brewka@informatik.uni-leipzig.de

1

Answer Set Optimization

Gerhard Brewka
Comp. Sci. Institute
University of Leipzig

Leipzig, Germany

Abstract

We investigate the combination of answer set pro-
gramming and qualitative optimization techniques.
Answer set optimization programsA§O pro-
grams) have two parts. The generating program
Py, produces answer sets representing possible
solutions. The preference progrd?p,.; expresses
user preferences. It induces a preference relation
on the answer sets df,.,, based on the degree to
which rules are satisfied.

We discuss possible applications4o§ 0O program-
ming, give complexity results and propose imple-
mentation techniques. We also analyze the relation-
ship betweem SO programs and’P-networks.

Introduction

Answer set semanticBGelfond and Lifschitz, 1991de-
scribes the meaning of a logic prografhin terms of sets

of literals. The exact definition of answer sets depends o
the kind of rules used i, yet two properties are always re-

quired. Answer sets are closed under the ruleB,aind they

are grounded irP: each literal has a derivation using “appli-
cable” rules fromP. Answer set programming has become
a popular knowledge representation tool. There are sever

reasons for this:

llkka Niemel &

Dept. of Comp. Sci. and Eng.
Helsinki University of Technology
Helsinki, Finland
llkka.Niemela@hut.fi

Mirostaw Truszczynski
Dept. of Comp. Sci.
University of Kentucky
Lexington, KY 40506-0046, USA
mirek@cs.uky.edu

4. In the same time, the syntax of logic programs is restric-
tive enough to allow for fast implementations and several
highly efficient answer-set provers have been developed.
Most advanced among them @model$Niemela and Si-
mons, 199¥anddlv [Eiter et al,, 1999.

To increase the ease of use of logic programs in knowledge
representation researchers have suggested and investigated
several extensions to the basic formalism. Well-known ex-
amples of such extensions include disjunctive logic programs
and programs with cardinality and weight constraiffs
monset al., 2003.

An important issue for many applications is the represen-
tation of preferences and reasoning about them. Researchers
have investigated preferences among program f@esaub
and Wang, 20011 among program literalgSakama and In-
oue, 2000, and context-dependent preferences among literals
through the use of ordered disjunctifBrewka, 2002

Representing and handling preferences in the formalism of
logic programs is also the main topic of this paper. However,
our approach differs from existing ones in an important as-

rE)ect. Rather than specifying a preference relation among the

rules or literals in a single logic program, we use two differ-
ent programs. The first program®,.,,, is used togenerate
answer sets, that is, define the spacaaifeptablesolutions.

éiontext-dependent preferences are described in a second pro-

am, the preference prograR,,.;. These preferences are
used tocompareanswer sets aP,.,,, that is, to form a pref-

1. Logic programs are expressive enough to model many typerence ordering of acceptable solutions. Intuitively, the rules

ical knowledge representation problems in Al. In particu-of P,., are hard constraints which specify conditions an an-
lar, the availability of default negation in the body of rules swer setmustsatisfy; the rules of?,,.; are soft constraints

makes it possible to represent defeasible information.

describing conditions under which one answer set is to be

2. Many problems in reasoning about actions, planning, diageonsidered better than another.
nosis, belief revision and product configuration have ele- The decoupling of answer-set generation and answer-set
gant formulations as logic programs so that models of procomparison has at least two advantages:

grams, rather than proofs of queries, describe problem so-

lutions[Lifschitz, 2002; Soininen, 2000; Baral, 2003 1.

3. The semantics of answer sets is intuitive and avoids the pit-
falls of resolution-based systems like Prolog. For instance,
it is independent of the order in which rules are written and
correctly handles loops.

*The authors acknowledge the support of DFG grant Computa2-

tionale Dialektik BR 1817/1-5, Academy of Finland grant 836
and NSF grant 11S-0097278, respectively.

The method for comparing answer sets is independent of
the type of the generating prograRy.,,. It may be any
type of a logic program (for instance, normal, extended,
disjunctive, involving cardinality or weight atoms), as long
as it has a well-defined semantics given by a collection of
sets of literals.

Preferences i, (soft constraints) can be specified in-
dependently ofP,.,, (hard constraints). This makes pref-
erence elicitation easier since the task is broken into sepa-

rate and smaller subtasks. Moreover, it makes the overall S |=Cy Vv Cy iff SEC orSEC,
setting better aligned with practical applications. Indeed, S| CyACy iff SkEC;andS | Cs.

often what is possible is determined by external factors e next define the notion of an optimization program.

