
aspps | an implementation of answer-setprogramming with propositional schemataDeborah East and Miros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington KY 40506-0046, USAAbstract. We present an implementation of an answer-set program-ming paradigm, called aspps (short for answer-set programming withpropositional schemata). The system aspps is designed to process PS+-theories. It consists of two basic modules. The �rst module, psgrnd,grounds an PS+-theory. The second module, referred to as aspps, is asolver. It computes models of ground PS+-theories.1 IntroductionThe most advanced answer-set programming systems are, at present, smodels[NS00] and dlv [ELM+98]. They are based on the formalisms of logic pro-gramming with stable-model semantics and disjunctive logic programming withanswer-set semantics, respectively. We present an implementation of an answer-set programming system, aspps (short for answer-set programming with propo-sitional schemata). It is based on the extended logic of propositional schematawith closed world assumption that we denote by PS+. We introduced this logicin [ET01].A theory in the logic PS+ is a pair (D;P ), where D is a collection of groundatoms representing a problem instance (input data), and P is a program | acollection of PS+-clauses (encoding of a problem to solve). The meaning of aPS+-theory T = (D;P ) is given by a family of PS+-models [ET01]. Each modelin this family represents a solution to a problem encoded by P for data instanceD. The system aspps is designed to process PS+-theories. It consists of twobasic programs. The �rst of them, psgrnd, grounds a PS+-theory. That is, itproduces a ground (propositional) theory extended by a number of special con-structs. These constructs help model cardinality constraints on sets. The sec-ond program, referred to as aspps, is a solver. It computes models of groundedPS+-theories. It is designed along the lines of a standard Davis-Putnam al-gorithm for satis�ability checking. Both psgrnd and aspps, examples of PS+-programs and the corresponding performance results are available at http://www.cs.uky.edu/ai/aspps/.



2 PS+-theoriesA PS+-theory is a pair (D;P ), where D is a collection of ground atoms and Pis a collection of PS+-clauses. Atoms in D represent input data (an instance ofa problem). In our implementation these atoms may be stored in one or moredata �les. The set of PS+-clauses models the constraints (speci�cation) of theproblem. In our implementation, all the PS+-clauses in P are stored in a singlerule �le.All statements in data and rule �les must end with a period (.). Clausesmay be split across several lines. Blank lines can be used in data and rule �lesto improve readability. Comments may be used too. They begin with `%' andcontinue to the end of the line.Data �les. Each ground atom in a data �le must be given on a single line.Constant symbols may be used as arguments of ground atoms. In such cases,these constant symbols must be speci�ed at the command line (see Section 3).Examples of ground atoms are given below:vtx(2):vtx(3):size(k):A set of ground atoms of the form fp(m); p(m + 1); : : : ; p(n)g, where m and nare non-negative integers or integer constants speci�ed at the command line, canbe represented in a data �le as `p[m::n].'. Thus, the two ground atoms vtx(2)and vtx (3) can be speci�ed as `vtx [1::3].'.Predicates used by ground atoms in data �les are called data predicates.Rule �les. The rule �le of a PS+-theory consists of two parts. In the �rst one,the preamble, we declare all program predicates, that is, predicates that are notused in data �les. We also declare types of all variables that will be used inthe rule �les. Typing of variables simpli�es the implementation of the groundingprogram psgrnd and facilitates error checking.Arguments of each program predicate are typed by unary data predicates(the idea is that when grounding, each argument can only be replaced by anelement of an extension of the corresponding unary data predicate as speci�edby the data �les). A program predicate q with n arguments of types dp1; : : : ; dpn,where all dpi are data predicates, is declared in one of the following two ways:pred q(dp1; : : : ; dpn):pred q(dp1; : : : ; dpn) : dpm:In the second statement, the n-ary data predicate dpm further restricts the ex-tension of q | it must be a subset of the extension of dpm (as speci�ed by thedata �les).Variable declarations begin with the keyword var . It is followed by the unarydata predicate name and a list of alpha-numeric strings serving as variable names(they must start with a letter). Thus, to declare two variables X and Y of typedp, where dp is a unary data predicate we write:var dp X; Y .



