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Abstract

We provide a new perspective on the semantics of logic programs with arbitrary abstract
constraints. To this end, we introduce several notions of computation. We use the results of
computations to specify answer sets of programs with constraints. We present the rationale
behind the classes of computations we consider, and discuss the relationships among them.
We also discuss the relationships among the corresponding concepts of answer sets. One
of those concepts has several compelling characterizations and properties, and we propose
it as the correct generalization of the answer-set semantics to the case of programs with
arbitrary constraints. We show that several other notions of an answer set proposed in the
literature for programs with constraints can be obtained within our framework as the results
of appropriately selected classes of computations.
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1 Introduction and Motivation

We study logic programs with arbitrary abstract constraints, or simply, constraints.
Programs with constraints provide a general framework to study semantics of ex-
tensions of logic programs with aggregates. It is due to the fact that normal logic
programs, programs with monotone and convex constraints (proposed by Marek
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and Truszczyński (2004); Liu and Truszczyński (2005)), and several classes of pro-
grams with aggregates (e.g., (Dell’Armi et al., 2003; Faber et al., 2004; Pelov,
2004; Son and Pontelli, 2007)) can be viewed as special programs with arbitrary
constraints.
The original definition of the syntax of programs with constraints, along with a
possible semantics, has been proposed by Marek and Remmel (2004). An alterna-
tive semantics was later proposed by Son, Pontelli, and Tu (2007), and revisited by
Shen and You (2007) and by You, Yuan, Liu, and Shen (2007).
In this paper, we introduce a general framework for defining and investigating se-
mantics for programs with constraints. We base our development on the notion
of computation. The proposed framework builds on general principles that can be
elicited from the semantics of traditional normal logic programs (i.e., logic pro-
grams with negation as failure).
The answer-set semantics of logic programs was introduced by Gelfond and Lifs-
chitz (1990). The semantics generalizes the stable-model semantics of Gelfond and
Lifschitz (1988), which was proposed for the class of normal logic programs only,
to logic programs with two negations (negation as failure and classical negation).
In the paper, we consistently use the term answer-set semantics, as it is currently
more widely used, and as the bulk of our paper is concerned with programs that are
not normal.
The answer-set semantics forms the foundation of Answer-Set Programming (ASP)
(Marek and Truszczyński, 1999; Niemelä, 1999; Gelfond and Leone, 2002). Intu-
itively, an answer set of a program represents the set of “justified” beliefs of an
agent, whose knowledge is encoded by the program. Over the years, researchers
have developed several characterizations of answer sets, that identify and empha-
size their key features and suggest ways to compute them.
The original definition of answer sets (Gelfond and Lifschitz, 1988) introduces a
“guess-and-check” approach to computing answer sets of a program. The process
starts by guessing an interpretation, to be used as a candidate answer set, and then
proceeds in validating it. The validation consists of recomputing the guessed inter-
pretation, starting from the empty set and iteratively applying the immediate conse-
quence operator (van Emden and Kowalski, 1976) for the Gelfond-Lifschitz reduct
of the program (Gelfond and Lifschitz, 1988). The interpretation is accepted only
if it is the limit of this iterative process In this approach, once the guess is made,
the validation is entirely deterministic.
Other characterizations of answer sets suggest an alternative scheme for construct-
ing answer sets. The process starts, also in this case, from the empty set. At each
step, we add to the set under construction the heads of some of the rules applicable
at that step. Typically, we use all the rules selected during the previous steps (if they
are no longer applicable, the construction terminates with failure) plus some addi-
tional ones. When the process stabilizes—i.e., no new elements can be introduced
in the set—the result is an answer set (Marek, Nerode, and Remmel, 1999; Marek
and Truszczyński, 1993). In this approach, we replace the initial non-deterministic
step of guessing an entire interpretation with local non-deterministic choices of
rules to fire at each step of the construction. Similarly, the task of validation is dis-
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tributed across the computation. Observe that this approach for characterizing an-
swer sets represents the underlying model that is employed by several ASP solvers,
where 3-valued partial models (Van Gelder, Ross, and Schlipf, 1991) are extended
to stable models.
Example 1 Let us consider the program P1 consisting of the following rules:

a ← not b

b ← not a

c ← a

d ← b

This program has two answer sets: {a, c} and {b, d}. 1

In the “guess-and-check” approach, we might guess {a, c} as a candidate answer
set. To verify the guess, we compute the Gelfond-Lifschitz reduct, consisting of the
rules:

a ←

c ← a

d ← b

The validation requires determining the least fixpoint of the immediate conse-
quence operator of the reduct program—i.e., the least Herbrand model of the reduct
program—which corresponds to {a, c}. Since it coincides with the initial guess, the
guess is validated as an answer set. In the same way, we can also validate the guess
{b, d}. However, the validation of {a} fails—since the reduct program contains the
rules

a ←

c ← a

d ← b

and the iteration of its immediate consequence operator converges to {a, c}, which
is different from the initial guess {a}.
The alternative approach we mentioned starts with the empty interpretation, ∅,
which makes two rules applicable: a ← not b and b ← not a. The algorithm
needs to select some of them for application, say, it selects a← not b. The choice
results in the new interpretation {a}. Two rules are applicable now: a ← not b
and c ← a. Let us select both rules for application. The resulting interpretation is
{a, c}. The same two rules that were applicable in the previous step are still ap-
plicable and no other rules are applicable. Thus, there is no possibility to add new

1 Since neither in this example, nor anywhere else in the paper, do we consider classical
negation, following the tradition of logic programming, we describe an answer set using a
set of atoms—that contains all the atoms that are true; the remaining atoms are considered
false by default.
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elements to the current set. The computation stabilizes at {a, c}, thus making {a, c}
an answer set. 2

We note that the first approach starts with a tentative answer set of the program,
while the second starts with the empty interpretation. In the first approach, we guess
the entire answer set at once and, from that point on, proceed in a deterministic
fashion. In the second approach we construct an answer set incrementally mak-
ing non-deterministic choices along the way. Thus, each approach involves non-
determinism. However, in the second approach, the role of non-determinism could
be potentially more limited.
In this paper, we cast these two approaches in terms of abstract principles related
to a notion of computation. We then lift these principles to the case of programs
with abstract constraints and derive from the approach a well-motivated semantics
for such programs.

The recent interest in ASP has been fueled by the development of inference
engines to compute answer sets of logic programs, most notably systems like
SMODELS (Niemelä and Simons, 1997), CMODELS (Lierler and Maratea, 2004),
CLASP (Gebser et al., 2007) and DLV (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri,
and Scarcello, 2006), which allow programmers to tackle complex real-world prob-
lems (e.g., (Balduccini, Gelfond, and Nogueira, 2006; Heljanko and Niemelä,
2003; Erdem, Lifschitz, and Ringe, 2006)). To facilitate declarative solutions of
problems in knowledge representation and reasoning, researchers proposed exten-
sions of the logic programming language, which support aggregates (Niemelä,
1999; Dell’Armi, Faber, Ielpa, Leone, and Pfeifer, 2003; Denecker, Pelov, and
Bruynooghe, 2001; Faber, Leone, and Pfeifer, 2004; Gelfond, 2002; Pelov, 2004;
Simons, Niemelä, and Soininen, 2002).
These development efforts stimulated interest in logic programming formalisms
based on abstract constraint atoms, originally proposed by Marek and Remmel
(2004) and Marek and Truszczyński (2004). The objective was not to introduce a
knowledge representation language but rather an abstract framework, in which one
could study semantics of knowledge representation systems obtained by extending
the syntax of logic programs aggregates. The need arose as the introduction of
constraints and aggregates into logic programming created a challenge to extend the
semantics. Researchers proposed several possible approaches (Faber et al., 2004;
Denecker et al., 2001; Son and Pontelli, 2007; Son et al., 2007; Elkabani et al.,
2004; Son et al., 2006). These approaches all agree on large classes of programs,
including
• Normal logic programs (every extension contains that class),
• Programs with monotone aggregates such as weight atoms with all weights non-

negative and without the upper bound given (they can be regarded as special
programs with monotone constraints, as presented by Marek and Truszczyński
(2004)), and
• Programs with convex aggregates such as weight atoms with all weights non-

negative and with both lower and upper bounds given (they can be regarded
as special programs with monotone constraints, as presented by Liu and
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Truszczyński (2005).
However, the proposed approaches tend to differ on programs with arbitrary aggre-
gates.
What makes the task of defining answer sets for programs with aggregates difficult
and interesting is the non-monotonic behavior of such constraints. For instance,
let us consider the constraint ({p(1), p(−1)}, {∅, {p(1), p(−1)}}), 2 which can be
seen as an encoding of the aggregate

SUM({X | X ∈ {−1, 1} ∧ p(X)}) = 0.

