Algorithms for Maintaining Authorization Base

William Brooks, V. Wiktor Marek, Miroslaw Truszczynski

Department of Computer Science,
University of Kentucky,
Lexington, K'Y 40506-0046,
USA.

E-mail {bbrooks,marek,mirek}@cs.engr.uky.edu
Fax: +1-606-323-1971

ABSTRACT: We present algorithms for access rights control in multiuser, object-oriented
databases. These algorithms follow the model of authorization introduced in F. Rabitti et
al., A model of authorization for next-generation databases, ACM Transaction on Database
Systems 16:88-131, 1991. We show how the three basic operations: AccessControl, Grant,
and Revoke can be efficiently implemented using methods for manipulating partially ordered
sets. Several techniques for maintenance of authorization bases are presented and the com-
plexity of the algorithms is established.

KEY WORDS: Authorization base, access rights, maintenance algorithms.

1 Introduction

Multiuser databases require a mechanism to control access rights to objects that are stored
in them. Different users may and will have different access rights to different objects in
the database. A proposal for a mechanism to grant access rights on objects to the users is
described in [Rabitti et.al. 1991]. It is based on the concept of an authorization base. The
authors identify three sets: a set S of subjects (users of a database), a set O of objects stored
in the database, and a set A of access types. A triple (s, 0, +a), where s € S,0 € O and a € A,
is called an explicit strong positive authorization. The intuition is that user s has access a to
object o. Similarly, a triple (s, 0, —a) is called an explicit strong negative authorization and
its informal meaning is that user s does not have access a to object o (though it may have
access of some other type to this object). An authorization base is a collection AB of explicit
strong positive and negative authorizations satisfying some additional closure constraints.

To describe these constraints, observe that all three sets S, O and A are endowed with a
hierarchy (partial ordering). For instance, the hierarchy of users may reflect their positions
in the organizational structure of a company that owns the database. Similarly, there is a
natural hierarchy of objects, the accumulation hierarchy, in which objects serving as attribute
values of other objects precede them. Finally, orderings are imposed on sets of access types.
For instance, write access to an object implies read access to the object. Users higher in
their hierarchy have at least the same access rights as their subordinates. Once the user has
access of type a to an object o, s/he has also at least the same access to all objects lower

than o in the object hierarchy. Finally, once the user has access of type a to an object o, it
has also accesses of weaker types (in the hierarchy of access types) to the object o. These
rules are concerned with positive authorizations. They have their dual forms for negative
authorizations. For instance, subordinates of a user with negative authorization for the
access of type a to an object o (that is, with no access a to object o) must also have such
negative authorization (no access a to o). Authorization bases are those sets of positive and
negative authorizations that are closed under these rules.

The fundamental role of an authorization base is to provide decisions concerning the access
rights of users to objects. Given a triple (s,0,a), we can have one of the following four
situations:

1. the authorization base has no information on whether user s has access a to object o

2. the authorization base contains (and, thus, implies) only the positive authorization for
s to access a on o

3. the authorization base contains (and, thus, implies) only the negative authorization
for s to access a on o

4. the authorization base contains both authorizations, positive and negative.

The possibilities (1) and (4) are undesirable. Possibility (1) means that (s, 0,a) is underde-
fined and possibility (4) means that (s,0,a) is overdefined. Hence, they do not provide a
unambiguous answer to whether the access right should be granted. The goal is to propose
a system in which for every triple (s, 0, a) either (2) or (3) holds. This need was recognized
in [Rabitti et.al. 1991] and some solutions were proposed there.

In this paper, we propose an abstract model of the concept of an authorization base ex-
ploiting properties of partial orderings. We propose to use the Closed World Assumption
[Reiter 1978] to simplify the problem of representation of an authorization base and to en-
force that for every triple (s,0,a), exactly one of the possibilities (2) and (3) will hold.
We will further study the issue of representability of authorization bases. We will consider
several different approaches to this problem. In one of them, an authorization base is repre-
sented by means of an antichain. Another one is somewhat related to the original proposal
of [Rabitti et.al. 1991]. The idea is to represent an authorization base as a sequence (rather
than a set) of positive and negative authorizations.

