
Algorithms for Maintaining Authorization BaseWilliam Brooks, V. Wiktor Marek, Miroslaw TruszczynskiDepartment of Computer Science,University of Kentucky,Lexington, KY 40506-0046,USA.E-mail fbbrooks,marek,mirekg@cs.engr.uky.eduFax: +1-606-323-1971ABSTRACT: We present algorithms for access rights control in multiuser, object-orienteddatabases. These algorithms follow the model of authorization introduced in F. Rabitti etal., A model of authorization for next-generation databases, ACM Transaction on DatabaseSystems 16:88{131, 1991. We show how the three basic operations: AccessControl, Grant,and Revoke can be e�ciently implemented using methods for manipulating partially orderedsets. Several techniques for maintenance of authorization bases are presented and the com-plexity of the algorithms is established.KEY WORDS: Authorization base, access rights, maintenance algorithms.
1 IntroductionMultiuser databases require a mechanism to control access rights to objects that are storedin them. Di�erent users may and will have di�erent access rights to di�erent objects inthe database. A proposal for a mechanism to grant access rights on objects to the users isdescribed in [Rabitti et.al. 1991]. It is based on the concept of an authorization base. Theauthors identify three sets: a set S of subjects (users of a database), a set O of objects storedin the database, and a set A of access types. A triple (s; o;+a), where s 2 S, o 2 O and a 2 A,is called an explicit strong positive authorization. The intuition is that user s has access a toobject o. Similarly, a triple (s; o;�a) is called an explicit strong negative authorization andits informal meaning is that user s does not have access a to object o (though it may haveaccess of some other type to this object). An authorization base is a collection AB of explicitstrong positive and negative authorizations satisfying some additional closure constraints.To describe these constraints, observe that all three sets S, O and A are endowed with ahierarchy (partial ordering). For instance, the hierarchy of users may reect their positionsin the organizational structure of a company that owns the database. Similarly, there is anatural hierarchy of objects, the accumulation hierarchy, in which objects serving as attributevalues of other objects precede them. Finally, orderings are imposed on sets of access types.For instance, write access to an object implies read access to the object. Users higher intheir hierarchy have at least the same access rights as their subordinates. Once the user hasaccess of type a to an object o, s/he has also at least the same access to all objects lower

than o in the object hierarchy. Finally, once the user has access of type a to an object o, ithas also accesses of weaker types (in the hierarchy of access types) to the object o. Theserules are concerned with positive authorizations. They have their dual forms for negativeauthorizations. For instance, subordinates of a user with negative authorization for theaccess of type a to an object o (that is, with no access a to object o) must also have suchnegative authorization (no access a to o). Authorization bases are those sets of positive andnegative authorizations that are closed under these rules.The fundamental role of an authorization base is to provide decisions concerning the accessrights of users to objects. Given a triple (s; o; a), we can have one of the following foursituations:1. the authorization base has no information on whether user s has access a to object o2. the authorization base contains (and, thus, implies) only the positive authorization fors to access a on o3. the authorization base contains (and, thus, implies) only the negative authorizationfor s to access a on o4. the authorization base contains both authorizations, positive and negative.The possibilities (1) and (4) are undesirable. Possibility (1) means that (s; o; a) is underde-�ned and possibility (4) means that (s; o; a) is overde�ned. Hence, they do not provide aunambiguous answer to whether the access right should be granted. The goal is to proposea system in which for every triple (s; o; a) either (2) or (3) holds. This need was recognizedin [Rabitti et.al. 1991] and some solutions were proposed there.In this paper, we propose an abstract model of the concept of an authorization base ex-ploiting properties of partial orderings. We propose to use the Closed World Assumption[Reiter 1978] to simplify the problem of representation of an authorization base and to en-force that for every triple (s; o; a), exactly one of the possibilities (2) and (3) will hold.We will further study the issue of representability of authorization bases. We will considerseveral di�erent approaches to this problem. In one of them, an authorization base is repre-sented by means of an antichain. Another one is somewhat related to the original proposalof [Rabitti et.al. 1991]. The idea is to represent an authorization base as a sequence (ratherthan a set) of positive and negative authorizations.Each representation mechanism must support algorithms for three basic operations on au-thorization bases:1. AccessControl: a procedure that given an authorization base AB and a triple (s; o; a)returns TRUE if user s has access of type a to object o, and FALSE, otherwise.2. Grant: a procedure that adds to authorization base AB a new authorization x and allauthorizations implied by x. No other authorizations are added. The result will bedenoted by AB + x.3. Revoke: a procedure that eliminates from an authorization base AB an authorization xand all authorizations that imply x. No other authorizations are removed. The resultwill be denoted by AB � x.In the paper we will describe these procedures for each of our representation schemes forauthorization bases.