The implementation allows for prede�ned predicates and function symbolssuch as the equality operator ==, arithmetic comparators <=, >=, < and>, and arithmetic operations +, �, � ,=, abs() (absolute value), mod(N; b),max (X;Y ) and min(X;Y ). We assign to these symbols their standard inter-pretation. However, we emphasize that the domains are restricted only to thoseconstants that appear in a theory.The second part of the rule �le contains the program itself, that is, a collectionof clauses describing constraints of the problem to be solved.By a term tuple we mean a tuple whose each component is a variable or aconstant symbol, or an arithmetic expression. An atom is an expression of oneof the following four forms.1. p(t), where p is a predicate (possibly a prede�ned predicate) and t is a tupleof variables, constants and arithmetic expressions.2. p(t; Y ) : dp(Y ), where p is a program predicate, t is a term tuple, and dp isa unary data predicate3. mfp(t) : d1(t1) : : : : : dk(tk)gn, where p is a program predicate, each di is adata or a prede�ned predicate, and t and all ti are term tuples4. mfp1(t); : : : ; pk(t)gn, where all pi are program predicates and t is a termtupleAtoms of the second type are called e-atoms and atoms of types 3 and 4 arecalled c-atoms. Intuitively, an e-atom `p(t; Y ) : dp(Y )' stands for `there exists Yin the extension of the data predicate dp such that p(t; Y ) is true'. An intuitivemeaning of a c-atom `mfp(t) : d1(t1) : : : : : dk(tk)gn' is: from the set of all atomsp(t) such that for every i, 1 � i � k, di(tp;i) is true (tp:i is a projection of tonto attributes of di), at least m and no more than n are true. The meaning ofa c-atom `mfp1(t); : : : ; pk(t)gn' is similar: at least m and no more than n atomsin the set fp1(t); : : : ; pk(t)g are true.We are now ready to de�ne clauses. They are expressions of the formA1; : : : ; Am ! B1j : : : jBn:where Ai's and Bj 's are atoms, `,' stands for the conjunction operator and `j'stands for the disjunction operator.3 Processing PS+-theoriesTo compute models of a PS+-theory (D;P ) we �rst ground it. To this end,we use the program psgrnd. Next, we compute models of the ground theoryproduced by psgrnd. To accomplish this task, we use the program aspps. For thedetailed description of the grounding process and, especially, for the treatmentof e-atoms and c-atoms, and for a discussion of the design of the aspps program,we refer the reader to [ET01].The required input to execute psgrnd is a single program �le, one or moredata �les and optional constants. If no errors are found while reading the �les



and during grounding, an output �le is constructed. The output �le is a machinereadable �le whose name is a catenation of the constants and �le names withthe extension .tdc.psgrnd -r r�le -d d�le1 d�le2 : : : [-c c1=v1 c2=v2 : : :]Required arguments-r r�le is the �le describing the problem (rule �le). There must be exactly onerule �le.-d data�lelist is one or more �les containing data that will be used to instan-tiate the theory.Optional arguments-c name=value This option allows the use of constants in both the data andrule �les. When name is found while reading input �les it is replaced byvalue; value can be any string that is valid for the data type. If name isto be used in a range speci�cation, then value must be an integer.The program aspps is used to solve the grounded theory constructed bypsgrnd. The name of the �le containing the theory is input on the commandline. After executing the aspps program, a �le named aspps.stat is created orappended with statistics concerning this run of aspps.aspps -f �lename [-A] [-P] [-C [x]] [-S name]Required arguments-f �lename is the name of the �le containing a theory produced by psgrnd.Optional arguments-A Prints the positive atoms for solved theories in readable form.-P Prints the input theory and then exits.-C [x] Counts the number of solutions. This information is recorded in thestatistics �le. If x is speci�ed it must be a positive integer; aspps stops after�nding x solutions or exhausting the whole search space, whichever comes�rst.-S name Show positive atoms with predicate name.References[ELM+98] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A KR systemdlv: Progress report, comparisons and benchmarks. In Proceeding of theSixth International Conference on Knowledge Representation and Reasoning(KR '98), pages 406{417. Morgan Kaufmann, 1998.[ET01] D. East and M. Truszczy�nski. Propositional satis�ability in answer-set pro-gramming. In Proceedings of Joint German/Austrian Conference on Arti�-cial Intelligence, KI'2001. Lecture Notes in Arti�cial Intelligence, SpringerVerlag, 2001.[NS00] I. Niemel�a and P. Simons. Extending the smodels system with cardinalityand weight constraints. In J. Minker, editor, Logic-Based Arti�cial Intelli-gence, pages 491{521. Kluwer Academic Publishers, 2000.