(available resources, constraints of the environment, dePefinition 3 An answer-set optimizatiop4SO) program is
sign and engineering constraints for products) while wha . pun ; prog
pair (Pyen, Ppref), Where Py, is a logic program called

is preferred is described independently and by diﬁerenﬁ\egenerating progranand P, ., is a preference program.

agents (users, customers, groups of customers).) _
Th ¢ of th . ed as foll Th s we already mentioned earlier, the progr&y,, used for
t'e rgst % € paper |fs orgzli_mze as 1o OV\,’[S' i € ”fx enerating answer-sets can beaofy type We only require
Section introduces a new formalism, answer-Set opumizaliog, o yhe semantics be given in terms of sets of literalgner
programs, and defines their syntax and semantics. The sub

¢ secti id | d additional ob fi ver setsthat are associated with programs.
quent section provides exampies and additional ObServations o key question is: how does the preference program

on the basic formalism. In Section 4, we show how meta-, or determine a preference ordering on the answer sets de-

preferences, that is, prefer_ences on the p(eference rules,_cgg,ibed by the generating prografy.., ? Let us consider an
be introduced and dealt with. Next, we discuss complexity, |« <6 and a rule of the forn(;n(l) Given a stof
of computational problems arising in the context of our for'literals three different situations are poésible'

malism and propose implementation techniques. Our work is) T i
related to the approach proposed Boutilier et al, 1999. 1. the body of- is not satisfied irf, that is,a; ¢ .S for some

We investigate this relationship in Section 6. We conclude @ € {1,...,n}, orsomeb; € S,forj € {1,...,m}
with additional discussion of other related work and possible2- the body of- is satisfied inS and none of the;s is satis-
extensions to the formalism presented here. iedinS . o] o

3. _the body of- is satisfied inS and at least on€; is satisfied
2 Optimization programs inS.

IIhe case (1), the ruleis irrelevantto S because the rule
oes not apply. The case (2) is more subtle: the rule lists
. preferences among several options, yet none of the options
Definition 1 Let A be set of atoms. freference program po|ds. We consider this @sotherkind of irrelevance. Let us
over A is a finite set of rules of the form assume that a rule states thed is better tharyreen, andS

Ci>...>Cj < ai,...,an,n0t by,...,not b, (1) containsblue and no other color. In this case the preference

_) of red over green appears irrelevant t§ sinceS does not

where thea;s andb;s are literals (expressions and -z, mention these two colors at all. In the case (3), the preference
wherez is an atom in4), and theC;s are boolean combi- expressed in the rule is satisfied to some degree (as at least

We use two separate programs to describe the space of ans '
sets and preferences among them.

nations overA (to be defined below). oneC; holds inS). Thus, we define theatisfaction degree
The rule intuitively reads: if an answer sét contains of rin S, vs(r), by settingus (r) = I, if r is irrelevant toS,
ai,...,a, and does not contain any of the literdls...,b,, andvs(r) = min{i: S |= C;}, otherwise.

then(; is preferred ovets, C, overCs, etc. (we will give Concerning the relationship betweérand the other sat-

a precise semantics later in this section). isfaction degrees, two viable options seem to exist. We can

A boolean combinationver A is a formula built of atoms considerl asincomparablédo other values, based on the view
in A by means of disjunction, conjunction, strorg) ind de- that “irrelevance” cannot be comparedpgmper satisfaction
fault (not) negation, with the restriction that strong negationdegrees. According to this view, selectiblye in the ex-
is allowed to appear only in front of atoms, and default negaample above is neither better nor worse than selegtirgn
tion only in front of literals. For example, A (b V not —¢) or red. But one can also argue thateen violates prefer-
is a boolean combination, whereaéa Vv b) is not. Using ences wheredgue does not, and thalue is thus preferable
boolean combinations rather than, say, literals in the head® green. We will adopt this latter view here and use the fol-
of preference rules gives us additional expressiveness. U#swing preorder> to compare satisfaction degrees (Fig. 1):
ing conjunction we can express that certain combinations of
properties are preferred over other combinations. Disjunction LI
allows us to express that certain options are equally preferred.
For instance, the rule > (bV ¢) > d + f says that in case 9
of f the best option ig; b andc are equally preferred second
best options, and is the least preferred option. Finally, we ‘
can use expressions like> b > ¢ > (not a Anot b Anot c¢) T
if we prefer to have one of propertiasb, c over not having Fig.1: The preorder on satisfaction degrees

any of them. The valuesl and 1 are regardeequally good(1 > I and
Definition 2 Let S be a set of literals. Satisfaction of a I > 1) and better than all others. In addition, for eactwe
boolean combinatior in S (denotedS | C) is defined haver > x. We writex > y if x is strictly better thany.