This aggregate atom is true in the interpretations ∅ and {p(1), p(−1)}, but false
in {p(1)} and {p(−1)}. Therefore it is not monotone; observe that it is also not
convex.
In this paper, we propose and study a general framework for defining semantics
(different types of answer sets) of logic programs with constraints. Our proposal
relies on the notion of (incremental) computation. We introduce several classes of
computations and use their results to define different types of answer sets. The
approach can be traced back to the two basic methods to characterize answer sets
of normal logic programs that we mentioned above.
The notion of a computation we introduce and use here generalizes those developed
by Marek and Truszczyński (2004) and Liu and Truszczyński (2005) for programs
with monotone and convex constraints. We study properties of the various classes
of computations introduced and of the corresponding notions of answer sets. We
relate these computation-based concepts of answer sets to earlier proposals. An in-
teresting observation of our investigation is that several characterizations converge
to the same semantics—which correspond to the one proposed by Son, Pontelli,
and Tu (2007).
A preliminary approach to the notion of computation investigated in this paper
has been presented by Liu, Pontelli, Son, and Truszczyński (2007)—the present
manuscript deeply revises and reorganizes the ideas from that work, leading to
definitions and results that are significantly different and more advanced those pre-
sented earlier.
The contributions presented in this work are of importance not only to the field of
logic programming, but the overall domain of knowledge representation. Answer-
Set Programming has gained a momentum as an instrument for the design of intelli-
gent agents and for investigating properties of reasoning in complex domains (e.g.,
domains with multiple interacting agents, domains with incomplete knowledge, do-
mains with non-deterministic actions). Several of the recently explored extensions
of languages used in Answer-Set Programming have been motivated by the needs
of applications in these areas of research (e.g., (Eiter, Faber, Leone, Pfeifer, and
Polleres, 2003a,b)). In the invited talk at the AAAI’05 conference, given by Baral
(2005), logic programming under the answer-set semantics has been presented as
an attractive and suitable knowledge representation language for AI research, as it

2 We introduce this notation in Section 4.
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features several desirable properties. In particular, the formalism:
• is declarative and has a simple syntax;
• is non-monotonic and is expressive enough for representing several classes of

problems in the complexity hierarchy (Dantsin, Eiter, Gottlob, and Voronkov,
2001);
• has solid theoretical foundations with a large body of building block re-

sults (Baral, 2003)—e.g., equivalence between programs, systematic program
development, relationships to other non-monotonic formalisms; and
• is supported by several efficient computational tools, as those mentioned earlier.
The general framework of abstract constraints provides a foundation for the inves-
tigation of generalizations of current ASP formalisms to meet the needs of knowl-
edge representation and reasoning applications.

2 Normal Logic Programs and Answer-Set Semantics

A normal logic program P is a set of rules of the form

a← a1, . . . , am,not am+1, . . . ,not an (1)

where 0 ≤ m ≤ n, each ai is an atom in a first-order language L and not is the
negation-as-failure (default negation) connective. An expression of the form not a,
where a is an atom, is a default literal. A literal is an atom or a default literal. A
program is positive (or Horn) if it does not contain default literals.
The Herbrand universe and the Herbrand base of a program are defined in the stan-
dard way (Lloyd, 1987). All major semantics of programs are restricted to Herbrand
interpretations and, under each of them, a program and its ground instantiation are
equivalent. That includes the answer-set semantics, which is of interest to us here.
Ground programs under the semantics of Herbrand models are, essentially, propo-
sitional programs. Thus, from now on, we consider only propositional programs
over a fixed countable set At of propositional atoms.
For a propositional rule r of the form (1), a is the head of r. We denote it by hd(r).
We set pos(r) = {a1, . . . , am}, and neg(r) = {am+1, . . . , an}. Finally, we denote
with body(r) the body of the rule r, that is, the set of the literals in the right-hand
side of the rule r.
We represent Herbrand interpretations as subsets of At . An atom a is satisfied by
an Herbrand interpretation M ⊆ At if a ∈M . A default literal not a is satisfied by
M if a 6∈M . We write M |= ` to denote that a literal ` is satisfied by M . Similarly,
if S is a set (conjunction) of literals, we write M |= S to denote that M |= `, for
every ` ∈ S.
A rule r is M -applicable if M |= body(r). We denote by P (M) the set of all M -
applicable rules in P . An atom a is supported by M in P if a is the head of at least
one M -applicable rule r ∈ P . An interpretation M satisfies P , or is a model of P ,
if it contains all atoms supported by M in P . An interpretation M is a supported
model of P if M is a model of P and every atom in M is supported by M in P .
Observe that not every model of a program is a supported model. For example, the
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set {a, b} is a model of a program P = {a← not b}; however, it is not a supported
model of P , since neither a nor b is supported by {a, b}.
The immediate consequence operator, also referred to as the one-step provability
operator, maps interpretations to interpretations. Specifically, it assigns to an inter-
pretation M the set of the heads of all rules in P (M), that is, the set of all atoms
that are supported by M in P . We denote this operator by TP . Formally,

TP (M) = {hd(r) : M |= body(r), for some r ∈ P}.

One can check that the fixpoints of TP are supported models of P (Apt, 1990).
For later use, let us introduce the following notion of iterated applications of TP .
Let 〈TP↑i〉∞i=0 be the sequence:

TP↑0 = ∅

TP↑(i + 1) = TP (TP↑i).

We note that if P is a positive program then TP is a monotone (and continuous)
operator whose least fixpoint, denoted by lfp(TP ), is the (unique) least Herbrand
model of P . It is well known that lfp(TP ) =

⋃∞
i=0 TP↑i. Many other properties of

TP have been discussed, for example, by Lloyd (1987).
The Gelfond-Lifschitz reduct of P w.r.t. M , denoted by PM , is the program ob-
tained from P by deleting
(1) each rule whose body contains a default literal not a such that a ∈M , and
(2) all default literals in the bodies of the remaining rules.

Note that PM is a positive program whose least model is lfp(TP M ). An interpre-
tation M is a stable model or, as we will say here, an answer set of P , if and
only if M is the least model of PM . Thus, M is an answer set of P if and only if
M = lfp(TP M ). It also follows directly from the definitions that the least model of
a positive program is the only answer set of that program.

3 Computations in Normal Logic Programs: Principles

We start by motivating the notion of a computation, which is central to our paper,
as a tool to determine answer sets of a normal logic programs. Our starting point
is the collection of considerations introduced in Example 1. In particular, we show
how to use computations to characterize answer sets.
We define computations for a normal program P as sequences 〈Xi〉∞i=0 of sets of
atoms (propositional interpretations), where Xi represents the state of the compu-
tation at step i. In particular, we require that X0 = ∅. A key intuition is that at
each step i ≥ 1, we use P to revise the state Xi−1 of the computation into its
new state Xi. We base the revision on a non-deterministic operator, ConclP . Given
an interpretation X , ConclP (X) consists of all possible revisions of X that are
“grounded” in P .
Formally, a set of atoms Y is grounded in a set of atoms X and a program P if Y ⊆
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TP (X), that is, if every atom in Y is supported by X in P . Thus, ConclP (X) =
{Y | Y ⊆ TP (X)}.
The first principle we will impose on computations formalizes the way in which
states of computations are revised. We call it the principle of revision.

