
The First Answer Set Programming System Competition

Martin Gebser1, Lengning Liu2, Gayathri Namasivayam2, André Neumann1,
Torsten Schaub⋆1, and Mirosław Truszczyński2

1 Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam,
Germany,{gebser,aneumann,torsten}@cs.uni-potsdam.de

2 Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA,
{gayathri,lliu1,mirek}@cs.uky.edu

Abstract. This paper gives a summary of theFirst Answer Set Programming
System Competition that was held in conjunction with theNinth International
Conference on Logic Programming and Nonmonotonic Reasoning. The aims of
the competition were twofold: first, to collect challengingbenchmark problems,
and second, to provide a platform to assess a broad variety ofAnswer Set Pro-
gramming systems. The competition was inspired by similar events in neighbor-
ing fields, where regular benchmarking has been a major factor behind improve-
ments in the developed systems and their ability to address practical applications.

1 Introduction

Answer Set Programming (ASP) is an area of knowledge representation concerned with
logic-based languages for modeling computational problems in terms of constraints [1–
4]. Its origins are in logic programming [5, 6] and nonmonotonic reasoning [7, 8]. The
two areas merged when Gelfond and Lifschitz proposed theanswer set semantics for
logic programs (also known as thestable model semantics) [9, 10]. On the one hand,
the answer set semantics provided what is now commonly viewed to be the correct
treatment of the negation connective in logic programs. On the other hand, with the
answer set semantics, logic programming turned out to be a special case of Reiter’s
default logic [8], with answer sets corresponding to default extensions [11, 12].

Answer Set Programming was born when researchers proposed anew paradigm
for modeling application domains and problems with logic programs under the answer
set semantics: a problem is modeled by a program so that answer sets of the program
directly correspond to solutions of the problem [1, 2]. At about the same time, first
software systems to compute answer sets of logic programs were developed:dlv [13]
andlparse/smodels [14]. They demonstrated that the answer set programming paradigm
has a potential to be the basis for practical declarative computing.

These two software systems, their descendants, and essentially all other ASP sys-
tems that have been developed and implemented so far containtwo major components.
The first of them, agrounder, grounds an input program, that is, produces its proposi-
tional equivalent. The second one, asolver, accepts the ground program and actually
computes its answer sets (which happen to be the answer sets of the original program).

⋆ Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and IIIS at Griffith University, Brisbane, Australia.

The emergence of practical software for computing answer sets has been a major
impetus behind the rapid growth of ASP in the past decade. Believing that the ultimate
success of ASP depends on the continued advances in the performance of ASP soft-
ware, the organizers of theNinth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07) asked us to design and run a contest for ASP
software systems. It was more than fitting, given that the first two ASP systems,dlv
andlparse/smodels, were introduced exactly a decade ago at theFourth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97). We
agreed, of course, convinced that as in the case of propositional SATisfiability, where
solver competitions have been run for years in conjunction with SAT conferences, this
initiative will stimulate research on and development of ASP software, and will bring
about dramatic improvements in its capabilities.

In this paper, we report on the project — theFirst Answer Set Programming Sys-
tem Competition — conducted as part of LPNMR’07. When designing it, we built on
our experiences from running preliminary versions of this competition at two Dagstuhl
meetings on ASP in 2002 and 2005 [15]. We were also inspired bythe approach of and
the framework developed for SAT competitions [16], along with the related competi-
tions in solving Quantified Boolean Formulas and Pseudo-Boolean constraints.

The First Answer Set Programming System Competition was runprior to the LP-
NMR’07 conference. The results are summarized in Section 6 and can be found in full
detail at [17]. The competition was run on theAsparagus platform [18], relying on
benchmarks stored there before the competition as well as onmany new ones submitted
by the members of the ASP community (cf. Section 4).

The paper is organized as follows. In the next section, we explain the format of
the competition. Section 3 provides a brief overview of the Asparagus platform. In
Section 4 and 5, we survey the benchmark problems and the competitors that took part
in the competition. The competition results are announced in Section 6. Finally, we
discuss our experiences and outline potential future improvements.

2 Format

The competition was run in three different categories:

MGS (Modeling, Grounding, Solving) In this category, benchmarks consist of a prob-
lem statement, a set of instances (specified in terms of ground facts), and the names
of the predicates and their arguments to be used by programmers to encode solu-
tions. The overall performance of software (including boththe grounding of input
programs and the solving of their ground instantiations) ismeasured. Success in
this category depends on the quality of the input program modeling a problem (the
problem encoding), the efficiency of a grounder, and the speed of a solver.

SCore (Solver, Core language) Benchmarks in this category are ground programs in
the format common todlv [19] and lparse [20]. In particular, aggregates are not
allowed. Instances are classified further into two subgroups: normal (SCore) and
disjunctive (SCore∨). The time needed bysolvers to compute answer sets of ground
programs is measured. Thus, this category is concernedonly with the performance
of solvers on ground programs in the basic logic programmingsyntax.

