The aspps system

Deborah East! and Mirostaw Truszczytiski?

! Department of Computer Science, Southwest Texas State University,
San Marcos TX 78666, USA
2 Department of Computer Science, University of Kentucky,
Lexington KY 40506-0046, USA

1 Introduction

The aspps system is an answer-set programming system based on the extended
logic of propositional schemata [2], which allows variables but not function sym-
bols in the language. We denote this logic PS*. A theory in the logic PST is
a pair (D, P), where D is a set of ground atoms (only constant symbols as ar-
guments) representing an instance of a problem (input data), and P is a set of
PST-clauses representing a program (an abstraction of a problem). The meaning
of a PS*-theory T = (D, P) is given by a family of PST-models [2].

The aspps program and an associated module psgrnd allow one to compute
models of PS™ theories. First, a theory is grounded using the program psgrnd.
The theory obtained in this way is an input to the aspps solver, which computes
models of the ground theory and, hence, of the original theory, as well.

The language of logic PS™ accepted by psgrnd includes special constructs,
such as those to model cardinality constraints on sets. The theories produced
by psgrnd maintain the structure of these constructs. The aspps solver is based
on the Davis-Putnam algorithm for satisfiability checking. There is however a
major difference. The solver accepts and takes advantage of special constructs
in the ground theories to improve search.

Both psgrnd and aspps, examples of PS™-programs and the corresponding
performance results are available at http://www.cs.uky.edu/ai/aspps/.

In this document we update an earlier note describing our system [1]. We
present the syntax of PS™-programs that is accepted by psgrnd. We also provide
instructions for executing psgrnd and aspps and discuss some of the available
options. For theoretical underpinnings of aspps, we refer the reader to [2].

2 PST-theories

The language of PS™ contains variable, constant and predicate symbols but not
function symbols. Predicates in a PS™ theory are classified as data and program
predicates. Ground atoms built of data predicates represent a problem instance.
They form the component D (data) of a theory (D, P). The program P consists
of clauses built of atoms involving both data and program predicates. Clauses
are written as implications and explicit negation of atoms is not allowed (the

implication symbol is omitted if a clause has an empty conjunction of atoms as
the antecedent). The program is written to capture all the relevant constraints
specifying the problem to be solved.

The key difference between the logic PS™ and the logic of propositional
schemata is in the definition of a model. Following the intuition that computation
must not modify the data set, a set of ground atoms M is a model of a PS™
theory (D, P) if M is a propositional model of the grounding of (D, P) and if it
coincides with D on the part of the Herbrand Universe given by data predicates.

Data for an instance is given in one or more data files. The following set of
atoms is an example of a data file for an instance of graph coloring.

vte(1). vtx(2). vtz(3). viz(4).

edge(1,4).
edge(1,2).
edge(3,2).
clr(r).
clr(g).
clr(b).

The rule file (only one rule file is allowed) includes a preamble, where program
predicates are defined and variables declared. The preamble in the program file
restricts the way program predicates are grounded. The following lines form an
example of the preamble for a graph-coloring program.

pred color(vtx, clr).
var vtxr X, Y.
var clr K, C.

The program predicate color is a binary predicate. Its first argument must be a
constant from the extension of the data predicate vtx, as defined in the data file.
Its second argument must be a constant from the extension of the data predi-
cate clr. Only unary data predicates can be used to define types of arguments
of program predicates. Binary data predicates can also be used in the predi-
cate definitions to restrict their extensions. An example (not related to graph
coloring) is:

pred he(vtx, vtx) : edge.

This statement restricts the extension of the program predicate he to a subset
of the extension of the data predicate edge. The preamble also declares types of
variable symbols used in the program. Variables are declared by means of unary
data predicates (examples are given above). The declaration of variables allows
for more efficient grounding and further error checking.

The preamble is followed by clauses describing constraints of the problem.
An example of a program for graph coloring follows.

Clause 1. color(X,r)|color(X, g)|color(X,b).
Clause 2. color(X, K), color(X,C) - K ==C.
Clause 3. color(X, K), color(Y, K),edge(X,Y) — .

Clause 1 ensures that each vertex is assigned at least one color. Clause 2 enforces
that at most one color is assigned to each vertex. The last clause prohibits
assigning the same color to vertices connected by an edge.

