
Answer Set Optimization�
Gerhard Brewka

Comp. Sci. Institute
University of Leipzig

Leipzig, Germany
brewka@informatik.uni-leipzig.de

Ilkka Niemel ä
Dept. of Comp. Sci. and Eng.

Helsinki University of Technology
Helsinki, Finland

Ilkka.Niemela@hut.fi

Mirosław Truszczyński
Dept. of Comp. Sci.

University of Kentucky
Lexington, KY 40506-0046, USA

mirek@cs.uky.edu

Abstract

We investigate the combination of answer set pro-
gramming and qualitative optimization techniques.
Answer set optimization programs (ASO pro-
grams) have two parts. The generating programPgen produces answer sets representing possible
solutions. The preference programPpref expresses
user preferences. It induces a preference relation
on the answer sets ofPgen based on the degree to
which rules are satisfied.
We discuss possible applications ofASO program-
ming, give complexity results and propose imple-
mentation techniques. We also analyze the relation-
ship betweenASO programs andCP -networks.

1 Introduction
Answer set semantics[Gelfond and Lifschitz, 1991] de-
scribes the meaning of a logic programP in terms of sets
of literals. The exact definition of answer sets depends on
the kind of rules used inP , yet two properties are always re-
quired. Answer sets are closed under the rules ofP , and they
are grounded inP : each literal has a derivation using “appli-
cable” rules fromP . Answer set programming has become
a popular knowledge representation tool. There are several
reasons for this:

1. Logic programs are expressive enough to model many typ-
ical knowledge representation problems in AI. In particu-
lar, the availability of default negation in the body of rules
makes it possible to represent defeasible information.

2. Many problems in reasoning about actions, planning, diag-
nosis, belief revision and product configuration have ele-
gant formulations as logic programs so that models of pro-
grams, rather than proofs of queries, describe problem so-
lutions[Lifschitz, 2002; Soininen, 2000; Baral, 2003].

3. The semantics of answer sets is intuitive and avoids the pit-
falls of resolution-based systems like Prolog. For instance,
it is independent of the order in which rules are written and
correctly handles loops.�The authors acknowledge the support of DFG grant Computa-

tionale Dialektik BR 1817/1-5, Academy of Finland grant 53695
and NSF grant IIS-0097278, respectively.

4. In the same time, the syntax of logic programs is restric-
tive enough to allow for fast implementations and several
highly efficient answer-set provers have been developed.
Most advanced among them areSmodels[Niemelä and Si-
mons, 1997] anddlv [Eiter et al., 1998].

To increase the ease of use of logic programs in knowledge
representation researchers have suggested and investigated
several extensions to the basic formalism. Well-known ex-
amples of such extensions include disjunctive logic programs
and programs with cardinality and weight constraints[Si-
monset al., 2002].

An important issue for many applications is the represen-
tation of preferences and reasoning about them. Researchers
have investigated preferences among program rules[Schaub
and Wang, 2001], among program literals[Sakama and In-
oue, 2000], and context-dependent preferences among literals
through the use of ordered disjunction[Brewka, 2002].

Representing and handling preferences in the formalism of
logic programs is also the main topic of this paper. However,
our approach differs from existing ones in an important as-
pect. Rather than specifying a preference relation among the
rules or literals in a single logic program, we use two differ-
ent programs. The first program,Pgen , is used togenerate
answer sets, that is, define the space ofacceptablesolutions.
Context-dependent preferences are described in a second pro-
gram, the preference programPpref . These preferences are
used tocompareanswer sets ofPgen , that is, to form a pref-
erence ordering of acceptable solutions. Intuitively, the rules
of Pgen are hard constraints which specify conditions an an-
swer setmustsatisfy; the rules ofPpref are soft constraints
describing conditions under which one answer set is to be
considered better than another.

The decoupling of answer-set generation and answer-set
comparison has at least two advantages:

1. The method for comparing answer sets is independent of
the type of the generating programPgen . It may be any
type of a logic program (for instance, normal, extended,
disjunctive, involving cardinality or weight atoms), as long
as it has a well-defined semantics given by a collection of
sets of literals.

2. Preferences inPpref (soft constraints) can be specified in-
dependently ofPgen (hard constraints). This makes pref-
erence elicitation easier since the task is broken into sepa-

rate and smaller subtasks. Moreover, it makes the overall
setting better aligned with practical applications. Indeed,
often what is possible is determined by external factors
(available resources, constraints of the environment, de-
sign and engineering constraints for products) while what
is preferred is described independently and by different
agents (users, customers, groups of customers).

