The First Answer Set Programming System Competition

Martin GebseY, Lengning Lilf, Gayathri NamasivayaftAndré Neumanh
Torsten Schautd, and Mirostaw Truszczyhski

L Institut fur Informatik, Universitat Potsdam, AuguseBel-Str. 89, D-14482 Potsdam,
Germany{gebser, aneumann, t or st en}@s. uni - pot sdam de
2 Department of Computer Science, University of Kentuckyihgton, KY 40506-0046, USA,
{gayathri,lliul, mirek}@s. uky. edu

Abstract. This paper gives a summary of tiérst Answer Set Programming
System Competition that was held in conjunction with thidinth International
Conference on Logic Programming and Nonmonotonic Reasoning. The aims of
the competition were twofold: first, to collect challengibgnchmark problems,
and second, to provide a platform to assess a broad variginsfer Set Pro-
gramming systems. The competition was inspired by similants in neighbor-
ing fields, where regular benchmarking has been a majorrfaetind improve-
ments in the developed systems and their ability to addmessipal applications.

1 Introduction

Answer Set Programming (ASP) is an area of knowledge reptatsen concerned with
logic-based languages for modeling computational problienterms of constraints [1—
4]. Its origins are in logic programming [5, 6] and nonmomatareasoning [7, 8]. The
two areas merged when Gelfond and Lifschitz proposeditiseer set semantics for
logic programs (also known as tlstable model semantics) [9, 10]. On the one hand,
the answer set semantics provided what is now commonly vigweébe the correct
treatment of the negation connective in logic programs. l@ndther hand, with the
answer set semantics, logic programming turned out to besaiapcase of Reiter’s
default logic [8], with answer sets corresponding to ddfaxtensions [11, 12].

Answer Set Programming was born when researchers proposed @aradigm
for modeling application domains and problems with logiogmams under the answer
set semantics: a problem is modeled by a program so that assteeof the program
directly correspond to solutions of the problem [1,2]. Ababthe same time, first
software systems to compute answer sets of logic programs developeddlv [13]
andlparse/smodels[14]. They demonstrated that the answer set programmirsglgsm
has a potential to be the basis for practical declarativepedimg.

These two software systems, their descendants, and edisealli other ASP sys-
tems that have been developed and implemented so far cawtamajor components.
The first of them, ayrounder, grounds an input program, that is, produces its proposi-
tional equivalent. The second onesaver, accepts the ground program and actually
computes its answer sets (which happen to be the answeff skeésariginal program).

* Affiliated with the School of Computing Science at Simon rddniversity, Burnaby, Canada,
and IS at Griffith University, Brisbane, Australia.

The emergence of practical software for computing answisrlsgs been a major
impetus behind the rapid growth of ASP in the past decadéeBed that the ultimate
success of ASP depends on the continued advances in themanice of ASP soft-
ware, the organizers of thdinth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07) asked us to design and run a contest for ASP
software systems. It was more than fitting, given that the five ASP systemsdlv
andlparse/smodels, were introduced exactly a decade ago atRbarth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97). We
agreed, of course, convinced that as in the case of propoaitSATisfiability, where
solver competitions have been run for years in conjunctiith AT conferences, this
initiative will stimulate research on and development ofPASftware, and will bring
about dramatic improvements in its capabilities.

In this paper, we report on the project — tRigst Answer Set Programming Sys-
tem Competition — conducted as part of LPNMR’07. When designing it, we built 0
our experiences from running preliminary versions of tlimpetition at two Dagstuhl
meetings on ASP in 2002 and 2005 [15]. We were also inspiratdgpproach of and
the framework developed for SAT competitions [16], alongiwvthe related competi-
tions in solving Quantified Boolean Formulas and Pseudoldaroconstraints.

The First Answer Set Programming System Competition wasprior to the LP-
NMR’07 conference. The results are summarized in Sectiamdécan be found in full
detail at [17]. The competition was run on tiAsparagus platform [18], relying on
benchmarks stored there before the competition as well asamry new ones submitted
by the members of the ASP community (cf. Section 4).

The paper is organized as follows. In the next section, wdagxphe format of
the competition. Section 3 provides a brief overview of theparagus platform. In
Section 4 and 5, we survey the benchmark problems and theetiorp that took part
in the competition. The competition results are announoe8dction 6. Finally, we
discuss our experiences and outline potential future ingrents.

2 Format

The competition was run in three different categories:

MGS (Modeling, Grounding, Solving) In this category, benchksaronsist of a prob-
lem statement, a set of instances (specified in terms of griaats), and the names
of the predicates and their arguments to be used by progresrtmencode solu-
tions. The overall performance of software (including bibi grounding of input
programs and the solving of their ground instantiationghéasured. Success in
this category depends on the quality of the input programeting a problem (the
problem encoding), the efficiency of a grounder, and thedpéa solver.

SCore (Solver, Core language) Benchmarks in this category arerngt@rograms in
the format common talv [19] andlparse [20]. In particular, aggregates are not
allowed. Instances are classified further into two subgsongrmal (SCore) and
digunctive (SCor¢’). The time needed bsolversto compute answer sets of ground
programs is measured. Thus, this category is conceanlgdvith the performance
of solvers on ground programs in the basic logic programrsymgax.

SLparse (Solver, Lparse language) Benchmarks in this category ranengl programs
in the Iparse formatith aggregates allowed. The performance of solvers on ground
programs in Iparse format is measured. This category idaitu SCore in that it
focuses entirely on solvers. Unlike SCore, though, it asesethe ability of solvers
to take advantage of and efficiently process aggregates.