SLparse (Solver, Lparse language) Benchmarks in this category are ground programs
in the lparse formatwith aggregates allowed. The performance of solvers on ground
programs in lparse format is measured. This category is similar to SCore in that it
focuses entirely on solvers. Unlike SCore, though, it assesses the ability of solvers
to take advantage of and efficiently process aggregates.

Only decision problems were considered in this first editionof the competition.
Thus, every solver had to indicate whether a benchmark instance has an answer set
(SAT) or not (UNSAT). Moreover, for instances that are SAT, solvers were required to
output a certificate of the existence of an answer set (that is, an answer set itself). This
certificate was used to check the correctness of a solution.

The output of solvers had to conform to the following formats(in typewriter
font):

SAT : Answer Set: atom1 atom2 ... atomN
The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded bya single space.
Spaces must not occur within atom names.

UNSAT : No Answer Set
The output is one line containing the keywords ‘No Answer Set’.

The competition imposed on each software system (grounder plus solver) the same
time and space limits. The number of instances solved withinthe allocated time and
space was used as theprimary measure of the performance of a software system. Av-
erage running time is only used as a tie breaker.

3 Platform

The competition was run on theAsparagus platform [18], providing a web-based bench-
marking environment for ASP. The principal goals of Asparagus are (1) to provide an
infrastructure for accumulating challenging benchmarks and (2) to facilitate executing
ASP software systems under comparable conditions, guaranteeing reproducible and re-
liable performance results. Asparagus is a continuously running benchmarking environ-
ment that combines several internal machines running the benchmarks with an external
server for the remaining functionalities including interaction and storage. The internal
machines are clones having a modified Linux kernel to guarantee a strict limitation of
time and memory resources. This is important in view of controlling heterogeneous
ASP solvers that run in multiple processes (e.g., by invoking a stand-alone SAT solver).
A more detailed description of the Asparagus platform can befound in [15].

4 Benchmarks

The benchmarks for the competition were collected on the Asparagus platform. For
all competition categories (MGS, SCore, and SLparse), we asked for submissions of
non-ground problem encodings and ground problem instancesin separate files.

To add a problem to the MGS category, the author of the problemhad to provide

– a textual problem description that also specified the names and arguments of input
and output predicates and

– a set of problem instances in terms of ground facts (using only input predicates).

The submission of a problem encoding was optional for benchmark problems submit-
ted to the MGS category. In most cases, however, the authors provided it, too. In all re-
maining cases, the competition team provided an encoding. From all benchmark classes
already stored on Asparagus or submitted for the competition, we selected several in-
stances for use in the competition (we describe our selection criteria below). For SCore
and SLparse, we relied on the availability of encodings to produce ground instances
according to the input format of the respective category.

It is important to note that competitors in the MGS category did not have to use the
default Asparagus encodings. Instead, they had the option to provide their own problem

Benchmark Class #Instances Contributors M C L

15-Puzzle 15 Lengning Liu and Mirosław Truszczyński × – ×

15-Puzzle 11 Asparagus – × –
Blocked N-Queens 40 Gayathri Namasivayam and Mirosław Truszczyński× – ×

Blocked N-Queens 400 Asparagus – × –
Bounded Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński× – ×

Car Sequencing 54 Marco Cadoli × – ×

Disjunctive Loops 9 Marco Maratea – × –
EqTest 10 Asparagus – × –
Factoring 10 Asparagus – × ×

Fast Food 221 Wolfgang Faber × – ×

Gebser Suite 202 Martin Gebser – × ×

Grammar-Based Information Extraction 102 Marco Manna – × –
Hamiltonian Cycle 30 Lengning Liu and Mirosław Truszczyński × – ×

Hamiltonian Path 58 Asparagus – × ×

Hashiwokakero 211 Martin Brain – – ×

Hitori 211 Martin Brain – – ×

Knight’s Tour 165 Martin Brain – – ×

Mutex 7 Marco Maratea – × –
Random Non-Tight 120 Enno Schultz, Martin Gebser – × ×

Random Quantified Boolean Formulas 40 Marco Maratea – × –
Reachability 53 Giorgio Terracina × × ×

RLP 573 Yuting Zhao and Fangzhen Lin – × ×

Schur Numbers 33 Lengning Liu and Mirosław Truszczyński × – ×

Schur Numbers 5 Asparagus – × –
Social Golfer 175 Marco Cadoli × – ×

Sokoban 131 Wolfgang Faber × – –
Solitaire Backward 36 Martin Brain – – ×

Solitaire Backward (2) 10 Lengning Liu and Mirosław Truszczyński – – ×

Solitaire Forward 41 Martin Brain – – ×

Strategic Companies 35 Nicola Leone – × –
Su-Doku 8 Martin Brain – – ×

TOAST 54 Martin Brain – – ×

Towers of Hanoi 29 Gayathri Namasivayam and Mirosław Truszczyński× – ×

Traveling Salesperson 30 Lengning Liu and Mirosław Truszczyński × – ×

Weight-Bounded Dominating Set 30 Lengning Liu and Mirosław Truszczyński × – ×

Weighted Latin Square 35 Gayathri Namasivayam and Mirosław Truszczyński× – ×

Weighted Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński× – ×

Word Design DNA 5 Marco Cadoli × – ×

Table 1.Benchmarks submitted by the ASP community.