The rest of the paper is organized as follows. The next
section introduces a new formalism, answer-set optimization
programs, and defines their syntax and semantics. The subse-
quent section provides examples and additional observations
on the basic formalism. In Section 4, we show how meta-
preferences, that is, preferences on the preference rules, can
be introduced and dealt with. Next, we discuss complexity
of computational problems arising in the context of our for-
malism and propose implementation techniques. Our work is
related to the approach proposed in[Boutilier et al., 1999].
We investigate this relationship in Section 6. We conclude
with additional discussion of other related work and possible
extensions to the formalism presented here.

2 Optimization programs
We use two separate programs to describe the space of answer
sets and preferences among them.

Definition 1 Let A be set of atoms. Apreference program
overA is a finite set of rules of the formC1 > : : : > Ck a1; : : : ; an; not b1; : : : ; not bm (1)

where theais andbjs are literals (expressionsx and :x,
wherex is an atom inA), and theCis are boolean combi-
nations overA (to be defined below).

The rule intuitively reads: if an answer setS containsa1; : : : ; an and does not contain any of the literalsb1; : : : ; bm
thenC1 is preferred overC2, C2 overC3, etc. (we will give
a precise semantics later in this section).

A boolean combinationoverA is a formula built of atoms
in A by means of disjunction, conjunction, strong (:) and de-
fault (not) negation, with the restriction that strong negation
is allowed to appear only in front of atoms, and default nega-
tion only in front of literals. For example,a ^ (b _ not :c)
is a boolean combination, whereas:(a _ b) is not. Using
boolean combinations rather than, say, literals in the heads
of preference rules gives us additional expressiveness. Us-
ing conjunction we can express that certain combinations of
properties are preferred over other combinations. Disjunction
allows us to express that certain options are equally preferred.
For instance, the rulea > (b _ c) > d f says that in case
of f the best option isa; b andc are equally preferred second
best options, andd is the least preferred option. Finally, we
can use expressions likea > b > c > (not a^not b^not c)
if we prefer to have one of propertiesa; b; c over not having
any of them.

Definition 2 Let S be a set of literals. Satisfaction of a
boolean combinationC in S (denotedS j= C) is defined
as: S j= l (l literal) iff l 2 SS j= not l (l literal) iff l 62 S

S j= C1 _ C2 iff S j= C1 or S j= C2S j= C1 ^ C2 iff S j= C1 andS j= C2.

We next define the notion of an optimization program.
Definition 3 An answer-set optimization(ASO) program is
a pair (Pgen ; Ppref), wherePgen is a logic program called
thegenerating program, andPpref is a preference program.

As we already mentioned earlier, the programPgen used for
generating answer-sets can be ofany type. We only require
that the semantics be given in terms of sets of literals, oran-
swer sets, that are associated with programs.

The key question is: how does the preference programPpref determine a preference ordering on the answer sets de-
scribed by the generating programPgen? Let us consider an
answer setS and a rule of the form (1). Given a setS of
literals, three different situations are possible:

1. the body ofr is not satisfied inS, that is,ai 62 S for somei 2 f1; : : : ; ng, or somebj 2 S, for j 2 f1; : : : ;mg
2. the body ofr is satisfied inS and none of theCis is satis-

fied inS
3. the body ofr is satisfied inS and at least oneCi is satisfied

in S.

In the case (1), the ruler is irrelevant to S because the rule
does not apply. The case (2) is more subtle: the rule lists
preferences among several options, yet none of the options
holds. We consider this asanotherkind of irrelevance. Let us
assume that a rule states thatred is better thangreen, andS
containsblue and no other color. In this case the preference
of red over green appears irrelevant toS sinceS does not
mention these two colors at all. In the case (3), the preference
expressed in the rule is satisfied to some degree (as at least
oneCi holds inS). Thus, we define thesatisfaction degree
of r in S, vS(r), by settingvS(r) = I , if r is irrelevant toS,
andvS(r) = minfi:S j= Cig, otherwise.