Only decision problems were considered in this first edibdrihe competition.
Thus, every solver had to indicate whether a benchmarkrinsthas an answer set
(SAT) or not (UNSAT). Moreover, for instances that are SAJlyers were required to
output a certificate of the existence of an answer set (thahiganswer set itself). This
certificate was used to check the correctness of a solution.

The output of solvers had to conform to the following form@itst ypewr i t er
font):

SAT: Answer Set: atoml aton® ... atonmN
The output is one line containing the keywordsmswer Set : ’ and the names
of the atoms in the answer set. Each atom’s name is precedadsingle space.
Spaces must not occur within atom names.

UNSAT: No Answer Set
The output is one line containing the keyworlie* Answer Set .

The competition imposed on each software system (groundssplver) the same
time and space limits. The number of instances solved witiénallocated time and
space was used as themary measure of the performance of a software system. Av-
erage running time is only used as a tie breaker.

3 Platform

The competition was run on thesparagus platform [18], providing a web-based bench-
marking environment for ASP. The principal goals of Aspaisgre (1) to provide an
infrastructure for accumulating challenging benchmaris @) to facilitate executing
ASP software systems under comparable conditions, guesiaigtreproducible and re-
liable performance results. Asparagus is a continuouslying benchmarking environ-
ment that combines several internal machines running thetmearks with an external
server for the remaining functionalities including intetian and storage. The internal
machines are clones having a modified Linux kernel to guagaatstrict limitation of
time and memory resources. This is important in view of aalitg heterogeneous
ASP solvers that run in multiple processes (e.g., by inphkistand-alone SAT solver).
A more detailed description of the Asparagus platform cafobad in [15].

4 Benchmarks

The benchmarks for the competition were collected on theafepus platform. For
all competition categories (MGS, SCore, and SLparse), wedafor submissions of
non-ground problem encodings and ground problem instanceparate files.

To add a problem to the MGS category, the author of the probiaarto provide

— atextual problem description that also specified the naméseguments of input
and output predicates and

— a set of problem instances in terms of ground facts (usingiaput predicates).

The submission of a problem encoding was optional for bermeckiproblems submit-
ted to the MGS category. In most cases, however, the authovglpd it, too. In all re-
maining cases, the competition team provided an encodiog Bll benchmark classes
already stored on Asparagus or submitted for the compefiti@ selected several in-
stances for use in the competition (we describe our selectiteria below). For SCore
and SLparse, we relied on the availability of encodings dpce ground instances
according to the input format of the respective category.

It is important to note that competitors in the MGS categadyribt have to use the
default Asparagus encodings. Instead, they had the optiprovide their own problem

[Benchmark Class [#Instancep Contributors [MCL
15-Puzzle 15 Lengning Liu and Mirostaw Truszczyhski X — X
15-Puzzle 11 Asparagus - X -
Blocked N-Queens 40 Gayathri Namasivayam and Mirostaw Truszczyiski— x
Blocked N-Queens 400 [Asparagus - X -
Bounded Spanning Tree 30 Gayathri Namasivayam and Mirostaw Truszczyfiski— X
Car Sequencing 54 Marco Cadoli X — X
Disjunctive Loops 9 Marco Maratea - X -
EqTest 10 Asparagus - X -
Factoring 10 Asparagus - X X
Fast Food 221 |Wolfgang Faber X — X
Gebser Suite 202 |Martin Gebser — X X
Grammar-Based Information Extraction 102 |Marco Manna - X -
Hamiltonian Cycle 30 Lengning Liu and Mirostaw Truszczyhski X — X
Hamiltonian Path 58 Asparagus - X X
Hashiwokakero 211 [Martin Brain - - X
Hitori 211 [Martin Brain - — X
Knight's Tour 165 |[Martin Brain - - X
Mutex 7 Marco Maratea X —
Random Non-Tight 120 |Enno Schultz, Martin Gebser - X X
Random Quantified Boolean Formulgs 40 Marco Maratea - X -
Reachability 53 Giorgio Terracina X X X
RLP 573 [Yuting Zhao and Fangzhen Lin - X X
Schur Numbers 33 Lengning Liu and Mirostaw Truszczyhski X — X
Schur Numbers 5 Asparagus - X -
Social Golfer 175 [Marco Cadoli X — X
Sokoban 131 |Wolfgang Faber X - -
Solitaire Backward 36 Martin Brain - - X
Solitaire Backward (2) 10 Lengning Liu and Mirostaw Truszczyhski - - X
Solitaire Forward 41 Martin Brain - - X
Strategic Companies 35 Nicola Leone - X -
Su-Doku 8 Martin Brain - - X
TOAST 54 Martin Brain - — X
Towers of Hanoi 29 Gayathri Namasivayam and Mirostaw Truszczyiski— x
Traveling Salesperson 30 Lengning Liu and Mirostaw Truszczyhski X — X
Weight-Bounded Dominating Set 30 Lengning Liu and Mirostaw Truszczyhski X — X
Weighted Latin Square 35 Gayathri Namasivayam and Mirostaw Truszczyfiski— X
Weighted Spanning Tree 30 Gayathri Namasivayam and Mirostaw Truszczyfiski— X
Word Design DNA 5 Marco Cadoli X — X

Table 1. Benchmarks submitted by the ASP community.