as. Definition 4 Let Py, = {r1,...,7,} be a preference pro-
S =1 (1 literal) iff eS8 gram and letS be an answer set. We say th&tinduces a
S Enotl(lliteral) iff ¢S satisfaction vectoVs = (vs(r1),...,vs(ry))-

We extend the preorder on satisfaction degrees to preorders S; = {ice-cream, beer, beef , soup}
on satisfaction vectors and answer sets as follows: Sy = {ice-cream, beer, beef , salad }

Definition 5 LetS; and S, be answer sets. We writé;, > Sy = {ice-cream, beer, fish, soup}

Vs, if vg, (r;) > vs,(r;), for everyi € {1,...,n}. We write Sa = {ice-cream, beer, fish, salad}

Vs, > Vs, if Vs, > Vg, and for some; € {1,...,n}, Their satisfaction vectors alg§ = (I,1,2), V> = (1,1,2),

vs, (r;) > wvs,(r;). In these cases we also writg > S, V3 = (3,1,2), andV, = (3,1,2), respectively. Thusg,;
andS; > S,, respectively. and S, are equally good and are maximally preferred in the

We refer to this ordering as thmreference satisfaction order- glrseszn%?alcl)F tgo% ands3y, the latter two answer sets being
ing (or ps-ordering, for short). qually good.

Definition 6 A set of Iiterals_S is_ an optimal model of an 4 Meta-preferences

ASO program (Pyep, Ppres) if S is an answer set of., . L) .

and there is no answer st of P, such thatS’ > S. The notion of optimality underlying our approach is some-
gen what weak. In general, many optimal answer sets may exist,

and one often wants additional means to express that one pref-
3 Examples erence (that is, one rule in the progrdty.;) is more impor-

The prototypical application foASO programs are configu- tant than another. Here is a generalizatiomsfO programs
ration problems wherg,.,, describes possible configurations where it is possible to express such meta-preferences:
andP,,.; preferences among them. We use a dinner exampl

similar to the one discussed [Brewka, 2002 It is conve- efinition 7 A rankedASO program” is a sequence

nient to use programs with cardinality constraints to generate (Pyen, P,}ref, oy Prrer)
answer sets. Such programs allow for the use of special atoms |)
of the formn{ay, ..., ax }m, where thes; are literals, to rep- CONsIsting of a generating prograi,., and a sequence of

resent: at least and at mosin of thea; are true. Although pairwise disjoint preference progranty, .

rules built from cardinality constraints can, in principle, be Therankofaruler € P, . U...U P}, ., denotedrank(r),
replaced by sets of rules without such constraints, they makg the unique integei for whichr € P:
problem specifications much more concise and readable. For N .
the precise definitions we refer the readef$tmonset al,, Intuitively, preference rules with lower rank are preferred
2003. over preference rules with higher rank. We can now mod-

Let us assume thak,.,, consists of the rules: ify the definition of preference among answer sets by taking
preferences among rules into account:
1{soup, salad}1

Plrer-

1{beef, fish}1 Definition 8 Let P = (Pyen, Py, - - -, Py) be a ranked
1{pie, ice-cream}1 ASO program. LefS; and S, be answer sets aP,.,,. We
1{red, white, beer}1. defineSy >.q.n.x So if for every preference rule’ such that

vs, (r'") > vs, (r") does not holdthere is a ruler” such that

Each of these constraints enforces the selection of exady rank(r") < rank(r') andug, () > vs, (')
Sl 52 .

of the items it lists into an answer set. Thi,,, generates
the space 02 x 2 x 2 x 3 = 24 answer sets. Let us assume Clearly, the preorde® ..., €xtends (is stronger than) the pre-
that Py, is: order>. Itis also easy to see that,,,.;-optimal answer sets
can be obtained in the following way: select all answer sets
optimal wrt P;, among those pick the ones optimal vt

and so on.