2 Formal model of authorizationAs in [Rabitti et.al. 1991]) (see also [Bertino and Martino 1993], [Castano et. al. 1995] and[Lunt 1994]) we consider the following three �nite sets: the set S of subjects, O of objects andA of access types (called authorizations in [Rabitti et.al. 1991]). Subsets AB of S � O � A(satisfying some additional conditions discussed below) are called authorization bases. Weinterpret the fact that (s; o; a) 2 AB as: \user s has access type a on object o". In otherwords, authorization bases in our sense consist only of positive authorizations. The negativeauthorizations are obtained by Closed World Assumption [Reiter 1978]. That is, AB impliesa negative authorization (s; o;�a) if and only if (s; o; a) 62 AB. Consequently, for every triple(s; o; a), either a positive or negative authorization is implied by AB (but not both).We will now formalize the closure properties required of authorization bases. Let us re-call that each of the sets S, O and A has its own hierarchy. In [Rabitti et.al. 1991] thesehierarchies are modeled by partial orderings: �S;�O, and �A, respectively. Consider anauthorization (s0; o0; a0). It means that user s0 has access a0 to object o0. Consider now users such that s0 �S s (that is, user s is higher than s0 in the hierarchy of users). Then users also must have access a0 to object o0. Even more, if for some object o, o �O o0 (that is,o is a \part" of o0), then s should have access a0 to o, as well. Finally, if access type a isweaker than a0, a �A a0, then s should have access a to o. In other words, if s is higher inthe hierarchy of users than s0 (or s = s0), and o is a part of o0 (or o = o0), and a is weakerthan a0 (or a = a0), then if s0 has access a0 to o0 then s has access a to o. This intuitionmotivates the following partial ordering on the set of authorizations S � O � A:(s0; o0; a0) � (s; o; a) if and only if (s0 �S s) ^ (o �O o0) ^ (a �A a0)The idea is that authorizations imply all authorizations that are greater or equal in thisordering �.This ordering and the Closed World Assumption allow us to replace the closure principlesdiscussed in the introduction with a single rule (upward closure rule UC):UC: if (s0; o0; a0) 2 AB and (s0; o0; a0) � (s; o; a), then (s; o; a) 2 AB.We are now ready to provide a complete formal de�nition of authorization bases. By an au-thorization space we mean the partially ordered set (S�O�A;�), and by an authorizationbase we mean any subset AB of the authorization space which satis�es the rule UC. The ruleUC guarantees that authorization bases satisfy the three closure rules for positive authoriza-tions introduced in [Rabitti et.al. 1991] and discussed in the introduction. In fact, this ruleis equivalent to their conjunction. In addition, the rule UC implies that authorization basessatisfy also the following downward closure rule (DC):DC: if (s0; o0; a0) 62 AB and (s; o; a) � (s0; o0; a0), then (s; o; a) 62 AB.This observation implies that if Closed World Assumption is used to provide information onnegative authorizations, then the set of negative authorizations implied by AB satis�es thethree closure rules for negative authorizations mentioned in the introduction.In this paper we will discuss methods to represent authorization bases, that is, subsetsof S � O � A satisfying the rule UC. We will also describe algorithms for the proceduresControlAccess, Grant and Revoke. To this end, we will use a more general setting of arbitrary