(R) Revision: each successive element in a computation must be grounded in the
preceding one and the program, that is, Xi ∈ ConclP (Xi−1), for every i ≥ 1.

Computations of answer sets of a program, using the methods described in Example
1, produce sequences of sets that are monotonically growing (w.r.t. set inclusion),
each set being a part of the answer set under construction. Thus, at each step not
only new atoms are computed, but also all atoms established earlier are recomputed.
This suggests another principle for computations, the principle of persistence of
beliefs:

(P) Persistence of beliefs: each next element in the computation must contain
the previous one (once we “revise an atom in”, we keep it), that is, Xi−1 ⊆ Xi,
for every i, 1 ≤ i.

For a sequence 〈Xi〉∞i=0 satisfying the principle (P), we define X∞ =
⋃∞

i=0 Xi and
we refer to X∞ as the result of 〈Xi〉∞i=0. The result of a computation should be an
interpretation that cannot be revised any further. This suggests one additional basic
principle for computations, the principle of convergence:

(C) Convergence: a computation continues until it stabilizes (no additional revi-
sions can be made). Formally speaking, convergence requires X∞ = TP (X∞),
where TP is the one-step provability operator for P . (In particular, convergence
implies that X∞ is a supported model of P ).

These observations can be summarized in the following definition.
Definition 1 Let P be a normal logic program. A sequence of interpretations
〈Xi〉∞i=0 is a computation for P if X0 = ∅ and 〈Xi〉∞i=0 satisfies the principles (R),
(P) and (C).
Computations are relevant to the task of describing answer sets of normal logic
programs. We have the following result.
Proposition 1 Let P be a normal logic program. If a set of atoms X is an answer
set of P then there exists a computation 〈Xi〉∞i=0 for P such that X = X∞.
Proof If X is an answer set of P then X is the least fixpoint of TP X . Let us define
Xi = TP X↑i. It follows from the property of the operator TP X that X = lfp(TP X ) =⋃∞

i=0 TP X↑i =
⋃∞

i=0 Xi. To complete the proof, it suffices to show that 〈Xi〉∞i=0 is a
computation for P .
First, we note that TP X is a monotone operator and X0 = ∅. It follows that for
every i ≥ 1, Xi−1 ⊆ TP X (Xi−1) = Xi. Thus, the principle of persistence of beliefs
holds. We also have that for every i ≥ 0, Xi ⊆ X and X = X∞. Consequently, for
every i ≥ 1, Xi = TP X (Xi−1) ⊆ TP (Xi−1), that is, the principle of revision holds.
Finally, since X is an answer set of P , X is a supported model of P . Consequently,
TP (X) = X and the principle of convergence holds. 2
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Proposition 1 implies that the principles (R), (P) and (C) give a notion of compu-
tation broad enough to encompass all answer sets. Is this concept of computation
what is needed to characterize answer sets? In other words, does every sequence
of sets of atoms starting with the ∅ and satisfying the principles (R), (P) and (C)
result in an answer set? It is indeed the case for positive programs.
Proposition 2 Let P be a positive logic program. The result of every computation
is equal to the least model of P , that is, the unique answer set of P .
Proof Let 〈Xi〉∞i=0 be a computation for P and M be the least model of P . Since P
is positive, we have that TP is a monotone operator. By definition of a computation
and the monotonicity of TP , Xi ⊆ TP↑i. This implies that X∞ ⊆ M since M =⋃∞

i=0 TP↑i. On the other hand, since M is the least model of P and X∞ is also a
model of P , we have that M ⊆ X∞. This proves the proposition. 2

However, in the case of arbitrary normal programs, there are computations that do
not result in answer sets, as shown in the following example.
Example 2 Let us consider the program P2 containing the two rules

a ← not a

a ← a

This program has no answer sets. The sequence X0 = ∅, X1 = {a}, X2 = {a},
. . . satisfies (R), (P) and (C), thus it is a computation for P . However, X =⋃∞

i=0 Xi = {a} is not an answer set of P2. 2

It follows that the notion of computation defined by the principles (R), (P) and
(C) is too broad to capture precisely the notion of answer set. Let us reconsider
Example 2. In that example, a ∈ X1 because the body of the first rule is satisfied
by the interpretation ∅. However, the body of the first rule is not satisfied in any
set Xi for i ≥ 1. On the other hand, a ∈ Xi, for i ≥ 2, since the body of the
second rule is satisfied by Xi−1. Thus, the reason for the presence of a in the next
revision changes between the first and the second step. This is the reason why the
computation does not result in an answer set, even though it satisfies the principle
(P).
These considerations suggest that useful classes of computations can be obtained
by requiring that not only atoms, but also the reasons for including atoms persist.
Intuitively, we would like to associate with each atom included in Xi a rule that
supports the inclusion, and this rule should remain applicable from that point on.
More formally, we state this principle as follows:

(Pr) Persistence of Reasons: for every a ∈ X∞ there is a rule ra ∈ P (called the
reason for a) whose head is a and whose body holds in every Xi, i ≥ ia − 1,
where ia is the least integer such that a ∈ Xia .

It turns out that persistence of reasons is exactly what is needed to characterize
answer sets of normal logic programs.
Definition 2 Let P be a normal logic program. A computation 〈Xi〉∞i=0 for P is
persistent if it satisfies the principle (Pr).
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The next proposition shows that the principle of persistence of reasons is exactly
what we need to capture the answer-set semantics by computations.
Proposition 3 Let P be a normal logic program. A set X is an answer set of P if
and only if there is a persistent computation for P whose result is X .
Proof Let X be an answer set of P . It is easy to see that the computation con-
structed in the proof of Proposition 1, whose result is X , is a persistent computation
for P . That proves the “only-if” part of the proposition.
Let 〈Xi〉∞i=0 be a persistent computation for P and X = X∞. First, we observe
that for every i ≥ 0, Xi ⊆ TP X↑i. We prove that by induction. The base case
being evident, we proceed to the induction step and consider a ∈ Xi+1. By the
persistence of reasons, there is a rule ra and an integer ia ≤ i such that hd(ra) = a
and Xj |= body(ra), for every j ≥ ia. It follows that for every default literal
not b ∈ body(ra), b /∈ X . Thus, rX

a ∈ PX , where with rX
a we denote the rule

obtained from ra by removing all default literals from the body of ra. Since Xia |=
body(rX

a ), ia ≤ i, and Xia ⊆ Xi, we have that a ∈ TP X (Xi). By the induction
hypothesis and the monotonicity of TP X , a ∈ TP X (TP X↑i). It follows that a ∈
TP X↑(i + 1) and so, Xi+1 ⊆ TP X↑(i + 1). That completes the induction and shows
that X ⊆ ⋃∞

i=0 TPX
↑i = lfp(TP X ).