Each representation mechanism must support algorithms for three basic operations on au-
thorization bases:

1. AccessControl: a procedure that given an authorization base AB and a triple (s, 0, a)
returns TRUE if user s has access of type a to object o, and FALSE, otherwise.

2. Grant: a procedure that adds to authorization base AB a new authorization x and all
authorizations implied by z. No other authorizations are added. The result will be
denoted by AB + x.

3. Revoke: a procedure that eliminates from an authorization base AB an authorization x
and all authorizations that imply x. No other authorizations are removed. The result
will be denoted by AB — .

In the paper we will describe these procedures for each of our representation schemes for
authorization bases.

2 Formal model of authorization

As in [Rabitti et.al. 1991]) (see also [Bertino and Martino 1993], [Castano et. al. 1995] and
[Lunt 1994]) we consider the following three finite sets: the set S of subjects, O of objects and
A of access types (called authorizations in [Rabitti et.al. 1991]). Subsets AB of S x O x A
(satisfying some additional conditions discussed below) are called authorization bases. We
interpret the fact that (s,0,a) € AB as: “user s has access type a on object 0”. In other
words, authorization bases in our sense consist only of positive authorizations. The negative
authorizations are obtained by Closed World Assumption [Reiter 1978]. That is, AB implies
a negative authorization (s, 0, —a) if and only if (s, 0,a) ¢ AB. Consequently, for every triple
(s,0,a), either a positive or negative authorization is implied by AB (but not both).

We will now formalize the closure properties required of authorization bases. Let us re-
call that each of the sets S, O and A has its own hierarchy. In [Rabitti et.al. 1991] these
hierarchies are modeled by partial orderings: <g, =0, and =4, respectively. Consider an
authorization (s, o', a’). It means that user s’ has access a' to object o’. Consider now user
s such that s' <g s (that is, user s is higher than s’ in the hierarchy of users). Then user
s also must have access a’ to object o/. Even more, if for some object o, 0 <o o' (that is,
0 is a “part” of o'), then s should have access a’ to o, as well. Finally, if access type a is
weaker than a/, a <4 o', then s should have access a to o. In other words, if s is higher in
the hierarchy of users than s' (or s = '), and o is a part of o' (or o = 0'), and a is weaker
than a' (or a = d'), then if s' has access a' to o' then s has access a to o. This intuition
motivates the following partial ordering on the set of authorizations S x O x A:

(s',0',d") 2 (s,0,a) if and only if (s’ <5 s) A (0 20 0') A (a 24 d')

The idea is that authorizations imply all authorizations that are greater or equal in this
ordering <.

This ordering and the Closed World Assumption allow us to replace the closure principles
discussed in the introduction with a single rule (upward closure rule UC):

UC: if (¢',0,d") € AB and (¢,0,d') < (s,0,a), then (s,0,a) € AB.

We are now ready to provide a complete formal definition of authorization bases. By an au-
thorization space we mean the partially ordered set (S x O x A, <), and by an authorization
base we mean any subset AB of the authorization space which satisfies the rule UC. The rule
UC guarantees that authorization bases satisfy the three closure rules for positive authoriza-
tions introduced in [Rabitti et.al. 1991] and discussed in the introduction. In fact, this rule
is equivalent to their conjunction. In addition, the rule UC implies that authorization bases
satisfy also the following downward closure rule (DC):

DC: if (s',0,d") € AB and (s,0,a) = (s',0',d'), then (s,0,a) ¢ AB.

This observation implies that if Closed World Assumption is used to provide information on
negative authorizations, then the set of negative authorizations implied by AB satisfies the
three closure rules for negative authorizations mentioned in the introduction.

In this paper we will discuss methods to represent authorization bases, that is, subsets
of § x O x A satisfying the rule UC. We will also describe algorithms for the procedures
ControlAccess, Grant and Revoke. To this end, we will use a more general setting of arbitrary

finite partial orders (we will call it an abstract setting for authorization bases). At the end
of the paper, in Section 5, we will further simplify the algorithms by utilizing the fact that
the authorization space is the product of three smaller sets S, O and A.