Algorithm 1 : Semiautomatic Benchmarking Procedure
Input : Classes — set of benchmark classes

Used — set of benchmark instances run already
Fresh — set of benchmark instances not run so far
max — maximum number of suitable benchmark instances per benchmark class

repeat1

ToRun ← ∅ /* no runs scheduled yet */2

foreachC in Classes do3

done ← |SUITABLE(Used [C])|4

if done < max then ToRun ← ToRun ∪ SELECT(max−done ,Fresh [C])5

RUN(ToRun) /* execute the scheduled runs */6

Used ← Used ∪ ToRun7

Fresh ← Fresh \ ToRun8

until ToRun = ∅9

encodings, presumably better than the default ones, as the MGS category was also about
assessing the modeling capabilities of grounders and solvers.

The collected benchmarks constitute the result of efforts of the broad ASP com-
munity. Table 1 gives an overview of all benchmarks gatheredfor the competition on
the Asparagus platform, listing problems forming benchmark classes, the accompany-
ing number of instances, the names of the contributors, and the associated competition
categories (M stands for MGS, C for SCore, and L for SLparse, respectively).

For each competition category, benchmarks were selected bya fixed yet random
scheme, shown in Algorithm 1. The available benchmark classes are predefined in
Classes . Their instances that have been run already are inUsed , the ones not run so
far are inFresh. As an invariant, we imposeUsed ∩ Fresh = ∅. For a benchmark class
C in Classes , we access used and fresh instances viaUsed [C] andFresh[C], respec-
tively. The maximum numbermax of instances per class aims at having approximately
100 benchmark instances overall in the evaluation, that is,|Classes | ∗ max ≈ 100
(if feasible). A benchmark instance inUsed [C] is considered suitable, that is, it is in
SUITABLE(Used [C]), if at least one call script (see Section 5) was able to solve it
and at most three call scripts solved it in less than one second (in other words, some
system can solve it, yet it is not too easy). Function SELECT(n,Fresh[C]) randomly
determinesn fresh instances from classC if available (if n ≤ |Fresh[C]|) in order to
eventually obtainmax suitable instances of classC. Procedure RUN(ToRun) runs all
call scripts on the benchmark instances scheduled inToRun. WhenToRun runs empty,
no fresh benchmark instances are selectable. If a benchmarkclass yields less thanmax

suitable instances, Algorithm 1 needs to be re-invoked withan increasedmax value for
the other benchmark classes; thus, Algorithm 1 is “only” semiautomatic.

5 Competitors

As with benchmarks, all executable programs (grounders andsolvers) were installed
and run on Asparagus. To this end, participants had to obtainAsparagus accounts, un-
less they already had one, and to register for the respectivecompetition categories.

Different variants of a system were allowed to run in the competition by using dif-
ferent call scripts; per competitor, up to three of them could be registered for each
competition category. The list of participating solvers and corresponding call scripts
can be found in Table 2.

Solver Affiliation MGS SCore SLparse

asper Angers ASPeR-call-script
ASPeRS20-call-script
ASPeRS30-call-script

assat Hongkongscript.assat.normal script.assat.lparse-output
clasp Potsdam claspcmp score claspcmp scoreglp claspcmp slparse

claspcmp score2 claspcmp scoreglp2 claspcmp slparse2
claspscoredef claspscoreglp def claspslparsedef

cmodels Texas default defaultGlparse.sh groundedDefault
scriptAtomreasonLp scriptAtomreasonGlparsescriptAtomreasonGr
scriptEloopLp scriptEloopGlparse scriptEloopGr

disjGlparseDefault∨

disjGparseEloop∨

disjGparseVerMin∨

dlv Vienna/ dlv-contest-special dlv-contest-special⋆

Calabria dlv-contest dlv-contest⋆

gnt Helsinki gnt gnt score⋆ gnt slparse
dencode+gnt dencode+gntscore⋆ dencode+gntslparse
dencodebc+gnt dencodebc+gntscore⋆ dencodebc+gntslparse

lp2sat Helsinki lp2sat+minisat
wf+lp2sat+minisat
lp2sat+siege

nomore Potsdam nomore-default nomore-default-SCore nomore-default-slparse
nomore-localprop nomore-localprop-SCorenomore-localprop-slparse
nomore-D nomore-D-SCore nomore-D-slparse

pbmodelsKentucky pbmodels-minisat+-MGSpbmodels-minisat+-SCorepbmodels-minisat+-SLparse
pbmodels-pueblo-MGS pbmodels-pueblo-SCore pbmodels-pueble-SLparse
pbmodels-wsatcc-MGS pbmodels-wsatcc-SCorepbmodels-wsatcc-SLparse

smodels Helsinki smodels smodelsscore smodelsslparse
smodelsrs smodelsrs score smodelsrs slparse
smodelsrsn smodelsrsn score smodelsrsn slparse

Table 2.Participating solvers and corresponding call scripts (·⋆ used in both SCore and SCore∨;
·∨ used in SCore∨ only).