Concerning the relationship betweenI and the other sat-
isfaction degrees, two viable options seem to exist. We can
considerI asincomparableto other values, based on the view
that “irrelevance” cannot be compared topropersatisfaction
degrees. According to this view, selectingblue in the ex-
ample above is neither better nor worse than selectinggreen
or red. But one can also argue thatgreen violates prefer-
ences whereasblue does not, and thatblue is thus preferable
to green. We will adopt this latter view here and use the fol-
lowing preorder� to compare satisfaction degrees (Fig. 1):21; I� � �

Fig.1: The preorder on satisfaction degrees
The valuesI and 1 are regardedequally good(1 � I andI � 1) and better than all others. In addition, for eachx, we
havex � x. We writex > y if x is strictly better thany.
Definition 4 LetPpref = fr1; : : : ; rng be a preference pro-
gram and letS be an answer set. We say thatS induces a
satisfaction vectorVS = (vS(r1); : : : ; vS(rn)):

We extend the preorder on satisfaction degrees to preorders
on satisfaction vectors and answer sets as follows:

Definition 5 LetS1 andS2 be answer sets. We writeVS1 �VS2 if vS1(ri) � vS2(ri), for everyi 2 f1; : : : ; ng. We writeVS1 > VS2 if VS1 � VS2 and for somei 2 f1; : : : ; ng,vS1(ri) > vS2(ri). In these cases we also writeS1 � S2
andS1 > S2, respectively.

We refer to this ordering as thepreference satisfaction order-
ing (or ps-ordering, for short).

Definition 6 A set of literalsS is an optimal model of anASO program (Pgen ; Ppref) if S is an answer set ofPgen
and there is no answer setS0 ofPgen such thatS0 > S.

3 Examples
The prototypical application forASO programs are configu-
ration problems wherePgen describes possible configurations
andPpref preferences among them. We use a dinner example
similar to the one discussed in[Brewka, 2002]. It is conve-
nient to use programs with cardinality constraints to generate
answer sets. Such programs allow for the use of special atoms
of the formnfa1; : : : ; akgm; where theai are literals, to rep-
resent: at leastn and at mostm of theai are true. Although
rules built from cardinality constraints can, in principle, be
replaced by sets of rules without such constraints, they make
problem specifications much more concise and readable. For
the precise definitions we refer the reader to[Simonset al.,
2002].

Let us assume thatPgen consists of the rules:1fsoup; saladg11fbeef ;�shg11fpie; ice-creamg11fred ;white ; beerg1:
Each of these constraints enforces the selection of exactlyone
of the items it lists into an answer set. Thus,Pgen generates
the space of2� 2� 2� 3 = 24 answer sets. Let us assume
thatPpref is:white > red > beer �shred _ beer > white beefpie > ice-cream beer :
This preference program designates as non-preferred all an-
swer sets containingfish but notwhite, all answer sets con-
tainingbeef but notred or beer, and all answer sets contain-
ing beer and notpie. We note that the objective is not to have
these answer setseliminated, which could be accomplished
simply by adding the three constraints �sh ; not white beef ; not red ; not beer beer ; not pie :
to the original program. The role of the preference program
is to definesoft constraintsand, moreover, to do so indepen-
dently of the generating program. For instance, if we later
learn that constraintsF = f red ; white ; pieg need
to be included inPgen , the additional constraints would lead
to inconsistency. This does not happen in our approach. The
answer sets generated by the extended program are:

S1 = fice-cream; beer ; beef ; soupgS2 = fice-cream; beer ; beef ; saladgS3 = fice-cream; beer ;�sh ; soupgS4 = fice-cream; beer ;�sh ; saladg
Their satisfaction vectors areV1 = (I; 1; 2), V2 = (I; 1; 2),V3 = (3; I; 2), andV4 = (3; I; 2), respectively. Thus,S1
andS2 are equally good and are maximally preferred in the
presence ofF to S3 andS4, the latter two answer sets being
also equally good.

4 Meta-preferences
The notion of optimality underlying our approach is some-
what weak. In general, many optimal answer sets may exist,
and one often wants additional means to express that one pref-
erence (that is, one rule in the programPpref) is more impor-
tant than another. Here is a generalization ofASO programs
where it is possible to express such meta-preferences:

Definition 7 A rankedASO programP is a sequence(Pgen ; P 1pref ; : : : ; Pnpref)
consisting of a generating programPgen and a sequence of
pairwise disjoint preference programsP ipref .
Therankof a ruler 2 P 1pref [: : : [Pnpref , denotedrank(r),
is the unique integeri for whichr 2 P ipref .