3 Abstract model of authorization bases

We are now in a position to formulate the abstract version of the model of authorization
bases. In this abstract model, an authorization space is an arbitrary finite partially ordered
set (U, <) (for U =S x O x A and < defined as above, we obtain the situation discussed in
the previous section).

A subset 7" C U is called upward closed (UC, in short) if
Voy(z€eT AN 2y)=>yeT).
Similarly, a subset 7' C U is called downward closed (DC, in short) if

Voy(lz€eT ANy =22z)=>yeTl).

UC sets capture the intuition of authorization bases as introduced above (in fact, we will
often refer to UC sets as authorization bases). Similarly, DC sets describe the complements
of the authorization bases. The DC sets will be needed in the discussion of the process of
revoking authorizations.

We define now closure operators CI1(7") and CIL(T') as follows:
CHN(T) ={x: yery 2}
CIUT) = {a : Fyera < y}.

Informally, CI1(7") consists of these authorizations that have to be granted once authoriza-
tions from 7" are granted, and CI}(T) consists of these authorizations that must be revoked
once the authorizations from 7" are revoked.

We now list without proof a number of properties of upward and downward closed sets and
of the closure operators.

Proposition 3.1 1. If X, Y are UC sets then X NY and X UY are UC sets. Similarly
for DC sets.

2. If X is a UC set and Y is a DC set, then X \'Y is a UC set and Y \ X is a DC set.
3. For every X C U, CINX) is a UC set and CI(X) is a DC set.

It follows from Proposition 3.1 that if X is a UC set and x € U, then X UCl1({z}) is a UC
set, as well. In fact, it is the least UC set containing X U {x}. We will denote it by X + x.
If X is an authorization base and z is an authorization to be granted, it is clear that X + x
is exactly the intended result of Grant(X,z). Similarly, if X is a UC set an « € U, then
X \ Cly({x}) is the largest UC set included in X and not containing x. We will denote it
by X — z. It is the intended result of Revoke(X, z).

A straightforward approach to the problem of maintaining authorization bases is to explicitly
store the whole UC set (authorization base) X. Then, ControlAccess(X,x) is a procedure

returning TRUE if x € X and FALSE, otherwise. The procedure Grant(X,z) replaces X
by X + z, that is, by X U Cl1({z}). Similarly, the procedure Revoke(X,z) replaces X by
X —z, that is, by X \ Cl{({z}).

These procedures can be implemented as follows. Let us assume that we maintain the Hasse
diagram H of (U, =%). That is, assume that for each vertex v € U we maintain two lists: in(u)
containing all immediate predecessors of u, and out(u) containing all immediate successors
of u. Let us denote the size of this representation of H by h. (We will use this notation
throughout the paper.)

We maintain an authorization base X by marking all nodes of X by black. Under this
representation, ControlAccess(X,x) takes O(1) (assuming that each node from U can be
accessed in H in constant time). Grant(X,x) can be implemented by performing a depth-
first search from x, using lists in(u), and marking each visited vertex black. Similarly,
Revoke(X, x) can be implemented by performing a depth-first search from z, using the lists
out(u), and unmarking each visited black vertex. Hence, these procedures take linear time
in the size of the Hasse diagram.

A major problem with this approach is that it requires that the Hasse diagram H, which may
be very large, be explicitly maintained. In the next section we will introduce two different
proposals. In the case when U = S x O x A, they can be implemented using a much more
economical representation of the Hasse diagram H.

4 Techniques for maintenance of authorization bases

Let us start with an example. Let S = {bill, victor, mirek}, O = {o1,...,07} and A =
{sc,r,w}, where sc denotes the right to see the scheme of the object (record), r is the read
access and w is the write access. Assume also that these sets are endowed with the partial
orderings whose Hasse diagrams are shown in Figure 1.