�nite partial orders (we will call it an abstract setting for authorization bases). At the endof the paper, in Section 5, we will further simplify the algorithms by utilizing the fact thatthe authorization space is the product of three smaller sets S, O and A.3 Abstract model of authorization basesWe are now in a position to formulate the abstract version of the model of authorizationbases. In this abstract model, an authorization space is an arbitrary �nite partially orderedset (U;�) (for U = S �O�A and � de�ned as above, we obtain the situation discussed inthe previous section).A subset T � U is called upward closed (UC, in short) if8x;y((x 2 T ^ x � y)) y 2 T):Similarly, a subset T � U is called downward closed (DC, in short) if8x;y((x 2 T ^ y � x)) y 2 T):UC sets capture the intuition of authorization bases as introduced above (in fact, we willoften refer to UC sets as authorization bases). Similarly, DC sets describe the complementsof the authorization bases. The DC sets will be needed in the discussion of the process ofrevoking authorizations.We de�ne now closure operators Cl"(T) and Cl#(T) as follows:Cl"(T) = fx : 9y2T y � xgCl#(T) = fx : 9y2Tx � yg:Informally, Cl"(T) consists of these authorizations that have to be granted once authoriza-tions from T are granted, and Cl#(T) consists of these authorizations that must be revokedonce the authorizations from T are revoked.We now list without proof a number of properties of upward and downward closed sets andof the closure operators.Proposition 3.1 1. If X; Y are UC sets then X \ Y and X [Y are UC sets. Similarlyfor DC sets.2. If X is a UC set and Y is a DC set, then X n Y is a UC set and Y nX is a DC set.3. For every X � U , Cl"(X) is a UC set and Cl#(X) is a DC set.It follows from Proposition 3.1 that if X is a UC set and x 2 U , then X [Cl"(fxg) is a UCset, as well. In fact, it is the least UC set containing X [fxg. We will denote it by X + x.If X is an authorization base and x is an authorization to be granted, it is clear that X + xis exactly the intended result of Grant(X; x). Similarly, if X is a UC set an x 2 U , thenX n Cl#(fxg) is the largest UC set included in X and not containing x. We will denote itby X � x. It is the intended result of Revoke(X; x).A straightforward approach to the problem of maintaining authorization bases is to explicitlystore the whole UC set (authorization base) X. Then, ControlAccess(X; x) is a procedure

returning TRUE if x 2 X and FALSE, otherwise. The procedure Grant(X; x) replaces Xby X + x, that is, by X [Cl"(fxg). Similarly, the procedure Revoke(X; x) replaces X byX � x, that is, by X nCl#(fxg).These procedures can be implemented as follows. Let us assume that we maintain the HassediagramH of (U;�). That is, assume that for each vertex u 2 U we maintain two lists: in(u)containing all immediate predecessors of u, and out(u) containing all immediate successorsof u. Let us denote the size of this representation of H by h. (We will use this notationthroughout the paper.)We maintain an authorization base X by marking all nodes of X by black. Under thisrepresentation, ControlAccess(X; x) takes O(1) (assuming that each node from U can beaccessed in H in constant time). Grant(X; x) can be implemented by performing a depth-�rst search from x, using lists in(u), and marking each visited vertex black. Similarly,Revoke(X; x) can be implemented by performing a depth-�rst search from x, using the listsout(u), and unmarking each visited black vertex. Hence, these procedures take linear timein the size of the Hasse diagram.A major problem with this approach is that it requires that the Hasse diagramH, which maybe very large, be explicitly maintained. In the next section we will introduce two di�erentproposals. In the case when U = S � O � A, they can be implemented using a much moreeconomical representation of the Hasse diagram H.4 Techniques for maintenance of authorization basesLet us start with an example. Let S = fbill; victor;mirekg, O = fo1; : : : ; o7g and A =fsc; r; wg, where sc denotes the right to see the scheme of the object (record), r is the readaccess and w is the write access. Assume also that these sets are endowed with the partialorderings whose Hasse diagrams are shown in Figure 1.
bill

victor mirek

o o

o

o

o

o

o

w

r

sc

3

7

65

4

2

1

Objects ActionsSubjectsFigure 1: Hasse diagrams of �S, �O and �ALet us consider the authorization base in which mirek has complete access to all objects,victor has r and sc access to o2, o4, o5 and o6 and, sc access to o7, and �nally, bill has raccess to o5 and o6 and sc access to o2, o4, o5 and o6. In other words, the authorization baseAB consists of the following elements:(mirek; o1; w); (mirek; o2; w); : : : ; (mirek; o7; w),(mirek; o1; r); (mirek; o2; r); : : : ; (mirek; o7; r),