Intuitively, preference rules with lower rank are preferred
over preference rules with higher rank. We can now mod-
ify the definition of preference among answer sets by taking
preferences among rules into account:

Definition 8 Let P = (Pgen ; P 1pref ; : : : ; Pnpref) be a ranked
ASO program. LetS1 andS2 be answer sets ofPgen . We
defineS1 �rank S2 if for every preference ruler0 such thatvS1(r0) � vS2(r0) does not hold, there is a ruler00 such thatrank(r00) < rank(r0) andvS1(r00) > vS2(r00).
Clearly, the preorder�rank extends (is stronger than) the pre-
order�. It is also easy to see that�rank -optimal answer sets
can be obtained in the following way: select all answer sets
optimal wrtP1, among those pick the ones optimal wrtP2
and so on.

A further generalization of ranked to partially orderedASO programs is straightforward and not presented here for
lack of space.1

In some cases a natural ordering of the preference rules can
be derived from the structure of the preference program. For
each preference programP we define its dependency graphG(P) as follows. The atoms appearing inP form the vertex
set ofG(P). There is a directed edge from a vertexb to a
vertexa in G(P) if there is a ruler in P such thata appears
in the head ofr andb appears in the body ofr.

If the graphG(P) is acyclic, there is a natural ranking of
its atoms. Namely, we define the rank of an atoma, rank(a),
recursively as follows:rank(a) = 0 for every atoma that
has no predecessors inG(P); otherwise, we definerank(a)

1Another possible extension concerns the setting of weighted
preference rules. To compare answer sets one could use weighted
sums of the violation degrees of preference rules.

as the maximum of the ranks of all predecessors ofa inG(P)
incremented by 1.

The ranking of atoms implies the ranking of rules. Namely,
we define the rank of a preference ruler, rank(r), as the
maximum rank of an atom appearing in the head ofr.

We call preference programs with acyclic dependency
graphsacyclic preference programs. They are important for
two reasons:
1. They commonly appear in practice as preferences are of-

ten described according to some partial order on features
defining answer sets, with some features being more im-
portant than others. For instance, in the dinner example,
most users will start with the preferences concerning the
main course. They could then condition their preferences
concerning the appetizer and the beverage on the choice of
the main course. And, finally, they may describe their pref-
erences concerning the dessert based on earlier choices of
the main course, appetizer and beverage.

2. As we just demonstrated, in the case whenG(P) is
acyclic, there exists a natural ranking on the rules. This
ranking is implied by the program itself and allows us
to strengthen our ordering relation on answer sets, as de-
scribed above in Definition 8. We call the resulting order-
ing determined by an acyclic preference program — the
canonical ps-ordering.

5 Complexity and implementation
The complexity ofASO programs depends on the class of
generating programs. To simplify the treatment we con-
sider here only generating programs where deciding exis-
tence of an answer set isNP-complete. This class of pro-
grams includes ground normal programs (possibly extended
with strong negation or weight and cardinality constraints)
[Simonset al., 2002].

The following two results indicate that allowing prefer-
ences adds an extra layer of complexity.

Theorem 1 LetP = (Pgen ; Ppref) be anASO program andS an answer set ofPgen . Then deciding whetherS is optimal
is coNP-complete.

Theorem 2 Given anASO programP and a literall decid-
ing whether there is an optimal answer setS such thatl 2 S
is�P2 -complete.

The complexity results imply that (unless the polynomial
hierarchy collapses) preference rules cannot be translated to
generating rules in polynomial time, i.e., the problem of find-
ing an optimal answer set for anASO program cannot be
mapped in polynomial time to a problem of finding an answer
set of a program obtained by translating theASO program to
a set of generating rules only.

However, in[Brewkaet al., 2002] an implementation tech-
nique for computing optimal answer sets for logic programs
with ordered disjunction on top of a standard answer set
prover has been developed. A similar technique has earlier
been used in[Janhunenet al., 2000] to compute stable models
of disjunctive logic programs usingSmodels. The computa-
tion is based on a tester program that takes as input an answer
set and generates a strictly better one if such an answer set

exists. The computation starts with an arbitrary answer set
generated by the generator. This answer set is given to the
tester program. If the tester fails to generate a strictly better
one, we have found an optimal answer set and we are done. If
a strictly better answer set is discovered, the tester is run with
the new answer set as input. This continues until an optimal
answer set is reached.