0,
victor mirek 02 03 w
04 0, r
SC
bill 05 Og
Subjects Objects Actions

Figure 1: Hasse diagrams of <g, <o and <4

Let us consider the authorization base in which merek has complete access to all objects,
victor has r and sc access to 0s, 04, 05 and og and, sc access to o7, and finally, bill has r
access to o5 and og and sc access to 09, 04, 05 and 0g. In other words, the authorization base
AB consists of the following elements:

(mirek, o1, w), (mirek, oy, w), ..., (mirek, o7, w),
(mirek,o1,r), (mirek, oy,1), . .., (mirek, o7, r),

(mirek, oy, sc), (mirek, o9, sc), ..., (mirek, o7, sc),

(victor, 0q,1), (victor,o4,1), (victor, 0s,1), (victor, g, 1),
(victor, 0y, sc), (victor, o4, sc), (victor, o5, sc), (victor, og, sc), (victor, o7, sc),

(bill, 05, 1), (bill,0g,71),
(bill, 09, sc), (bill, o4, sc), (bill, 05, sc), (bill, 0g, sc),

This set consists of 36 elements. However, it is uniquely determined by a much smaller set,
say D, of its minimal elements, which contains just 8 elements:

(mirek, o1, w),

(victor, 0q,1), (victor, 04,1),
(victor, o7, sc),

(bill, 05, 1), (bill,06,71),
(bill, 09, sc), (bill, 04, sc).

It can be checked that Cif(D) = AB. Hence, to decide whether z € AB, it is enough to
decide whether x € CIT(D), that is, whether there is an element d € D such that d < x.
For example, assume that we have a query (victor, og, sc). Since (victor,0y,7) is in D and
(victor, 09,1) = (victor, 0g, sc), access sc to object og should be approved for victor.

On the other hand, (bill, 09, 7) is not approved since there is no tuple (s,0,a) € D such that
(87 0, CL) = (bllla 02, T)‘

In the following subsections we will describe two techniques for maintenance of authorization
bases using the ideas employed in the example above.

4.1 Representing authorization bases by antichains

An antichain is a subset D of U such that for all z,y € D, if © # y then =(z < y)A=(y =< z).
We have the following proposition showing that UC sets can be represented as upward
closures of antichains. A dual result holds for DC sets.

Proposition 4.1 Let (U, <) be a finite partially ordered set. A subset T C U is a UC set if
and only if there exists an antichain D such that T = CU1(D). Moreover, such an antichain
D is unique and consists precisely of the minimal elements of T. Similarly, a set X C U
is a DC if and only if there exists an antichain E such that X = CI|(E). Moreover, such
antichain E is unique and consists of the mazimal elements in X.

Proposition 4.1 states that for every authorization base AB there is a unique antichain D
such that AB = CI1(D). Moreover, D consists of all minimal elements in AB. Hence,
authorization bases can be represented by antichains of their minimal elements. We will
now use this representation. This will require modifications in the procedures ControlAccess,
Grant and Revoke.

In the procedure ControlAccess(D,x), we assume that D is the antichain of all minimal
elements of an authorization base AB, that is, AB = CI1(D). Moreover, x is an element of
an authorization space. The procedure returns TRUE if x € AB and FALSE otherwise.

ControlAccess(D, x)

if x € CIf(D) then return{TRUE}
else return{FALSE}

Let us assume that we maintain the Hasse diagram H of the authorization space (U, <)
by means of two lists: in(u), u € U, of immediate predecessors of u, and out(u), u € U,
of immediate successors of u. Then, the test to check if z € Cl1(D) can be performed
by executing the depth-first search from D upwards (using the lists in(u)). Clearly, this
search takes linear time in h (recall that h denotes the size of H). Hence, the procedure
ControlAccess can be implemented to run in time O(h).

The problem of adding a new authorization is not much more complex. The corresponding
procedure Grant(D, x) is described below. We assume here D is the antichain of all minimal
elements of an authorization base AB, that is, AB = CI1(D). Moreover, z is an element of
an authorization space. The procedure replaces D by a new antichain of minimal elements
of AB + .