(mirek; o1; sc); (mirek; o2; sc); : : : ; (mirek; o7; sc),(victor; o2; r), (victor; o4; r), (victor; o5; r), (victor; o6; r),(victor; o2; sc), (victor; o4; sc), (victor; o5; sc), (victor; o6; sc), (victor; o7; sc),(bill; o5; r), (bill; o6; r),(bill; o2; sc), (bill; o4; sc), (bill; o5; sc), (bill; o6; sc),This set consists of 36 elements. However, it is uniquely determined by a much smaller set,say D, of its minimal elements, which contains just 8 elements:(mirek; o1; w);(victor; o2; r), (victor; o4; r),(victor; o7; sc),(bill; o5; r), (bill; o6; r),(bill; o2; sc), (bill; o4; sc).It can be checked that Cl"(D) = AB. Hence, to decide whether x 2 AB, it is enough todecide whether x 2 Cl"(D), that is, whether there is an element d 2 D such that d � x.For example, assume that we have a query (victor; o6; sc). Since (victor; o2; r) is in D and(victor; o2; r) � (victor; o6; sc), access sc to object o6 should be approved for victor.On the other hand, (bill; o2; r) is not approved since there is no tuple (s; o; a) 2 D such that(s; o; a) � (bill; o2; r).In the following subsections we will describe two techniques for maintenance of authorizationbases using the ideas employed in the example above.4.1 Representing authorization bases by antichainsAn antichain is a subset D of U such that for all x; y 2 D, if x 6= y then :(x � y)^:(y � x).We have the following proposition showing that UC sets can be represented as upwardclosures of antichains. A dual result holds for DC sets.Proposition 4.1 Let (U;�) be a �nite partially ordered set. A subset T � U is a UC set ifand only if there exists an antichain D such that T = Cl"(D). Moreover, such an antichainD is unique and consists precisely of the minimal elements of T . Similarly, a set X � Uis a DC if and only if there exists an antichain E such that X = Cl#(E). Moreover, suchantichain E is unique and consists of the maximal elements in X.Proposition 4.1 states that for every authorization base AB there is a unique antichain Dsuch that AB = Cl"(D). Moreover, D consists of all minimal elements in AB. Hence,authorization bases can be represented by antichains of their minimal elements. We willnow use this representation. This will require modi�cations in the procedures ControlAccess,Grant and Revoke.

In the procedure ControlAccess(D; x), we assume that D is the antichain of all minimalelements of an authorization base AB, that is, AB = Cl"(D). Moreover, x is an element ofan authorization space. The procedure returns TRUE if x 2 AB and FALSE otherwise.ControlAccess(D; x)if x 2 Cl"(D) then returnfTRUEgelse returnfFALSEgLet us assume that we maintain the Hasse diagram H of the authorization space (U;�)by means of two lists: in(u), u 2 U , of immediate predecessors of u, and out(u), u 2 U ,of immediate successors of u. Then, the test to check if x 2 Cl " (D) can be performedby executing the depth-�rst search from D upwards (using the lists in(u)). Clearly, thissearch takes linear time in h (recall that h denotes the size of H). Hence, the procedureControlAccess can be implemented to run in time O(h).The problem of adding a new authorization is not much more complex. The correspondingprocedure Grant(D; x) is described below. We assume here D is the antichain of all minimalelements of an authorization base AB, that is, AB = Cl"(D). Moreover, x is an element ofan authorization space. The procedure replaces D by a new antichain of minimal elementsof AB + x.Grant(D; x)if x 2 Cl"(D) then stopelse D := (D n Cl"(fxg)) [fxgAs before, if the Hasse diagram H of the authorization space (U;�) is maintained as twosets of lists in(u) and out(u), u 2 U , the test whether x 2 Cl"(D) can be performed inlinear time by using a depth-�rst search upward from D. In addition, if we mark the nodesfrom D in the Hasse diagram (which can be done in linear time), then D n Cl"(fxg) canalso be computed in linear time by running a depth-�rst search from x upwards. Hence,Grant(D; x) can be implemented to run in linear time in h.Proposition 4.2 The procedure Grant(D; x) is correct.Proof: Assume x 2 AB. Then, x 2 Cl"(D). In this case, the same set D has to be returnedand this is exactly what our procedure does. In the case when x 62 AB, then the set ofminimal elements of AB+x is (D nCl"(fxg))[fxg. This is again precisely the e�ect of theprocedure. 2Revoke is the most complex of the three operations. On input, D is an antichain thatrepresents an authorization base AB and x is an authorization that is to be revoked. Onoutput, the set D contains the antichain representing the updated authorization base, thatis, the result of the deletion of x from AB: AB n Cl#(fxg).Revoke(D; x)ND := ;for every y 2 Cl"(D) nD doif Cl"(D) \ in(y) � Cl#(fxg) then ND := ND [fyg

