
Constraint Lingo: Towards high-level
onstraintprogrammingRaphael Finkel, Vi
tor W. Marek and Miros law Trusz
zy�nskiJune 9, 2004Abstra
tLogi
 programming requires that the programmer
onvert a probleminto a set of
onstraints based on predi
ates. Choosing the predi
atesand introdu
ing appropriate
onstraints
an be intri
ate and error-prone.If the problem domain is stru
tured enough, we
an let the program-mer express the problem in terms of more abstra
t, higher-level
on-straints. A
ompiler
an then
onvert the higher-level program into alogi
-programming formalism. The
ompiler writer
an experiment withalternative low-level representations of the higher-level
onstraints in or-der to a
hieve a high-quality translation. The programmer
an then takeadvantage of both a redu
tion in
omplexity and an improvement in run-time speed for all problems within the domain.We apply this analysis to the domain of tabular
onstraint-satisfa
tionproblems. Examples of su
h problems in
lude logi
 puzzles solvable on ahat
h grid and
ombinatorial problems su
h as graph
oloring and in-dependent sets. The proper abstra
tions for these problems are rows,
olumns, entries, and their intera
tions.We present a higher-level language, Constraint Lingo, dedi
ated toproblems in this domain. We also des
ribe how we translate programsfrom Constraint Lingo into lower-level logi
 formalisms su
h as the logi
 ofpropositional s
hemata. These translations require that we
hoose among
ompeting lower-level representations in order to produ
e eÆ
ient results.The overall e�e
tiveness of our approa
h depends on the appropri-ateness of Constraint Lingo, our ability to translate Constraint Lingoprograms into high-quality representations in logi
 formalisms, and theeÆ
ien
y with whi
h logi
 engines
an
ompute answer sets.We
omment on our
omputational experien
e with these tools in solv-ing both graph problems and logi
 puzzles.1 Introdu
tionLogi
 programming was introdu
ed in the mid 1970s as a way to fa
ilitate
omputational problem solving and software development [1℄. The idea wasto regard logi
 theories as programs and formulas as representations of
om-putational tasks, and to apply automated reasoning te
hniques, most notably,1

resolution with uni�
ation, as the
omputational me
hanism. Resear
hers ex-pe
ted that logi
 programming would qui
kly be
ome a dominant programmingparadigm be
ause of its de
larative nature: it allows programmers to fo
us onmodeling problem spe
i�
ations in a de
larative way as theories and frees themfrom the need to des
ribe
ontrol. These expe
tations were reinfor
ed by theemergen
e of Prolog [2℄. However, despite the initial ex
itement generated bylogi
 programming and its prominent role in the �fth-generation
omputing ini-tiative in Japan, logi
 programming has been slow in winning broad a

eptan
eand has yet to live up to early expe
tations.This paper presents our attempt to address this problem. Logi
 program-ming requires the programmer to
ast a problem into the language of predi
atesand their interrelations, a task that is often intri
ate and error-prone. It is moreprodu
tive to program with domain-appropriate abstra
tions that are automat-i
ally
ompiled into eÆ
ient and
orre
t low-level logi
 programs.We demonstrate this thesis in the restri
ted domain of
onstraint-satisfa
-tion problems whose solutions have the stru
ture of a table. In this paper, wedes
ribe the Constraint Lingo language for expressing these tabular
onstraint-satisfa
tion problems. We show how to translate programs in this language intoa variety of lower-level logi
 programs that
an be run on standard logi
 engines.Low-level approa
hes to
onstraint-satisfa
tion problems have been investi-gated for several years. First,
onstraint-logi
 programming [3℄ has been usedwith great su

ess. Solvers su
h as ECLiPSe [4℄
an be used to represent andsolve su
h problems. Se
ond, re
ent resear
h has modeled
onstraint-satisfa
tionproblems as DATALOG: programs for whi
h stable models represent solu-tions [5, 6℄. Programs su
h as smodels [7℄
ompute stable models [8℄ of su
hprograms. Third,
onstraint-satisfa
tion problems
an be modeled as disjun
-tive logi
 programs; dlv [9℄
an
ompute answer sets of those programs. Fourth,the logi
 of propositional s
hemata forms an answer-set programming formal-ism that
an be used for solving
onstraint-satisfa
tion problems [10℄. Fifth,optimization programming solvers su
h as OPL [11℄ deal primarily with te
h-niques su
h as linear and integer programming, but also in
orporate
onstraintprogramming and s
heduling. Together, we
all programs that
ompute solu-tions to logi
 programs in any of these formalisms \logi
 engines", even thoughsolvers in the �fth
lass
an be based on C++ or Java, and do not present apredi
ate-logi
 view to programmers.While these logi
-based formalisms for spe
ifying
onstraints are expressive,they all su�er from the fa
t that they are awkward even for experien
ed pro-grammers and logi
ians to use. The problem is that the
onne
tives o�eredby logi
 do not
orrespond well to high-level
onstraints o

urring in a
tualproblems, even when
onne
tives in
lude the extended syntax implemented bysmodels or by ECLiPSe.Solving a
onstraint-satisfa
tion problem should be a three-step pro
ess. (1)Represent a statement of the problem (often given informally as free text) insome high-level modeling language. We refer to this step as modeling or pro-gramming. (2) Translate this representation into a target formalism for whi
hgood automated reasoning te
hniques are available. We refer to this step as2

ompilation; it is usually fully automated. (3) Apply automated reasoning te
h-niques to the
ompiled representation in order to
onstru
t solutions to theoriginal problem if they exist. We refer to this step as
omputation.The following �gure summarizes the
ow of solving
onstraint-satisfa
tionproblems and introdu
es some of our notation. A programmer represents prob-lem � as program P . An automati
 translator
onverts P into Tr(P). Alogi
 engine
omputes the solution set Sol(Tr(P)) for Tr(P). Ea
h modelM 2 Sol(Tr(P)) represents a solution to the Constraint Lingo program andhen
e to the original problem.
?? --

-
66

Sol(�)
Tr(P) Sol(P)�P

Spe
i�
ation Solution set Tabular
onstraint-satisfa
tion problemConstraint-Lingo programAnswer-set programming formalismSol(Tr(P))
12 3This three-step approa
h is not unique to
onstraint satisfa
tion; it is quite
ommon in all
omputational areas. (1) Using programming languages to solveproblems follows the same general pattern of programming,
ompiling, and
om-puting. (2) To retrieve information from a database, we �rst write a query insome query language (programming). This query is then analyzed, optimized,and transformed into a
omputational plan, su
h as an expression in relationalalgebra. Finally, this plan is exe
uted and the answer is
omputed. (3) A
on-
rete example of the use of this approa
h in AI is propositional satis�abilityplanning [12℄. In the Bla
kBox approa
h [13℄, to solve a planning problem we�rst build its formal representation in a high-level planning language su
h asSTRIPS [14, 15℄ or PDDL [16℄, then
ompile it into a propositional CNF the-ory, and �nally solve the original planning problem by using these propositionalsatis�ability programs to �nd models of the
ompiled theory.From this perspe
tive, due to its limited repertoire of means to express
onstraints, logi
 formalisms should rather be viewed as low-level
onstraint-modeling languages. In order to use them for solving
onstraint problems, oneneeds a high-level modeling formalism tailored to the a
tual problems,
oupledwith te
hniques to translate theories in this high-level formalism into logi
 pro-grams. An expressive language for representing
onstraints should fa
ilitateprogramming, and good
ompilation te
hniques should result in
ode amenableto eÆ
ient pro
essing by any logi
 engine.In this paper we present a new
onstraint-modeling language, ConstraintLingo, well suited for modeling tabular
onstraint-satisfa
tion problems. Todemonstrate its utility, we show (1) how to en
ode logi
 puzzles and several3

graph problems in Constraint Lingo, (2) how to
ompile Constraint Lingo pro-grams into several logi
 formalisms, and (3) how well logi
 engines
omputeanswer sets for the
ompiled programs.Our experien
e with Constraint Lingo (the
urrent implementation, problemsuite, and do
umentation is available [17℄) supports our thesis. Although we �ndit hard to program
onstraint-satisfa
tion problems dire
tly in logi
 formalism,we �nd that (1) it is quite easy (and even fun) to program these problems inConstraint Lingo, (2)
ompilation is
ompletely automated, and (3) the resultingprograms are eÆ
ient to run.This paper makes three
ontributions:1. It proposes a te
hnique for using logi
 formalisms as
omputational tools.We
ontend that logi
 formalisms should preferably be used as
omputa-tional ba
k-ends a