Grant(D,)

if x € CIf(D) then stop
else D := (D \ ClIt({z})) U {z}

As before, if the Hasse diagram H of the authorization space (U, <) is maintained as two
sets of lists in(u) and out(u), u € U, the test whether x € CI1(D) can be performed in
linear time by using a depth-first search upward from D. In addition, if we mark the nodes
from D in the Hasse diagram (which can be done in linear time), then D \ Cl1({z}) can
also be computed in linear time by running a depth-first search from x upwards. Hence,
Grant(D,x) can be implemented to run in linear time in h.

Proposition 4.2 The procedure Grant(D,x) is correct.

Proof: Assume z € AB. Then, x € CIf(D). In this case, the same set D has to be returned
and this is exactly what our procedure does. In the case when x ¢ AB, then the set of
minimal elements of AB+x is (D \ ClI1({z})) U{x}. This is again precisely the effect of the
procedure. O

Revoke is the most complex of the three operations. On input, D is an antichain that
represents an authorization base AB and z is an authorization that is to be revoked. On
output, the set D contains the antichain representing the updated authorization base, that
is, the result of the deletion of x from AB: AB\ Cll({z}).

Revoke(D, x)

ND:=10
for every y € CIf(D) \ D do
if Cit(D) nin(y) € Cll({z}) then ND := ND U {y}

D:=NDU D\ Cl({z}))

Again assume that the Hasse diagram H is represented by the lists in(u) and out(u), u € U.
Then, CI1(D) \ D can be computed in linear time in h. By marking black all nodes of H
which are in CI1(D) and by marking red all elements of H which are in Cl|({z}) (both
tasks can be accomplished by performing a depth-first search, up from D and down from =,
respectively), the total time for all the tests CI1(D) Nin(y) C ClL({=}) is also linear in h.
Consequently, the whole procedure can be implemented in time O(h).

Proposition 4.3 Procedure Revoke(D,x) is correct.

Proof: Let D; denote the antichain D on input and let D, will be the result of the procedure.
Clearly, any element in D; which is not in Cl}({x}) is minimal in the set CI1(D;) \ ClL({z}).
All these elements are included in D, by the procedure. All other elements of D; must be
removed. However, some new minimal elements still need to be added to D,. They all belong
to CIN(D;) \ D;. An element y € CIN(D;) \ D; is minimal in CI1(D;) \ Cli({z}) if and only
if each its predecessor does not belong to CIN(D;) \ Cll({z}). To check this, it is enough to
verify that each predecessor of y which belongs to Ci1(D;) belongs also to Cl].({z}). But
this is exactly what our procedure tests when generating the set ND. O

As it is now, this approach is worse than the approach proposed before. All procedures run
in linear time in the size h of the Hasse diagram H, while in our first approach ControlAccess
takes constant time and Grant and Revoke take linear time in h. In Section 5 we will show
that at a cost of some preprocessing, the running time of the procedures presented in this
section will be significantly reduced. Moreover, there will be no need to maintain the entire
Hasse diagram.

4.2 Lazy maintenance of authorization bases

We will now present another technique for the maintenance of authorization bases. The key
observation here is that, with an increase in the cost of ControlAccess we can reduce the cost
of Grant and Revoke to constant.

By an elementary update we mean a pair (€, z) where € € {+,—} and x € U. Such pair (¢, z)
can be treated as an operator on authorization bases. Specifically, the effect of (¢,2) on AB
is ABex. That is, if € = + then the result is AB + x, and if ¢ = — then the effect is AB — x.

An authorization base AB can be represented as Cl1(D), where D = {xy,...,x,} is the
antichain of the minimal elements of AB. Consequently, we have

AB=((...(0+z1) +a2)...) + zp.

However, every sequence of elementary updates determines an authorization base. That is,
for an arbitrary sequence of elementary updates

a=((e,z1),...,(n,xn))
the corresponding authorization base is:

((... (Derxy)eazs) . . enxy

Thus, for instance, if a = ((+,z), (+,y), (—,t)) then the authorization base defined by a is
(0 +2) +y) —t = (Cl({z}) UCH({y})) \ CL{t}).

Notice that we just gave a semantics to the sequences of elementary updates. This seman-
tics allows us to represent authorization bases as sequences of elementary updates. As a
consequence, the Grant and Revoke procedures consist only of appending the sequence with
a new elementary update and, thus, take constant time.

