntax of smodels.(8) CONFLICT ma mb, where ma mb are elements of the domains of lassesa and b, respetively. The role of this onstraint in Constraint Lingo is to elim-inate tables that ontain rows with elements ma and mb in their orrespondingolumns. For eah suh onstraint, we add the following rule to Tr(P).:{ rossa;b(ma;mb):In our ase, we have:- position_visits(1,quebe) .This rule means that no solution (the left-hand side is empty) may plae 1 andquebe in the same row.We extend this translation when the list of oniting elements is longerthan 2 elements; eah pair of elements on the list gives rise to a onstraint onthe relevant ross-lass prediate.(9) REQUIRED ma mb. For eah suh onstraint, we add the following ruleto Tr(P). rossa;b(ma;mb):For instane, REQUIRED quebe blueberry would be translated as:soda_visits(blueberry,quebe) .This fat indiates that any solution must plae blueberry and quebe in thesame row.Again, we extend this translation when more than two members are listed.(10) VAR x. One list lass, say a, is seleted arbitrarily. The variable x ismeant to represent exatly one (unspei�ed as yet) element of that lass. Weintrodue a new prediate variablex that holds just for that one element andbuild a rule that enfores that onstraint:1fvariablex(X) : doma(X)g1:17

We represent the unlemon variable by using name as the arbitrarily hosen lassand translating to:1 {variable_unlemon(X):name(X)} 1 .(11) USED n <= partitionelement <= m. One list lass, say a, is seletedarbitrarily. There must be between n and m elements ma in the domain oflass a for whih rossa;p(ma; partitionelement) holds, where p is the partitionto whih partitionelement belongs. We build the following rule to enfore thisonstraint: nfrossa;p(A; partitionelement) : doma(A)gm:For instane, we would translate USED 2 <= women <= 3 as:2 {gender_visits(women,Visits) : visits(Visits)} 3 .(12) Similar translations are easy to design for all the remaining onstrutsof Constraint Lingo. For the sake of brevity, we do not disuss them here. Theinterested reader may aquire our ompiler [17℄ and inspet its output.We believe our translation is orret: Let P be a Constraint Lingo program.For every table T 2 Sol(P), there is a stable model M of Tr(P) suh thatM represents T . Conversely, for every stable model of Tr(P) there is a tableT 2 Sol(P) suh that M represents T .6 Optimizing the smodels translationAs ompiler writers have known for years, there are many di�erent orret trans-lations for a given ode fragment. High-quality ompilers attempt to generateode that is espeially eÆient (in spae and/or in time). Code optimizationis also possible for Constraint Lingo. As we developed our ompiler, we triedvarious alternative translations, settling on ones that give the fastest exeutionunder smodels. In addition to minor adjustments to the translated ode, wehave also experimented with two fundamentally di�erent approahes to Tr(P).We all the �rst new approah the prime-lass representation. We arbi-trarily hoose the �rst list lass as \prime". We generate ross-lass prediatesin Tr(P) only for pairs one of whose members is the prime lass. We no longerneed rules for transitivity, reduing the number of rules in the theory. However,onstraints between elements of non-prime (\oblique") attributes generate moreomplex rules, beause they must be related via the prime lass.In the Frenh puzzle, if name is prime, we translate CONFLICT quebe 1 to:- position_name(1, N), visits_name(quebe, N), name(N) .In other words, instead of using the atom position visits(1,quebe)(whih is no longer available) we represent this onstraint by joining posi-tion name(1, N) and visits name(quebe, N). We an diretly speify on-straints involving members of the prime lass and members of oblique lasses.18

