
The aspps systemDeborah East1 and Miros law Truszczy�nski21 Department of Computer Science, Southwest Texas State University,San Marcos TX 78666, USA2 Department of Computer Science, University of Kentucky,Lexington KY 40506-0046, USA1 IntroductionThe aspps system is an answer-set programming system based on the extendedlogic of propositional schemata [2], which allows variables but not function sym-bols in the language. We denote this logic PS+. A theory in the logic PS+ isa pair (D;P ), where D is a set of ground atoms (only constant symbols as ar-guments) representing an instance of a problem (input data), and P is a set ofPS+-clauses representing a program (an abstraction of a problem). The meaningof a PS+-theory T = (D;P ) is given by a family of PS+-models [2].The aspps program and an associated module psgrnd allow one to computemodels of PS+ theories. First, a theory is grounded using the program psgrnd.The theory obtained in this way is an input to the aspps solver, which computesmodels of the ground theory and, hence, of the original theory, as well.The language of logic PS+ accepted by psgrnd includes special constructs,such as those to model cardinality constraints on sets. The theories producedby psgrnd maintain the structure of these constructs. The aspps solver is basedon the Davis-Putnam algorithm for satis�ability checking. There is however amajor di�erence. The solver accepts and takes advantage of special constructsin the ground theories to improve search.Both psgrnd and aspps, examples of PS+-programs and the correspondingperformance results are available at http://www.cs.uky.edu/ai/aspps/.In this document we update an earlier note describing our system [1]. Wepresent the syntax of PS+-programs that is accepted by psgrnd. We also provideinstructions for executing psgrnd and aspps and discuss some of the availableoptions. For theoretical underpinnings of aspps, we refer the reader to [2].2 PS+-theoriesThe language of PS+ contains variable, constant and predicate symbols but notfunction symbols. Predicates in a PS+ theory are classi�ed as data and programpredicates. Ground atoms built of data predicates represent a problem instance.They form the component D (data) of a theory (D;P ). The program P consistsof clauses built of atoms involving both data and program predicates. Clausesare written as implications and explicit negation of atoms is not allowed (the



implication symbol is omitted if a clause has an empty conjunction of atoms asthe antecedent). The program is written to capture all the relevant constraintsspecifying the problem to be solved.The key di�erence between the logic PS+ and the logic of propositionalschemata is in the de�nition of a model. Following the intuition that computationmust not modify the data set, a set of ground atoms M is a model of a PS+theory (D;P ) if M is a propositional model of the grounding of (D;P ) and if itcoincides with D on the part of the Herbrand Universe given by data predicates.Data for an instance is given in one or more data �les. The following set ofatoms is an example of a data �le for an instance of graph coloring.vtx(1): vtx(2): vtx(3): vtx(4):edge(1; 4):edge(1; 2):edge(3; 2):clr (r):clr (g):clr (b):The rule �le (only one rule �le is allowed) includes a preamble, where programpredicates are de�ned and variables declared. The preamble in the program �lerestricts the way program predicates are grounded. The following lines form anexample of the preamble for a graph-coloring program.pred color (vtx; clr):var vtx X; Y:var clr K; C:The program predicate color is a binary predicate. Its �rst argument must be aconstant from the extension of the data predicate vtx , as de�ned in the data �le.Its second argument must be a constant from the extension of the data predi-cate clr . Only unary data predicates can be used to de�ne types of argumentsof program predicates. Binary data predicates can also be used in the predi-cate de�nitions to restrict their extensions. An example (not related to graphcoloring) is:pred hc(vtx; vtx) : edge:This statement restricts the extension of the program predicate hc to a subsetof the extension of the data predicate edge . The preamble also declares types ofvariable symbols used in the program. Variables are declared by means of unarydata predicates (examples are given above). The declaration of variables allowsfor more e�cient grounding and further error checking.The preamble is followed by clauses describing constraints of the problem.An example of a program for graph coloring follows.Clause 1. color (X; r)jcolor (X; g)jcolor (X; b):Clause 2. color (X;K); color (X;C) ! K == C:Clause 3. color (X;K); color (Y;K); edge(X;Y ) ! :