This technique can be adapted for computing optimal an-
swer sets of an ASO program(Pgen ; Ppref) by choosing a
suitable tester programPT for a given answer setS0. The
tester programPT is constructed by adding the following
rules to the generator programPgen :2

1. For each preferencer 2 Ppref include a factv0(r; d)
whered is the satisfaction degree ofr in S0.

2. Include rules not betterbetter v0(R; V0); v1(R; V1);geq(V1; V0); not geq(V0; V1) v0(R; V0); v1(R; V1); not geq(V1; V0):
3. Add factsgeq(d1; d2) giving the preorder� on the setfirr; 1; 2; : : :g .
4. For each Boolean combinationCi in Ppref (and its non-

atomic subexpressions) introduce a new atomci and add
rules capturing the conditions under which the expression
is satisfied. For example, ifCi is a disjunctionCh _ Cl,
then add rulesci ch andci cl.

5. For each preferencer 2 Ppref of the form (1) add rulesbody(r) a1; : : : ; an; not b1; : : : ; not bmheads(r) ci (for eachCi)v1(r; irr) not body(r)v1(r; irr) not heads(r); body(r)v1(r; 1) c1; body(r)v1(r; 2) not v1(r; 1); c2; body(r): : :v1(r; k) not v1(r; 1); : : : ; not v1(r; k � 1);ck; body(r):
If PT has an answer setS, thenS restricted to the original
language ofPgen is an answer set forPgen that is strictly
preferred toS0, and ifPT has no answer set, no such answer
set exists.

6 Relationship toCP -networks
An important approach to the problem of eliciting and ap-
proximating preferences is that ofCP -networks proposed
and developed in[Boutilier et al., 1999]. We will now review
this approach and show how it relates to our work.

The approach ofCP -networks is concerned with compar-
ing vectors of feature values that we callconfigurations. LetA = fA1; : : : ; Akg be a set of features (attributes). For each
featureAi, let Di be its domain, that is, a finite and non-
empty set ofvaluesor selectionsfor Ai. We assume that all
domains are pairwise disjoint. Aconfigurationis a k-tuple(v1; : : : ; vk) such thatvi 2 Di, 1 � i � k.

2We follow the Prolog convention that terms starting with capital
letters are variables and writeirr rather thanI to avoid confusion.

The user prefers some configurations to others. Since
the number of configurations is, in general, exponential inj [ki=1 Dij, it may be impractical to directly elicit and store
the user’s preference ordering on the set of all configurations.
Thus, the task is to identify partial (and, in some sense, basic)
information about the user’s preferences, and develop ways
to approximate the preference ordering implied by this par-
tial information. The formalism ofCP -networks[Boutilier
et al., 1999] is an approach to accomplish that.

A CP -networkover a set of featuresA is a pair(G;P),
whereG is a directed graph whose vertices are features fromA. The edges of the graphG determine dependencies among
features: preferences for a value for a featureA depend only
on values selected for the parents ofA in the network. Thus,
for each featureA and for each selection of values for the
parent features forA, aCP -network specifies a total ordering
relation on the domain ofA. All these total orderings form
the componentP of aCP -network3.

The information contained in aCP -network implies pref-
erences among configurations. A configurationV is one-step
preferredto a configurationW if for some featureA (given
a configurationU , by U(A) we denote the value from the
domain ofA selected toU):

1. V (B) = W (B) for every featureB 2 A n fAg (that is,
for every feature other thanA), and

2. V (A) is strictly preferred toW (A) in the ordering of the
domainD of A specified by the network for the selection
for the parents ofA as given byV (or, equivalently, byW).

The configurationV is CP -preferredto W if V can be ob-
tained fromW by a sequence of one-step improvements. It
is easy to see that for acyclicCP -networks (acyclic networks
seem to arise in most situations occurring in practice) this or-
dering is indeed a partial ordering; we call it aCP -ordering4.

We will now show that the information represented by aCP -networkN (with featuresA = fA1; : : : ; Akg) can be
represented by means ofASO programs. First, we specify
the space of all configurations as answer sets to the programPgen(N) that, for each featureAi 2 A (1 � i � k) contains
the following rule (we assume here thatDi = fd1; : : : ; dng):1fd1; : : : ; dng1:
As already discussed in Section 3, such rule enforces the se-
lection of exactly one of the listed values to an answer set.
Thus, answer sets of the programPgen(N) are precisely the
configurations ofN .