Our ompiler uses a 3�3 ase statement to over all ases where the two mem-bers partiipating in a onstraint belong to the prime lass, an oblique lass, orare variables.Instead of hoosing the prime lass arbitrarily, we have implemented a vari-ant alled the speial-handle translation in whih the prime lass is hosenafter a �rst pass through the Constraint Lingo program to derive a weightedvalue for eah lass based on how often it is referened and in what ways. Thistranslation often generates the fastest ode. We have tried other representationsas well, but they don't behave as well as the ones we have introdued.We present some omparisons of these optimizations with our original odein Setion 8.7 Other logi enginesWe have desribed the smodels translation in some detail. Constraint Lingo isnot spei�, however, to smodels; we also have translators that onvert programsinto other logi formalisms. Eah logi formalism requires that the translatorwriter study its syntax and semantis in order to generate a quality translation.This e�ort is often quite extensive. We laim that the person trying to solvea tCSP should not be required to expend this e�ort; it is all done one and isembedded in the translators.We now touh on two of the logi engines beside smodels that we have used:disjuntive-logi programming and onstraint-logi programming. In interests ofspae, we do not disuss a third logi engine: the logi of propositional shemataand its solver aspps [10℄.7.1 Translation into disjuntive logi programmingThe dlv logi engine [19℄ aepts muh the same syntax as smodels, so ourtranslation into dlv looks similar for most of Constraint Lingo. However, dlvdoes not have ardinality onstraints, so the rules that guarantee uniqueness ofross-lass prediate solutions are more omplex than the one shown in Setion 5for smodels. For instane, we would translate USED 3 <= men in the Frenhpuzzle as:ounter(0) .ounter(1) .ounter(2) .ounter(3) .ounter(4) .ounter(5) .atleastmen(none, 0) .atleastmen(laude, N) :- atleastmen(none, N), N < 1, ounter(N) .atleastmen(laude, M) :- atleastmen(none, N), M = N+1,gender_person(men,laude), N < 1, ounter(N) .atleastmen(jeanne, N) :- atleastmen(laude, N), N < 2, ounter(N) .19

atleastmen(jeanne, M) :- atleastmen(laude, N), M = N+1,gender_person(men,jeanne), N < 2, ounter(N) .atleastmen(kate, N) :- atleastmen(jeanne, N), N < 3, ounter(N) .atleastmen(kate, M) :- atleastmen(jeanne, N), M = N+1,gender_person(men,kate), N < 3, ounter(N) .atleastmen(liana, N) :- atleastmen(kate, N), N < 4, ounter(N) .atleastmen(liana, M) :- atleastmen(kate, N), M = N+1,gender_person(men,liana), N < 4, ounter(N) .atleastmen(martin, N) :- atleastmen(liana, N), N < 5, ounter(N) .atleastmen(martin, M) :- atleastmen(liana, N), M = N+1,gender_person(men,martin), N < 5, ounter(N) .atleastmen(robert, N) :- atleastmen(martin, N), N < 6, ounter(N) .atleastmen(robert, M) :- atleastmen(martin, N), M = N+1,gender_person(men,robert), N < 6, ounter(N) .:- not atleastmen(robert, 3) .We have sorted the people; Robert turns out to be the last one. So theprediate atleastmen(robert,N) indiates that at least N of the people weremen. The last rule then onstrains this ount.Existene is assured by disjuntive rules, suh asposition_visits(1, quebe) v position_visits(1, tahiti) vposition_visits(1, haiti) v position_visits(1, martinique) vposition_visits(1, belgium) v position_visits(1, ivory).Disjuntions also assist in generating good ode for the MATCH onstraint.The prime-lass and speial-handle ompile-time optimizations of Setion 6also apply to disjuntive logi programming. Further details of the translationan be found in our ompiler [17℄.7.2 Translation into onstraint-logi programmingOur approah to solving tabular CSP problems is di�erent from the lassialapproah in the logi ommunity, whih is to diretly represent suh problems asonstraints in onstraint-programming languages. The logi puzzles solved byDoug Edmunds [20℄, for example, are all hand-oded. Our experiene, however,is that it is far easier to program suh problems in Constraint Lingo and thentranslate them into whatever form is appropriate for the omputational engine.In keeping with that approah, we have built a translator from Constraint Lingoto ECLiPSe. Complete details an be found in our ompiler [17℄.The resulting ECLiPSe program is a single rule with many lauses on itsright-hand side. We represent eah row of the result table by an integer indexranging from 1 to the number of rows. In the Frenh puzzle, the lasses name,visits, and position are represented as multiple lauses of a single rule, asfollows:Name = [Claude, Jeanne, Kate, Liana, Martin, Robert℄,Name :: 1..6,alldifferent(Name), 20