On the other hand, since X is a supported model of P , we have that X is also a
model of PX . Hence, lfp(TP X ) ⊆ X . Thus, X = lfp(TP X ), that is, X is an answer
set of P , which proves the “if” part of the proposition and completes the proof. 2

In general, the operator ConclP offers several choices for revising the current in-
terpretation Xi−1 to Xi during a computation. A natural question is whether this
freedom is needed, or whether we can restrict the principle (R) without loosing the
ability to characterize the answer sets of normal logic programs.
Example 3 Let P3 be the normal logic program:

a← not b

c← not b

e← a, c

f ← a,not c

This program has only one answer set M = {a, c, e}, that can be generated by the
computation:

∅, {a, c}, {a, c, e}.
In this computation, at each step i = 1, 2, we select Xi to be the greatest element
of ConclP3(Xi−1), which exists and is given by TP3(Xi−1). Thus, the next element
of the computation is the result of firing all applicable rules.
On the other hand, selecting an element in ConclP3(X) other than TP3(X) can
result in sequences that cannot be extended to a computation. For example, the
sequence ∅, {a}, {a, f} represents a potential computation since it satisfies the
(R) and (P) principles. Yet, no possible extension of this sequence satisfies the (C)
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principle. 2

This example indicates that interesting classes of computations can be obtained
by restricting the operator ConclP . Since for every X we have that TP (X) ∈
ConclP (X), we could restrict the choice for possible revisions of X based on
P to TP (X) only. The class of computations obtained under this restriction is a
proper subset of the class of computations. For instance, the program P1 from Ex-
ample 1 does not admit computations that revise X0 into X1 = TP (X0). Thus, the
class of such computations is not adequate for the task of characterizing answer
sets of normal logic program. We note, however, that they do characterize answer
sets for certain special classes of logic programs, for instance, for stratified logic
programs (Apt, 1990).
To obtain a general characterization of answer sets by restricting the choices of-
fered by ConclP (X), we need to modify the operator TP (X). The first approach
to computing answer sets, discussed in the introduction provides a clue: we need
to modify the notion of satisfiability used in the definition of TP (X). Let M be an
interpretation. We define the satisfiability relation |=M , between sets of atoms and
conjunctions of literals, as follows: given a set of atoms S and a conjunction of
literals F , the relation S |=M F holds if S |= F and M |= F . That is, the satis-
faction is based not only on S (i.e., the current state of the computation), but also
on M (the “context” of the computation). We can define the context-based one-step
provability operator TM

P as follows:

TM
P (X) = {hd(r) | X |=M body(r), for some r ∈ P}.

We note that TM
P (X) ⊆ TP (X) and, consequently, TM

P (X) ∈ ConclP (X). Thus,
we obtain the following result.
Proposition 4 Let P be a normal logic program and M be an interpretation. A
sequence 〈Xi〉∞i=0, where Xi = TM

P (Xi−1) for i = 1, 2, . . ., is a computation for P
if and only if it satisfies the principles (P) and (C).
Given an interpretation M , the sequence 〈Xi〉∞i=0 such that Xi = TM

P (Xi−1), for
i = 1, 2, . . ., is uniquely determined by M . Whenever the sequence satisfies the
principles (P) and (C), we will refer to it as the M -computation. We observe that
not all M -computations define answer sets, as illustrated in the following example.

Example 4 Let P4 be the normal logic program:

a← a

a← not b

b← a

Let M = {a}. One can check that for each rule r ∈ P4, M |= body(r). Thus, for
every set X of atoms, TM

P (X) = TP (X). Consequently, ∅, {a}, {a, b}, . . . is an
M -computation. However, {a, b} is not an answer set of P4. 2

The problem is that M -computations may fail to be persistent. In fact, the M -
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computation described in Example 4 does not satisfy the persistence of reasons
principle. However, persistent M -computations, being special persistent computa-
tions, do result in answer sets. Moreover, every answer set is the result of a persis-
tent M -computation.
Proposition 5 Let P be a normal logic program. A set M ⊆ At is an answer set
of P if and only if the M -computation is persistent and its result is M .
Proof If M is the result of a persistent X-computation, then M is, in particular,
the result of a persistent computation. Thus, by Proposition 3, M is an answer set.
On the other hand, let us assume that M is an answer set of P . We observe that for
every set of atoms Y , TP (M)(Y ) ⊆ TP M (Y ). Moreover, if Y ⊆ M , the converse
inclusion holds, too. Indeed, if Y ⊆M and a ∈ TP M (Y ) then there is a rule r ∈ P
such that hd(r) = a, M |= body(r), and Y |= body(rM) (where rM denotes the
rule obtained from r by removing from body(r) all default literals). In particular, it
follows that r ∈ P (M) and a ∈ TP (M)(Y ). The two inclusions together imply that
if Y ⊆M , then TP (M)(Y ) = TP M (Y ).
We now observe that TM

P (Y ) = TP (M)(Y ). Thus, for every Y ⊆ M , TM
P (Y ) =

TP M (Y ). It follows that the computation constructed in the proof of Proposition 1
is an M -computation and it is persistent (Proposition 3). Since its result is M , the
assertion follows. 2

An even stronger result can be proved, in which answer sets are characterized by
a proper subclass of persistent M -computations. We call an M -computation self-
justified if its result is M . In general, the class of self-justified M -computations is
a proper subclass of M -computations. Indeed, as shown in Example 4, there are
M -computations that are not persistent while, as we prove below, self-justified M -
computations satisfy the persistence of reasons property. We use that fact to show
that self-justified computations do indeed characterize answer sets.
Proposition 6 Let P be a normal logic program. A set of atoms M is an answer
set of P if and only if the M -computation is self-justified.
Proof In the proof of Proposition 5, we showed that if M is an answer set of P ,
then it generates an M -computation with the result M , which proves one direction
of the proposition.
Conversely, let M be a set of atoms that determines a self-justified M -computation
and let 〈Xi〉∞i=0 be that computation. Since 〈Xi〉∞i=0 is a computation, to conclude
the desired result it suffices to show that 〈Xi〉∞i=0 is persistent—then the result will
be immediate from Proposition 3.
Thus, let a ∈M , and let i be the least integer such that a ∈ Xi. It follows that i ≥ 1
and a ∈ TM

P (Xi−1). Thus, there is a rule r ∈ P (M) such that M |= body(r) and
Xi−1 |= body(r). For every j ≥ i, Xi−1 ⊆ Xj ⊆ M . Thus, Xj |= body(r) and so
the persistence of the computation follows. 2

We can summarize our discussion in this section as follows. Our goal was to charac-
terize answer sets of normal logic programs in terms of computations. More specifi-
cally, taking two ways of computing answer sets as the starting point, we introduced
three characterizations of answer sets in terms of computations: persistent compu-
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tations, persistent M -computations, and self-justified M -computations, with each
subsequent class being a proper subclass of the preceding one. In Sections 5 and 6,
we will show how to generalize the classes of computations discussed here to the
case of programs with constraints. We will use these generalized computations to
define and characterize answer sets of such programs.

4 Programs with Abstract Constraints: Basic Definitions

We will recall here some basic definitions concerning programs with constraints
(Marek and Remmel, 2004; Marek and Truszczyński, 2004; Liu and Truszczyński,
2005). As before, we fix a countable infinite set At of propositional atoms. An
arbitrary abstract constraint (or, simply, a constraint) is an expression A = (X, C),
where X ⊆ At is a finite set, and C ⊆ P(X)—where P(X) denotes the powerset
of X . The set X is called the domain of A, while the elements of C are called
satisfiers of A. Given a constraint A = (X, C), we denote X with Adom and C with
Asat . Intuitively, the sets in Asat are precisely those subsets of Adom that satisfy the
constraint.
It is common to recognize special types of constraints:
• A constraint is inconsistent if it has no satisfiers. We will distinguish a special

inconsistent constraint, (∅, ∅), and we will denote it by ⊥.
• A constraint A is monotone if, for every X ∈ Asat and for every Y such that

X ⊆ Y ⊆ Adom , we have that Y ∈ Asat .
• A constraint A is convex if for every X, Y ∈ Asat and for every Z such that

X ⊆ Z ⊆ Y , we have that Z ∈ Asat.
Constraints are building blocks of rules and programs. A rule is an expression