6 Results

This section presents the results of theFirst Answer Set Programming System Compe-
tition. The placement of systems was determined according to the number of instances
solved within the allocated time and space as the primary measure of performance. Run
times were used as tie breakers. Given that each system was allowed to participate in
each competition category in three variants, we decided to allocate only one place to

each system. The place of a system is determined by its best performing variant, repre-
sented by a call script.

Each single run was limited to 600 seconds execution time and448 MB RAM mem-
ory usage. For each competition category, we give below tables providing a complete
placement of all participating call scripts. We report for each call script the absolute and
relative number of solved instances (‘Solved’ and ‘%’), itsminimum, maximum, and
average run times, where ‘avg’ gives the average run time on all solved instances and
‘avgt’ gives the average run time on all instances with a timeout taken as 600 seconds.
The last column gives the Euclidean distance between the vector of all run times of a
call script and the virtually best solver taken to be the vector of all minimum run times.

For each competition category, we also provide similar datafor the used benchmark
classes. These tables give the number of instances selectedfrom each class (‘#’), the
absolute and relative number of successfully completed runs (‘Solved’ and ‘%’) aggre-
gated over all instances and call scripts, the same separately for satisfiable (‘SAT’) and
unsatisfiable (‘UNSAT’) instances, and finally, the minimum, maximum, and average
times over all successfully completed runs on the instancesof a class.

Finally, we chart the numbers of solved instances and the solving times of partic-
ipating call scripts for each competition category. See Section 6.1 for an exemplary
description of these graphics.

More statistics and details are available at [17].

6.1 Results of the MGS competition

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 76/11963.87 0.07 565.38 54.31 251.49 3542.79
2 dlv-contest 66/11955.46 0.06 579.09 49.73 294.81 3948.3
3 pbmodels-minisat+-MGS65/11158.56 0.52 563.39 83.27 297.41 4142.88
4 claspcmp score2 64/11157.66 0.87 579.14115.35320.56 4285.59
5 claspscoredef 60/11154.05 0.91 542.64 80.09 318.97 4277.69
6 claspcmp score 58/11152.25 0.83 469.46 87.40 332.16 4280.92
7 pbmodels-pueble-MGS 54/11148.65 0.34 584.31 80.94 347.49 4491.85
8 default 51/11942.86 0.23 453.88 64.96 370.7 4543.12
9 smodelsrs 34/11828.81 0.30 539.33153.86471.45 5349.11
10 smodels 34/10432.69 1.14 584.06173.60 460.6 4974.14
11 pbmodels-wsatcc-MGS 23/11120.72 1.05 563.52136.97504.06 5409.17
12 smodelsrsn 22/11119.82 0.12 579.10163.14513.42 5471.81
13 nomore-default 13/11111.71 22.04 521.11315.78566.71 5714.67
14 scriptAtomreasonLp 12/24 50.00 3.59 259.88 91.18 345.59 2121.13
15 nomore-localprop 10/111 9.01 19.54 521.03324.83575.21 5787.71
16 nomore-D 9/111 8.11 48.50 473.89161.99564.49 5763.96
17 scriptEloopLp 4/16 25.00 49.92 223.03106.09476.52 2088.98
18 gnt 0/8 0.00 600 1696.31
19 dencode+gnt 0/8 0.00 600 1696.31
20 dencodebc+gnt 0/8 0.00 600 1696.31
21 script.assat.normal 0/50 0.00 600 4101.66

Table 3.Placing of call scripts in the MGS competition.

The winners of the MGS competition are:

Benchmark Class # Solved % SAT % UNSAT % min max avg

Sokoban8 16/16 100.00 6/6 100.00 10/10 100.0012.66 109.52 54.39
Weighted Spanning Tree8 89/127 70.08 89/127 70.08 0/0 0.06 579.10115.27

Social Golfer8 75/120 62.50 59/75 78.67 16/45 35.56 0.23 579.09 40.34
Bounded Spanning Tree8 73/127 57.48 73/127 57.48 0/0 0.23 519.09 65.47

Towers of Hanoi8 71/136 52.21 71/136 52.21 0/0 1.74 584.31101.10
Blocked N-Queens8 60/120 50.00 44/75 58.67 16/45 35.56 6.50 542.64181.69
Hamiltonian Cycle8 64/150 42.67 64/150 42.67 0/0 0.88 453.88 57.46

Weighted Latin Square8 41/120 34.17 22/45 48.89 19/75 25.33 0.12 477.67 93.04
Weight-Bounded Dominating Set8 42/127 33.07 42/127 33.07 0/0 0.83 563.39127.87