_) A further generalization of ranked to partially ordered
This preference program designates as non-preferred all anrso programs is straightforward and not presented here for
swer sets containingjish but notwhite, all answer sets con- |ack of spacé.

tainingbee f but notred or beer, and all answer sets contain- |y some cases a natural ordering of the preference rules can
ing beer and notpie. We note that the objective is not to have pe derived from the structure of the preference program. For
these answer Setﬂlmlnated which could be aCCOfnpllShed each preference prograﬁl we define its dependency graph

white > red > beer < fish
red V beer > white < beef
pie > ice-cream <— beer.

simply by adding the three constraints G(P) as follows. The atoms appearingfhform the vertex
< fish,not white set of G(P). There is a directed edge from a veriexo a
< beef ,not red, not beer vertexa in G(P) if there is a ruler in P such thau appears
< beer,not pie. in the head of- andb appears in the body of

If the graphG(P) is acyclic, there is a natural ranking of
atoms. Namely, we define the rank of an at@mank(a),
recursively as follows:rank(a) = 0 for every atoma that
"has no predecessors@(P); otherwise, we defineank(a)

to the original program. The role of the preference program,
is to definesoft constraint@nd, moreover, to do so indepen-
dently of the generating program. For instance, if we late
learn that constraintB' = {« red; < white; + pie} need

to be included inPy.,,, the additional constraints would lead *another possible extension concerns the setting of weighte
to inconsistency. This does not happen in our approach. Thereference rules. To compare answer sets one could usetegigh
answer sets generated by the extended program are: sums of the violation degrees of preference rules.

as the maximum of the ranks of all predecessorsiofG(P) exists. The computation starts with an arbitrary answer set

incremented by 1. generated by the generator. This answer set is given to the
The ranking of atoms implies the ranking of rules. Namely,tester program. If the tester fails to generate a strictly better

we define the rank of a preference rulerank(r), as the one, we have found an optimal answer set and we are done. If

maximum rank of an atom appearing in the head.of a strictly better answer set is discovered, the tester is run with
We call preference programs with acyclic dependencythe new answer set as input. This continues until an optimal

graphsacyclic preference programsrhey are important for answer set is reached.

two reasons: This technique can be adapted for computing optimal an-

1. They commonly appear in practice as preferences are ofWer sets of an ASO progra@e,, Pprer) by choosing a
ten described according to some partial order on featuredUitable tester prograrfir for a given answer sefy. The
defining answer sets, with some features being more imtester program;: is constructed by adding the following
portant than others. For instance, in the dinner examplgules to the generator prografi)e,,:
most users will start with the preferences concerning thel. For each preference€ P,,.; include a facty(r,d) +
main course. They could then condition their preferences whered is the satisfaction degree gin S;.
concerning the appetizer and the beverage on the choice . Include rules
the main course. And, finally, they may describe their pref-
erences concerning the dessert based on earlier choices of
the main course, appetizer and beverage.

2. As we just demonstrated, in the case WHg(P) is geq(V1, Vo), not geq(Vo, V1)
acyclic, there exists a natural ranking on the rules. This < (R, Vo), v (R, V1),not geq(Vi, Vo).
ranking is implied by the program itself and allows us 3 add factsgeq(d;, d») < giving the preorder on the set
to strengthen our ordering relation on answer sets, as de- ;.. 1 2 7} .
scribed above in Definition 8. We call the resulting order- 4 For each Boolean combinatidf in P, (and its non-
ing determined by an acyclic preference program — the atomic subexpressions) introduce a new aterand add

< not better
better <+ wo(R,Vp),v1(R, V1),

canonical ps-ordering rules capturing the conditions under which the expression
) . . is satisfied. For example, @; is a disjunctionC, Vv Cp,

5 Complexity and implementation then add rules; < c¢;, ande; + ¢.
The complexity ofASO programs depends on the class of 5- For each prefereneec P, of the form (1) add rules
generating programs. To simplify the treatment we con- body(r) — a4, 00t by not b
sider here only generating programs where deciding exis- heads(r) « ¢ Y n(;‘oreacyﬁc'?j)y m
tence of an answer set MP-complete. This class of pro- i (r, i) nlot body(r) !
grams includes ground normal programs (possibly extended Ul (T’ irr) <« not heads(r), body(r)
with strong negation or weight and cardinality constraints) 11;1 ’(T 1)« e,body(r) i
[Simonset al". 2003. - . v1(r,2) < mnotwvy(r,1),cs,body(r)