A← A1, . . . , Ak (2)

where A, A1, . . . , Ak are constraints. A constraint program (or a program) is a
collection of rules. A program is monotone (convex) if every constraint occurring
in it is monotone (convex).
Given a rule r of the form (2), the constraint A is the head of r and the set of
constraints {A1, . . . , Ak} is the body of r; sometimes we view the body of a rule
as the conjunction of its constraints. Following the notation introduced earlier, we
denote the head and the body of r with hd(r) and body(r), respectively. We define
the headset of r (hset(r)) to be the domain of the head of r, that is, hset(r) =
hd(r)dom . For a set of rules P , we define hset(P ) = ∪r∈Phset(r).
We view subsets of At as interpretations. We say that M ⊆ At satisfies a constraint
A, denoted by M |= A, if M ∩ Adom ∈ Asat . For a rule r, M satisfies r, denoted
by M |= r, if M satisfies hd(r) or M does not satisfy some constraint in body(r).
An interpretation M is a model of a program P if it satisfies all rules in P .
Let M be an interpretation. A rule is M -applicable if M satisfies every constraint
in body(r), i.e., M |= body(r). As in Section 2, we denote with P (M) the set of
all M -applicable rules in P . Let P be a program. A model M of P is supported if
M ⊆ hset(P (M)). Observe that, from this definition, one can conclude that if a
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model M is supported then M will satisfy hd(r) for every rule r applicable in M .
Let P be a program and M a set of atoms. A set X is non-deterministically one-step
provable from M by means of P , if X ⊆ hset(P (M)) and X |= hd(r) for every
rule r ∈ P (M). The nondeterministic one-step provability operator

T nd
P : P(At)→ P(P(At))

for a program P is an operator where T nd
P (M) consists of all sets that are non-

deterministically one-step provable from M by means of P , for every M ⊆ At . In
other words,

T nd
P (M) = {X : X ⊆ hset(P (M)), ∀r ∈ P (M). (X |= hd(r)) }.

Observe that, for every X ∈ T nd
P (M), X is a model of P (M).

For an arbitrary atom a ∈ At , the constraints ({a}, {{a}}) and ({a}, {∅}) are
said to be elementary. Since ({a}, {{a}}) has the same models as a, we identify
and denote the constraint ({a}, {{a}}) simply with a. For analogous reasons, we
identify the constraint ({a}, {∅}) with the literal not a.

Given a normal logic program P and a rule r ∈ P , we denote with C(r) the rule
obtained by replacing every positive atom a in r with the constraint ({a}, {{a}}),
and replacing every literal not a in r with the constraint ({a}, {∅}). Let C(P ) =
{C(r) | r ∈ P}. We call C(r) and C(P ) the constraint representation of r and
P , respectively. It is easy to see that C(P ) is a convex program. It is possible to
show that supported models of P coincide with supported models of C(P ), and
answer sets of P coincide with answer sets of C(P )—according to the definition
of answer sets presented by Liu and Truszczyński (2005). In other words, programs
with constraints are sufficient to express normal logic programs. We conclude this
section with an example illustrating the different concepts related to constraints.
Example 5 Consider the program P

r1 : ({a, b, c}, {{a, b}, {a, b, c}, {c}})← ({a, b}, {∅, {a, b}})

r1 : ({a, b, c}, {{b}, {c}, {b, c}})← ({a, b}, {∅, {a, b}})

r2 : a← b

r3 : b← a

r4 : c←

We have that:

• all constraints occurring in P are consistent;

• ({a}, {{a}}) (written as a in rules r2 and r3) is a monotone constraint;

• ({a, b, c}, {{b}, {c}, {b, c}}) is not a monotone constraint; however, it is a
convex constraint;

• ({a, b}, {∅, {a, b}}) is neither monotone nor convex;
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• hset(r1) = hset(P ) = {a, b, c} and hset(r2) = {a};
• the set M = {a} satisfies the head of r1 but does not satisfy the body of r1;

• for M = {a}, the set of M -applicable rules is {r3, r4}, i.e., P ({a}) =
{r3, r4};
• the set {a} is not a model of the program since it does not satisfy r3;

• the set {c} is a model of the program and so is {a, b, c}, both are supported;

• for M = ∅, P (M) = {r1, r4}, which implies that T nd
P (M) = {{c}, {b, c}}. 2

5 Computations for Programs with Constraints

In this section we extend the notion of a computation to programs with constraints,
and use computations to define a generalization of the answer-set semantics for
such programs. Our approach is based on exploiting the intuitions that we have
developed in Section 3 for the case of normal logic programs.
In order to define computations for programs with constraints, we consider the prin-
ciples identified in Section 3. The key step is to generalize the revision principle.
For normal programs, this principle was based on sets of atoms grounded in a set
of atoms X (i.e., the current interpretation) and P . We will now extend this concept
to programs with constraints.
Definition 3 Let P be a program with constraints and let X ⊆ At be a set of
atoms. A set Y is grounded in X and P if there exists a set of rules Q ⊆ P (X) such
that Y ∈ T nd

Q (X). We denote by ConclP (X) the collection of all sets Y grounded
in X and P .
The intuition is analogous to the one used in the case of normal logic programs.
There, a set Y is grounded in X and a normal logic program P if Y can be justified
by means of some X-applicable rules in P . That is, Y ∈ ConclP (X) if and only
if Y = TQ(X) for some Q ⊆ P (X). Thus, the definition of ConclP (X) for a
constraint program P indeed generalizes the earlier definition.
With this definition of ConclP (X), the principle (R) lifts without any changes
to program with constraints—we will refer to the version of principle (R) in the
case of program with constraints as (R′). The same is true for the principle (P),
now referred to as (P′). An appropriate generalization of the principle (C) can be
expressed in terms of supported models as follows:

(C′) Convergence: X∞ is a supported model of P , that is, X∞ ∈ T nd
P (X∞).

Finally, the principle (Pr) can be generalized, as well. At a step i of a computation
that satisfies (R′), we select as Xi an element of ConclP (Xi−1). From the definition
of ConclP (Xi−1), there is a program Pi−1 ⊆ P (Xi−1) such that Xi ∈ T nd

Pi−1
(Xi−1).

Each such program can be viewed as a reason for Xi. We can now state the gener-
alized principle (Pr′) as follows:

(Pr′) Persistence of Reasons: There is a sequence of programs 〈Pi〉∞i=0 such that
for every i ≥ 0, Pi ⊆ Pi+1, Pi ⊆ P (Xi), and Xi+1 ∈ T nd

Pi
(Xi).
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The definition implies that for every j ≥ i, Pi ⊆ Pj and Pi ⊆ P (Xj). That is, the
principle requires that rules used at step i “persist” (Pi ⊆ Pj , for j ≥ i) and are
applicable at all successive steps (Pi ⊆ P (Xj), for j ≥ i).
Having generalized the principles (R), (P), (C) and (Pr) to define (R′), (P′), (C′)
and (Pr′) for the class of programs with constraints, we can now extend the concept
of a computation by literally lifting the definitions developed for the case of normal
logic programs. However, the resulting notion has some undesired properties, as
shown in the next example.

Example 6 Let P5 be the program:

({a, b}, {{a, b}})← ({a, b}, {∅, {a, b}})

The constraint in the body is satisfied by interpretations where a and b are either
both true or both false. The head of the rule is satisfied only in the case both a and
b are true.
It is easy to see that the sequence ∅, {a, b}, {a, b}, . . . satisfies the properties (R′),
(P′), (C′) and (Pr′). On the other hand, this outcome is not satisfactory: a and
b are in the result of this computation only because they “self-support” them-
selves. Given that {a, b} is the result of the sequence, the only set ensuring that the
rule ({a, b}, {{a, b}})← ({a, b}, {∅, {a, b}}) remains applicable independently of
what may happen later in the computation is {a, b} itself. Indeed, ∅ (the only other
satisfier of the body of the rule) is too weak due to the non-monotonicity of the
constraint. The empty set might potentially be revised into {a} or {b} (not possible
here, but a priori possible if other rules were present in the program). For each of
these sets the rule would not be applicable and persistence of reasons would be
violated.
To better present this point let us contrast this situation with the case of a logic
program P6 consisting of the following rules (in a syntax resembling that of SMOD-
ELS):