ompanying a more user-friendly high-level program-ming language. Programming ought to be done in this higher-level lan-guage; programs need to be
ompiled to low-level representations and thenpro
essed.2. We illustrate our proposal by developing a spe
i�
 language for model-ing
onstraint problems. We also illustrate
ompilers into several
ompu-tational logi
-based ba
k-ends and demonstrate the viability of our ap-proa
h.3. Our approa
h opens interesting resear
h dire
tions for
onstraint-satisfa
tionprogramming:� design of high-level languages for logi
-programming appli
ation ar-eas,� design of
ompilers and their optimizations,� design of software-development tools.This paper is organized as follows. We present tabular
onstraint-satisfa
tionproblems and a parti
ular logi
 puzzle in Se
tion 2. We introdu
e the syntaxof Constraint Lingo and its semanti
s in Se
tion 3, applying it to a spe
i�
logi
 puzzle. We apply Constraint Lingo to graph problems in Se
tion 4. Weshow how Constraint Lingo is translated into smodels in Se
tion 5 and showsome
ompiler optimizations for that translation in Se
tion 6. We show how
ompiled
ode di�ers from smodels for other logi
 engines, in parti
ular, dlv inSe
tion 7.1 and ECLiPSe in Se
tion 7.2. We present results of timing studies inSe
tion 8 and �nal remarks in Se
tion 9.2 Tabular
onstraint-satisfa
tion problemsThe Constraint Lingo language is tuned to tabular
onstraint-satisfa
tion prob-lems (tCSPs), in whi
h it is
onvenient to think about solutions as having a2-dimensional array stru
ture. Su
h problems spe
ify
olumns in the tables by4

assigning them names and by indi
ating the domain of ea
h
olumn, that is, theset of elements that
an appear in the
olumn. They also spe
ify the numberof rows. Further
onstraints typi
ally relate entries in a single row or
olumn,but more
omplex
onstraints are also possible.An attributemeans a pair (a;Da), where a is the name of the attribute andDa is its domain, a nonempty set of elements. For our purposes, all attributedomains are �nite. We
ommonly refer to an attribute by its name. A tables
hema is a sequen
e of attributes with distin
t names.Let S = ha1; : : : ; ani be a table s
hema. We
all any subset T � Da1 �: : :�Dan a table in s
hema S. We use the term table rather than relation,the standard term for a subset of a Cartesian produ
t, to emphasize intuitionsarising in the
ontext of tCSPs. In parti
ular, we regard a table as a two-dimensional stru
ture
onsisting of all its tuples written sequentially as rows.Likewise, a
olumn is the sequen
e of elements from the domain of an attributeappearing in the appropriate position in all rows of the table. We denote theset of all tables in S by Tab(S).A
onstraint
 on tables in S is any subset of Tab(S)1. We say a tablesatis�es a
onstraint if it is a member of the subset. A tabular
onstraintsatisfa
tion problem (tCSP)
onsists of a table s
hema S and a
olle
tionC of
onstraints on tables in Tab(S). Given a tCSP �, the set of solutionsto �
onsists of all those tables in Tab(S) that satisfy all the
onstraints inC. We denote this set as Sol(�) = T
2C
. A
onstraint
 serves as a basi
building blo
k for
onstraints on tables. While we only admit
onjun
tions ofsu
h
onstraints, it is possible to
onsider \se
ond-order SQL", in whi
h answersto queries are sets of tables (rather than sets of re
ords, as in ordinary SQL). Asimilar idea has been pursued by others [18℄.The most
ommon table
onstraints are all-di�erent and all-used. A tableT 2 Tab(S) satis�es the all-di�erent property with respe
t to the attributea 2 S if no element of Da appears more than on
e in the
olumn a of T . Atable T 2 Tab(S) satis�es the all-used property with respe
t to the attributea 2 S if ea
h element of Da appears at least on
e in the
olumn a of T . Wesay that an attribute a 2 S is a key for a table T in S if T satis�es both theall-di�erent and all-used
onstraints2 with respe
t to a.We are only interested in tCSPs with at least one key attribute. Withoutloss of generality, we assume that the �rst attribute in the s
hema, say a1, isso distinguished. This requirement implies that the number of rows in solutiontables is the
ardinality of Da1 .This assumption is motivated by the following
onsiderations. First, it isoften satis�ed by problems appearing in pra
ti
e, in parti
ular, by the puzzle andgraph problems dis
ussed in this paper. Se
ond, general
onstraint-satisfa
tionproblems assume a �xed set of variables. In tCSPs, variables whose values needto be established
orrespond to individual table entries. The s
hema determines1Usually su
h a
onstraint is not given expli
itly as a set of relations but rather as a formulain some language.2We di�er here from database terminology, in whi
h only the all-di�erent
onstraint isrequired for an attribute to be a key. 5

the number of
olumns. In order to �x the number of variables of a tCSP, wehave to �x the number of rows. Designating an attribute as a key is one wayof doing so. Third, a
lass of tables satisfying our assumption
an be uniquelyde
omposed into
olle
tions of 2-
olumn proje
tions on pairs of attributes. Thisproperty has impli
ations for translations of Constraint Lingo programs intolow-level logi
 formalisms. We dis
uss this matter in more detail in Se
tion 5.S
heduling problems are examples of tCSPs, with ea
h row in a solution tablerepresenting a single item of the s
hedule (su
h as time, lo
ation, resour
esneeded). Graph problems
an also often be
ast as tCSPs. For instan
e, asolution to a graph-
oloring problem is a table
onsisting of two
olumns, onefor verti
es and the other for
olors. The rows in the table spe
ify the assignmentof
olors to verti
es.Logi
 puzzles are good examples of tCSPs. Throughout this paper, we usethe \Fren
h Phrases, Italian Soda" puzzle (or Fren
h puzzle, for short)3 as arunning example to illustrate the syntax and the semanti
s of Constraint Lingo:Claude looks forward to every Wednesday night, for this is the nighthe
an speak in his native language to the other members of the infor-mal Fren
h
lub. Last week, Claude and �ve other people (three womennamed Jeanne, Kate, and Liana, and two men named Martin and Robert)shared a
ir
ular table at their regular meeting pla
e, the Caf�e du Monde.Claude found this past meeting to be parti
ularly interesting, as ea
h ofthe six people des
ribed an up
oming trip that he or she is planning totake to a di�erent Fren
h-speaking part of the world. During the dis
us-sion, ea
h person sipped a di�erent
avor of Italian soda, a spe
ialty atthe
af�e. Using [: : :℄ the following
lues,
an you mat
h ea
h person withhis or her seat (numbered one through six [
ir
ularly℄) and determine the
avor of soda that ea
h drank, as well as the pla
e that ea
h plans to visit?1. The person who is planning a trip to Quebe
, who drank either blue-berry or lemon soda, didn't sit in seat number one.2. Robert, who didn't sit next to Kate, sat dire
tly a
ross from the personwho drank pea
h soda.3. The three men are the person who is going to Haiti, the one in seatnumber three, and Claude's brother.4. The three people who sat in even-numbered seats are Kate, Claude,and a person who didn't drink lemon soda, in some order.This puzzle
an be viewed as a tCSP with the s
hema
onsisting of �ve at-tributes: name, gender, position, soda and
ountry (ea
h with its asso
iateddomain). The spa
e of possible solutions to this puzzle is given by the set of ta-bles whose rows des
ribe people and whose
olumns des
ribe relevant attributes.The attributes name, position, soda and
ountry are impli
itly required to bekey, but gender is not (it does not satisfy the all-di�erent property). There isonly one solution satisfying all nine
lues of the Fren
h puzzle:3Copyright 1999, Dell Magazines; quoted by permission. We present only four of the nine
lues. 6

name gender position soda
ountry
laude man 6 tangelo haitijeanne woman 1 grapefruit ivorykate woman 4 kiwi tahitiliana woman 5 pea
h belgiummartin man 3 lemon quebe
robert man 2 blueberry martinique3 Syntax and Semanti
s of Constraint LingoThe syntax of Constraint Lingo is line-oriented. Every non-empty line of Con-straint Lingo
onstitutes a de
laration or a
onstraint. For better readability,de
larations usually pre
ede
onstraints, but Constraint Lingo only requires thatevery atom be de
lared before use. Comments are pre�xed with the #
hara
ter.The goal of a Constraint Lingo program P is to spe
ify a tCSP �. De
-larations of the program P des
ribe the s
hema of the problem � and imposeall-di�erent and all-used
onstraints. Constraints of the program P des
ribe allother
onstraints of the problem �. By spe
ifying a tCSP, a Constraint Lingoprogram P
an be regarded as a representation of all tables in Sol(�).To des
ribe the set of tables that are solutions to a Constraint Lingo programP we pro
eed as follows. We �rst spe
ify the set of tables that is determinedby B, the de
laration part of P . We then des
ribe, for ea
h
onstraint C in therest of P , whi
h of the tables spe
i�ed by the B satisfy it. Those tables thatsatisfy all
onstraints
onstitute solutions to P .3.1 De
larationsTwo di�erent types of attributes (
olumns)
an be de
lared in Constraint Lingo.� CLASS
lassname: member1 member2 : : :memberkThis syntax de
lares a
lass attribute (
olumn) with the name
lassname andthe domain
onsisting of elements member1; member2; : : : ; memberk. Classesare
olumns in whi
h every element is di�erent.For the Fren
h puzzle, for example, we haveCLASS name:
laude jeanne kate liana martin robertCLASS soda: blueberry lemon pea
h tangelo kiwi grapefruitCLASS visits: quebe
 tahiti haiti martinique belgium ivoryIf the domain elements are all integers (our parser only allows nonnegativeintegers) in a range from �rst to last , we may spe
ify the
lass by writing:CLASS
lassname: �rst .. last [
ir
ular℄In the Fren
h puzzle, we writeCLASS position: 1 .. 6
ir
ular7