The following two results indicate that allowing prefer-
ences adds an extra layer of complexity. o1 (r, k) « ot vi(r,1), ... ot vi (r k — 1),

Theorem 1 Let P = (Pyen, Ppres) be anASO program and ¢k, body(r).
S an answer set aPy.,,. Then deciding whethef is optimal

is coNP-complete. If Pr has an answer s&, then S restricted to the original

. _ _ language ofP,., is an answer set foP,., that is strictly
Theorem 2 Given anASO programP and a literall decid- preferred taS,, and if P, has no answer set, no such answer
ing whether there is an optimal answer sesuch that € S set exists.

is X -complete.

The complexity results imply that (unless the polynomial6 ~Relationship to CP-networks

hierarchy collapses) preference rules cannot be translated g, important approach to the problem of eliciting and ap-
generating rules in polynomial time, i.e., the problem of find-proximating preferences is that @fP-networks proposed
ing an optimal answer set for ad50 program cannot be anq developed ifBoutilier et al, 1999. We will now review
mapped in polynomial time to a problem of finding an answetipig approach and show how it relates to our work.

set of a program obtained by translating thé0 program to The approach of’P-networks is concerned with compar-
a set of generating rules only. _ , ing vectors of feature values that we cadinfigurations Let
However, in[Brewkaet al., 2003 an implementation tech- 4 {A1,..., Ay} be a set of features (attributes). For each

nique for computing optimal answer sets for logic programsieatyre 4;, let D; be its domain, that is, a finite and non-
with ordered disjunction on top of a standard answer Seémpty set ofvaluesor selectiongor 4;. We assume that all

prover has been developed. A similar technique has earligfomains are pairwise disjoint. onfigurationis a k-tuple
been used ifJanhuneset al, 2004 to compute stable models (vi,...,v;) suchthat; € D;, 1 <i < k.

of disjunctive logic programs usingmodels The computa-
tion is based on a tester program that takes as input an answer we follow the Prolog convention that terms starting withitzip
set and generates a strictly better one if such an answer Setters are variables and writer rather than! to avoid confusion.

The user prefers some configurations to others. Sinc® = {d,,...,d,} of A. We represent that fact by including
the number of configurations is, in general, exponential ina rule
| Uk, D], it may be impractical to directly elicit and store di>...>dp ¢ v1,...,0,
the user’s preference ordering on the set of all configurationsy, the preference prograi,; ().

Thus, the taskis to identify partial (and, in some sense, basic) Thys, at the level of syntax, our approach extends that of
information about the user's preferences, and develop waygp_nets. In particular[Boutilier et al, 1999 is concerned

to approximate the preference ordering implied by this parynly with one fixed space of all configurations that contain for

tial information. The formalism of”P-networks[Boutilier eyery feature exactly one value from its domain. In contrast,
etal, 1999 is an approach to accomplish that. in our approach we have a substantial flexibility in defining

A CP-networkover a set of featuredl is a pair(G,P), answer sets by varying the generator program.
where(is a directed graph whose vertices are features from |n addition, our approach is more robust when user prefer-
A. The edges of the graggh determine dependencies among ences are inconsistent, the situation that often occurs in prac-
features: preferences for a value for a featdréepend only tice. For instance, the user may specify a preference rule
on values selected for the parentsdin the network. Thus, 4 > « body, andb > a + body, unaware of situations
for each featured and for each selection of values for the where bothbody, andbody, are satisfied. Such inconsisten-
parent features fad, a CP-network specifies a total ordering cjes cannot be modeled b§P-networks. In our approach
relation on the domain afl. All these total orderings form they can with the effect that one of the preference rules will
the componerP of a CP-network’. be violated whenever both bodies are true.

The information contained in &P-network implies pref- The key question is that of the relationship between the
erences among configurations. A configuratiors one-step semantics of the two approaches. First, we observe that they
preferredto a configuratiodV’ if for some featured (given are different. Let us consider the following example from
a configuration, by U(A) we denote the value from the [Boutilier et al, 1999. There are two feature$ and B with

domain ofA selected td/): valuesa, o', andb, b', respectively. Featur8 depends on
1.V(B) = W(B) for every featureB ¢ A\ {4} (thatis, featureA and the preferences are specified as follows (we
for every feature other thas), and give them in the notation ol SO programs):
2.V (A) is strictly preferred td¥/ (A) in the ordering of the a>a
domainD of A specified by the network for the selection b>b «—a
for the parents ofd as given byV (or, equivalently, by b >b«d.
Ww).