D := ND [(D n Cl#(fxg))Again assume that the Hasse diagram H is represented by the lists in(u) and out(u), u 2 U .Then, Cl"(D) n D can be computed in linear time in h. By marking black all nodes of Hwhich are in Cl"(D) and by marking red all elements of H which are in Cl#(fxg) (bothtasks can be accomplished by performing a depth-�rst search, up from D and down from x,respectively), the total time for all the tests Cl"(D) \ in(y) � Cl#(fxg) is also linear in h.Consequently, the whole procedure can be implemented in time O(h).Proposition 4.3 Procedure Revoke(D; x) is correct.Proof: Let Di denote the antichain D on input and let Do will be the result of the procedure.Clearly, any element in Di which is not in Cl#(fxg) is minimal in the set Cl"(Di)nCl#(fxg).All these elements are included in Do by the procedure. All other elements of Di must beremoved. However, some new minimal elements still need to be added toDo. They all belongto Cl"(Di) nDi. An element y 2 Cl"(Di) nDi is minimal in Cl"(Di) n Cl#(fxg) if and onlyif each its predecessor does not belong to Cl"(Di) nCl#(fxg). To check this, it is enough toverify that each predecessor of y which belongs to Cl"(Di) belongs also to Cl#(fxg). Butthis is exactly what our procedure tests when generating the set ND. 2As it is now, this approach is worse than the approach proposed before. All procedures runin linear time in the size h of the Hasse diagramH, while in our �rst approach ControlAccesstakes constant time and Grant and Revoke take linear time in h. In Section 5 we will showthat at a cost of some preprocessing, the running time of the procedures presented in thissection will be signi�cantly reduced. Moreover, there will be no need to maintain the entireHasse diagram.4.2 Lazy maintenance of authorization basesWe will now present another technique for the maintenance of authorization bases. The keyobservation here is that, with an increase in the cost of ControlAccess we can reduce the costof Grant and Revoke to constant.By an elementary update we mean a pair (�; x) where � 2 f+;�g and x 2 U . Such pair (�; x)can be treated as an operator on authorization bases. Speci�cally, the e�ect of (�; x) on ABis AB�x. That is, if � = + then the result is AB+ x, and if � = � then the e�ect is AB� x.An authorization base AB can be represented as Cl"(D), where D = fx1; : : : ; xng is theantichain of the minimal elements of AB. Consequently, we haveAB = ((: : : (;+ x1) + x2) : : :) + xn:However, every sequence of elementary updates determines an authorization base. That is,for an arbitrary sequence of elementary updatesa = ((�1; x1); : : : ; (�n; xn))the corresponding authorization base is:((: : : (;�1x1)�2x2) : : :)�nxn