The optional
ir
ular keyword indi
ates that the range is intended to betreated with modular arithmeti
 so that last + 1 = �rst . We refer to
lasses allof whose members are numeri
 as numeri

lasses; the others are list
lasses.� PARTITION partitionname: member1 member2 : : :memberkThis syntax de
lares a partition attribute (
olumn) with the name partition-name and the domain
onsisting of elements member1;member2; : : : ;memberk.Members of a partition attribute may o

ur any number of times (even 0) intheir
olumn.In the Fren
h puzzle, we writePARTITION gender: men womenWe require that all
lass and partition names be distin
t. We also requireat least one list
lass (so we
an be sure how many rows there are) and that thedomains of all list-
lass attributes be of the same
ardinality. This requirement
orresponds to the restri
tion we impose on tCSPs that at least one attributemust be key. However, we often �nd it useful to let numeri

lasses in
ludevalues that turn out not to appear in the solution. We therefore let numeri

lasses have more values than other
lasses.Ea
h attribute
onstitutes a disjoint domain of elements. If we need thesame element (su
h as a number) in two attribute domains, we disambiguatethe domains in the
onstraint part of the program by qualifying the element:attributename.element.Let B be the de
larations of a Constraint Lingo program P . These de
la-rations de�ne a table s
hema, say SB , whi
h
onsists of all
lass and partitionattributes. In addition, B imposes all-di�erent and all-used
onstraints by des-ignating some attributes as list- and numeri
-
lass attributes. Spe
i�
ally, Brestri
ts the spa
e of tables in Tab(SB) to those that satisfy the all-di�erent
onstraint with respe
t to
lass attributes and also the all-used
onstraint withrespe
t to list-
lass attributes. Neither restri
tion applies to partition attributes.We denote this set of tables, whi
h
onstitute the solution spa
e, as SS(B). Weregard ea
h table in this set as a model of de
larations in B and view the setSS(B) as providing the semanti
s for B.3.2 ConstraintsThe s
hema de�ned by de
larationsB introdu
es identi�ers (su
h as
lass namesand domain members) that are then used in the
onstraints found in the rest ofthe Constraint Lingo program. We dis
uss this syntax now. For ea
h
onstraintwe introdu
e, we de�ne its semanti
s in the terms of tables in the set SS(B).3.2.1 RownamesConstraints often
on
ern properties of table
olumns and rows. To refer to
olumns we use their
lass or partition names. To refer to a row we use arowname. A rowname may be any element of a
lass domain, whi
h uniquely8

refers to one row be
ause of the all-di�erent
onstraint and the disjoint natureof domain elements (ensured if ne
essary by qualifying them). In addition, wemay introdu
e a variable as a rowname:� VAR variablenameVariables must be distin
t from ea
h other and from all domain elements toavoid ambiguity.We now give the syntax and semanti
s of the
onstraints in Constraint Lingogiven the set of de
larations B. When des
ribing the semanti
s we assume fornow that
onstraints do not involve variables. We later lift this assumption.3.2.2 REQUIRED and CONFLICT� REQUIRED rowname1 rowname2 : : :A table from SS(B) satis�es a REQUIRED
onstraint if the given rownames spe
-ify the same row, that is, if they appear in the same row of the table.We would en
ode a
lue \The person traveling to Quebe
 drank blueberry soda"as REQUIRED quebe
 blueberry� REQUIRED rowname1 rowname2 [OR | XOR | IFF℄ rowname3 rowname4This embellished REQUIRED
onstraint is satis�ed only by those tables fromSS(B) in whi
h rowname1 and rowname2 spe
ify the same row for, xor, i�growname3 and rowname4 spe
ify the same row, depending on the
onne
tiveused. This
onstraint gives the Constraint Lingo programmer a limited amountof propositional logi
. The e�e
t of the AND
onne
tive is a
hieved by writingseparate
onstraints, so we do not in
lude it in Constraint Lingo.For the Fren
h puzzle, we en
ode part of the �rst
lue asREQUIRED quebe
 blueberry OR quebe
 lemon� CONFLICT rowname1 : : : [partitionelement1 : : :℄The CONFLICT
onstraint ex
ludes those tables in SS(B) in whi
h any two ofthe given rownames spe
ify the same row. If partitionelements are spe
i�ed,the
onstraint also disallows tables in whi
h those partitionelements are foundin any rows spe
i�ed by the given rownames.We partially en
ode the �rst Fren
h puzzle
lue as:CONFLICT quebe
 1We
ould use a partition element, for example, to stipulate that neither theperson drinking kiwi soda nor the person going to Belgium is a man:CONFLICT kiwi belgium menWe �nd that we use REQUIRED and CONFLICT most heavily. We now turn toless-frequently used
onstraint types. 9

3.2.3 Other
onstraint types� AGREE partitionelement: rowname1 : : :The AGREE
onstraint is satis�ed by those tables in SS(B) in whi
h the rowsspe
i�ed by the given rownames have the given partitionelement in the
olumnasso
iated with partitionelement.We use AGREE to indi
ate the genders of the six people:AGREE men:
laude martin robertAGREE women: jeanne kate lianaWe also use AGREE along with VAR and CONFLICT for
lue 3:VAR brotherCONFLICT brother
laudeAGREE men: haiti 3 brotherCONFLICT haiti 3 brother� DIFFER partitionname: rowname1 rowname2 : : :This
onstraint allows only those tables in SS(B) in whi
h the rows spe
i�edby the given rownames have di�erent elements in the
olumn asso
iated withpartitionname.For example, we
ould have a
lue stating that the person visiting the IvoryCoast and the one drinking blueberry soda are of di�erent genders; we woulden
ode that
lue as:DIFFER gender: ivory blueberry� SAME partitionname: rowname1 rowname2 : : :This
onstraint allows only those tables in SS(B) in whi
h the rows spe
i�edby the given rownames have the same elements in the
olumn asso
iated withpartitionname.To represent, for instan
e, that the person visiting the Ivory Coast has the samegender as the one drinking kiwi soda, we would write:SAME gender: ivory kiwi� USED elementThis
onstraint disallows all those tables in SS(B) in whi
h the given elementdoes not appear in its asso
iated
olumn. We employ this
onstraint to for
e aparti
ular partition element or numeri
-
lass element to be used in a solution.The Fren
h puzzle tells us who are the men and who are the women, but if itonly told us that there is at least one man, we would en
ode that
lue as:USED men 10