Visits = [Quebe, Tahiti, Haiti, Martinique, Belgium, Ivory℄,Visits :: 1..6,alldifferent(Visits),Position = [Position1, Position2, Position3, Position4, Position5,Position6℄,Position :: 1..6,alldifferent(Position),If there is no numeri lass, we break symmetry by seleting one lass (suhas name) as prime and assigning eah member to a partiular row:Claude = 1, Jeanne = 2, Kate = 3, Liana = 4, Martin = 5, Robert = 6,If one is available, we selet a numeri lass as prime and use its elementsas row numbers. (A numeri lass is only available if all its elements are used.)In the ase of the Frenh puzzle, position, whih is numeri, is a better primelass than name, whih is not. Order onstraints involving a numeri lass aremuh more eÆient to represent if that lass is prime.Complex Constraint Lingo onstraints suh asREQUIRED quebe blueberry OR quebe lemonare represented simply asQuebe #= Blueberry #\/ Quebe #= LemonBeause position is the prime lass,CONFLICT quebe 1is represented as1 #\= QuebeIf we selet name as the prime lass instead, then this onstraint beomesPosition1 #\= QuebeOrdering relations involving a numeri prime lass are quite easy. For instane,OFFSET !+-1 position: robert katebeomesRobert + 1 #\= Kate #/\ Robert - 1 #\= Kate #/\Robert + 1 - 6 #\= Kate #/\ Robert - 1 + 6 #\= KateIf the ordering relation is with respet to an oblique lass, the ode is lumsierand lengthier, inluding parts like this:
21

(Robert #= Position1 #/\ Kate #= Position1) #\/(Robert #= Position1 #/\ Kate #= Position3) #\/(Robert #= Position1 #/\ Kate #= Position4) #\/(Robert #= Position1 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position2) #\/(Robert #= Position2 #/\ Kate #= Position4) #\/(Robert #= Position2 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position6) #\/ ...Partitions are lumsy to represent. For gender, we introdue the following:Gender = [Gender1, Gender2, Gender3, Gender4, Gender5, Gender6℄,Gender :: ['Men', 'Women'℄Then we translate onstraints suh asAGREE men: laudeinto (Claude #= 1 #/\ Gender1 #= 'Men' #\/Claude #= 2 #/\ Gender2 #= 'Men' #\/Claude #= 3 #/\ Gender3 #= 'Men' #\/Claude #= 4 #/\ Gender4 #= 'Men' #\/Claude #= 5 #/\ Gender5 #= 'Men' #\/Claude #= 6 #/\ Gender6 #= 'Men')The eÆieny of ECLiPSe is quite sensitive to the heuristis expliitly indi-ated in the translated program; we have found that the best all-around hoie isto use the fd global library and to speify the \ourrene/indomain/omplete"heuristi ombination. It is likely that hand-tuning the programs would makethem faster.8 EÆieny testsWe have experimented with the following logi engines and representations:smodels4 (ross-lass, prime-lass, speial-handle), dlv5 (ross-lass, speial-han-dle), ECLiPSe6, and aspps (ross-lass, speial-handle). Our tests inlude (1)about 150 puzzles from Dell Logi Puzzles and Randall L. Whipkey [21℄ enodedin Constraint Lingo, (2) the independent-set graph problem on random graphswith 52 verties and 100 edges, looking for 25 independent verties, and (3) the3-oloring problem on large random graphs.All our tests ignore the time to ompile Constraint Lingo programs (theompiler takes negligible time) and the grounding time for the logi engine(usually also negligible).4lparse version 1.0.11; smodels version 2.275version BEN/Apr 18 2002. This version of dlv does not inlude ardinality onstraints,unlike smodels and aspps.6version 5.4, build 41 22