Clause 1 ensures that each vertex is assigned at least one color. Clause 2 enforcesthat at most one color is assigned to each vertex. The last clause prohibitsassigning the same color to vertices connected by an edge.In some cases, the consequent of a clause must be a disjunction of a set ofatoms that depends on a particular data instance. To build such disjunctions, weintroduced in the language of the logic PS+ the notion of an e-atom. An exampleof an e-atom (in the context of our graph-coloring setting) is color (X; ). It standsfor the disjunction of all atoms of the form color(X; c), where c is a constantfrom the extension of the data predicate clr . The use of the special construct forexistential atoms (e-atoms) allows us to rewrite Clause 1 as \color(X; ):". Ourcurrent version of logic PS+ allows also for more complex variants of e-atoms.Another powerful modeling concept in the language of logic PS+ is that ofa cardinality atom. An example of a cardinality atom is kfcolor(X; )gm. Weinterpret the expression within the braces as a speci�cation of the set of allground atoms of the form color (X; c), where c is a constant from the extensionof the data predicate clr . The meaning of the atom kfcolor (X; )gm is: at leastk and no more than m atoms of the form color (X; c) are true.Using the concept of a cardinality atom, we can replace Clause 1 and 2 with asingle clause \1fcolor(X; )g1:". We preserve the structure of cardinality atomsin ground theories and take advantage of the structure in the solver.In addition to the program and data predicates, the aspps implementationincludes prede�ned predicates and function symbols such as the equality operator==, arithmetic comparators <=, >=, < and >, and arithmetic operations +,�, � ,=, abs() (absolute value), mod(N; b), max(X;Y ) and min(X;Y ). We assignto these symbols their standard interpretation. We emphasize that the domainsare restricted only to those constants that appear in a theory.3 Grounding PS+-theoriesThe grounding of logic PS+ programs is performed by the module psgrnd. Whengrounding, we �rst evaluate all expressions built of prede�ned operators. Wethen form ground instantiations of all program clauses. Next, we evaluate andsimplify away all atoms built of prede�ned predicates. We also simplify away allatoms built of data predicates (as they are fully determined by the data part).Therefore, the ground PS+-theory contains only ground atoms built of programpredicates.The required input to execute psgrnd is a single program �le, one or moredata �les and optional constants. If no errors are found while reading the �lesand during grounding, an output �le is constructed. The output �le is a machinereadable �le. Included in the output �le is a mapping from the program pred-icates to machine readable form for each predicate. A list of all ground atomsbuilt of program predicates that were determined during grounding is also given.The name of the output �le is a catenation of the constants and �le names withthe extension .aspps.psgrnd -r r�le -d d�le1 d�le2 : : : [-c c1=v1 c2=v2 : : :]



Required arguments-r r�le is the �le describing the problem. There must be exactly one program�le.-d data�lelist is a list of one or more �les containing data that will be used toinstantiate the theory.Optional arguments-c name=value This option allows the use of constants in both the data andrule �les. When name is found while reading input �les it is replaced byvalue; value can be any string that is valid for the data type. If name isto be used in a range speci�cation, then value must be an integer.4 Solving PS+-theoriesThe solver aspps is used to compute models of the ground PS+-theory producedby psgrnd. The solver takes advantage of the special constructs by allowingsearch to branch based on the status of cardinality atoms. This possibility oftensigni�cantly reduces the size of the search space. In addition, the heuristics forselecting atoms on which to branch are guided by the structure of the originalproblem, preserved by the grounding process.The name of the �le containing the theory is input on the command line. Afterexecuting the aspps program, a �le named aspps.stat is created or appended withstatistics concerning this execution of aspps.aspps -f �lename [-A] [-P] [-C [x]] [-L [x]] [-S name]Required arguments-f �lename is the name of the �le containing a theory produced by psgrnd.Optional arguments-A Prints atoms that are true in the computed model in readable form.-P Prints the input theory and then exits.-C [x] Counts the number of solutions. This information is recorded in thestatistics �le. If x is speci�ed it must be a positive integer; aspps stops after�nding x solutions or exhausting the whole search space, whichever comes�rst.-S name Shows positive atoms with predicate name.References1. D. East and M. Truszczy�nski. aspps | an implementation of answer-set pro-gramming with propositional schemata. In Proceedings of Logic Programming andNonmonotonic Reasoning Conference, LPNMR 2001, LNAI 2173, pages 402{405,Springer Verlag, 2001.2. D. East and M. Truszczy�nski. Propositional satis�ability in answer-set program-ming. In Proceedings of Joint German/Austrian Conference on Arti�cial Intelli-gence, KI'2001, LNAI 2174, pages 138{153, Springer Verlag, 2001.