� USED n <= partitionelement <= mIn this
onstraint, n and m must be nonnegative integers. Either the n <= orthe <= m or both may be absent. The default value for n is 1, and the defaultvalue of m is 1. This
onstraint allows only those tables in SS(B) where thepartitionelement appears (in its asso
iated
olumn) a number of times k su
hthat n � k � m.To en
ode a
lue telling us there are at least 2 but not more than 3 women, wewould write:USED 2 <= women <= 3� MATCH rowname1 : : : rownamek , rowname01 : : : rowname0kThis
onstraint allows only those tables in SS(B) in whi
h: (1) all the rowsspe
i�ed by the �rst set of rownames are distin
t, (2) all the rows spe
i�ed bythe se
ond set of rownames are distin
t, (3) those two sets of rows are identi
al.We en
ode the fourth
lue by a
ombination of MATCH and VAR:VAR unlemonMATCH 2 4 6, kate
laude unlemonCONFLICT unlemon lemon� BEFORE
lassname: rowname1 rowname2The given
lassname must be a non-
ir
ular numeri

lass. Let v1 and v2 bethe elements in the
olumn spe
i�ed by
lassname and in the rows spe
i�ed byrowname1 and rowname2, respe
tively. The
onstraint allows only those tablesin SS(B) in whi
h v1 < v2.We
annot use BEFORE in the Fren
h puzzle, be
ause a
ir
ular numeri

lassimplements a simple
y
le (the largest element is followed by the least one) andhen
e does not inherit the order from the underlying set of numbers. Ignor-ing
ir
ularity, we
ould indi
ate that Jeanne is sitting in an earlier-numberedposition than the person going to Haiti by saying:BEFORE position: jeanne haiti� OFFSET [+ | * | +- | > | ! | !+- ℄ n
lassname: rowname1 rowname2The given
lassname must again be a non-
ir
ular numeri

lass. Let v1 and v2be the elements in the
olumn spe
i�ed by
lassname and in the rows spe
i�edby rowname1 and rowname2, respe
tively. The six variants of this
onstraintallow only su
h tables in SS(B) where v1 + n = v2, v1 � n = v2, v1 � n = v2,v1 + n > v2, v1 + n 6= v2, or v1 � n 6= v2, respe
tively.Again, OFFSET makes no sense in the Fren
h puzzle be
ause position is a
ir
ular numeri

lass, but ignoring
ir
ularity, we
ould say that Kate is sittingin a position twi
e as large as Robert's by saying:OFFSET *2 position: robert kate11

3.2.4 VariablesWe have used variables intuitively in some of our examples above; we nowextend the des
ription of Constraint Lingo semanti
s when variables appear in
onstraints. Let P be a Constraint Lingo program with variables x1; : : : ; xk.We say that a table T , of the type spe
i�ed by the de
larations of P , satis�esP if there is a list
lass C and elements v1; : : : ; vk (not ne
essarily distin
t)from the domain of this
lass su
h that the table T satis�es the ConstraintLingo program obtained by removing all variable de
laration statements fromP and by instantiating in P every o

urren
e of xi with vi. In other words,we
an asso
iate ea
h variable with some row, represented by a value in a list
lass. In the Fren
h puzzle, the variables unlemon and brother used in theexamples above both turn out to be asso
iated with Robert; we
ould
all thatrow robert, blueberry, or martinique, depending what list
lass we wish touse as our
lass C.3.2.5 Fren
h puzzleA
omplete translation of the Fren
h puzzle
lues is as follows.#1 REQUIRED quebe
 blueberry OR quebe
 lemonCONFLICT quebe
 1$2 OFFSET !+-1 position: robert kateOFFSET 3 position: pea
h#3 VAR brotherAGREE men: haiti 3 brotherCONFLICT brother
laude#4 VAR unlemonMATCH 2 4 6, kate
laude unlemonCONFLICT unlemon lemon3.2.6 SolutionsLet P be a Constraint Lingo program and let B denote all de
larations in P . Atable T 2 SS(B) is a solution to P if it satis�es all
onstraints in P . We denotethe set of all solution tables for a Constraint Lingo program P by Sol(P). AConstraint Lingo program en
odes a tCSP problem � if Sol(P) = Sol(�).Let P be a �nite Constraint Lingo program with the de
laration
omponentB. One
an show, based on our dis
ussion above, that given a table T 2 SS(B),
he
king whether T satis�es all
onstraints in P
an be a

omplished in timepolynomial in the size of P and T . However, the tables in the set SS(B) havedimensions that are polynomial in the size of B (and so, in the size of P). Itfollows that de
iding whether a �nite Constraint Lingo program has solutions isin the
lass NP. In the next se
tion, we show a polynomial redu
tion of the graph12

3-
olorability problem to that of de
iding whether a Constraint Lingo programhas solutions. The problem to de
ide whether a �nite Constraint Lingo programhas solutions is therefore NP-
omplete.4 Applying Constraint Lingo to graph problemsDespite a restri
ted repertoire of operators aimed initially at solving logi
 prob-lems, Constraint Lingo is suÆ
ient to model su
h important
ombinatorial prob-lems as independent sets, graph
oloring, and �nding Hamiltonian
y
les.An independent set of size k in a graph G = hV;Ei is a subset of V of sizek no two of whose elements share an edge in E. Given a positive integer k,the independent-set problem of size k in hV;Ei is to �nd an independent set ofsize at least k in hV;Ei. We represent the problem in the following ConstraintLingo program, setting, for
on
reteness, v = jV j = 100 and k = 30, with edgesE = f(2; 5); (54; 97)g. There are two attributes: a
lass vertex, to representverti
es of the graph (line 1 below) and a partition status, to indi
ate themembership of ea
h vertex in an independent set (line 2). We employ USED to
onstrain the independent set to have at least k elements (line 3). The REQUIRED
onstraints in lines 4 and 5 enfor
e the independent-set
onstraint.1 CLASS vertex: 1..100 # v = 1002 PARTITION status: in out3 USED 30 <= in # k = 304 REQUIRED 2 out OR 5 out # edge (2,5): at least one vertex is out5 REQUIRED 54 out OR 97 out # edge (54,97): at least one vertex is outThe k-graph-
oloring problem is to �nd an assignment of k
olors to verti
essu
h that verti
es sharing an edge are assigned di�erent
olors. We use twoattributes, vertex and
olor, to de�ne the set of verti
es and the
olors touse. The following Constraint Lingo program en
odes the 3-
oloring problemfor the same graph as before. We enfor
e the
oloring
ondition by means ofDIFFER
onstraints (lines 3 and 4). We use quali�ed notation in lines 3 and 4to disambiguate vertex.2 from
olor.2. The other numbers in the programare already unambiguous, but quali�ed notation improves
larity.1 CLASS vertex: 1..1002 PARTITION
olor: 1..3 # looking for 3-
oloring3 DIFFER
olor: vertex.2 vertex.5 # edge (2,5)4 DIFFER
olor: vertex.54 vertex.97 # edge (54,97)The Hamiltonian-
y
le problem is to enumerate, without repetition, all theverti
es of an undire
ted graph in an order su
h that adja
ent verti
es in the listshare an edge, as do the �rst and last verti
es in the list. We use two numeri
attributes: vertex and index. We enfor
e the Hamiltoni
ity
ondition usingthe
onstru
t OFFSET: For every edge not in the graph, the positions of its endverti
es in the enumeration must not be
onse
utive integers (with the last andthe �rst verti
es also regarded as
onse
utive). For a spe
i�
 example, let us13

onsider a graph missing only two edges: (2,5) and (54,97). The
orrespondingConstraint Lingo program follows.1 CLASS vertex: 1..1002 CLASS index: 1..100
ir
ular3 OFFSET !+-1 index: vertex.2 vertex.5 # no edge (2,5)4 OFFSET !+-1 index: vertex.54 vertex.97 # no edge (54,97)Other
ombinatorial problems
an often be posed in a similar fashion inConstraint Lingo.5 Translation of Constraint Lingo into smodelsWe demonstrate
ompiling Constraint Lingo programs into the formalism ofsmodels [7℄, that is, we
onstru
t an smodels program Tr(P). All our
ode fortranslating Constraint Lingo, along with over 150 Constraint Lingo programs,is available to the interested reader [17℄.Smodels is an extension of logi
 programming with negation with the se-manti
s of stable models. We assume that the reader is familiar both with thesyntax of smodels and with its semanti
s.Following our earlier dis
ussion, solutions to a Constraint Lingo program Pare tables in the s
hema de�ned by P . The set of all tables determined by thede
laration part B of P is denoted by SS(B). To
apture the semanti
s of P ,we need to represent tables from SS(P).Tables with n
olumns
orrespond naturally to n-ary predi
ates, so a straight-forward approa
h is to use an n-ary predi
ate symbol, say sol , and to designTr(P) so that extensions of sol in stable models of Tr(P)
orrespond pre
iselyto tables in SS(P).Although straightforward, this approa
h has a disadvantage. The arity ofsol is the number of attributes of �, whi
h
an be very high. Smodels programsinvolving predi
ates of high arity lead to ground programs whose size makespro
essing impra
ti
al. Happily, n-ary tables
an be represented by
olle
tionsof their two-
olumn subtables if the tables have at least one key attribute. Ta-bles spe
i�ed by Constraint Lingo programs fall into this
ategory. We takeadvantage of this representation to design the translation Tr(P). We now de-s
ribe this translation; for reasons of spa
e, we omit formal statements of itskey properties and outlines of
orre
tness proofs.Let P be a Constraint Lingo program with de
larations B. We assumethat B spe
i�es a s
hema S = (a1; : : : ; an) where, for some 1 � ` � k � n,a1; : : : ; a` are list-
lass attributes, a`+1; : : : ; ak are numeri
-
lass attributes, andthe remaining ak+1; : : : ; an are partition attributes. In parti
ular, a1 is a list-
lass attribute.We now spe
ify the translation Tr(P). The language of Tr(P) is given by(1) the
onstants forming the domains of attributes of the s
hema S, (2) thepredi
ate symbols domai , 1 � i � n, and (3) the predi
ate symbols
rossai;aj ,1 � i � k and i < j � n. The predi
ate symbols domai represent attribute14