Schur Numbers8 32/120 26.67 18/90 20.00 14/30 46.67 3.27 468.79120.96
15-Puzzle7 24/105 22.86 24/105 22.86 0/0 52.91 579.14291.20

Car Sequencing8 25/120 20.83 24/105 22.86 1/15 6.67 0.69 563.52106.08
Fast Food8 19/127 14.96 8/64 12.50 11/63 17.46 5.30 352.11113.08

Traveling Salesperson8 16/128 12.50 16/128 12.50 0/0 0.72 11.18 2.17
Reachability8 8/160 5.00 6/120 5.00 2/40 5.00 0.26 169.90 49.48

Table 4.Benchmarks used in the MGS competition.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

ru
n

tim
e

(s
ec

)

solved instances

nomore-D
nomore-localprop

nomore-default
pbmodels-wsatcc-MGS
pbmodels-pueble-MGS

pbmodels-minisat+-MGS

claspcmp score2
claspcmp score
claspscoredef

smodelsrsn
smodelsrs

smodels

dlv-contest
dlv-contest-special

scriptEloopLp
scriptAtomreasonLp

default

Fig. 1.Chart of the MGS competition.

FIRST PLACE WINNER dlv
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER clasp

The detailed placement of call scripts is given in Table 3. Table 4 gives statistics about
the benchmark classes used in the MGS competition. The performance of all participat-
ing call scripts is also given in graphical form in Figure 1. Thereby, thex-axis represents
the number of (solved) benchmark instances, and they-axis represents time. For a given
call script, the solved instances are ordered by run times, and a point(x, y) in the chart
expresses that thexth instance was solved iny seconds. The more to the right the curve
of a call script ends, the more benchmark instances were solved within the allocated
time and space. Since the number of solved instances is our primary measure of perfor-
mance, the rightmost call script is the winner of the MGS competition.

6.2 Results of the SCore competition

Place Call Script Solved % min max avg avgt EuclDist

1 claspcmp scoreglp2 89/95 93.68 0.56 530.21 29.81 65.82 1080.46
2 claspcmp scoreglp 89/95 93.68 0.75 504.49 30.36 66.34 1099.14
3 claspscoreglp def 86/95 90.53 0.75 431.66 25.20 79.66 1386.63
4 smodelsrs score 81/95 85.26 1.21 346.36 38.93 121.61 1872.81
5 defaultGlparse.sh 81/95 85.26 1.35 597.97 46.86 128.38 2089.18
6 scriptAtomreasonGlparse 80/95 84.21 1.30 576.80 42.40 130.44 2107.83
7 pbmodels-minisat+-SCore80/95 84.21 0.72 436.11 57.18 142.89 2170.4
8 pbmodels-pueblo-SCore 78/95 82.11 0.34 452.84 41.00 141.03 2210.39
9 dencode+gntscore 78/95 82.11 1.27 363.19 42.80 142.51 2162.64
10 smodelsscore 77/95 81.05 1.28 352.41 40.40 146.43 2217.61
11 dencodebc+gntscore 77/95 81.05 1.27 360.70 42.52 148.15 2228.65
12 gnt score 77/95 81.05 1.27 359.77 42.56 148.18 2228.83
13 scriptEloopGlparse 75/95 78.95 1.36 598.20 42.86 160.15 2493.41
14 smodelsrsn score 75/95 78.95 1.21 486.23 63.00 176.05 2503.32
15 lp2sat+minisat 75/95 78.95 1.10 561.06 79.89 189.39 2621.13
16 wf+lp2sat+minisat 73/95 76.84 1.56 587.40 86.42 205.35 2792.51
17 dlv-contest-special 69/95 72.63 0.24 586.62102.47238.64 3090.71
18 dlv-contest 68/95 71.58 0.24 587.83 96.69 239.74 3110.36
19 lp2sat+siege 68/95 71.58 1.11 471.36 97.50 240.32 3052.8
20 nomore-localprop-SCore 64/95 67.37 2.45 550.43103.23265.34 3316.33
21 nomore-default-SCore 63/95 66.32 2.45 554.76124.62284.75 3415.78
22 nomore-D-SCore 62/95 65.26 2.77 559.88161.15313.59 3583.85
23 ASPeR-call-script 24/95 25.26 1.47 592.24 98.28 473.25 4906.79
24 ASPeRS30-call-script 21/95 22.11 1.51 561.20 88.99 487.04 4995.78
25 ASPeRS20-call-script 21/95 22.11 1.49 381.33 89.40 487.13 4980.24
26 pbmodels-wsatcc-SCore 6/95 6.32 25.57 529.80208.15575.25 5514.97

Table 5.Placing of call scripts in the SCore competition.