To specify preferences, we proceed as follows. LetA be
a feature and letB = fB1; : : : ; Brg be the set of its par-
ents in theCP -network. For every selection(v1; : : : ; vr)
of values of featuresB1; : : : ; Br, respectively, the network
specifies an ordering, sayd1 > : : : > dn, on the domain

3The restriction that domains be totally ordered can be dropped.
We adopt it, following[Boutilier et al., 1999] to keep the discussion
simple.

4This ordering captures the intuitionceteris paribusor all other
things being equal, the aspect that is discussed in detail in[Boutilier
et al., 1999].

D = fd1; : : : ; dng of A. We represent that fact by including
a rule d1 > : : : > dn v1; : : : ; vr
in the preference programPpref (N).

Thus, at the level of syntax, our approach extends that ofCP -nets. In particular,[Boutilier et al., 1999] is concerned
only with one fixed space of all configurations that contain for
every feature exactly one value from its domain. In contrast,
in our approach we have a substantial flexibility in defining
answer sets by varying the generator program.

In addition, our approach is more robust when user prefer-
ences are inconsistent, the situation that often occurs in prac-
tice. For instance, the user may specify a preference rulea > b body1 andb > a body2 unaware of situations
where bothbody1 andbody2 are satisfied. Such inconsisten-
cies cannot be modeled byCP -networks. In our approach
they can with the effect that one of the preference rules will
be violated whenever both bodies are true.

The key question is that of the relationship between the
semantics of the two approaches. First, we observe that they
are different. Let us consider the following example from
[Boutilier et al., 1999]. There are two featuresA andB with
valuesa, a0, andb, b0, respectively. FeatureB depends on
featureA and the preferences are specified as follows (we
give them in the notation ofASO programs):a > a0b > b0 ab0 > b a0.
In the CP -ordering,S1 = fa; b0g is preferred overS2 =fa0; b0g as there is a one-step improvement leading fromS2
to S1. On the other hand, none ofS1 andS2 is strictly pre-
ferred over the other in the ps-ordering (the corresponding
satisfaction-degree vectors are:(1; 2; I) and(2; I; 1), respec-
tively). The reason is that the meaning of the rules in the
two approaches is slightly different. In theCP -net approach,x > x0 body means (x andx0 form the domain of a fea-
tureX): among all answer sets satisfyingbody , answer setS1 is better thanS2 if both agree on all features exceptX
andS1 makesx true andS2 makesx0 true. In our approachx > x0 body is more like a soft constraint expressing:
wheneverbody is true there is a reason to preferx overx0.
Here, among the answer sets satisfyingbody , an answer setS1 is preferred overS2 if x 2 S1, x0 2 S2, and the other
rules of the program are satisfied at least as well inS1 as inS2. In a sense, what is different is the interpretation of the
ceteris paribus — other things being equal — phrase, more
precisely, the interpretation of what is meant by the “other
things” that have to be equal. In theCP -network approach
the “other things” are the selections of values for other fea-
tures which have to be the same. In our approach it is the
degree of satisfaction of the other rules in the program.

In general, our basic approach yields a weaker ordering.
Namely, we have the following theorem.

Theorem 3 Let N be an acyclicCP -network and letV
andW be two configurations. IfV is strictly preferred toW under the ps-ordering determined by theASO program(Pgen(N); Ppref (N)), thenV is strictly preferred toW un-
der theCP -ordering implied byN .

It is easy to see that the representation of an acyclicCP -
network in our syntax results in an acyclic preference pro-
gram. In this case, we have the following result.

Theorem 4 LetN be an acyclicCP -network and letV andW be two configurations. IfV is strictly preferred toW un-
der theCP -ordering determined by theCP -netN , thenV is
strictly preferred toW under the canonical ps-ordering de-
termined by theASO program(Pgen (N); Ppref (N)).

These two theorems show that we can approximate theCP -ordering by means of orderings implied by our approach.
It is important as the relationship between two answer sets
with respect to (ranked) ps-ordering can be verified in poly-
nomial time, while it is not known whether polynomial time
algorithms exist in the case of theCP -ordering (in fact, there
are examples of configurations that require an exponentially
long chain of one-step improvements to demonstrate that one
is preferred to the other).