domains in Tr(P), and the predi
ate symbols
rossai;aj represent two-
olumnsubtables of the solution table (whi
h together determine the solution table).In the
ase of the Fren
h puzzle, for example, the domain predi
ates in
ludename(�) and soda(�); the
ross-
lass predi
ates in
lude name soda(�,�) andvisits position(�,�).(1) For every
lass and partition attribute a 2 P we introdu
e the
orre-sponding predi
ate doma and in
lude in Tr(P) fa
ts doma(v) for every elementv from the domain of a as des
ribed by P . For example, we in
lude the fa
tname(
laude).(2) For every two list-
lass attributes ai, aj , 1 � i < j � `, we in
lude in theprogram Tr(P) the following rules:1f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):1f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, the �rst of these two rules states that for every element vi of thedomain of ai there is exa
tly one element vj from the domain of aj su
h that
rossai;aj (vi; vj) holds (belongs to a stable model). The se
ond rule states thesymmetri

onstraint.For instan
e, we have1 {visits_position(Visits,X):visits(Visits)} 1 :- position(X) .This rule means that given a position (su
h as 2), there is at least and at most1 lo
ation (it turns out to be Martinique) su
h that the person in that position(it turns out to be Robert) plans to visit that lo
ation.(3) For every list-
lass attribute ai, 1 � i � `, and numeri
-
lass attributeaj , `+ 1 � j � k, we in
lude in the program Tr(P) the following rules:1f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):The �rst of these two rules states that for every element vi of the domain of aithere is exa
tly one element vj from the domain of aj su
h that
rossai ;aj (vi; vj)holds (belongs to a stable model). The se
ond rule states that for every elementvj of the domain of aj there is at most one element vi from the domain of aisu
h that
rossai;aj (vi; vj) holds (belongs to a stable model). This requirementis weaker then the previous one, a result of the fa
t that aj is a numeri
-
lassattribute. We do not require that every element of a numeri
-
lass domain havea mat
h in the domain of ai in
rossai;aj , but we still need to require that noelement has more than one mat
h.(4) For every two numeri
-
lass attributes ai, aj , ` + 1 � i < j � k wein
lude in the program Tr(P) the following rules:15

0f
rossai;aj (Vi; Vj) : domaj (Vj)g1 :{ domai(Vi):0f
rossai;aj (Vi; Vj) : domai(Vi)g1 :{ domaj (Vj):Informally, these
lauses enfor
e the all-di�erent
onstraint for ai and aj inthe two-
olumn table represented by
rossai;aj (the only
onstraint required ofnumeri
-
lass attributes).(5) For every list-
lass attribute a and every partition attribute p, we needto guarantee that atoms of the form
rossa;p(va; vp) de�ne a fun
tion (not ne
-essarily a bije
tion) that maps elements of the domain of a to elements from thedomain of p. The following rule embodies this guarantee.1f
rossa;p(A;P) : domp(P)g1 :{ doma(A):(6) For every numeri
-
lass attribute a and every partition attribute p, theatoms
rossa;p(va; vp) need only de�ne a partial fun
tion. We in
lude in Tr(P)the
lause: 0f
rossa;p(A;P) : domp(P)g1 :{ doma(A):(7) Not every
olle
tion of two-
olumn tables
an be
onsistently
ombinedinto a single table. In order to a
hieve
onsisten
y, we enfor
e a transitivityproperty. For every three
lass attributes ah, ai and aj , 1 � h < i < j � k, wein
lude in Tr(P) the rules:
rossah;ai(Vh; Vi) :{
rossah;aj (Vh; Vj);
rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):
rossah;aj (Vj ; Vj) :{
rossah;ai(Vh; Vi);
rossai;aj (Vi; Vj);domah(Vh); domaj (Vj); domaj (Vj):
rossai;aj (Vh; Vj) :{
rossah;ai(Vh; Vi);
rossah;aj (Vh; Vj);domah(Vh); domaj (Vj); domaj (Vj):For instan
e, we in
lude the rulename_visits(Name,Visits) :-name(Name), visits(Visits), position(Position),name_position(Name,Position) ,position_visits(Position,Visits) .This rule says that if a person (like Robert) is in some position (like 2), and thatposition is asso
iated with some planned destination to visit (like Martinique),then that person plans to visit that destination.Partitions require a more permissive version of the transitivity property. Forevery two
lasses ai, ai, and every partition attribute p, we in
lude in Tr(P)only two rules: 16

rossai;p(Vi; Vp) :{
rossai;aj (Vi; Vj);
rossaj ;p(Vj ; Vp);domai(Vi); domaj (Vj); domp(Vp):
rossaj ;p(Vj ; Vp) :{
rossai;aj (Vi; Vj);
rossai ;p(Vi; Vp);domai(Vi); domaj (Vj); domp(Vp):Given these de�nitions and
onstraints, the attribute and
ross-
lass pred-i
ates appearing in a stable model of Tr(P) uniquely determine a table thatsatis�es the requirements of the de
larations given by the Constraint Lingo pro-gram P . Conversely, ea
h su
h table determines a stable model of the programTr(P).The remaining part of the Constraint Lingo program
onsists of
onstraintsspe
i�ed by keywords su
h as REQUIRED and CONFLICT. To
ontinue the de-s
ription of the translation, we spe
ify how these individual
onstraints arerepresented in the syntax of smodels.(8) CONFLICT ma mb, where ma mb are elements of the domains of
lassesa and b, respe
tively. The role of this
onstraint in Constraint Lingo is to elim-inate tables that
ontain rows with elements ma and mb in their
orresponding
olumns. For ea
h su
h
onstraint, we add the following rule to Tr(P).:{
rossa;b(ma;mb):In our
ase, we have:- position_visits(1,quebe
) .This rule means that no solution (the left-hand side is empty) may pla
e 1 andquebe
 in the same row.We extend this translation when the list of
on
i
ting elements is longerthan 2 elements; ea
h pair of elements on the list gives rise to a
onstraint onthe relevant
ross-
lass predi
ate.(9) REQUIRED ma mb. For ea
h su
h
onstraint, we add the following ruleto Tr(P).
rossa;b(ma;mb):For instan
e, REQUIRED quebe
 blueberry would be translated as:soda_visits(blueberry,quebe
) .This fa
t indi
ates that any solution must pla
e blueberry and quebe
 in thesame row.Again, we extend this translation when more than two members are listed.(10) VAR x. One list
lass, say a, is sele
ted arbitrarily. The variable x ismeant to represent exa
tly one (unspe
i�ed as yet) element of that
lass. Weintrodu
e a new predi
ate variablex that holds just for that one element andbuild a rule that enfor
es that
onstraint:1fvariablex(X) : doma(X)g1:17