a←

b← 1{a, b, c}2
The body of the second rule is satisfied by any interpretation that contains at least
one and at most two of a, b, and c. The sequence ∅, {a}, {a, b}, {a, b}, . . . satisfies
the properties (R′), (P′), (C′) and (Pr′). Also in this case, it may look as if b is self-
supported. But, in fact it is not. Given that the result of the computation is {a, b},
once we establish a in the computation, the second rule will remain applicable no
matter how the current state is revised (as long as the revision does not go beyond
{a, b}). In other words, in view of the second rule, for b to hold it suffices to know
a, and b really depends on a and not on itself.
The key behind this is the convexity of the constraint 1{a, b, c}2, which ensures that
there are no “gaps” between the derivation of the atom a, which is a trigger for the
rule, and the result of the computation ({a, b}). Every set in between is guaranteed
to “activate” the rule by satisfying its body. This is exactly the property that was
missing in the case of program P5. 2
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Our example suggests that, in the case of programs with arbitrary constraints, the
four properties we introduced do not capture all that is needed for a computation to
give rise to a reasonable notion of an answer set. We also need to require that the
result of the computation is “well-founded”, that is, that every element derived in
the process remains founded in elements derived earlier throughout the rest of the
computation.
In order to formalize this concept, we need to introduce some additional definitions.
Let A be a constraint and X and Y a set of atoms. The set Y is an X-trigger for A
if, for every set Z such that Y ⊆ Z ⊆ X , we have that Z |= A. If r is a rule, Y
is an X-trigger for r if it is an X-trigger for every constraint A in the body of R;
i.e., for every set Z, such that Y ⊆ Z ⊆ X , we have that Z |= body(r). Thus, if Y
is an X-trigger for r, then as long as a computation does not go beyond X , Y is a
sufficient justification for applying r, and atoms derived based on r can be regarded
as founded only in Y . This idea is captured by the following property:

(FPr) Founded persistence of reasons: There is a sequence of programs 〈Pi〉∞i=0

such that for every i ≥ 0, Pi ⊆ Pi+1, Pi ⊆ P (Xi), Xi+1 ∈ T nd
Pi

(Xi), and each
rule in Pi has an X∞-trigger contained in Xi.

Thus, the principle of founded persistence of reasons simply strengthens that of
persistence of reasons by the foundedness requirement.
We now use the principles introduced above to define several types of computations
for programs with arbitrary constraints.
Definition 4 Let P be a program with constraints. A sequence of interpretations
〈Xi〉∞i=0 is a computation for P if X0 = ∅ and the sequence satisfies the principles
(R′), (P′) and (C′). A computation is persistent if it satisfies the principle (Pr′). A
computation is founded if it satisfies the principle (FPr).
Persistent computations are computations. As in the case of normal programs, the
converse is not true in general. Let us consider the program C(P2), where P2 is
the normal logic program from Example 2, The sequence ∅, {a}, {a}, . . . is a com-
putation but not a persistent one. It is not a coincidence that we could derive a
counterexample from a normal logic program. We have the following general re-
sult.
Proposition 7 Let P be a normal logic program. The class of computations for P ,
as defined in Section 3, coincides with the class of computations of C(P ), as defined
in this section. Similarly, the class of persistent computations for P , as defined in
Section 3, coincides with the class of persistent computations for C(P ) as defined
in this section.
Proof It is straightforward to verify that the sequence 〈Xi〉∞i=0 satisfies properties
(R′), (P′) and (C′) with respect to P (as defined in Section 3) if and only if 〈Xi〉∞i=0

satisfies properties (R′), (P′) and (C′) with respect to C(P ). Thus, the notions of
computation in P and in C(P ) coincide.
Let us show that the same result holds for the case of persistent computations. Let us
assume that 〈Xi〉∞i=0 satisfies the property (Pr′) for P (as defined in Section 3). For
each atom a ∈ X∞, let ra denote the rule satisfying the condition of persistence
in (Pr′). Let Pi = {C(ra) | a ∈ Xi+1}. From the persistence of reasons for P ,
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Pi ⊆ Pi+1, Pi ⊆ P (Xi), and {Xi+1} = T nd
Pi

(Xi). Hence, 〈Pi〉∞i=0 is a sequence
of subprograms of C(P ) satisfying the conditions of (Pr′) for C(P ), as defined in
this section.
Conversely, let us assume that 〈Xi〉∞i=0 satisfies the property (Pr′) for C(P ) (as
defined in this section) and let 〈Pi〉∞i=0 be the sequence of subprograms of C(P )
that demonstrates that.
For each a ∈ X∞, let i be the index such that a ∈ Xi+1 \ Xi. Because Xi+1 ∈
T nd

Pi
(Xi), we can conclude that there exists some rule ra ∈ P such that C(ra) ∈ Pi

and hset(ra) = {a}. Since Pi ⊆ C(P )(Xi), we have Xi |= body(ra) and hd(ra) =
a. The monotonicity of 〈Pi〉∞i=0 implies that C(ra) ∈ Pj for j ≥ i. The condition
Pj ⊆ C(P )(Xj) implies that C(ra) is applicable in every Xj for j ≥ i. Thus, ra is
applicable in every Xj for j ≥ i. Hence, 〈Xi〉∞i=0 is a persistent computation for P ,
according to the definition in Section 3. 2

For normal logic programs, we do not need to impose the principle of founded per-
sistence explicitly. It is possible to show that, in the case of normal logic programs,
persistent computations are always founded. 3 Thus, for normal logic programs, the
two classes of computations coincide. In fact, this property holds for a larger classes
of programs—the class of programs with convex constraints, which includes nor-
mal logic programs or, more precisely, programs of the form C(P ), where P is a
normal program.
Proposition 8 Let P be a program with convex constraints. A computation for P
is founded if and only if it is persistent.
Proof From the previous observations, we know that each founded computation
is persistent. Thus, we need to show that every persistent computation for P is
founded. Let 〈Xi〉∞i=0 be a persistent computation for P and let 〈Pi〉∞i=0 be a se-
quence of programs demonstrating that 〈Xi〉∞i=0 satisfies the property (Pr′).
Let r ∈ Pi (for some i ≥ 0). It follows that r ∈ P (Xi), that is Xi |= body(r).
From the persistence of reasons, r ∈ P (Xj), for every j ≥ i, and, because of
the finiteness of the domains of constraints, r ∈ P (X∞). Thus, X∞ |= body(r).
Since all constraints in the body of r are convex, for every Z such that Xi ⊆ Z ⊆
X∞, Z |= body(r). It follows that Xi is an X∞-trigger for r. Consequently, the
computation 〈Xi〉∞i=0 is founded. 2

However, in the general case of programs with arbitrary constraints, the class of
persistent computations is a proper subclass of the class of founded computations.
The inclusion follows directly from the definition. The program P5 from Example
6 shows that it is proper. For programs with arbitrary constraints, we use founded
computations as the basis for the generalization of the answer-set semantics.
Definition 5 Let P be a program with constraints. A set X is an answer set of P if
there is a founded computation for P whose result is X .
Propositions 7 and 8 imply that our concept of an answer set, as specified by Defi-
nition 5, generalizes that for normal logic programs.

3 We assume a natural definition of founded persistence for normal logic programs based
on the correspondence between P and C(P ).
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Corollary 1 Let P be a normal logic program. A set X ⊆ At is an answer set of
P if and only if X is an answer set of C(P ).
Proof We have that X is an answer set of P if and only if there is a persistent
computation for P whose result is X . From Proposition 7, it is the case if and only
if there is a founded computation for C(P ) whose result is X , that is, if and only if
X is an answer set of C(P ). 2

We can also show that this definition of answer set generalizes the notion of an-
swer set for programs with convex constraints (proposed by Liu and Truszczyński
(2005)), a property that we formally state and prove later in the paper.
We conclude this section by observing that we have determined so far four distinct
classes of models of programs with constraints: answer sets, models obtained via
persistent computations, models obtained as results of computations, and supported
models. Each class of models is a subclass (in general, proper) of the successive
one. The role of the last three classes of models, and their properties require further
studies, that are beyond the scope of this paper.
We also note that, thanks to the principle (C′), supported models form indeed a
superclass of the class of the results of computations. However, not all supported
models of programs can be obtained as the results of computations. For instance,
{a} is a supported model of the program C(P ), where P = {a ← a}, but there is
no computation for C(P ) with the result {a}. To capture supported models as the
results of some bottom-up process, the notion of a computation has to be broadened
by relaxing some of the key principles. In the following section, we show one way
in which that goal can be accomplished.