Algorithm 1 : Semiautomatic Benchmarking Procedure

Input : Classes — set of benchmark classes
Used — set of benchmark instances run already
Fresh — set of benchmark instances not run so far
max — maximum number of suitable benchmark instances per bemgholass

1 repeat
ToRun « * no runs scheduled yet */

3 foreach C'in Classes do
done «— |SUITABLE (Used[C])]
if done < maz then ToRun «— ToRun U SELECT(maz—done, Fresh[C|])

RUN(ToRun) I* execute the scheduled runs */
Used «— Used U ToRun

Fresh «— Fresh \ ToRun

until ToRun = (

[S20 N

© 00 N O

encodings, presumably better than the default ones, as@f dategory was also about
assessing the modeling capabilities of grounders andrsolve

The collected benchmarks constitute the result of effoftthe broad ASP com-
munity. Table 1 gives an overview of all benchmarks gathéoedhe competition on
the Asparagus platform, listing problems forming benchowdaisses, the accompany-
ing number of instances, the names of the contributors, leemddsociated competition
categories (M stands for MGS, C for SCore, and L for SLpaespectively).

For each competition category, benchmarks were selecteflyged yet random
scheme, shown in Algorithm 1. The available benchmark elasge predefined in
Classes. Their instances that have been run already ar&sad, the ones not run so
far are inFresh. As an invariant, we impos&sed N Fresh = (). For a benchmark class
C'in Classes, we access used and fresh instanceslad [C] and Fresh[C], respec-
tively. The maximum numbetaz of instances per class aims at having approximately
100 benchmark instances overall in the evaluation, that@$gsses| * maz =~ 100
(if feasible). A benchmark instance itised[C] is considered suitable, that is, it is in
SuITABLE (Used[C)), if at least one call script (see Section 5) was able to sdlve i
and at most three call scripts solved it in less than one sk@arother words, some
system can solve it, yet it is not too easy). Functia.&cT(n, Fresh[C]) randomly
determines: fresh instances from class if available (ifn < |Fresh[C]]) in order to
eventually obtainmaz suitable instances of clags Procedure BN(ToRun) runs all
call scripts on the benchmark instances scheduld® i®un. WhenTo Run runs empty,
no fresh benchmark instances are selectable. If a benchoteassyields less thanaz
suitable instances, Algorithm 1 needs to be re-invoked aitincreasediax value for
the other benchmark classes; thus, Algorithm 1 is “only” iserromatic.

5 Competitors

As with benchmarks, all executable programs (grounderssahers) were installed
and run on Asparagus. To this end, participants had to oBsaragus accounts, un-
less they already had one, and to register for the respexiivgetition categories.

Different variants of a system were allowed to run in the cetitipn by using dif-
ferentcall scripts; per competitor, up to three of them could be registered &mhe
competition category. The list of participating solverglaorresponding call scripts
can be found in Table 2.

[Solver JAffiliation | MGS [SCore [SLparse
asper [Angers ASPeR-call-script

ASPeRS20-call-script
ASPeRS30-call-script

assat Hongkondscript.assat.normal script.assat.lparse-output
clasp Potsdam |claspcmpscore claspcmp.scoreglp claspcmpslparse
claspcmpscore2 claspcmpscoreglp2 claspcmpslparse2
claspscoredef claspscoreglp_def claspslparsedef
cmodels [Texas default defaultGlparse.sh groundedDefault
scriptAtomreasonLp |scriptAtomreasonGlparsgscriptAtomreasonGr
scriptEloopLp scriptEloopGlparse scriptEloopGr
disjGlparseDefault
disjGparseEloop
disjGparseVerMir
div Vienna/ |dlv-contest-special dlv-contest-specidl
Calabria |dlv-contest dlv-contest
gnt Helsinki [gnt gntscore gntslparse
dencode+gnt dencode+gnscore* dencode+gnslparse
dencodebc+gnt dencodebc+gntscore” [dencodebc+gntsiparse
Ip2sat [Helsinki Ip2sat+minisat

wf+lp2sat+minisat
Ip2sat+siege

nomore [Potsdam [nomore-default nomore-default-SCore |nomore-default-slparse
nomore-localprop nomore-localprop-SCorgnomore-localprop-siparse
nomore-D nomore-D-SCore nomore-D-slparse

pbmodels$Kentucky [pbmodels-minisat+-MGpbmodels-minisat+-SCofpbmodels-minisat+-SLparse
pbmodels-pueblo-MGS|pbmodels-pueblo-SCoreg pbmodels-pueble-SLparse
pbmodels-wsatcc-MGS| pbmodels-wsatcc-SCorg pbmodels-wsatcc-SLparsé

smodels |Helsinki [smodels smodelsscore smodelsslparse
smodelsrs smodelsrs_score smodelsrs_slparse
smodelsrsn smodelsrsn.score smodelsrsn.slparse

Table 2. Participating solvers and corresponding call scrigtsiéed in both SCore and SCdre
-V used in SCoré only).

6 Results

This section presents the results of fiest Answer Set Programming System Compe-
tition. The placement of systems was determined according to tnéeuof instances
solved within the allocated time and space as the primarguoreaf performance. Run
times were used as tie breakers. Given that each system lagdlto participate in
each competition category in three variants, we decideddoae only one place to

each system. The place of a system is determined by its bdstipég variant, repre-
sented by a call script.

Each single run was limited to 600 seconds execution timeld8dB RAM mem-
ory usage. For each competition category, we give belovesaptoviding a complete
placement of all participating call scripts. We report fack call script the absolute and
relative number of solved instances (‘Solved’ and ‘%’),riigimum, maximum, and
average run times, where ‘avg’ gives the average run timdl@olyed instances and
‘avg’ gives the average run time on all instances with a timedigniaas 600 seconds.
The last column gives the Euclidean distance between thewetall run times of a
call script and the virtually best solver taken to be the @eof all minimum run times.