We represent the unlemon variable by using name as the arbitrarily
hosen
lassand translating to:1 {variable_unlemon(X):name(X)} 1 .(11) USED n <= partitionelement <= m. One list
lass, say a, is sele
tedarbitrarily. There must be between n and m elements ma in the domain of
lass a for whi
h
rossa;p(ma; partitionelement) holds, where p is the partitionto whi
h partitionelement belongs. We build the following rule to enfor
e this
onstraint: nf
rossa;p(A; partitionelement) : doma(A)gm:For instan
e, we would translate USED 2 <= women <= 3 as:2 {gender_visits(women,Visits) : visits(Visits)} 3 .(12) Similar translations are easy to design for all the remaining
onstru
tsof Constraint Lingo. For the sake of brevity, we do not dis
uss them here. Theinterested reader may a
quire our
ompiler [17℄ and inspe
t its output.We believe our translation is
orre
t: Let P be a Constraint Lingo program.For every table T 2 Sol(P), there is a stable model M of Tr(P) su
h thatM represents T . Conversely, for every stable model of Tr(P) there is a tableT 2 Sol(P) su
h that M represents T .6 Optimizing the smodels translationAs
ompiler writers have known for years, there are many di�erent
orre
t trans-lations for a given
ode fragment. High-quality
ompilers attempt to generate
ode that is espe
ially eÆ
ient (in spa
e and/or in time). Code optimizationis also possible for Constraint Lingo. As we developed our
ompiler, we triedvarious alternative translations, settling on ones that give the fastest exe
utionunder smodels. In addition to minor adjustments to the translated
ode, wehave also experimented with two fundamentally di�erent approa
hes to Tr(P).We
all the �rst new approa
h the prime-
lass representation. We arbi-trarily
hoose the �rst list
lass as \prime". We generate
ross-
lass predi
atesin Tr(P) only for pairs one of whose members is the prime
lass. We no longerneed rules for transitivity, redu
ing the number of rules in the theory. However,
onstraints between elements of non-prime (\oblique") attributes generate more
omplex rules, be
ause they must be related via the prime
lass.In the Fren
h puzzle, if name is prime, we translate CONFLICT quebe
 1 to:- position_name(1, N), visits_name(quebe
, N), name(N) .In other words, instead of using the atom position visits(1,quebe
)(whi
h is no longer available) we represent this
onstraint by joining posi-tion name(1, N) and visits name(quebe
, N). We
an dire
tly spe
ify
on-straints involving members of the prime
lass and members of oblique
lasses.18

Our
ompiler uses a 3�3
ase statement to
over all
ases where the two mem-bers parti
ipating in a
onstraint belong to the prime
lass, an oblique
lass, orare variables.Instead of
hoosing the prime
lass arbitrarily, we have implemented a vari-ant
alled the spe
ial-handle translation in whi
h the prime
lass is
hosenafter a �rst pass through the Constraint Lingo program to derive a weightedvalue for ea
h
lass based on how often it is referen
ed and in what ways. Thistranslation often generates the fastest
ode. We have tried other representationsas well, but they don't behave as well as the ones we have introdu
ed.We present some
omparisons of these optimizations with our original
odein Se
tion 8.7 Other logi
 enginesWe have des
ribed the smodels translation in some detail. Constraint Lingo isnot spe
i�
, however, to smodels; we also have translators that
onvert programsinto other logi
 formalisms. Ea
h logi
 formalism requires that the translatorwriter study its syntax and semanti
s in order to generate a quality translation.This e�ort is often quite extensive. We
laim that the person trying to solvea tCSP should not be required to expend this e�ort; it is all done on
e and isembedded in the translators.We now tou
h on two of the logi
 engines beside smodels that we have used:disjun
tive-logi
 programming and
onstraint-logi
 programming. In interests ofspa
e, we do not dis
uss a third logi
 engine: the logi
 of propositional s
hemataand its solver aspps [10℄.7.1 Translation into disjun
tive logi
 programmingThe dlv logi
 engine [19℄ a

epts mu
h the same syntax as smodels, so ourtranslation into dlv looks similar for most of Constraint Lingo. However, dlvdoes not have
ardinality
onstraints, so the rules that guarantee uniqueness of
ross-
lass predi
ate solutions are more
omplex than the one shown in Se
tion 5for smodels. For instan
e, we would translate USED 3 <= men in the Fren
hpuzzle as:
ounter(0) .
ounter(1) .
ounter(2) .
ounter(3) .
ounter(4) .
ounter(5) .atleastmen(none, 0) .atleastmen(
laude, N) :- atleastmen(none, N), N < 1,
ounter(N) .atleastmen(
laude, M) :- atleastmen(none, N), M = N+1,gender_person(men,
laude), N < 1,
ounter(N) .atleastmen(jeanne, N) :- atleastmen(
laude, N), N < 2,
ounter(N) .19

atleastmen(jeanne, M) :- atleastmen(
laude, N), M = N+1,gender_person(men,jeanne), N < 2,
ounter(N) .atleastmen(kate, N) :- atleastmen(jeanne, N), N < 3,
ounter(N) .atleastmen(kate, M) :- atleastmen(jeanne, N), M = N+1,gender_person(men,kate), N < 3,
ounter(N) .atleastmen(liana, N) :- atleastmen(kate, N), N < 4,
ounter(N) .atleastmen(liana, M) :- atleastmen(kate, N), M = N+1,gender_person(men,liana), N < 4,
ounter(N) .atleastmen(martin, N) :- atleastmen(liana, N), N < 5,
ounter(N) .atleastmen(martin, M) :- atleastmen(liana, N), M = N+1,gender_person(men,martin), N < 5,
ounter(N) .atleastmen(robert, N) :- atleastmen(martin, N), N < 6,
ounter(N) .atleastmen(robert, M) :- atleastmen(martin, N), M = N+1,gender_person(men,robert), N < 6,
ounter(N) .:- not atleastmen(robert, 3) .We have sorted the people; Robert turns out to be the last one. So thepredi
ate atleastmen(robert,N) indi
ates that at least N of the people weremen. The last rule then
onstrains this
ount.Existen
e is assured by disjun
tive rules, su
h asposition_visits(1, quebe
) v position_visits(1, tahiti) vposition_visits(1, haiti) v position_visits(1, martinique) vposition_visits(1, belgium) v position_visits(1, ivory).Disjun
tions also assist in generating good
ode for the MATCH
onstraint.The prime-
lass and spe
ial-handle
ompile-time optimizations of Se
tion 6also apply to disjun
tive logi
 programming. Further details of the translation
an be found in our
ompiler [17℄.7.2 Translation into
onstraint-logi
 programmingOur approa
h to solving tabular CSP problems is di�erent from the
lassi
alapproa
h in the logi

ommunity, whi
h is to dire
tly represent su
h problems as
onstraints in
onstraint-programming languages. The logi
 puzzles solved byDoug Edmunds [20℄, for example, are all hand-
oded. Our experien
e, however,is that it is far easier to program su
h problems in Constraint Lingo and thentranslate them into whatever form is appropriate for the
omputational engine.In keeping with that approa
h, we have built a translator from Constraint Lingoto ECLiPSe. Complete details
an be found in our
ompiler [17℄.The resulting ECLiPSe program is a single rule with many
lauses on itsright-hand side. We represent ea
h row of the result table by an integer indexranging from 1 to the number of rows. In the Fren
h puzzle, the
lasses name,visits, and position are represented as multiple
lauses of a single rule, asfollows:Name = [Claude, Jeanne, Kate, Liana, Martin, Robert℄,Name :: 1..6,alldifferent(Name), 20

Visits = [Quebe
, Tahiti, Haiti, Martinique, Belgium, Ivory℄,Visits :: 1..6,alldifferent(Visits),Position = [Position1, Position2, Position3, Position4, Position5,Position6℄,Position :: 1..6,alldifferent(Position),If there is no numeri

lass, we break symmetry by sele
ting one
lass (su
has name) as prime and assigning ea
h member to a parti
ular row:Claude = 1, Jeanne = 2, Kate = 3, Liana = 4, Martin = 5, Robert = 6,If one is available, we sele
t a numeri

lass as prime and use its elementsas row numbers. (A numeri

lass is only available if all its elements are used.)In the
ase of the Fren
h puzzle, position, whi
h is numeri
, is a better prime
lass than name, whi
h is not. Order
onstraints involving a numeri

lass aremu
h more eÆ
ient to represent if that
lass is prime.Complex Constraint Lingo
onstraints su
h asREQUIRED quebe
 blueberry OR quebe
 lemonare represented simply asQuebe
 #= Blueberry #\/ Quebe
 #= LemonBe
ause position is the prime
lass,CONFLICT quebe
 1is represented as1 #\= Quebe
If we sele
t name as the prime
lass instead, then this
onstraint be
omesPosition1 #\= Quebe
Ordering relations involving a numeri
 prime
lass are quite easy. For instan
e,OFFSET !+-1 position: robert katebe
omesRobert + 1 #\= Kate #/\ Robert - 1 #\= Kate #/\Robert + 1 - 6 #\= Kate #/\ Robert - 1 + 6 #\= KateIf the ordering relation is with respe
t to an oblique
lass, the
ode is
lumsierand lengthier, in
luding parts like this:
21