Our �rst onlusion is that the speial-handle translation is usually far betterthan the ross-lass translation. The following shows a few extreme examplesof this trend; times are in seonds:puzzle logi engine ross-lass speial-handleomedian aspps 33 0.1foodourt dlv 117 0.4employee smodels 38 0.4Choosing the right translation is a matter of optimization. Even an expertlogi programmer might reate ross-lass programs, beause they often leadto shorter rules. Automatially performing this optimization leads to far moreeÆient ode. We ontinue to �nd new optimizations.Our seond onlusion is that no one logi engine onsistently outperformsthe others, although aspps tends to be slightly faster than the others, andECLiPSe tends to be slightly slower, failing to �nish in a reasonable amountof time on a few puzzles. The following table ompares the logi engines on ourhardest puzzles; in all ases we show times for the speial-handle translation,exept for ECLiPSe, where the translation is ompletely di�erent. We mark the\winner" in eah ase with a box; di�erenes in time less than 0.05 seonds aremost likely insigni�ant. We make no laim that our translations are optimal.These tests are not meant to demonstrate superiority of one logi engine overanother, only to show the feasibility of our approah.puzzle aspps smodels dlv ECLiPSeard 0.00 0.01 0.01 0.02omedian 0.05 0.12 2.29 0.78employee 0.24 0.44 3.12 |ight 0.01 0.00 0.01 0.04foodourt 0.17 0.54 0.41 3.13frenh 0.00 0.03 0.08 0.13jazz 0.00 0.04 0.03 0.02molly 0.03 0.04 0.15 0.33post 0.00 0.02 0.04 0.51ridge 11.56 8.14 0.76 |sevendates 0.03 0.05 0.05 0.04The independent-set problem is represented, as shown in Setion 4, by aREQUIRED onstraint for eah edge and a single USED onstraint. Both asppsand smodels provide a notation that allows us to translate USED in P into asingle ardinality onstraint in Tr(P). These logi engines enfore ardinalityonstraints during the searh proess, whih leads to very eÆient searh. Inontrast, neither dlv nor ECLiPSe provides ardinality onstraints, so we pro-gram USED by expliitly ounting how many times the desired member is usedand then onstraining that total. We an ount diretly in ECLiPSe and indi-retly by extra rules in dlv. In both ases, this generate-and-hek strategy (asopposed to a built-in onstrut) leads to slower searhes.23

The following table shows the number of seonds for several logi engines toompute the �rst model of a theory representing the independent-set problemlooking for I independent verties on a random graph with a V verties and Eedges. Again, we ignore ompilation and grounding time.V E I aspps smodels dlv ECLiPSe100 200 40 0.01 1.08 1.61 60100 200 44 18.99 25.19 148.6 394We ontinue to searh for translations that perform better than our urrentones. Our experiene reinfores our belief that eÆient solution of onstraint-satisfation problems depends on a arefully designed ompilation; even expe-riened logi programmers are unlikely to ahieve eÆient programs withoutenormous e�ort.9 Disussion and onlusionsLogi programming was introdued with a promise of dramatially hangingthe way we program. Logi programming is delarative. The programmer ansolve a problem by enoding its spei�ations in some logi formalism and theninvoking automated reasoning tehniques for that logi to produe a solution.Control details are no longer the programmer's responsibility.However, despite attrative features stemming from its delarative nature,logi programming has not yet gained a widespread aeptane in the program-ming world. This disappointing result seems to hold both for logi-programmingimplementations based on proof-�nding tehniques (Prolog and its extensionsthat handle onstraint programming, suh as ECLiPSe) and to newly emergingapproahes based on satis�ability testing and model omputation (answer-setprogramming [6, 5℄).This state of a�airs is due to the fat that logi-programming formalismsare too low-level to be used without great e�ort and require that programmershave a signi�ant logi bakground. In order to be suessful, a delarativeprogramming language should be aligned with language onstruts often usedwhen problems are desribed in free text. We suggest that programs in suha high-level language should be automatially ompiled to programs in low-level languages suh as urrent implementations of logi programming (Prolog,ECLiPSe, smodels, and so forth) and then solved by the orresponding solvers.Our main ontribution is a high-level delarative language, Constraint Lingo,designed to apture tabular onstraint-satisfation problems. Constraint Lingois simple. It uses two onstruts, CLASS and PARTITION, to de�ne the frameworkin whih a given problem is desribed, and 10 onstruts to desribe onstraints,all of them well attuned to free-text desriptions of onstraint problems.We don't laim that Constraint Lingo is the best possible language for thispurpose. Its line-oriented ommands, eah starting with a apitalized keyword,may appear a throwbak to languages like Basi. Constraint Lingo has a limited24