For each competition category, we also provide similar éatthe used benchmark
classes. These tables give the number of instances sefeatecach class (‘#'), the
absolute and relative number of successfully completed fi@olved’ and ‘%’) aggre-
gated over all instances and call scripts, the same sepai@tsatisfiable (‘SAT’) and
unsatisfiable (UNSAT’) instances, and finally, the minimumaximum, and average
times over all successfully completed runs on the instaota<lass.

Finally, we chart the numbers of solved instances and thérgptimes of partic-
ipating call scripts for each competition category. SeetiSe®.1 for an exemplary
description of these graphics.

More statistics and details are available at [17].

6.1 Results of the MGS competition

[Placd Call Script [Solved % [min] max [avg [avg’ [EuclDis{
1 |dIv-contest-special 76/11963.87 0.07/565.38 54.31251.49 3542.79
2 |dlv-contest 66/11955.46 0.06579.09 49.73294.81 3948.3
3 |pbmodels-minisat+-MG$5/111{58.56 0.52(563.39 83.27297.41 4142.88
4 |claspcmpscore2 64/11157.66 0.87579.14115.35320.56 4285.59
5 |claspscoredef 60/11154.05 0.91)542.64 80.09318.97 4277.6
6 |claspcmpscore 58/11152.25 0.83]469.46 87.40332.16 4280.97
7 |pbmodels-pueble-MGS|54/11148.65 0.34{584.31 80.94347.49 4491.84
8 |default 51/11942.86 0.23453.84 64.96 370.7) 4543.19
9 [smodelsrs 34/11428.81 0.300539.33153.86471.45 5349.11
10 [smodels 34/10432.69 1.14584.06§173.6Q 460.6 4974.14
11 [pbmodels-wsatcc-MGS|23/11120.72 1.05563.54136.97504.06 5409.17
12 [smodelsrsn 22/11119.82 0.12579.10163.14513.43 5471.8]
13 [nomore-default 13/11111.71/22.04521.11315.78566.71 5714.67
14 |scriptAtomreasonLp |12/24 |50.0q 3.59259.84 91.18345.59 2121.19
15 [nomore-localprop 10/111 9.0119.54521.03324.83575.21 5787.71
16 [nomore-D 9/111 | 8.11)48.50473.89161.99564.49 5763.9
17 |scriptEloopLp 4/16 |25.0049.92223.03106.09476.54 2088.94
18 |[gnt 0/8 0.00 600| 1696.31
19 |dencode+gnt 0/8 0.00 600 1696.31
20 |dencodebc+gnt 0/8 0.00 600| 1696.31
21 |script.assat.normal 0/50 | 0.00y 600| 4101.66

Table 3. Placing of call scripts in the MGS competition.

The winners of the MGS competition are:

run time

[Benchmark Class [#][Solved % [SAT] % [UNSAT[% [min] max [avg |

Sokoban8] 16/1§100.00 6/6]100.00 10/10100.0412.66109.53 54.39

Weighted Spanning Tr¢@(89/127 70.0889/127 70.08 0/0 0.06/579.14115.27
Social Golfef8(75/12Q 62.50 59/75 78.67] 16/45 35.5¢ 0.23]579.09 40.34

Bounded Spanning Tre@|73/127 57.4873/127 57.48 0/0 0.23519.09 65.47
Towers of Han% 71/136 52.21171/13§ 52.21 0/0 1.74/584.31101.14
Blocked N-Queens|60/12Q 50.00 44/79 58.67 16/45 35.5¢ 6.50/542.64181.69
Hamiltonian Cycl¢8|64/150 42.67/64/15Q 42.67] 0/0 0.88/453.84 57.46
Weighted Latin Squan®|41/12Q 34.17 22/45 48.89 19/75 25.33 0.12/477.671 93.04
Weight-Bounded Dominating S&{42/127 33.0742/127 33.07] 0/0 0.83/563.39127.87
Schur Number8|32/12Q 26.67 18/90 20.0q 14/30 46.67] 3.27/468.79120.96
15-Puzzlg7|24/105 22.8624/105 22.84 0/0 52.91579.14291.2Q

Car Sequencin@|25/12q 20.8324/10§ 22.84 1/15 6.67| 0.69563.54106.08

Fast Fooqi8[19/127 14.9 8/64 12.50 11/63 17.44 5.30[352.11113.09

Traveling Salespers¢8(16/128 12.5016/12¢ 12.50 0/0 0.72) 11.18§ 2.17|
Reachability8| 8/160 5.00 6/120 5.000 2/40| 5.00 0.26(169.90 49.4§

Table 4. Benchmarks used in the MGS competition.

600 i i
®
1 ?
| /
| *
'l II
500 I b
2 ‘ i
] f
I, :
|
400 [I —
s 7 !
| |
o f |
! |
300} | | o
8 | 14 !
. /
200+ 4 _|
»
.6
#
100 4 .
0
70 80
solved instances
nomore-D—o— claspcmp.score2---e--- div-contest—e—
nomore-localprop- o- - claspcmp.score—-=-— div-contest-speciat -« -
nomore-default--—+--- claspscoredef —o— _ scriptEloopLp---e---
pbmodels-wsatcc-MGS - — smodelsrsn--o- - scriptAtomreasonLp- = —
pbmodels-pueble-MGS—=— smodelsrs ---+--- default—o—
pbmodels-minisat+-MGS - - smodels--x-—

Fig. 1. Chart of the MGS competition.