The winners of the SCore competition are:

FIRST PLACE WINNER clasp
SECOND PLACE WINNER smodels

THIRD PLACE WINNER cmodels

Benchmark Class # Solved % SAT % UNSAT % min max avg

15-Puzzle10 236/26090.77 121/13093.08 115/13088.46 0.74 480.13 25.49
Factoring 5 114/13087.69 46/52 88.46 68/78 87.18 1.21 554.76 50.35
RLP-15014 306/36484.07 21/26 80.77 285/33884.32 0.34 205.03 22.01
RLP-20014 287/36478.85 0/0 287/36478.85 0.39 581.98 75.21

Schur Numbers 5 99/13076.15 88/10484.62 11/26 42.31 2.76 561.20 49.82
EqTest 5 93/13071.54 0/0 93/13071.54 0.66 592.24 75.02

Hamiltonian Path14 219/36460.16 201/33859.47 18/26 69.23 0.24 559.88 64.74
Random Non-Tight14 216/36459.34 38/52 73.08 178/31257.05 0.57 598.20121.87
Blocked N-Queens14 167/36445.88 55/15635.26 112/20853.85 13.70 587.40110.59

Table 6.Benchmarks used in the SCore competition.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

ru
n

tim
e

(s
ec

)

solved instances

dlv-contest-special
dlv-contest

nomore-default-SCore
nomore-localprop-SCore

nomore-D-SCore
pbmodels-minisat+-SCore

pbmodels-pueblo-SCore
pbmodels-wsatcc-SCore

claspscoreglp def

claspcmp scoreglp
claspcmp scoreglp2

smodelsscore
smodelsrs score

smodelsrsn score
lp2sat+siege

lp2sat+minisat
wf+lp2sat+minisat
defaultGlparse.sh

scriptEloopGlparse
scriptAtomreasonGlparse

ASPeR-call-script
ASPeRS20-call-script
ASPeRS30-call-script

gnt score
dencode+gntscore

dencodebc+gntscore

Fig. 2. Chart of the SCore competition.

The detailed placement of call scripts is given in Table 5. Table 6 gives statistics about
the benchmark classes used in the SCore competition. The performance of all partici-
pating call scripts is charted in Figure 2.

The winners of the SCore∨ competition are:

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 54/55 98.18 0.03 258.7323.59 34.07 279.35
2 dlv-contest 54/55 98.18 0.03 259.9723.86 34.33 279.44
3 disjGlparseDefault 33/55 60.00 1.06 521.5954.49 272.69 2631.4
4 dencode+gntscore 29/55 52.73 2.23 521.5156.34 313.34 2922.73
5 gnt score 29/55 52.73 2.21 521.9156.44 313.4 2922.87
6 dencodebc+gntscore 29/55 52.73 2.22 522.6356.45 313.4 2923.17
7 disjGparseEloop 27/55 49.09 1.21 521.5533.83 322.06 2978.46
8 disjGparseVerMin 27/55 49.09 1.22 523.4033.98 322.14 2978.77

Table 7.Placing of call scripts in the SCore∨ competition.

Benchmark Class # Solved % SAT % UNSAT % min max avg

Grammar-Based Information Extraction15 120/120100.00 64/64 100.00 56/56 100.000.62 7.86 5.03
Disjunctive Loops 3 21/24 87.50 0/0 21/24 87.50 0.44 522.6395.24

Strategic Companies15 88/120 73.33 88/120 73.33 0/0 0.35 523.4071.22
Mutex 7 18/56 32.14 0/0 18/56 32.14 0.03 259.9737.41

Random Quantified Boolean Formulas15 35/120 29.17 0/0 35/120 29.17 0.11 290.9944.41

Table 8.Benchmarks used in the SCore∨ competition.

FIRST PLACE WINNER dlv
SECOND PLACE WINNER cmodels

THIRD PLACE WINNER gnt

The detailed placement of call scripts is given in Table 7. Table 8 gives statistics about
the benchmark classes used in the SCore∨ competition. The performance of all partici-
pating call scripts is charted in Figure 3.

6.3 Results of the SLparse competition

The winners of the SLparse competition are:

0

100

200

300

400

500

600

0 10 20 30 40 50 60

ru
n

tim
e

(s
ec

)

solved instances

dlv-contest-special
dlv-contest

disjGlparseDefault
disjGparseEloop

disjGparseVerMin
gnt score

dencode+gntscore
dencodebc+gntscore

Fig. 3. Chart of the SCore∨ competition.