repertoire of onnetives and arithmeti operations; it has no general-purposearithmeti or Boolean expressions.Despite these limitations, Constraint Lingo is an expressive language inwhih one an desribe a diverse olletion of tabular onstraint-satisfationproblems. We have used it to represent over 150 logi puzzles ranging in dif-�ulty from one to �ve stars and involving a large variety of onstraints, aswell as several graph problems over randomly-generated graphs of various sizes.Thanks to its simpliity and aÆnity to free-text onstraint spei�ations, pro-gramming in Constraint Lingo is easy and frees the programmer from manytedious and error-prone tasks.Constraint Lingo provides a omputational as well as a desriptive faility.We ompile Constraint Lingo programs into exeutable ode in a variety oflow-level logi programming languages.Evidene shows that our approah is pratial. Programs we obtain byautomatially ompiling Constraint Lingo programs losely resemble those thatprogrammers have written diretly. Our omputational results are enouragingand show that programs produed by ompiling Constraint Lingo programsperform well when proessed by various omputational engines.We ontinue to evolve Constraint Lingo and its assoiated tools. Reentdevelopments inlude the following, all available in the most reent release ofthe software [17℄.� Other onstraints. New syntax allows mappings between rows; thesemappings an be delared to be nonreexive, symmetri, asymmetri,and/or onto. This faility lets us represent some omplex onstraints,suh as \Everyone has a hero in the room; Jeanne's hero is Kate, butKate's hero is not Jeanne." Two maps an be delared to di�er on ev-ery row, so we an indiate onstraints suh as \Nobody's hero is his orher tennis partner." We also have introdued syntax to indiate that thevalues of two partitions taken together at as a key, so we an indiateonstraints suh as \although a every oor has several rooms and everywing has several rooms, eah room has a unique ombination of oor andwing."� Problem-onstrution tools. We have built a Tl/Tk [22℄ front endto our Constraint Lingo pakage that allows us to build problems by (1)onstruting the desired solution, (2) introduing onstraints, (3) ensuringthat the onstraints so far are not ontraditory (leading to no solutions)and are onsistent with the desired solution, (4) identifying undesired so-lution omponents, (5) identifying superuous onstraints. We have usedthese tools to build extremely diÆult puzzles, perhaps beyond humanability to solve.� Explanations. We have instrumented the grounder and solver of asppsto generate a log �le that we then onvert into a set of steps that a hu-man an follow to solve the problem. We have introdued new Constraint25

Lingo syntax that allows the programmer to speify how ross-lass pred-iates are to be expressed in English. An explanation of the Frenh puzzleinludes deriving a onit between martinique and 6, and the Englishexpression is, \to be onsistent [explaining how this result follows fromthe previous results℄, the person sitting in seat 6 doesn't plan to visitMartinique [an English lause℄."We are onsidering other enhanements as well. The urrent support forvariables is limited and might be extended to support universal quanti�ation.Our implementation does not support data-input operations. It provides onlyrestrited support for logial and arithmeti operations. We need better supportfor arithmeti if Constraint Lingo is to be appliable in modeling and solvingreal-life operations-researh problems. However, as we ontemplate extensionsto Constraint Lingo, we want to be areful to preserve its simpliity, whih, webelieve, is its main strength.A similar approah, �nding helpful higher-level abstrations, might well behelpful in other strutured domains, suh as planning and sheduling. We havebegun to look at both.10 AknowledgementsWe thank Hemantha Ponnuru and Vijay Chintalapati for their programmingand testing support.Referenes[1℄ R. Kowalski. Prediate logi as a programming language. In Proeedings of theCongress of the International Federation for Information Proessing (IFIP-1974),pages 569{574, Amsterdam, 1974. North Holland.[2℄ A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systeme de ommu-niation homme-mahine en franais. Tehnial report, University of Marseille,1973.[3℄ K. Marriott and P.J. Stukey. Programming with Constraints: An Introdution.MIT Press, Cambridge, MA, 1998.[4℄ M. Wallae, S. Novello, and J. Shimpf. Elipse:A platform for onstraint logi programming, 1997.http://www.ipar.i.a.uk/elipse/reports/elipse.ps.gz.[5℄ I. Niemel�a. Logi programming with stable model semantis as a onstraint pro-gramming paradigm. Annals of Mathematis and Arti�ial Intelligene, 25(3-4):241{273, 1999.[6℄ V.W. Marek and M. Truszzy�nski. Stable models and an alternative logi pro-gramming paradigm. In K.R. Apt, W. Marek, M. Truszzy�nski, and D.S. Warren,editors, The Logi Programming Paradigm: a 25-Year Perspetive, pages 375{398.Springer, Berlin, 1999. 26