The detailed placement of call scripts is given in Table Rld& gives statistics about
the benchmark classes used in the MGS competition. Thempeaifice of all participat-
ing call scripts is also given in graphical form in Figure hefeby, ther-axis represents
the number of (solved) benchmark instances, angtheis represents time. For a given
call script, the solved instances are ordered by run tirmebagoint(x, y) in the chart
expresses that theh instance was solved inseconds. The more to the right the curve
of a call script ends, the more benchmark instances weredafithin the allocated
time and space. Since the number of solved instances is imoagyrmeasure of perfor-

FIRST PLACE WINNER
SECOND PLACE WINNER
THIRD PLACE WINNER

div

pbmodels
clasp

mance, the rightmost call script is the winner of the MGS cetition.

6.2 Results of the SCore competition

[Placqd Call Script [Solved % [min] max | avg [avg’ [EuclDis{
1 [claspcmpscoreglp2 89/95/93.6§ 0.56(530.2] 29.81 65.83 1080.44
2 |claspcmpscoreglp 89/95(93.6§ 0.75(504.49 30.36 66.34 1099.14
3 |claspscoreglp_def 86/9590.53 0.75(431.66 25.20 79.64 1386.69
4 |smodelsrs_score 81/9585.26 1.21{346.3§ 38.93121.61 1872.8]
5 |defaultGlparse.sh 81/9585.26 1.35(597.97 46.86128.3§ 2089.19
6 |[scriptAtomreasonGlparse 80/9584.21 1.30576.8Q 42.40130.44 2107.83
7 |pbmodels-minisat+-SCofe80/9584.21 0.72/436.11 57.1§142.89 2170.4
8 |pbmodels-pueblo-SCorg 78/9582.11 0.34/452.84 41.0(0141.03 2210.39
9 |dencode+gnscore 78/9582.11 1.27|363.19 42.8(142.51 2162.64
10 [smodelsscore 77/9581.05 1.28/352.41 40.4(146.43 2217.61
11 |dencodebc+gntscore 77/9581.05 1.27/360.7Q 42.52148.18 2228.65
12 |gntscore 77/9581.05 1.27/359.77 42.56148.18 2228.83
13 |scriptEloopGlparse 75/9578.95 1.36/598.20 42.86160.15 2493.4]
14 |smodelsrsn.score 75/9578.95 1.21/486.23 63.00176.08 2503.37
15 |Ip2sat+minisat 75/95(78.95 1.10/561.0§ 79.89189.39 2621.13
16 |wf+lp2sat+minisat 73/9576.84 1.56(587.40 86.42205.33 2792.5]
17 |dIv-contest-special 69/95(72.63 0.24{586.62102.47238.64 3090.71
18 |dlv-contest 68/9571.58 0.24{587.83 96.69239.74 3110.36
19 |Ip2sat+siege 68/9571.58 1.11{471.3§ 97.50240.33 3052.§
20 [nomore-localprop-SCorg 64/9567.37 2.45550.43103.23265.34 3316.3
21 [nomore-default-SCore | 63/9566.32 2.45554.76124.64284.75 3415.7
22 |nomore-D-SCore 62/9565.26 2.77/559.8§161.15313.59 3583.85
23 |ASPeR-call-script 24/9525.26 1.47/592.24 98.28473.25 4906.79
24 |ASPeRS30-call-script | 21/9522.11 1.51{561.2Q 88.99487.04 4995.74
25 |ASPeRS20-call-script | 21/9522.11 1.49381.33 89.40487.13 4980.24
26 |pbmodels-wsatcc-SCorg 6/95 6.3225.57529.8(208.19575.25 5514.97

The winners of the SCore competition are:

Table 5. Placing of call scripts in the SCore competition.

FIRST PLACE WINNER
SECOND PLACE WINNER
THIRD PLACE WINNER

clasp
smodels
cmodels

[Benchmark Clas$ #] Solved] % | SAT [% [UNSAT] % [min[max | avg |

solved instances
div-contest-special+o— claspcmpscoreglp - -o--
dlv-contest--o- -
nomore-default-SCore -+---
nomore-localprop-SCore- - —
nomore-D-SCore—=—
pbmodels-minisat+-SCore—- -
pbmodels-pueblo-SCore-e---
pbmodels-wsatcc-SCore = —
claspscoreglp_def —o—

smodelsscore— = -—
smodelsrs_score—e—
smodelsrsn.score— -« -
Ip2sat+siege--e---
IpZsat+minisat--= —
pr25at+m|n|sat—%

a

wf+
ultGlparse.sh-o- -

de

Fig. 2. Chart of the SCore competition.

15-PuzzIé10[236/26(090.77121/13493.08 115/13(88.46 0.74480.13 25.49
Factoring 5[114/13087.69 46/5288.4§ 68/7887.18 1.21/554.76 50.35
RLP-15014|306/36484.07 21/26(80.77285/33§84.32 0.34/205.03 22.01
RLP-20014|287/36478.8 0/0 287/36478.85 0.39581.98 75.21]
Schur Numbers 5| 99/13076.15 88/10484.62 11/26(42.31 2.76(561.2Q 49.82
EqTest 5| 93/13071.54 0/0 93/13(71.54 0.66(592.24 75.02
Hamiltonian Pathl4|219/36460.16201/33859.47 18/26(69.29 0.24{559.88 64.74
Random Non-Tight14|216/36459.34 38/5273.09178/31457.05 0.57/598.20121.87
Blocked N-Queend4|167/36445.88 55/15635.26112/20453.8513.70587.40110.59
Table 6.Benchmarks used in the SCore competition.
600 o o T ¥
° o of [:. >|</I
I .
! F T B
. ; - o T
500 ! | T b G
I | 72 ! ! P | i
Lo A 1k 3 L |
! | d i[® 1 i !
| ! ?{ [,f ,‘§i3 J
I ! 4 >€" i ¥ / & ﬁ(
. ; ged 7 @ S ¢ 4 |
400(— = i\ i ’, ! *' ' ?P
! I / P g +
| il =l [I
| i I
300 : H 4 'y
() — ! _ P / H —
Eo | i Pt Y
9 i # g T X y
5~ i * /
= i
200+ | _|
i
|
]
]
100 _|
i
i
.
ol R ve i WA TS 3457
0 10 20 30 40 50 60 70 80 90