6 Computations and Quasi-Satisfiability Relations

The notion of a computation discussed so far makes use of the non-deterministic
operator ConclP to revise the interpretations occurring in a computation. As we
mentioned earlier, the use of ConclP provides a wide range of choices for revising
a state of a computation, considering all the subsets of applicable rules.
In this section, we will study sequences of interpretations that can be generated by
narrowing down the set of choices allowed in ConclP (X) as possible revisions of
X . In the case of normal logic programs, we accomplished this goal by means of an
operator TM

P , based on the satisfiability relation |=M . In that case, the whole com-
putation is determined just by the choice of M . Thus, the only non-deterministic
decision is the selection of M . Once that is done, there is no non-determinism left.
We proved that M is an answer set of a logic program P if and only if M is the
result of the computation it generates. In other words, the computation is context-
dependent. This idea has been studied in the context of default logic by Marek and
Truszczyński (1993). We will now generalize that approach to the case of programs
with constraints.
Definition 6 A sequence 〈Xi〉∞i=0 is a weak computation for a program with con-
straints P if it satisfies the properties (P′) and (C′) and X0 = ∅.
Thus, weak computations are sequences that do not rely on a program P when mov-
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ing from step i to step i+1. Next, we will define a broad class of weak computations
that, at least to some degree, restores the role of P as a revision mechanism.
Let . be a relation between sets of atoms (interpretations) and abstract constraints.
We extend the relation . to the case of conjunctions (or sets) of constraints as fol-
lows: X . {A1, . . . , Ak} if X . Ai, for every i, 1 ≤ i ≤ k. This relation is intended
to represent some concept of satisfiability of constraints and their conjunctions.
We will call such relations quasi-satisfiability relations. They will later allow us to
generalize the relation |=M .
For a quasi-satisfiability relation ., we define

P .(X) = {r ∈ P | X . body(r)}.

In other words, P .(X) is the set of all rules in P that are applicable with respect to
X under the satisfiability relation .. Next, we define

T nd;.
P (X) = {Y : Y ⊆ hset(P .(X)), ∀r ∈ P .(X). (Y |= hd(r)) }.

In other words, T nd;.
P (X) consist of all sets Y ⊆ hset(P .(X)) such that Y |=

hd(r), for every r ∈ P .(X). Thus, T nd;.
P works similarly to T nd

P , except that rules
in P .(X) are “fired” rather than those in P (X).
Definition 7 Let . be a quasi-satisfiability relation. A weak computation 〈Xi〉∞i=0

is a weak .-computation for P if Xi+1 ∈ T nd;.
P (Xi), for i ≥ 1.

Since we do not impose any particular properties on the quasi-satisfiability relation
., it is not guaranteed that T nd;.

P (X) ⊆ ConclP (X). Thus, weak .-computations are
not guaranteed to be computations. There is, however, a simple sufficient conditions
guaranteeing that weak .-computations are computations.
We say that a quasi-satisfiability relation . is a sub-satisfiability relation if, for
every X ⊆ At and every abstract constraint A, X . A implies X |= A. Observe
that if . is a sub-satisfiability relation then P .(X) ⊆ P (X). This property and the
appropriate definitions imply that

T nd;.
P (X) = T nd;.

P .(X)(X) = T nd
P .(X)(X). (3)

We can observe that the relation |=M considered in Section 3 is a sub-satisfiability
relation.
Proposition 9 Let P be a program with constraints. If . is a sub-satisfiability re-
lation then for every X ⊆ At , we have that T nd;.

P (X) ⊆ ConclP (X).
Proof Consider Y ∈ T nd;.

P (X). Since . is a sub-satisfiability relation, P .(X) ⊆
P (X). Moreover, from Equation (3), T nd;.

P (X) = T nd
P .(X)(X). Thus, it follows that

Y ∈ ConclP (X). 2

The following corollary is an obvious consequence of Proposition 9.
Corollary 2 If . is a sub-satisfiability relation, then every weak .-computation is
a computation.
Thus, from now on, if . is a sub-satisfiability relation, we will write .-computation
interchangeably with weak .-computation.
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We recall that if P is a normal logic program, then M is an answer set of P if
and only if M is the result of an M -computation for P . We will now use weak
.-computations and .-computations to generalize the notion of an M -computation
to programs with constraints. To this end, we extend the approach proposed and
studied by Son et al. (2007). Our method requires a mapping f that assigns to a set
X of atoms a quasi-satisfiability relation .f

X . Thus, we explore the possibility that
the quasi-satisfiability relation can change as a function of the target model X we
are trying to achieve. Later in this section, we will explore one particular mapping
f ; alternative mappings of interest are explored in a later section.
Definition 8 Let P be a program with constraints and f a mapping assigning to ev-
ery set X of atoms a quasi-satisfiability relation .f

X . If C is a weak .f
X-computation

for P and X is the result of C, then C is a self-justified weak .f
X-computation for

P . A set of atoms X is an f -model of P if X is the result of a self-justified weak
.f

X-computation for P .

The definition of an f -model is sound. Since weak computations satisfy the prop-
erty (C′), their results are indeed models of P . In fact, they are supported models.
Several interesting classes of models of programs with constraints can be described
in terms of f -models by specializing the mapping f . We will demonstrate the flex-
ibility of the approach presented above later in the paper.
In order to specialize the general approach of self-justified weak computations so
that it might generalize the notion of an answer set, we need to identify mappings
f that ensure that self-justified weak computations are computations—i.e., they
satisfy the revision principle—and are founded. We have already seen that if .f

X is
a sub-satisfiability relation then weak .f

X-computations are computations (referred
to as .f

X-computations). We will now seek conditions guaranteeing the foundedness
of .f

X-computations.
We first address the weaker property of persistence of reason (Pr′). The next propo-
sition follows from Equation 3.
Proposition 10 Let . be a sub-satisfiability relation and let C = 〈Xi〉∞i=0 be a .-
computation. If for every constraint A and every i = 0, 1, . . ., Xi . A implies that
Xi+1 . A, then C is persistent.
Proof Since . is a sub-satisfiability relation, P .(X) ⊆ P (X). It follows from
Equation 3 and Definition 7 that the sequence Pi = P .(Xi) satisfies the persistence
condition. 2

We will now show that the sub-satisfiability relation proposed by Son et al. (2007)
gives rise to founded computations. Given a set X of atoms we define .spt

X as fol-
lows: Y .spt

X A if for each set Z such that Y ⊆ Z ⊆ X , Z |= A (or equivalently,
Z ∩ Adom ∈ Asat). It is easy to see that .spt

X is a sub-satisfiability relation. Thus, it
defines computations. Secondly, if C is a .spt

X -computation, then it is persistent as
the relation .spt

X satisfies the assumptions of Proposition 10. Using the terminology
introduced earlier, we can restate the definition of .spt

X as follows: Y .spt
X A if Y

is an X-trigger for A. The connection to the definition of founded persistence is
evident and, not surprisingly, self-justified .spt

X -computations are founded.
Proposition 11 Let P be a program with constraints. If C is a self-justified .spt

X -
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computation then it is a founded computation.
Proof To simplify notation, we write . for .spt

X in the proof. Let C = 〈Xi〉∞i=0 be the
self-justified .-computation. We already argued that C is a persistent computation
by using the sequence Pi = P .(Xi), i = 0, 1, . . ., to show that the property (Pr′)
holds. We will now show that every rule in Pi has an X-trigger contained in Xi. To
this end, let r ∈ Pi. It follows that Xi . body(r). By the definition of . (= .spt