The price that we are going to pay is in the efficiency of ControlAccess procedure. We will
describe this procedure now. We assume that a = ((e1, 1), .., (€n,2,)) is a sequence of
elementary updates and x is an element of the authorization space.

ControlAccess(a,)

for m = n downto 1 do
if ¢,, = + and z,, € Cl}({z}) then return{TRUE}
if ¢,, = — and z,,, € CIf({z}) then return{FALSE}
return{FALSE}

Proposition 4.4 Procedure ControlAccess is correct.

Proof: By induction on n. If n = 0, then the authorization base determined by a is empty.
Consequently, only the last instruction is invoked and the procedure returns FALSE, as
needed.

Let us now assume that the statement is valid for sequences of length n. Observe that

(((-.. ((Derr) €2m2) - .)enn)ns1Tnir) = AB'ep 10041,

where

AB" = ((... (D) eaws) . .) €n .

Assume that €,,; = +. Observe that v € AB" 4+ x,,,; if and only if v € AB' or x,,,; €
Cll({z}). Observe also that the first iteration of the loop in the ControlAccess algorithm
checks if x4, € Cl}({z}). If so, it returns TRUE (which is the correct answer). Otherwise,
the remaining n iterations are executed. This is equivalent to calling ControlAccess for the
sequence ((€1,x1),..., (€, 2,)). By the induction hypothesis, it correctly decides whether
x € AB'. Hence, the algorithm works correctly for sequences of elementary updates of length
n + 1 ending with +. A similar argument can be used to show that the algorithm works
correctly for sequences of elementary updates of length n + 1 ending with —. O

Notice that the complexity of the algorithm ControlAccess is O(nh), where n is the length
of the sequence of updates a and h is the size of the Hasse diagram H.

This indicates that as the number n grows, there will be a moment when it is worth to
replace a by a shorter sequence of updates representing the same authorization base, for
instance, the one given by the antichain of minimal elements of AB.

One should also note that our algorithm gives the priority to checking most recent updates.
That is, we always check which of the most recent updates affected the status of = and fall
back on previous states of the authorization base if x was nor affected.

To summarize, under the lazy maintenance approach ControlAccess takes O(nh) steps and
Grant and Revoke take constant time. The performance of the ControlAccess procedure will
be further improved in the next section.

5 Implementations when U =5 x 0O x A

Until now we used an abstract representation of the authorization space U and its ordering
=< without taking into account the fact that in the context of the model presented in Section
2, U is the product of S, O, and A. Let us recall that in Section 2 the ordering < is defined
by reference to orderings <g, <o, and <4:

(s,0,a) < (s',0,d") if and only if (s <gs") A (0 <0 0) A (d' <4 a)

The ordering < is the product of orderings <g, <5' and <' [Davey and Priestley]. Given
Hasse diagrams for <o and <4, the Hasse diagrams for 551 and j;ll can be easily obtained
by switching the roles of in and out lists.

Given the Hasse diagrams of the orderings =g, <,' and =<', the Hasse diagram of the
ordering < can be easily computed. But it should be clear that we do not want to maintain
the Hasse diagram of < due to its big size. We will see below that maintaining only the
Hasse diagrams of the orderings <g, <o and <4 provides us with enough information to
perform depth-first searches needed in the procedures described earlier but is substantially
more efficient. We will denote by Hg, Hp and H, the Hasse diagrams of <g, <o and =<4,
respectively. By hg, ho and h,, we denote the sizes of their representations by means of
adjacency lists ing and outg, inp and outp and in, and out 4, respectively.

We will now describe the relationship between the Hasse diagrams of <5, <o and <, and
the Hasse diagram of <. Namely,

(s,0,a) € in(s',0',d") if and only if (s €ing(sYNo=0d Na=4d)
V(s =5 Nd €inglo) Na=d)
V(s=sNo=0 ANd €ina(a)).

A dual relationship holds for the out lists.