(Robert #= Position1 #/\ Kate #= Position1) #\/(Robert #= Position1 #/\ Kate #= Position3) #\/(Robert #= Position1 #/\ Kate #= Position4) #\/(Robert #= Position1 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position2) #\/(Robert #= Position2 #/\ Kate #= Position4) #\/(Robert #= Position2 #/\ Kate #= Position5) #\/(Robert #= Position2 #/\ Kate #= Position6) #\/ ...Partitions are
lumsy to represent. For gender, we introdu
e the following:Gender = [Gender1, Gender2, Gender3, Gender4, Gender5, Gender6℄,Gender :: ['Men', 'Women'℄Then we translate
onstraints su
h asAGREE men:
laudeinto (Claude #= 1 #/\ Gender1 #= 'Men' #\/Claude #= 2 #/\ Gender2 #= 'Men' #\/Claude #= 3 #/\ Gender3 #= 'Men' #\/Claude #= 4 #/\ Gender4 #= 'Men' #\/Claude #= 5 #/\ Gender5 #= 'Men' #\/Claude #= 6 #/\ Gender6 #= 'Men')The eÆ
ien
y of ECLiPSe is quite sensitive to the heuristi
s expli
itly indi-
ated in the translated program; we have found that the best all-around
hoi
e isto use the fd global library and to spe
ify the \o

urren
e/indomain/
omplete"heuristi

ombination. It is likely that hand-tuning the programs would makethem faster.8 EÆ
ien
y testsWe have experimented with the following logi
 engines and representations:smodels4 (
ross-
lass, prime-
lass, spe
ial-handle), dlv5 (
ross-
lass, spe
ial-han-dle), ECLiPSe6, and aspps (
ross-
lass, spe
ial-handle). Our tests in
lude (1)about 150 puzzles from Dell Logi
 Puzzles and Randall L. Whipkey [21℄ en
odedin Constraint Lingo, (2) the independent-set graph problem on random graphswith 52 verti
es and 100 edges, looking for 25 independent verti
es, and (3) the3-
oloring problem on large random graphs.All our tests ignore the time to
ompile Constraint Lingo programs (the
ompiler takes negligible time) and the grounding time for the logi
 engine(usually also negligible).4lparse version 1.0.11; smodels version 2.275version BEN/Apr 18 2002. This version of dlv does not in
lude
ardinality
onstraints,unlike smodels and aspps.6version 5.4, build 41 22

Our �rst
on
lusion is that the spe
ial-handle translation is usually far betterthan the
ross-
lass translation. The following shows a few extreme examplesof this trend; times are in se
onds:puzzle logi
 engine
ross-
lass spe
ial-handle
omedian aspps 33 0.1food
ourt dlv 117 0.4employee smodels 38 0.4Choosing the right translation is a matter of optimization. Even an expertlogi
 programmer might
reate
ross-
lass programs, be
ause they often leadto shorter rules. Automati
ally performing this optimization leads to far moreeÆ
ient
ode. We
ontinue to �nd new optimizations.Our se
ond
on
lusion is that no one logi
 engine
onsistently outperformsthe others, although aspps tends to be slightly faster than the others, andECLiPSe tends to be slightly slower, failing to �nish in a reasonable amountof time on a few puzzles. The following table
ompares the logi
 engines on ourhardest puzzles; in all
ases we show times for the spe
ial-handle translation,ex
ept for ECLiPSe, where the translation is
ompletely di�erent. We mark the\winner" in ea
h
ase with a box; di�eren
es in time less than 0.05 se
onds aremost likely insigni�
ant. We make no
laim that our translations are optimal.These tests are not meant to demonstrate superiority of one logi
 engine overanother, only to show the feasibility of our approa
h.puzzle aspps smodels dlv ECLiPSe
ard 0.00 0.01 0.01 0.02
omedian 0.05 0.12 2.29 0.78employee 0.24 0.44 3.12 |
ight 0.01 0.00 0.01 0.04food
ourt 0.17 0.54 0.41 3.13fren
h 0.00 0.03 0.08 0.13jazz 0.00 0.04 0.03 0.02molly 0.03 0.04 0.15 0.33post 0.00 0.02 0.04 0.51ridge 11.56 8.14 0.76 |sevendates 0.03 0.05 0.05 0.04The independent-set problem is represented, as shown in Se
tion 4, by aREQUIRED
onstraint for ea
h edge and a single USED
onstraint. Both asppsand smodels provide a notation that allows us to translate USED in P into asingle
ardinality
onstraint in Tr(P). These logi
 engines enfor
e
ardinality
onstraints during the sear
h pro
ess, whi
h leads to very eÆ
ient sear
h. In
ontrast, neither dlv nor ECLiPSe provides
ardinality
onstraints, so we pro-gram USED by expli
itly
ounting how many times the desired member is usedand then
onstraining that total. We
an
ount dire
tly in ECLiPSe and indi-re
tly by extra rules in dlv. In both
ases, this generate-and-
he
k strategy (asopposed to a built-in
onstru
t) leads to slower sear
hes.23

The following table shows the number of se
onds for several logi
 engines to
ompute the �rst model of a theory representing the independent-set problemlooking for I independent verti
es on a random graph with a V verti
es and Eedges. Again, we ignore
ompilation and grounding time.V E I aspps smodels dlv ECLiPSe100 200 40 0.01 1.08 1.61 60100 200 44 18.99 25.19 148.6 394We
ontinue to sear
h for translations that perform better than our
urrentones. Our experien
e reinfor
es our belief that eÆ
ient solution of
onstraint-satisfa
tion problems depends on a
arefully designed
ompilation; even expe-rien
ed logi
 programmers are unlikely to a
hieve eÆ
ient programs withoutenormous e�ort.9 Dis
ussion and
on
lusionsLogi
 programming was introdu
ed with a promise of dramati
ally
hangingthe way we program. Logi
 programming is de
larative. The programmer
ansolve a problem by en
oding its spe
i�
ations in some logi
 formalism and theninvoking automated reasoning te
hniques for that logi
 to produ
e a solution.Control details are no longer the programmer's responsibility.However, despite attra
tive features stemming from its de
larative nature,logi
 programming has not yet gained a widespread a

eptan
e in the program-ming world. This disappointing result seems to hold both for logi
-programmingimplementations based on proof-�nding te
hniques (Prolog and its extensionsthat handle
onstraint programming, su
h as ECLiPSe) and to newly emergingapproa
hes based on satis�ability testing and model
omputation (answer-setprogramming [6, 5℄).This state of a�airs is due to the fa
t that logi
-programming formalismsare too low-level to be used without great e�ort and require that programmershave a signi�
ant logi
 ba
kground. In order to be su

essful, a de
larativeprogramming language should be aligned with language
onstru
ts often usedwhen problems are des
ribed in free text. We suggest that programs in su
ha high-level language should be automati
ally
ompiled to programs in low-level languages su
h as
urrent implementations of logi
 programming (Prolog,ECLiPSe, smodels, and so forth) and then solved by the
orresponding solvers.Our main
ontribution is a high-level de
larative language, Constraint Lingo,designed to
apture tabular
onstraint-satisfa
tion problems. Constraint Lingois simple. It uses two
onstru
ts, CLASS and PARTITION, to de�ne the frameworkin whi
h a given problem is des
ribed, and 10
onstru
ts to des
ribe
onstraints,all of them well attuned to free-text des
riptions of
onstraint problems.We don't
laim that Constraint Lingo is the best possible language for thispurpose. Its line-oriented
ommands, ea
h starting with a
apitalized keyword,may appear a throwba
k to languages like Basi
. Constraint Lingo has a limited24

repertoire of
onne
tives and arithmeti
 operations; it has no general-purposearithmeti
 or Boolean expressions.Despite these limitations, Constraint Lingo is an expressive language inwhi
h one
an des
ribe a diverse
olle
tion of tabular
onstraint-satisfa
tionproblems. We have used it to represent over 150 logi
 puzzles ranging in dif-�
ulty from one to �ve stars and involving a large variety of
onstraints, aswell as several graph problems over randomly-generated graphs of various sizes.Thanks to its simpli
ity and aÆnity to free-text
onstraint spe
i�
ations, pro-gramming in Constraint Lingo is easy and frees the programmer from manytedious and error-prone tasks.Constraint Lingo provides a
omputational as well as a des
riptive fa
ility.We
ompile Constraint Lingo programs into exe
utable
ode in a variety oflow-level logi
 programming languages.Eviden
e shows that our approa
h is pra
ti
al. Programs we obtain byautomati
ally
ompiling Constraint Lingo programs
losely resemble those thatprogrammers have written dire
tly. Our
omputational results are en
ouragingand show that programs produ
ed by
ompiling Constraint Lingo programsperform well when pro
essed by various
omputational engines.We
ontinue to evolve Constraint Lingo and its asso
iated tools. Re
entdevelopments in
lude the following, all available in the most re
ent release ofthe software [17℄.� Other
onstraints. New syntax allows mappings between rows; thesemappings
an be de
lared to be nonre
exive, symmetri
, asymmetri
,and/or onto. This fa
ility lets us represent some
omplex
onstraints,su
h as \Everyone has a hero in the room; Jeanne's hero is Kate, butKate's hero is not Jeanne." Two maps
an be de
lared to di�er on ev-ery row, so we
an indi
ate
onstraints su
h as \Nobody's hero is his orher tennis partner." We also have introdu
ed syntax to indi
ate that thevalues of two partitions taken together a
t as a key, so we
an indi
ate
onstraints su
h as \although a every
oor has several rooms and everywing has several rooms, ea
h room has a unique
ombination of
oor andwing."� Problem-
onstru
tion tools. We have built a T
l/Tk [22℄ front endto our Constraint Lingo pa
kage that allows us to build problems by (1)
onstru
ting the desired solution, (2) introdu
ing
onstraints, (3) ensuringthat the
onstraints so far are not
ontradi
tory (leading to no solutions)and are
onsistent with the desired solution, (4) identifying undesired so-lution
omponents, (5) identifying super
uous
onstraints. We have usedthese tools to build extremely diÆ
ult puzzles, perhaps beyond humanability to solve.� Explanations. We have instrumented the grounder and solver of asppsto generate a log �le that we then
onvert into a set of steps that a hu-man
an follow to solve the problem. We have introdu
ed new Constraint25