Place Call Script Solved % min max avg avgt EuclDist

1 claspcmp slparse2 100/12778.74 0.38 556.49 75.96 187.37 2791.89
2 claspcmp slparse 94/12774.02 0.41 502.53 61.37 201.33 2919.46
3 pbmodels-minisat+-SLparse91/12771.65 0.49 503.57 76.69 225.03 3241.06
4 claspslparsedef 89/12770.08 0.37 546.50 55.62 218.5 3152.34
5 smodelsrs slparse 87/12768.50 0.23 576.28 95.92 254.69 3403.9
6 groundedDefault 81/12763.78 0.25 407.49 46.20 246.79 3448.34
7 scriptAtomreasonGr 81/12763.78 0.25 407.46 50.55 249.56 3465.67
8 scriptEloopGr 78/12761.42 0.24 407.48 46.15 259.84 3598.7
9 smodelsslparse 75/12759.06 0.26 518.08102.76306.35 3958.86
10 smodelsrsn slparse 74/12758.27 0.35 596.39 70.52 291.49 3815.31
11 pbmodels-pueblo-SLparse 69/12754.33 0.25 593.05 87.25 321.42 4189.03
12 nomore-D-slparse 54/12742.52 1.08 530.39152.78409.84 4765.06
13 nomore-localprop-slparse 50/12739.37 1.08 517.63120.80411.34 4846.58
14 nomore-default-slparse 49/12738.58 1.08 549.80143.44423.85 4920.23
15 gnt slparse 35/12727.56 2.10 482.13 81.40 457.08 5276.26
16 dencode+gntslparse 35/12727.56 2.18 482.81 81.64 457.15 5276.38
17 dencodebc+gntslparse 35/12727.56 2.10 485.36 81.70 457.16 5276.53
18 script.assat.lparse-output 30/12723.62 1.00 225.28 38.64 467.4 5379.18
19 pbmodels-wsatcc-SLparse 25/12719.69 1.12 272.98 46.56 491.05 5585.82

Table 9.Placing of call scripts in the SLparse competition.

Benchmark Class # Solved % SAT % UNSAT % min max avg

RLP-2005 89/95 93.68 18/19 94.74 71/76 93.42 0.25 465.69 60.94
RLP-1505 87/95 91.58 17/19 89.47 70/76 92.11 0.25 183.29 14.17
Factoring4 69/76 90.79 36/38 94.74 33/38 86.84 0.63 549.80 64.09

verifyTest-variableSearchSpace (TOAST)5 81/95 85.26 81/95 85.26 0/0 0.24 303.32 16.43
Random Non-Tight5 75/95 78.95 41/57 71.93 34/38 89.47 0.41 518.08123.56

Knight’s Tour 5 71/95 74.74 71/95 74.74 0/0 1.04 248.97 28.29
Su-Doku3 42/57 73.68 42/57 73.68 0/0 18.15 176.69 68.00

searchTest-plain (TOAST)5 68/95 71.58 18/38 47.37 50/57 87.72 1.54 339.51 45.50
searchTest-verbose (TOAST)5 63/95 66.32 63/95 66.32 0/0 25.84 485.36136.07

Hamiltonian Path5 60/95 63.16 60/95 63.16 0/0 0.37 530.39 58.02
Weighted Spanning Tree5 58/95 61.05 58/95 61.05 0/0 3.24 596.39122.04

Solitaire Forward5 55/95 57.89 55/95 57.89 0/0 1.19 593.05 49.06
Bounded Spanning Tree5 54/95 56.84 54/95 56.84 0/0 7.43 413.63 70.11

Hamiltonian Cycle5 51/95 53.68 51/95 53.68 0/0 0.47 464.71 51.30
Solitaire Backward5 47/95 49.47 33/76 43.42 14/19 73.68 0.30 552.11 71.72

Towers of Hanoi5 43/95 45.26 43/95 45.26 0/0 6.28 478.30169.96
Blocked N-Queens5 40/95 42.11 36/76 47.37 4/19 21.05 1.57 590.04193.59

Social Golfer5 37/95 38.95 24/38 63.16 13/57 22.81 0.84 291.48 30.70
Schur Numbers5 31/95 32.63 11/57 19.30 20/38 52.63 1.23 496.82104.57
Hashiwokakero5 26/95 27.37 0/0 26/95 27.37 6.71 377.69 72.36

Weighted Latin Square5 23/95 24.21 6/19 31.58 17/76 22.37 0.23 576.28144.13
15-Puzzle5 17/95 17.89 17/95 17.89 0/0 106.66502.53327.56

Weight-Bounded Dominating Set5 15/95 15.79 15/95 15.79 0/0 1.55 467.51112.55
Traveling Salesperson5 12/95 12.63 12/95 12.63 0/0 0.35 212.66 20.24
Solitaire Backward (2)5 11/95 11.58 11/95 11.58 0/0 5.32 330.89101.55

Car Sequencing5 7/95 7.37 7/95 7.37 0/0 7.17 556.49249.51

Table 10.Benchmarks used in the SLparse competition.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

ru
n

tim
e

(s
ec

)

solved instances

nomore-default-slparse
nomore-D-slparse

nomore-localprop-slparse
pbmodels-minisat+-SLparse

pbmodels-pueblo-SLparse
pbmodels-wsatcc-SLparse

claspslparsedef

claspcmp slparse
claspcmp slparse2

smodelsslparse
smodelsrs slparse

smodelsrsn slparse
groundedDefault

scriptEloopGr

scriptAtomreasonGr
script.assat.lparse-output

gnt slparse
dencode+gntslparse

dencodebc+gntslparse

Fig. 4. Chart of the SLparse competition.