scriptEloopGlparse-—+---

claspcmpscoreglp2 ~+———scriptA'tAomreasonG parse x-—

SPeR-call-script—e=—

ASPeRS20-call-script -
ASPeRS30-call-script -e---

gntscore— = —
dencode+gnscore—o—

dencodebc+gntscore--o- -

The detailed placement of call scripts is given in Table ®l@® gives statistics about
the benchmark classes used in the SCore competition. Therpance of all partici-

pating call scripts is charted in Figure 2.
The winners of the SCofecompetition are:

[Placd Call Script [Solved % [min] max [avg [avg’ [EuclDis{
1 |dIv-contest-special | 54/5598.180.03258.7323.59 34.07 279.3§
dlv-contest 54/5598.180.03259.97123.84 34.33 279.44
disjGlparseDefault | 33/5560.001.06521.5954.49272.69 2631.4
dencode+gntcore 29/5552.732.23521.5156.34313.34 2922.73
gntscore 29/5552.732.21{521.9156.44 313.4 2922.87
dencodebc+gntscorg 29/5552.732.22/522.6356.45 313.4 2923.17
disjGparseEloop 27/5549.091.21{521.55433.83322.06 2978.46
disjGparseVerMin 27/5549.091.22/523.4(33.98322.14 2978.77

O~NO O WN

Table 7.Placing of call scripts in the SCofecompetition.

[Benchmark Class [#[Solved] % [SAT [% [UNSAT] % [min] max | avg]
Grammar-Based Information Extractidrb|120/120100.00 64/64100.00 56/56/100.000.62] 7.8 5.03
Disjunctive Loops$ 3| 21/24 87.5(Q 0/0 21/24 87.500.44{522.6395.24

Strategic Compani¢$5| 88/12Q 73.3388/12Q 73.33 0/0 0.35(523.4071.22

Mutex| 7| 18/56 32.14 0/0 18/56 32.140.03259.97137.41

Random Quantified Boolean Formulas| 35/120 29.17 0/0 35/120 29.170.11/290.9944.41

Table 8. Benchmarks used in the SCdreompetition.

FIRST PLACE WINNER div
SECOND PLACE WINNER cmodels
THIRD PLACE WINNER gnt

The detailed placement of call scripts is given in Table hl@& gives statistics about
the benchmark classes used in the SCammpetition. The performance of all patrtici-
pating call scripts is charted in Figure 3.

6.3 Results of the SLparse competition

The winners of the SLparse competition are:

600

\ .
div-contest-specialo—
500 ~_ dIv-contest--o-—_|

dlﬂﬁ_lgarseDefault—+———
[% parseEloop--x -
disjGparseVerMin—e—_|
gnt.score- -« -
dencode+gnscore---e---
dencodebc+gntscore— = —_|

run time
(S€C) o

40 50 60
solved instances

Fig. 3. Chart of the SCoré competition.

[Placd Call Script

[Solved] % [min] max |

avg | avg” [EucIDis{

claspcmpslparse2
claspcmpslparse

claspslparsedef
smodelsrs_slparse
groundedDefault
scriptAtomreasonGr
scriptEloopGr
smodelssiparse
smodelsrsn.siparse

nomore-D-slparse

nomore-default-slparse
gntslparse
dencode+gnslparse
dencodebc+gntslparse

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

pbmodels-minisat+-SLpar

pbmodels-pueblo-SLparse

nomore-localprop-siparse

script.assat.lparse-output
pbmodels-wsatcc-SLparsg

100/12778.740.38556.49
94/12774.0210.41)502.53
5€01/12771.650.49503.57
89/12770.080.37546.5(
87/12768.500.23576.28
81/12763.780.25407.49
81/12763.780.25407.46
78/12761.42/0.24407.48
75/12759.060.26/518.08
74/12758.270.35596.39
69/12754.330.25593.05
54/12742.5211.08530.39
50/12739.371.08517.63
49/12738.581.08/549.80
35/12727.562.101482.13
35/12727.562.18482.81
35/12727.562.101485.36
30/12723.621.001225.28
25/12719.691.12272.98

75.96187.37 2791.89
61.37201.33 2919.44
76.69225.03 3241.06
55.64 218.5 3152.34
95.92254.69 3403.9
46.20246.79 3448.34
50.55249.56 3465.67
46.15259.84 3598.1
102.76§306.35 3958.84
70.52291.49 3815.31
87.25321.42 4189.03
152.78409.84 4765.06
120.80411.34 4846.59
143.44423.85 4920.23
81.40457.08 5276.24
81.64457.15 5276.34
81.70457.16 5276.53
38.64 467.4 5379.19
46.56491.05 5585.82

Table 9. Placing of call scripts in the SLparse competition.