Lingo syntax that allows the programmer to spe
ify how
ross-
lass pred-i
ates are to be expressed in English. An explanation of the Fren
h puzzlein
ludes deriving a
on
i
t between martinique and 6, and the Englishexpression is, \to be
onsistent [explaining how this result follows fromthe previous results℄, the person sitting in seat 6 doesn't plan to visitMartinique [an English
lause℄."We are
onsidering other enhan
ements as well. The
urrent support forvariables is limited and might be extended to support universal quanti�
ation.Our implementation does not support data-input operations. It provides onlyrestri
ted support for logi
al and arithmeti
 operations. We need better supportfor arithmeti
 if Constraint Lingo is to be appli
able in modeling and solvingreal-life operations-resear
h problems. However, as we
ontemplate extensionsto Constraint Lingo, we want to be
areful to preserve its simpli
ity, whi
h, webelieve, is its main strength.A similar approa
h, �nding helpful higher-level abstra
tions, might well behelpful in other stru
tured domains, su
h as planning and s
heduling. We havebegun to look at both.10 A
knowledgementsWe thank Hemantha Ponnuru and Vijay Chintalapati for their programmingand testing support.Referen
es[1℄ R. Kowalski. Predi
ate logi
 as a programming language. In Pro
eedings of theCongress of the International Federation for Information Pro
essing (IFIP-1974),pages 569{574, Amsterdam, 1974. North Holland.[2℄ A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systeme de
ommu-ni
ation homme-ma
hine en fran
ais. Te
hni
al report, University of Marseille,1973.[3℄ K. Marriott and P.J. Stu
key. Programming with Constraints: An Introdu
tion.MIT Press, Cambridge, MA, 1998.[4℄ M. Walla
e, S. Novello, and J. S
himpf. E
lipse:A platform for
onstraint logi
 programming, 1997.http://www.i
par
.i
.a
.uk/e
lipse/reports/e
lipse.ps.gz.[5℄ I. Niemel�a. Logi
 programming with stable model semanti
s as a
onstraint pro-gramming paradigm. Annals of Mathemati
s and Arti�
ial Intelligen
e, 25(3-4):241{273, 1999.[6℄ V.W. Marek and M. Trusz
zy�nski. Stable models and an alternative logi
 pro-gramming paradigm. In K.R. Apt, W. Marek, M. Trusz
zy�nski, and D.S. Warren,editors, The Logi
 Programming Paradigm: a 25-Year Perspe
tive, pages 375{398.Springer, Berlin, 1999. 26

http://www.icparc.ic.ac.uk/eclipse/reports/eclipse.ps.gz

[7℄ I. Niemel�a and P. Simons. Extending the smodels system with
ardinality andweight
onstraints. In J. Minker, editor, Logi
-Based Arti�
ial Intelligen
e, pages491{521. Kluwer A
ademi
 Publishers, 2000.[8℄ M. Gelfond and V. Lifs
hitz. The stable semanti
s for logi
 programs. In Pro
eed-ings of the 5th International Conferen
e on Logi
 Programming, pages 1070{1080.MIT Press, 1988.[9℄ T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. S
ar
ello. A KR system dlv:Progress report,
omparisons and ben
hmarks. In Pro
eeding of the 6th Interna-tional Conferen
e on Knowledge Representation and Reasoning (KR-1998), pages406{417. Morgan Kaufmann, 1998.[10℄ D. East and M. Trusz
zy�nski. Propositional satis�ability in answer-set program-ming. In Pro
eedings of Joint German/Austrian Conferen
e on Arti�
ial Intelli-gen
e (KI-2001), volume 2174 of LNAI, pages 138{153. Springer, 2001.[11℄ Christiane Bra

hi, Christophe Ge�ot, and Frederi
 Paulin. Combining propaga-tion information and sear
h tree visualization using ILOG OPL studio. Novem-ber 16 2001. In A. Kusalik (ed), Pro
eedings of the Eleventh International Work-shop on Logi
 Programming Environments (WLPE'01), De
ember 1, 2001, Pa-phos, Cyprus,
s.PL/0111042.[12℄ B. Selman and H. A. Kautz. Planning as satis�ability. In Pro
eedings of the 10thEuropean Conferen
e on Arti�
ial Intelligen
e, Vienna, Austria, 1992.[13℄ H.A. Kautz and B. Selman. Unifying sat-based and graph-based planning. InPro
eedings of IJCAI-99, San Mateo, CA, 1999. Morgan Kaufmann.[14℄ R.E. Fikes and N. J. Nilsson. STRIPS: a new approa
h to the appli
ation oftheorem proving to problem solving. Arti�
ial Intelligen
e Journal, 2:189{208,1971.[15℄ N.J. Nilsson. Arti�
ial Intelligen
e: a New Synthesis. Morgan Kaufmann, SanFran
is
o, 1998.[16℄ M. Ghallab, A. Howe, C. Knoblo
k, D. M
Dermott, A. Ram, M. Veloso, D. Weld,and D. Wilkins. Pddl { the planning domain de�nition language. Te
hni
al report,Yale Center for Computational Vision and Control, O
tober 1998. Available athttp://www.
s.yale.edu/pub/m
dermott/software/pddl.tar.gz .[17℄ R. Finkel. Constraint lingo pa
kage, 2003.ftp://ftp.
s.uky.edu/
s/software/
l.tar.gz.[18℄ M. Cadoli and T. Man
ini. Automated reformulation of spe
i�
ations by safedelay of
onstraints. In Alan M. Fris
h, editor, Pro
eedings of the 2nd Interna-tional Workshop on Modelling and Reformulating Constraint Satisfa
tion Prob-lems, pages 33{47, 2003. (In
onjun
tion with CP-2003).[19℄ T. Eiter, W. Faber, N. Leone, and G. Pfeifer. De
larative problem-solving inDLV. In Ja
k Minker, editor, Logi
-Based Arti�
ial Intelligen
e, pages 79{103.Kluwer A
ademi
 Publishers, Dordre
ht, 2000.[20℄ D. Edmunds. Learning
onstraint logi
 programming | Finite domains with logi
puzzles, 2000. http://brownbuffalo.sour
eforge.net.[21℄ R. L. Whipkey. Various logi
 puzzles, 2001.http://www.allstarpuzzles.
om/logi
 and http://
rpuzzles.
om/logi
.[22℄ John K. Ousterhout. T
l and the Tk Toolkit. Professional Computing Series.Addison-Wesley, 1994. ISBN 0-201-63337-X.27

http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
ftp://ftp.cs.uky.edu/cs/software/cl.tar.gz
http://brownbuffalo.sourceforge.net
http://www.allstarpuzzles.com/logic
http://crpuzzles.com/logic

	1 Introduction
	2 Tabular constraint-satisfaction problems
	3 Syntax and Semantics of Constraint Lingo
	3.1 Declarations
	3.2 Constraints
	3.2.1 Rownames
	3.2.2 REQUIRED and CONFLICT
	3.2.3 Other constraint types
	3.2.4 Variables
	3.2.5 French puzzle
	3.2.6 Solutions

	4 Applying Constraint Lingo to graph problems
	5 Translation of Constraint Lingo into smodels
	6 Optimizing the smodels translation
	7 Other logic engines
	7.1 Translation into disjunctive logic programming
	7.2 Translation into constraint-logic programming

	8 Efficiency tests
	9 Discussion and conclusions
	10 Acknowledgements