http://www.icparc.ic.ac.uk/eclipse/reports/eclipse.ps.gz

[7℄ I. Niemel�a and P. Simons. Extending the smodels system with ardinality andweight onstraints. In J. Minker, editor, Logi-Based Arti�ial Intelligene, pages491{521. Kluwer Aademi Publishers, 2000.[8℄ M. Gelfond and V. Lifshitz. The stable semantis for logi programs. In Proeed-ings of the 5th International Conferene on Logi Programming, pages 1070{1080.MIT Press, 1988.[9℄ T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Sarello. A KR system dlv:Progress report, omparisons and benhmarks. In Proeeding of the 6th Interna-tional Conferene on Knowledge Representation and Reasoning (KR-1998), pages406{417. Morgan Kaufmann, 1998.[10℄ D. East and M. Truszzy�nski. Propositional satis�ability in answer-set program-ming. In Proeedings of Joint German/Austrian Conferene on Arti�ial Intelli-gene (KI-2001), volume 2174 of LNAI, pages 138{153. Springer, 2001.[11℄ Christiane Brahi, Christophe Ge�ot, and Frederi Paulin. Combining propaga-tion information and searh tree visualization using ILOG OPL studio. Novem-ber 16 2001. In A. Kusalik (ed), Proeedings of the Eleventh International Work-shop on Logi Programming Environments (WLPE'01), Deember 1, 2001, Pa-phos, Cyprus, s.PL/0111042.[12℄ B. Selman and H. A. Kautz. Planning as satis�ability. In Proeedings of the 10thEuropean Conferene on Arti�ial Intelligene, Vienna, Austria, 1992.[13℄ H.A. Kautz and B. Selman. Unifying sat-based and graph-based planning. InProeedings of IJCAI-99, San Mateo, CA, 1999. Morgan Kaufmann.[14℄ R.E. Fikes and N. J. Nilsson. STRIPS: a new approah to the appliation oftheorem proving to problem solving. Arti�ial Intelligene Journal, 2:189{208,1971.[15℄ N.J. Nilsson. Arti�ial Intelligene: a New Synthesis. Morgan Kaufmann, SanFraniso, 1998.[16℄ M. Ghallab, A. Howe, C. Knoblok, D. MDermott, A. Ram, M. Veloso, D. Weld,and D. Wilkins. Pddl { the planning domain de�nition language. Tehnial report,Yale Center for Computational Vision and Control, Otober 1998. Available athttp://www.s.yale.edu/pub/mdermott/software/pddl.tar.gz .[17℄ R. Finkel. Constraint lingo pakage, 2003.ftp://ftp.s.uky.edu/s/software/l.tar.gz.[18℄ M. Cadoli and T. Manini. Automated reformulation of spei�ations by safedelay of onstraints. In Alan M. Frish, editor, Proeedings of the 2nd Interna-tional Workshop on Modelling and Reformulating Constraint Satisfation Prob-lems, pages 33{47, 2003. (In onjuntion with CP-2003).[19℄ T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Delarative problem-solving inDLV. In Jak Minker, editor, Logi-Based Arti�ial Intelligene, pages 79{103.Kluwer Aademi Publishers, Dordreht, 2000.[20℄ D. Edmunds. Learning onstraint logi programming | Finite domains with logipuzzles, 2000. http://brownbuffalo.soureforge.net.[21℄ R. L. Whipkey. Various logi puzzles, 2001.http://www.allstarpuzzles.om/logi and http://rpuzzles.om/logi.[22℄ John K. Ousterhout. Tl and the Tk Toolkit. Professional Computing Series.Addison-Wesley, 1994. ISBN 0-201-63337-X.27

http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
ftp://ftp.cs.uky.edu/cs/software/cl.tar.gz
http://brownbuffalo.sourceforge.net
http://www.allstarpuzzles.com/logic
http://crpuzzles.com/logic

	1 Introduction
	2 Tabular constraint-satisfaction problems
	3 Syntax and Semantics of Constraint Lingo
	3.1 Declarations
	3.2 Constraints
	3.2.1 Rownames
	3.2.2 REQUIRED and CONFLICT
	3.2.3 Other constraint types
	3.2.4 Variables
	3.2.5 French puzzle
	3.2.6 Solutions

	4 Applying Constraint Lingo to graph problems
	5 Translation of Constraint Lingo into smodels
	6 Optimizing the smodels translation
	7 Other logic engines
	7.1 Translation into disjunctive logic programming
	7.2 Translation into constraint-logic programming

	8 Efficiency tests
	9 Discussion and conclusions
	10 Acknowledgements