Benchmark Class [#]Solved % [SAT| % [UNSAT[% [min [max [avg |
RLP-2005] 89/9593.6818/1994.74 71/7¢93.47 0.25/465.69 60.94

RLP-1505| 87/9591.5817/1989.47 70/7692.11] 0.25(183.29 14.17

Factorindg4| 69/7690.7936/3894.74 33/3886.84 0.63549.80 64.09
verifyTest-variableSearchSpace (TOA$d[) 81/9585.2681/9585.26 0/0 0.24{303.37 16.43
Random Non-Tight5| 75/9578.9941/57/71.93 34/3889.47 0.41/518.0§123.56

Knight's Toun5| 71/9574.7471/9574.74 0/0| 1.04248.97 28.29

Su-Doky 3| 42/5773.6842/57/73.68 0/0| 18.15176.69 68.00

searchTest-plain (TOAST)| 68/9571.5818/3847.37 50/57/87.74 1.54/339.51 45.5(Q
searchTest-verbose (TOAS5) 63/9566.3263/9566.32 0/0| 25.84485.36136.07
Hamiltonian Path5| 60/9563.1660/9563.16 0/0| 0.37/530.39 58.02

Weighted Spanning Tr¢B| 58/9561.0558/9561.05 0/0| 3.24{596.39122.04
Solitaire Forwarg5| 55/9557.8955/9557.89 0/0| 1.19593.0§ 49.04

Bounded Spanning Tr¢g| 54/9556.8454/9556.84 0/0 7.43413.63 70.11
Hamiltonian Cycl¢5| 51/9553.6851/9553.64 0/0 0.47|464.71 51.3Q

Solitaire Backwargb| 47/9549.4733/7643.42 14/1973.68 0.30[552.11 71.72

Towers of Handi5| 43/9545.2643/9545.26 0/0| 6.28/478.30169.96

Blocked N-Queen$| 40/9542.1136/7647.37 4/19/21.0§ 1.57/590.04193.59

Social Golfer5| 37/9538.95924/3863.16 13/57/22.81 0.84/291.44 30.7Q

Schur Numbers| 31/9532.6311/57/19.30 20/3852.63 1.231496.82104.57
Hashiwokakerb| 26/9527.37 0/0| 26/9527.371 6.71)377.69 72.34

Weighted Latin Squai®| 23/9524.21] 6/19(31.58 17/7622.37 0.23/576.28144.13
15-Puzzlg5| 17/9517.8917/9517.89 0/0| 106.66502.53327.56

Weight-Bounded Dominating S@&| 15/9515.7915/9515.79 0/0 1.55(467.51112.55
Traveling Salespers¢f| 12/9512.6312/9512.63 0/0| 0.35(212.66 20.24
Solitaire Backward (2b| 11/9511.5811/9511.58 0/0| 5.32/330.89101.55

Car Sequencing| 7/95 7.37] 7/95 7.37 0/0| 7.17/556.49249.5]

Table 10.Benchmarks used in the SLparse competition.

600 I =R \ \
‘ +
% 0 | ‘:' ° R
2 | P
P+ o | ® i !
500} 4+ | . i A
® ! . fl |
! P L Il
,TL/I 4 ?: pa :‘ ’*i! &
Py ! (;S | 41 xR
4001~ 4 & Pl -
’: ! l®?<* ll +)?X/ ;’ P
4,4' " (;é ! f f/’ - N
Do TR F S ¢
41 ¢ K ,’, iR
o 300 b a4 i xi P —
S ’a q {i lco] x B4 x | ¢
— v “ h]
= O / proi /) i
[« / |
2 = | ¢ /X e)@i :.l/
r2 é)zf | A i
200+ F° +’+HL." X J 4 N
4 ;P @ XI Pk
/ ;o :
X 7?* ,‘Xx ‘/q' /i
/ R
><9<><)< /+’++ [I b [] D
100 004t PO B
‘t;"" [¥ 4
RBEESCOC0
ﬂ(‘g:'f'"
0 \ \ \ \
0 50 60 70 80 90 100
solved instances
claspcmpslparse--=-— scriptAtomreasonGy--e---
claspcmpslparse2—o— script.assat.lparse-outputs -
gntslparse—o—
dencode+gnslparse- o--

smodelsslparse- o- -
smodelsrs_slparse --+--

smodelsrsn.slparse--x-—
roundedDefault—s—

9 scriptEloopGr- - -

nomore-default-slparseo—
nomore-D-slparse - -
nomore-localprop-slparse-+---
pbmodels-minisat+-SLparse = —
pbmodels-pueblo-SLparses—
pbmodels-wsatcc-SLparses- -
claspslparsedef ---e---

Fig. 4. Chart of the SLparse competition.

dencodebc+gntslparse -—+---

FIRST PLACE WINNER clasp
SECOND PLACE WINNER pbmodels
smodels

THIRD PLACE WINNER
The detailed placement of call scripts is given in Table ®14.0 gives statistics about
the benchmark classes used in the SLparse competition.é&rfe@rmance of all partic-

ipating call scripts is charted in Figure 4.