In the CP-ordering,S1 = {a,b'} is preferred overS, =
The configuratiort” is CP-preferredto W if V' can be ob- {a' b’} as there is a one-step improvement leading fi&ym
tained froml by a sequence of one-step improvements. Itto S;. On the other hand, none 6% andS, is strictly pre-
is easy to see that for acycli@P-networks (acyclic networks ferred over the other in the ps-ordering (the corresponding
seem to arise in most situations occurring in practice) this orsatisfaction-degree vectors ate; 2, I) and(2, I, 1), respec-
dering is indeed a partial ordering; we call it&-orderind. tively). The reason is that the meaning of the rules in the
We will now show that the information represented by atwo approaches is slightly different. In ti&”-net approach,
CP-network N (with featuresA = {4;,...,4x}) can be =z > 2’ «+ body means £ andz’ form the domain of a fea-
represented by means diSO programs. First, we specify ture X): among all answer sets satisfyihgdy, answer set
the space of all configurations as answer sets to the prograsy is better thanS, if both agree on all features excejit
P,.,(N) that, for each featurd; € A (1 < i < k) contains andS; makesr true andS, makesz’ true. In our approach

the following rule (we assume here thaf = {d,, ..., d,}): x > x' + body is more like a soft constraint expressing:
wheneverbody is true there is a reason to prefeover z'.
Hdy,...,d,}1. Here, among the answer sets satisfybady, an answer set

.)) S, is preferred ovelS, if x € Si, ' € Ss, and the other
As already discussed in Section 3, such rule enforces the sgyjes of the program are satisfied at least as weff;iras in
lection of exactly one of the listed values to an answer setg, |n a sense, what is different is the interpretation of the
Thus, answer sets of the prografy.,, (V) are precisely the ceteris paribus — other things being equal — phrase, more

conflguratl_ons ofV. precisely, the interpretation of what is meant by the “other
To specify preferences, we proceed as follows. Mdle things” that have to be equal. In th@&P-network approach

a feature and le8 = {B,...,B,} be the set of its par- the “other things” are the selections of values for other fea-

ents in theCP-network. For every selectio(us,...,v;) tures which have to be the same. In our approach it is the

of values of features,, ..., B,, respectively, the network degree of satisfaction of the other rules in the program.

specifies an ordering, sajf > ... > d,, on the domain In general, our basic approach yields a weaker ordering.

RE— hat d b Iy ordered be dro Namely, we have the following theorem.
The restriction that domains be totally ordered can be drdpp .
We adopt it, following Boutilier et al, 1994 to keep the discussion 1heorem 3 Let N be an acyclic CP-network and letV”
simple. and W be two configurations. [V is strictly preferred to
“This ordering captures the intuitiareteris paribusor all other W under the ps-ordering determined by tH&O program
things being equathe aspect that is discussed in detallBoutilier ~ (Pyen (IV), Ppref (IN)), thenV is strictly preferred told un-
etal, 1999. der the CP-ordering implied byV.

It is easy to see that the representation of an acy¢le partial orders on boolean combinations. We intend also to
network in our syntax results in an acyclic preference prostudy in depth the distinction between options being “equally
gram. In this case, we have the following result. good” and “incomparable”. Finally, we will study extensions

Theorem 4 Let N be an acyclicCP-network and lef” and ~ Of the one-step improvement concept fr@i®-networks to
W be two configurations. I¥ is strictly preferred toi/’ un- the setting of general ASO programs.

der theCP-ordering determined by th€P-net NV, thenV is
strictly preferred tol’ under the canonical ps-ordering de- References _

termined by thed SO program(Py., (N), Ppres (V). [Baral, 2003 C. Baral. Knowledge representation, reason-

. ing and declarative problem solvingCambridge Univer-
These two theorems show that we can approximate the sity Press, 2003. ISBN 0521818028,

CP-ordering by means of orderings implied by our approach - o

It is important as the relationship between two answer setbBoutilier et al, 1999 C. Boutilier, R.l. Brafman, H.H.
with respect to (ranked) ps-ordering can be verified in poly- H0(_)s, and D. Poole. Reasoning with conditional ceteris
nomial time, while it is not known whether polynomial time ~ Paribus preference statements Pioc. UAI-99 1999.
algorithms exist in the case of tii@P-ordering (in fact, there [Brewkaet al, 2004 G. Brewka, I. Niemela, and T. Syr-
are examples of configurations that require an exponentially janen. Implementing ordered disjunction using answer
long chain of one-step improvements to demonstrate that one set solvers for normal programs. Rroc. JELIA 2002

is preferred to the other). Springer Verlag, 2002.