Thus, for instance, if a = ((+; x); (+; y); (�; t)) then the authorization base de�ned by a is((;+ x) + y)� t = (Cl"(fxg) [Cl"(fyg)) n Cl#(ftg).Notice that we just gave a semantics to the sequences of elementary updates. This seman-tics allows us to represent authorization bases as sequences of elementary updates. As aconsequence, the Grant and Revoke procedures consist only of appending the sequence witha new elementary update and, thus, take constant time.The price that we are going to pay is in the e�ciency of ControlAccess procedure. We willdescribe this procedure now. We assume that a = ((�1; x1); : : : ; (�n; xn)) is a sequence ofelementary updates and x is an element of the authorization space.ControlAccess(a; x)for m = n downto 1 doif �m = + and xm 2 Cl#(fxg) then returnfTRUEgif �m = � and xm 2 Cl"(fxg) then returnfFALSEgreturnfFALSEgProposition 4.4 Procedure ControlAccess is correct.Proof: By induction on n. If n = 0, then the authorization base determined by a is empty.Consequently, only the last instruction is invoked and the procedure returns FALSE, asneeded.Let us now assume that the statement is valid for sequences of length n. Observe that(((: : : ((;�1x1)�2x2) : : :)�nxn)�n+1xn+1) = AB0�n+1xn+1;where AB0 = ((: : : ((;�1x1)�2x2) : : :)�nxn:Assume that �n+1 = +. Observe that x 2 AB0 + xn+1 if and only if x 2 AB0 or xn+1 2Cl#(fxg). Observe also that the �rst iteration of the loop in the ControlAccess algorithmchecks if xn+1 2 Cl#(fxg). If so, it returns TRUE (which is the correct answer). Otherwise,the remaining n iterations are executed. This is equivalent to calling ControlAccess for thesequence ((�1; x1); : : : ; (�n; xn)). By the induction hypothesis, it correctly decides whetherx 2 AB0. Hence, the algorithm works correctly for sequences of elementary updates of lengthn + 1 ending with +. A similar argument can be used to show that the algorithm workscorrectly for sequences of elementary updates of length n+ 1 ending with �. 2Notice that the complexity of the algorithm ControlAccess is O(nh), where n is the lengthof the sequence of updates a and h is the size of the Hasse diagram H.This indicates that as the number n grows, there will be a moment when it is worth toreplace a by a shorter sequence of updates representing the same authorization base, forinstance, the one given by the antichain of minimal elements of AB.One should also note that our algorithm gives the priority to checking most recent updates.That is, we always check which of the most recent updates a�ected the status of x and fallback on previous states of the authorization base if x was nor a�ected.To summarize, under the lazy maintenance approach ControlAccess takes O(nh) steps andGrant and Revoke take constant time. The performance of the ControlAccess procedure willbe further improved in the next section.

5 Implementations when U = S �O �AUntil now we used an abstract representation of the authorization space U and its ordering� without taking into account the fact that in the context of the model presented in Section2, U is the product of S, O, and A. Let us recall that in Section 2 the ordering � is de�nedby reference to orderings �S, �O, and �A:(s; o; a) � (s0; o0; a0) if and only if (s �S s0) ^ (o0 �O o) ^ (a0 �A a)The ordering � is the product of orderings �S, ��1O and ��1A [Davey and Priestley]. GivenHasse diagrams for �O and �A, the Hasse diagrams for ��1O and ��1A can be easily obtainedby switching the roles of in and out lists.Given the Hasse diagrams of the orderings �S, ��1O and ��1A , the Hasse diagram of theordering � can be easily computed. But it should be clear that we do not want to maintainthe Hasse diagram of � due to its big size. We will see below that maintaining only theHasse diagrams of the orderings �S, �O and �A provides us with enough information toperform depth-�rst searches needed in the procedures described earlier but is substantiallymore e�cient. We will denote by HS, HO and HA the Hasse diagrams of �S, �O and �A,respectively. By hS, hO and hA, we denote the sizes of their representations by means ofadjacency lists inS and outS, inO and outO and inA and outA, respectively.We will now describe the relationship between the Hasse diagrams of �S , �O and �A andthe Hasse diagram of �. Namely,(s; o; a) 2 in(s0; o0; a0) if and only if (s 2 inS(s0) ^ o = o0 ^ a = a0)_(s = s0 ^ o0 2 inO(o) ^ a = a0)_(s = s0 ^ o = o0 ^ a0 2 inA(a)):A dual relationship holds for the out lists.It follows that the Hasse diagrams HS, HA and HS allow us to reproduce the lists in and outfor H, in time linear in the size of these lists. In the same time, the total size hS + hO + hAof the representations of HS, HA and HS is substantially smaller than h. It is easy to seethat h is of the orderO(hS � hO � kA + hS � kO � hA + kS � hO � hA + hS � hO � hA);where jSj = kS, jOj = kO, and jAj = kA. Thus the fact that H may be large is not a problem| all we need to do is to maintain HS, HO and HA.We will now present a method to improve the e�ciency of the algorithms presented earlierin Section 4. Our approach is to precompute the transitive closures of the Hasse diagramsof �S, �O and �A. This can be done in time O(kS � hS) for �S, O(kO � hO) for �O andO(kA � hA) for �A. The resulting transitive closures can be stored as adjacency matrices atthe total space cost O(k2S + k2O + k2A). From this point on we will assume that comparisonss �S s0, o �O o0, and a �A a0 take constant time.We will now present versions of the algorithms introduced earlier. We will �rst consider thecase when authorization bases are represented as antichains. Recall that U = S � O � Aand thus D consists of triples of the form (s; o; a).