7 Discussion
ThisFirst Answer Set Programming System Competition offers many interesting lessons
stemming from running diverse solvers on multifaceted bemark instances. Some of
the lessons may have general implications on the futurddavesnts in ASP.
First, the experiences gained from the effort to design timepxtition clearly point

out that the lack of well-defined input, intermediate, antpbatlanguages is a major

problem. In some cases, it forced the competition team trtrés “ad hoc” solutions.
Further, there is no standard core ASP language coverirgygmts with aggregates,
which makes it difficult to design a single and fair field fot systems to compete.
No standard way in which errors are signaled and no consemstsw to deal with
incomplete solvers are somewhat less critical but also itapb issues. Benchmark
selection is a major problem. The way benchmarks and thetaites are chosen may
have a significantimpact on the results in view of divergiag@rmances of solvers and
different degrees of difficulty among the instances of bematk classes. Sometimes
even grounding problem encodings on problem instancesoibuge ground programs
on which solvers were to compete was a major hurdle (see below

This first edition of the competition focused on the perfonece of solvers on
ground programs, which is certainly important. Howeveg,riots of the ASP approach
are in declarative programming and knowledge represemtator both areasnodel-
ing knowledge domains and problems that arise in them is of na@jocern (this is
especially the case for knowledge representation). By ldpireg the MGS category,
we tried to create a platform where ASP systems could berdifteated from the per-
spective of their modeling functionality. However, onlyeogroup chose to develop
programs specialized to their system (hence, this grougleidsystem are the well-
deserved winner). All other groups relied on default enigsdli It is critical that a better
venue for testing modeling capabilities is provided foufetcompetitions.

Further, not only modeling support and the performance bfess determine the
quality of an ASP system. Grounding is an essential parteptbcess too and, in some
cases, itis precisely where the bottleneck lies. The MG&ycay was the only category
that took both the grounding time and the solving time intccamt. It is important to
stress more the role of grounding in future competitions.

There will be future competitions building on the experienof this one. Their
success and their impact on the field will depend on contitead community partic-
ipation in fine-tuning and expanding the present formathisitespect, thEirst Answer
Set Programming System Competition should encourage the further progress in the de-
velopment of ASP systems and applications, similar to cditipes in related areas,
such as SATisfiability, Quantified Boolean Formulas, anduBeeBoolean constraints.

Acknowledgments

This project would not have been possible without stronglanodd support from the
whole ASP community. We are grateful to all friends and @ajlees who contributed
ideas on the contest format, submitted benchmark problants provided continued
encouragement. Most of all, we want to thank all the compegtitwithout you, there
would have been no competition.

Mirostaw Truszczyhski acknowledges the support of NSFgtes-0325063 and
KSEF grant 1036-RDE-008.

References

1. Niemeld, I.: Logic programming with stable model sen@néas a constraint programming
paradigm. Annals of Mathematics and Artificial Intelliger®S(3-4) (1999) 241-273

(o]

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

Marek, V., Truszczyhski, M.: Stable models and an akiéve logic programming paradigm.
In Apt, K., Marek, W., Truszczyhski, M., Warren, D., eds.hel Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999) 375-398

. Gelfond, M., Leone, N.: Logic programming and knowledgeresentation — the A-prolog

perspective. Artificial Intelligenc&381-2) (2002) 3—-38

. Baral, C.: Knowledge Representation, Reasoning andabséle Problem Solving. Cam-

bridge University Press (2003)

. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Wtesye de communication homme-

machine en Francais. Technical report, University of Milles€l973)

. Kowalski, R.: Predicate logic as a programming languag®&osenfeld, J., ed.: Proceedings

of the Congress of the International Federation for InfdiamaProcessing, North Holland
(1974) 569-574

. MccCarthy, J.: Circumscription — a form of nonmonotoniasening. Artificial Intelligence

13(1-2) (1980) 27-39

. Reiter, R.: A logic for default reasoning. Artificial Itfigence13(1-2) (1980) 81-132
. Gelfond, M., Lifschitz, V.: The stable model semanticslégic programming. In Kowalski,

R., Bowen, K., eds.: Proceedings of the International Qemige on Logic Programming,
MIT Press (1988) 1070-1080

Gelfond, M., Lifschitz, V.: Classical negation in logicograms and disjunctive databases.
New Generation Computing(3-4) (1991) 365-385

Marek, W., Truszczyhski, M.: Stable semantics for dogiograms and default theories.
In Lusk, E., Overbeek, R., eds.: Proceedings of the North Woae Conference on Logic
Programming, MIT Press (1989) 243-256

Bidoit, N., Froidevaux, C.: Negation by default and uasfiable logic programs. Theoretical
Computer Sciencég(1) (1991) 85-112

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcefo A deductive system for non-
monotonic reasoning. In Dix, J., Furbach, U., Nerode, As, edroceedings of the Interna-
tional Conference on Logic Programming and Nonmonotonias@eing, Springer (1997)
364-375

Niemeld, ., Simons, P.: Smodels — an implementaticghe@&table model and well-founded
semantics for normal logic programs. In Dix, J., Furbach,Nkrode, A., eds.: Proceed-
ings of the International Conference on Logic Programmimg) ldonmonotonic Reasoning,
Springer (1997) 420-429

Borchert, P., Anger, C., Schaub, T., Truszczyhski, Mwards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschv., Niemeld, |., eds.: Proceed-
ings of the International Conference on Logic Programmimg) ldonmonotonic Reasoning,
Springer (2004) 3-7

Le Berre, D., Simon, L., eds.: Special Volume on the SAI®2CGompetitions and Evalua-
tions. Journal on Satisfiability, Boolean Modeling and Camagion2(1-4) (2006)
(http://asparagus. cs. uni - pot sdam de/ cont est)

(http://asparagus. cs. uni - pot sdam de)

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACMsHhetions on Computational
Logic 7(3) (2006) 499-562

Syrjanen, T.: Lparse 1.0 user’s manual. (http://wes\tut.fi/Software/smodels/Iparse.ps.gz)