7 Further related work and conclusions
In this paper we have introducedASO programs which com-
bine a generating program with a preference program. The
combination allows us to specify possible solutions of a prob-
lem (answer sets) together with preferences among specific
aspects of solutions. The preference program orders the an-
swer sets according to the satisfaction degrees of its prefer-
ence rules.

Numerous papers which introduce preferences to logic pro-
gramming exist in the literature. For an overview of some of
them see for instance[Schaub and Wang, 2001]. Closest to
ours is the proposal in[Brewka, 2002; Brewkaet al., 2002].
Here, preferences are expressed through ordered disjunction.
Ordered disjunction is a non-commutative kind of disjunction
which gives preference to the first disjunct over the second.
The approach presented here differs from ordered disjunction
in the following respects:
1. generation and comparison of answer sets are separated,
2. preference handling works independently of the type of

program used for answer set generation,
3. more general preferences can be stated due to our use of

boolean combinations.
In fact, it is not difficult to show that logic programs with
ordered disjunction (LPODs) are a special case of our ap-
proach. LetP be anLPOD, Pgen a logic program possess-
ing the same answer sets asP , and letPpref = fc1 > : : : > cn body : c1�: : :�cn body 2 Pg
The preferred answer sets ofP under the Pareto criterion
(cf. [Brewka et al., 2002]) and those of the correspond-
ing ASO program coincide. We can also capture the inclu-
sion based preference criterion from[Brewka et al., 2002]
using appropriate rankedASO programs. For each rulec1 � : : : � cn body 2 P and for eachi � n we have to
includec1 _ : : : _ ci > > body in the preference programP ipref . This gives us exactly the inclusion-preferred answer
sets ofP .

In future work we plan to investigate further generaliza-
tions of our approach where rule heads may contain arbitrary

partial orders on boolean combinations. We intend also to
study in depth the distinction between options being “equally
good” and “incomparable”. Finally, we will study extensions
of the one-step improvement concept fromCP -networks to
the setting of general ASO programs.

References
[Baral, 2003] C. Baral. Knowledge representation, reason-

ing and declarative problem solving. Cambridge Univer-
sity Press, 2003. ISBN 0521818028.

[Boutilier et al., 1999] C. Boutilier, R.I. Brafman, H.H.
Hoos, and D. Poole. Reasoning with conditional ceteris
paribus preference statements. InProc. UAI-99, 1999.

[Brewkaet al., 2002] G. Brewka, I. Niemelä, and T. Syr-
jänen. Implementing ordered disjunction using answer
set solvers for normal programs. InProc. JELIA 2002.
Springer Verlag, 2002.

[Brewka, 2002] G. Brewka. Logic programming with or-
dered disjunction. InProc. AAAI-02. Morgan Kaufmann,
2002.

[Eiteret al., 1998] T. Eiter, N. Leone, C. Mateis, G. Pfeifer,
and F. Scarcello. The KR system dlv: Progress report,
comparisons and benchmarks. InProc. Principles of
Knowledge Representation and Reasoning, KR-98. Mor-
gan Kaufmann, 1998.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases.New Generation Computing, 9:365–385, 1991.

[Janhunenet al., 2000] T. Janhunen, I. Niemelä, P. Simons,
and J.-H. You. Unfolding partiality and disjunctions in
stable model semantics. InProc. Principles of Knowl-
edge Representation and Reasoning, KR-00, pages 411–
419. Morgan Kaufmann, 2000.

[Lifschitz, 2002] V. Lifschitz. Answer set programming and
plan generation. Artificial Intelligence Journal, 138(1-
2):39–54, 2002.

[Niemelä and Simons, 1997] I. Niemelä and P. Simons. Effi-
cient implementation of the stable model and well-founded
semantics for normal logic programs. InProc. 4th Intl.
Conference on Logic Programming and Nonmonotonic
Reasoning. Springer Verlag, 1997.

[Sakama and Inoue, 2000] C. Sakama and K. Inoue. Prior-
itized logic programming and its application to common-
sense reasoning.Artificial Intelligence, 123(1-2):185–222,
2000.

[Schaub and Wang, 2001] T. Schaub and K. Wang. A com-
parative study of logic programs with preference. InProc.
IJCAI-01, 2001.

[Simonset al., 2002] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[Soininen, 2000] T. Soininen. An Approach to Knowledge
Representation and Reasoning for Product Configuration
Tasks. PhD thesis, Helsinki University of Technology, Fin-
land, 2000.