. [Brewka, 2002 G. Brewka. Logic programming with or-
7 Further related work and conclusions dered disjunction. IProc. AAAI-02 Morgan Kaufmann,
In this paper we have introduceSO programs which com- 2002.

bine a generating program with a preference program. ThfEiteret al, 1999 T. Eiter, N. Leone, C. Mateis, G. Pfeifer,
combination allows us to specify possible solutions of a prob- and F. Scarcello. The KR system dlv: Progress report,
lem (answer sets) together with preferences among specific comparisons and benchmarks. Rroc. Principles of
aspects of solutions. The preference program orders the an- Knowledge Representation and Reasoning, KRA&-
swer sets according to the satisfaction degrees of its prefer- gan Kaufmann, 1998.

ence rules. . . [Gelfond and Lifschitz, 1991M. Gelfond and V. Lifschitz.
Numerous papers which introduce preferencesto logic pro- - ~|4ssical negation in logic programs and disjunctive

gramming exist in the literature. For an overview of some of j5iabaseNew G tion C tin@-365—385. 1991
them see for instand&chaub and Wang, 20D1Closest to atabaseshew Generation Computing: ’ '

ours is the proposal ifBrewka, 2002; Brewkat al, 2004. [Janhunertal, 2004 T. Janhunen, I. Niemela, P. Simons,
Here, preferences are expressed through ordered disjunction. @nd J.-H. You. Unfolding partiality and disjunctions in
Ordered disjunction is a non-commutative kind of disjunction ~ Stable model semantics. - Iroc. Principles of Knowl-
which gives preference to the first disjunct over the second. ©d9e Representation and Reasoning, KR{iHpes 411-
The approach presented here differs from ordered disjunction 419- Morgan Kaufmann, 2000.

in the following respects: [Lifschitz, 2003 V. Lifschitz. Answer set programming and

1. generation and comparison of answer sets are separated, Plan generation. Artificial Intelligence Journal 138(1-
2. preference handling works independently of the type of 2):39-54, 2002.

program used for answer set generation, [Niemela and Simons, 19917. Niemela and P. Simons. Effi-
3. more general preferences can be stated due to our use of cientimplementation of the stable model and well-founded
boolean combinations. semantics for normal logic programs. Rroc. 4th Intl.

In fact, it is not difficult to show that logic programs with ~ Conference on Logic Programming and Nonmonotonic
ordered disjunction{PODs) are a special case of our ap- ReasoningSpringer Verlag, 1997.
proach. LetP be anLPOD, P,., a logic program possess- [Sakama and Inoue, 20D@. Sakama and K. Inoue. Prior-

ing the same answer setsiasand let itized logic programming and its application to common-
sense reasoningrtificial Intelligence 123(1-2):185-222,
Pprep ={c1 > ... > cp < body : c1%...xcp, ¢ body € P} 2000. g gence 1-2)

The preferred answer sets &f under the Pareto criterion [Schaub and Wang, 20DT. Schaub and K. Wang. A com-
(cf. [Brewkaet al, 2004) and those of the correspond- parative study of logic programs with preferencePhoc.
ing ASO program coincide. We can also capture the inclu- |JCAI-01, 2001.

sion based preference criterion frdirewkaet al, 2003 [gimonset al, 2003 P. Simons, I. Niemela, and T. Soininen.
using appropriate ranked SO programs. For each rule Extending and implementing the stable model semantics.

€1 X ... X ¢, ¢ body € P and for each < n we have to Artificial Intelligence 138(1-2):181—234, 2002.
includec, V...V ¢; > T <« body in the preference program

P .. This gives us exactly the inclusion-preferred answet Soininen, 200D T. Soininen. An Approach to Knowledge
4 Representation and Reasoning for Product Configuration

sets ofP. . SRR . .
In future work we plan to investigate further generaliza- ;raisdkszlz%g thesis, Helsinki University of Technology, Fin-

tions of our approach where rule heads may contain arbitrary