It follows that the Hasse diagrams Hg, H4 and Hg allow us to reproduce the lists in and out
for H, in time linear in the size of these lists. In the same time, the total size hg + ho + ha
of the representations of Hg, H, and Hg is substantially smaller than h. It is easy to see
that h is of the order

O(hs -ho -ka+hs-ko-ha+ks-ho-ha+hs-ho-ha),

where |S| = kg, |O] = ko, and |A]| = k4. Thus the fact that H may be large is not a problem
— all we need to do is to maintain Hg, Hp and Hy.

We will now present a method to improve the efficiency of the algorithms presented earlier
in Section 4. Our approach is to precompute the transitive closures of the Hasse diagrams
of <5, <o and <,4. This can be done in time O(kg - hg) for <g, O(ko - ho) for <o and
O(ky4 - hy) for <4. The resulting transitive closures can be stored as adjacency matrices at
the total space cost O(k% + k% + k%). From this point on we will assume that comparisons
s =g 8, 0=p 0, and a <4 d take constant time.

We will now present versions of the algorithms introduced earlier. We will first consider the
case when authorization bases are represented as antichains. Recall that U = S x O x A
and thus D consists of triples of the form (s, o0,a).

ControlAccess(D, (s',0',a"))
for (s,0,a) € D do

if s <¢ s" and o’ <p 0 and ¢ <, a then return{TRUE}
return{FALSE}

This algorithm runs in time O(|D|), a substantial improvement over the general version.

Grant(D, (s',0',d"))
for (s,0,a) € D do
if s <¢ s and o' <p 0 and ¢ <4 a then return
for (s,0,a) € D do
if ¥ <gsand 0 <p 0 and a <4 ¢ then D := D\ {(s,0,a)}
D:=DU{(s,d,d)}

Also the Grant procedure runs in time O(|D]) (rather than in time linear in h).

As concerns the procedure Revoke, there is no gain in time efficiency. It still runs in time
linear in the size h of the Hasse diagram of <. It should be mentioned though that it can
be implemented so that it requires only the Hasse diagrams Hg, Hp and H 4.

Finally, we will show that in the case of lazy maintenance, the performance of the procedure
ControlAccess also improves substantially. We assume here that

a = ((er, (s1,01,01)),- -, (€n, (Sn, Ony ay))).

ControlAccess(a, (s',0',a'))

for m = n downto 1 do
if e,, =+ and s, <5 s’ and o <o 0, and a' <4 a,, then return{TRUE}
if ¢,, = — and ¢’ <g s, and o, <p 0’ and a,, <4 d' then return{FALSE}
return{FALSE}

It is clear that this procedure runs in time O(n) (and not O(nh)), as before.

6 Further research

In [Rabitti et.al. 1991], the authors considered two classifications of authorizations: into
positive and negative and into strong and weak. The weak authorizations allow us to handle
exceptions. The idea is that weak authorizations are inherited provided there is no strong
authorization blocking the inheritance. It is possible to provide a semantics for both strong
and weak authorizations using Reiter’s default logic [Reiter 1980]. We will deal with this
problem in a separate paper.

Acknowledgments

Research of the second and third authors has been partially supported by NSF grant IRI-

9400568.

References

[Bertino and Martino 1993] E. Bertino and L. Martino. Object-Oriented Database Sys-

[Davey and Priestley]

[Castano et. al. 1995]

[Lunt 1994]

[Rabitti et.al. 1991]

[Reiter 1978]

[Reiter 1980]

tems: Concepts and Architectures Addison-Wesley Publishing
Company, 1993.

D.A. Davey and H.A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

S. Castano, M.G. Fugini, G. Martella, and P. Samarati.
Database Security. ACM Press, Addison-Wesley Publishing
Company, 1995.

T. Lunt. Authorization in Object-Oriented Databases. In: W.
Kim, Modern Database Systems, pp. 130-145, Addison Wesley,
Reading, MA., 1994.

F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of
authorization for next-generation databases. ACM Transaction
on Database Systems 16:88-131, 1991

R. Reiter. On closed world data bases. In H. Gallaire and
J. Minker, editors, Logic and data bases, pages 55—76. New York,
NY: Plenum Press, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