FIRST PLACE WINNER clasp
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER smodels

The detailed placement of call scripts is given in Table 9. Table 10 gives statistics about
the benchmark classes used in the SLparse competition. The performance of all partic-
ipating call scripts is charted in Figure 4.

7 Discussion

ThisFirst Answer Set Programming System Competition offers many interesting lessons
stemming from running diverse solvers on multifaceted benchmark instances. Some of
the lessons may have general implications on the future developments in ASP.

First, the experiences gained from the effort to design the competition clearly point
out that the lack of well-defined input, intermediate, and output languages is a major

problem. In some cases, it forced the competition team to resort to “ad hoc” solutions.
Further, there is no standard core ASP language covering programs with aggregates,
which makes it difficult to design a single and fair field for all systems to compete.
No standard way in which errors are signaled and no consensuson how to deal with
incomplete solvers are somewhat less critical but also important issues. Benchmark
selection is a major problem. The way benchmarks and their instances are chosen may
have a significant impact on the results in view of diverging performances of solvers and
different degrees of difficulty among the instances of benchmark classes. Sometimes
even grounding problem encodings on problem instances to produce ground programs
on which solvers were to compete was a major hurdle (see below).

This first edition of the competition focused on the performance of solvers on
ground programs, which is certainly important. However, the roots of the ASP approach
are in declarative programming and knowledge representation. For both areas,model-
ing knowledge domains and problems that arise in them is of majorconcern (this is
especially the case for knowledge representation). By developing the MGS category,
we tried to create a platform where ASP systems could be differentiated from the per-
spective of their modeling functionality. However, only one group chose to develop
programs specialized to their system (hence, this group andtheir system are the well-
deserved winner). All other groups relied on default encodings. It is critical that a better
venue for testing modeling capabilities is provided for future competitions.

Further, not only modeling support and the performance of solvers determine the
quality of an ASP system. Grounding is an essential part of the process too and, in some
cases, it is precisely where the bottleneck lies. The MGS category was the only category
that took both the grounding time and the solving time into account. It is important to
stress more the role of grounding in future competitions.

There will be future competitions building on the experiences of this one. Their
success and their impact on the field will depend on continuedbroad community partic-
ipation in fine-tuning and expanding the present format. In this respect, theFirst Answer
Set Programming System Competition should encourage the further progress in the de-
velopment of ASP systems and applications, similar to competitions in related areas,
such as SATisfiability, Quantified Boolean Formulas, and Pseudo-Boolean constraints.

Acknowledgments

This project would not have been possible without strong andbroad support from the
whole ASP community. We are grateful to all friends and colleagues who contributed
ideas on the contest format, submitted benchmark problems,and provided continued
encouragement. Most of all, we want to thank all the competitors. Without you, there
would have been no competition.

Mirosław Truszczyński acknowledges the support of NSF grant IIS-0325063 and
KSEF grant 1036-RDE-008.

References

1. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273

2. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In Apt, K., Marek, W., Truszczyński, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999) 375–398

3. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-prolog
perspective. Artificial Intelligence138(1-2) (2002) 3–38

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication homme-
machine en Francais. Technical report, University of Marseille (1973)

6. Kowalski, R.: Predicate logic as a programming language.In Rosenfeld, J., ed.: Proceedings
of the Congress of the International Federation for Information Processing, North Holland
(1974) 569–574

7. McCarthy, J.: Circumscription — a form of nonmonotonic reasoning. Artificial Intelligence
13(1-2) (1980) 27–39

8. Reiter, R.: A logic for default reasoning. Artificial Intelligence13(1-2) (1980) 81–132
9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,

R., Bowen, K., eds.: Proceedings of the International Conference on Logic Programming,
MIT Press (1988) 1070–1080

10. Gelfond, M., Lifschitz, V.: Classical negation in logicprograms and disjunctive databases.
New Generation Computing9(3-4) (1991) 365–385

11. Marek, W., Truszczyński, M.: Stable semantics for logic programs and default theories.
In Lusk, E., Overbeek, R., eds.: Proceedings of the North American Conference on Logic
Programming, MIT Press (1989) 243–256

12. Bidoit, N., Froidevaux, C.: Negation by default and unstratifiable logic programs. Theoretical
Computer Science78(1) (1991) 85–112

13. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, Springer (1997)
364–375

14. Niemelä, I., Simons, P.: Smodels — an implementation ofthe stable model and well-founded
semantics for normal logic programs. In Dix, J., Furbach, U., Nerode, A., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (1997) 420–429

15. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.:Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemelä, I., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (2004) 3–7

16. Le Berre, D., Simon, L., eds.: Special Volume on the SAT 2005 Competitions and Evalua-
tions. Journal on Satisfiability, Boolean Modeling and Computation2(1-4) (2006)

17. (http://asparagus.cs.uni-potsdam.de/contest)
18. (http://asparagus.cs.uni-potsdam.de)
19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

20. Syrjänen, T.: Lparse 1.0 user’s manual. (http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz)