ControlAccess(D; (s0; o0; a0))for (s; o; a) 2 D doif s �S s0 and o0 �O o and a0 �A a then returnfTRUEgreturnfFALSEgThis algorithm runs in time O(jDj), a substantial improvement over the general version.Grant(D; (s0; o0; a0))for (s; o; a) 2 D doif s �S s0 and o0 �O o and a0 �A a then returnfor (s; o; a) 2 D doif s0 �S s and o �O o0 and a �A a0 then D := D n f(s; o; a)gD := D [f(s0; o0; a0)gAlso the Grant procedure runs in time O(jDj) (rather than in time linear in h).As concerns the procedure Revoke, there is no gain in time e�ciency. It still runs in timelinear in the size h of the Hasse diagram of �. It should be mentioned though that it canbe implemented so that it requires only the Hasse diagrams HS, HO and HA.Finally, we will show that in the case of lazy maintenance, the performance of the procedureControlAccess also improves substantially. We assume here thata = ((�1; (s1; o1; a1)); : : : ; (�n; (sn; on; an))):ControlAccess(a; (s0; o0; a0))for m = n downto 1 doif �m = + and sm �S s0 and o0 �O om and a0 �A am then returnfTRUEgif �m = � and s0 �S sm and om �O o0 and am �A a0 then returnfFALSEgreturnfFALSEgIt is clear that this procedure runs in time O(n) (and not O(nh)), as before.6 Further researchIn [Rabitti et.al. 1991], the authors considered two classi�cations of authorizations: intopositive and negative and into strong and weak. The weak authorizations allow us to handleexceptions. The idea is that weak authorizations are inherited provided there is no strongauthorization blocking the inheritance. It is possible to provide a semantics for both strongand weak authorizations using Reiter's default logic [Reiter 1980]. We will deal with thisproblem in a separate paper.

AcknowledgmentsResearch of the second and third authors has been partially supported by NSF grant IRI-9400568.References[Bertino and Martino 1993] E. Bertino and L. Martino. Object-Oriented Database Sys-tems: Concepts and Architectures Addison-Wesley PublishingCompany, 1993.[Davey and Priestley] D.A. Davey and H.A. Priestley. Introduction to Lattices andOrder. Cambridge University Press, 1990.[Castano et. al. 1995] S. Castano, M.G. Fugini, G. Martella, and P. Samarati.Database Security. ACM Press, Addison-Wesley PublishingCompany, 1995.[Lunt 1994] T. Lunt. Authorization in Object-Oriented Databases. In: W.Kim, Modern Database Systems, pp. 130{145, Addison Wesley,Reading, MA., 1994.[Rabitti et.al. 1991] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model ofauthorization for next-generation databases. ACM Transactionon Database Systems 16:88{131, 1991[Reiter 1978] R. Reiter. On closed world data bases. In H. Gallaire andJ. Minker, editors, Logic and data bases, pages 55{76. New York,NY: Plenum Press, 1978.[Reiter 1980] R. Reiter. A logic for default reasoning. Arti�cial Intelligence,13:81{132, 1980.