In some cases, the consequent of a clause must be a disjunction of a set of
atoms that depends on a particular data instance. To build such disjunctions, we
introduced in the language of the logic PS™ the notion of an e-atomn. An example
of an e-atom (in the context of our graph-coloring setting) is color (X, -). It stands
for the disjunction of all atoms of the form color(X,c), where ¢ is a constant
from the extension of the data predicate clr. The use of the special construct for
existential atoms (e-atoms) allows us to rewrite Clause 1 as “color(X,_).”. Our
current version of logic PS™T allows also for more complex variants of e-atoms.

Another powerful modeling concept in the language of logic PS™ is that of
a cardinality atom. An example of a cardinality atom is k{color(X,_)}m. We
interpret the expression within the braces as a specification of the set of all
ground atoms of the form color (X, c), where ¢ is a constant from the extension
of the data predicate clr. The meaning of the atom k{color(X,_)}m is: at least
k and no more than m atoms of the form color(X, c) are true.

Using the concept of a cardinality atom, we can replace Clause 1 and 2 with a
single clause “1{color(X,_)}1.”. We preserve the structure of cardinality atoms
in ground theories and take advantage of the structure in the solver.

In addition to the program and data predicates, the aspps implementation
includes predefined predicates and function symbols such as the equality operator
==, arithmetic comparators <=, >=, < and >, and arithmetic operations +,
—, %,/, abs() (absolute value), mod(N,b), maz(X,Y") and min(X,Y’). We assign
to these symbols their standard interpretation. We emphasize that the domains
are restricted only to those constants that appear in a theory.

3 Grounding PST-theories

The grounding of logic PS™ programs is performed by the module psgrnd. When
grounding, we first evaluate all expressions built of predefined operators. We
then form ground instantiations of all program clauses. Next, we evaluate and
simplify away all atoms built of predefined predicates. We also simplify away all
atoms built of data predicates (as they are fully determined by the data part).
Therefore, the ground PS™-theory contains only ground atoms built of program
predicates.

The required input to execute psgrnd is a single program file, one or more
data files and optional constants. If no errors are found while reading the files
and during grounding, an output file is constructed. The output file is a machine
readable file. Included in the output file is a mapping from the program pred-
icates to machine readable form for each predicate. A list of all ground atoms
built of program predicates that were determined during grounding is also given.
The name of the output file is a catenation of the constants and file names with
the extension .aspps.
psgrnd -r rfile -d dfilel dfile2 ... [-c c1=v1 c2=v2 ..]

Required arguments

-r rfile is the file describing the problem. There must be exactly one program
file.

-d datafilelist is a list of one or more files containing data that will be used to
instantiate the theory.

Optional arguments

-¢c name=value This option allows the use of constants in both the data and
rule files. When name is found while reading input files it is replaced by
value; value can be any string that is valid for the data type. If name is
to be used in a range specification, then value must be an integer.

4 Solving PS*-theories

The solver aspps is used to compute models of the ground PS™-theory produced
by psgrnd. The solver takes advantage of the special constructs by allowing
search to branch based on the status of cardinality atoms. This possibility often
significantly reduces the size of the search space. In addition, the heuristics for
selecting atoms on which to branch are guided by the structure of the original
problem, preserved by the grounding process.

The name of the file containing the theory is input on the command line. After
executing the aspps program, a file named aspps.stat is created or appended with
statistics concerning this execution of aspps.
aspps -f filename [-A] [-P] [-C [x]] [-L [x]] [-S name]

Required arguments
-f filename is the name of the file containing a theory produced by psgrnd.
Optional arguments

-A Prints atoms that are true in the computed model in readable form.

-P Prints the input theory and then exits.

-C [x] Counts the number of solutions. This information is recorded in the
statistics file. If x is specified it must be a positive integer; aspps stops after
finding x solutions or exhausting the whole search space, whichever comes
first.

-S name Shows positive atoms with predicate name.

References

1. D. East and M. Truszczynski. aspps — an implementation of answer-set pro-
gramming with propositional schemata. In Proceedings of Logic Programming and
Nonmonotonic Reasoning Conference, LPNMR 2001, LNAI 2173, pages 402-405,
Springer Verlag, 2001.

2. D. East and M. Truszczynski. Propositional satisfiability in answer-set program-
ming. In Proceedings of Joint German/Austrian Conference on Artificial Intelli-
gence, KI'2001, LNAI 2174, pages 138-153, Springer Verlag, 2001.