X ), if
Xi ⊆ Z ⊆ X , then Z . body(r). Thus, Xi is an X-trigger for r. Consequently, C
is founded. 2

Not every founded computation C is a self-justified .spt
X -computation. This can be

seen in the following example.
Example 7 Consider the program P (remember that a is shorthand for
({a}, {{a}})):

a←

b←

c← ({a, b}, {∅, {a, b}})
We have that ∅, {a}, {a, b}, {a, b, c}, {a, b, c} . . . is a founded computation for P
which is not a self-justified .spt

{a,b}-computation because it does not end in the set
{a, b}. 2

Although not every founded computation is a self-justified .spt
X -computation, for

every answer set X there is a self-justified .spt
X -computation. Thus, the results of

self-justified .spt
X -computations for P are precisely the answer sets of P . Formally,

we have the following result:
Proposition 12 Let P be a program with constraints and let X be an answer set
for P . Then there is a self-justified .spt

X -computation for P .
Proof Also in this proof, to simplify the notation we write . for .spt

X . Let 〈Xi〉∞i=0 be
a founded computation with the result X and let 〈Pi〉∞i=0 be a sequence of programs
demonstrating that (FPr) holds.
Let us define Y0 = ∅ and Yi+1 = hset(P .(Yi))∩X , for i = 0, 1, . . .. It follows that
for every i = 0, 1, . . ., Yi ⊆ X . Furthermore, X |= P and so, X |= P .(Yi). By the
definition of . (= .spt

X ), for every rule r ∈ P .(Yi), X |= body(r). Thus, X |= hd(r).
Since hset(r) ⊆ hset(P .(Yi)), Yi+1 |= hd(r). It follows that Yi+1 ∈ T nd

P .(Yi)
(Yi).

Since T nd;.
P (Yi) = T nd

P .(Yi)
(Yi), Yi+1 ∈ T nd;.

P (Yi). Thus, 〈Yi〉∞i=0 is a .-computation
for P .
Moreover, for every i, Xi ⊆ Yi. We prove this claim by induction. For the base
case, we note that X0 = ∅ = Y0. Let us now assume that Xi ⊆ Yi. We have
Xi+1 ∈ T nd

Pi
(Xi). Since Xi ⊆ Yi, foundedness of 〈Xi〉∞i=0 implies that Pi ⊆ P .(Yi).

Indeed, if r ∈ Pi, then r has an X-trigger Ur such that Ur ⊆ Xi. It follows that
for every Z such that Ur ⊆ Z ⊆ X , Z |= body(r). Thus, for every Z such that
Yi ⊆ Z ⊆ X , Z |= body(r) and so, r ∈ P .(Yi).
Clearly, Pi ⊆ P .(Yi) implies that Xi+1 ⊆ hset(P .(Yi) ∩ X) = Yi+1. This com-
pletes the proof of the claim. The claim, in turn, implies that

⋃∞
i=0 Yi = X . It follows

that 〈Yi〉∞i=0 is a self-justified .spt
X -computation. 2
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7 Discussion

In this section, we discuss several additional properties of the semantics of answer
sets we introduced in the paper. In particular, we present two alternative characteri-
zations of the semantics—one based on the concept of strong groundedness, which
is based on the existence of a ranking of atoms, and the second based on program
transformation. Finally, we will discuss some alternative proposals for semantics of
programs with constraints (or aggregates).

7.1 Strong Groundedness of Answer Sets

One of the key properties of answer sets of normal logic programs is that they are
not self-supported. Namely, we have the following property that can be derived
from more general results (Theorem 1) proposed by Erdem and Lifschitz (2003).
Theorem 1 Let P be a normal logic program and M a model of P . Then M is an
answer set of P if and only if there is a ranking k assigning non-negative integers
to atoms in M , so that for every atom a ∈ M , there is a rule r ∈ P (M) such that
hd(r) = a and for every b ∈ pos(r), we have that k(a) > k(b).
We will now extend this property to the case of programs with arbitrary constraints
and the concept of an answer set we introduced here. The notion of an M -trigger
and the property of founded persistence of reasons are critical. We recall that a
set X is an M -trigger for a rule r precisely when for every Y , X ⊆ Y ⊆ M ,
Y |= body(r). In other words, if X is an M -trigger for r, having computed X
guarantees that the rule will remain applicable later in the computation as long as
the computation “stays” within M . In such case, we say that X is an M -justification
for every atom a ∈ hset(r) ∩M . We note that a rule can have several M -triggers
and each of them can be used as an M -justification for the elements in the headset
of the rule.
We say that a model M of a program with arbitrary constraints is strongly grounded
if there is a ranking of atoms in M such that each atom has an M -justification
consisting entirely of atoms with strictly lower ranks. We will show that answer sets
are precisely those models that are strongly grounded. We start with an example.
Example 8 Let us consider the following program P6:

a ← ({a, b}, {∅, {a, b}})

a ← b

b ← a

Clearly, M = {a, b} is a model of P6. It is easy to see that M is not strongly
grounded. Indeed, the only M -justification for the atom a provided by the first rule
is {a, b}—the other satisfier, ∅, is not an M -trigger for that rule as some of its
supersets (e.g., {a}) do not satisfy the body of the rule. The only M -justification
for a provided by the second rule is {b} and the only M -justification for b (it is
provided by the third rule) is a. Thus, it is clear that no ranking necessary for
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strong groundedness exists. One can also verify that P6 has no answer sets. 2

The next theorem relates the notions of answer sets and strongly groundedness.
Theorem 2 A model M of a program with arbitrary constraints is an answer set
of P if and only if it is strongly grounded.
Proof First, let us assume that M is an answer set of P . It follows that there is
a founded computation 〈Xi〉∞i=0 such that X∞ = M . Let a ∈ M . We define k(a)
as the minimum i such that a ∈ Xi. Since M =

⋃∞
i=0 Xi, the value k(a) is well

defined for every atom a ∈M .
We will show that the ranking k is a witness of M being strongly grounded. To
this end, we need to show that every atom in M has an M -justification. Let a ∈M .
Since 〈Xi〉∞i=0 is founded, there is a rule r and a set of atoms Y such that hd(r) = a,
Y ⊆ Xi−1 and Y is an M -trigger for r. We observe that for every b ∈ Y , k(b) ≤
i− 1. Thus, Y is an M -justification for a.
Conversely, let us assume that M is a strongly grounded model of P . We will
show that M is an answer set by constructing a founded computation 〈Xi〉∞i=0 such
that M = X∞. Let k be a ranking that witnesses strong groundedness of M . We
define X0 = ∅. We then proceed inductively as follows. We define Pi, i ≥ 0, to
consist of all rules for which Xi is an M -trigger. We define Xi+1, i ≥ 0, by setting
Xi+1 = hset(Pi) ∩M .
Directly from the definition, it follows that for every i ≥ 0, Xi ⊆ M and
Pi = Pi(Xi) = Pi(M). Since M is a model of P , we have that for every r ∈ Pi,
hset(Pi) ∩M |= hd(r). Thus, Xi+1 ∈ T nd

Pi
(Xi) (and Xi+1 ∈ ConclP (Xi)) and so,

〈Xi〉∞i=0 satisfies the principle (R′).
Next, we will prove that 〈Xi〉∞i=0 satisfies the principle (P′), that is, that for every
i ≥ 0, Xi ⊆ Xi+1. We proceed by induction. The inclusion X0 ⊆ X1 is evident.
By the induction hypothesis, Xi−1 ⊆ Xi. Since Xi ⊆ M , Xi is an M -trigger for
every rule in Pi−1. Thus, Pi−1 ⊆ Pi. It follows that

Xi = hset(Pi−1) ∩M ⊆ hset(Pi) ∩M = Xi+1.

That completes the proof of the inductive step and of the claim (for property (P′)).
The principle (P′) implies that for every i ≥ 0, Pi ⊆ Pi+1. Together with earlier
observations, that implies that 〈Xi〉∞i=0 satisfies the principle (FPr).
By definition, X∞ ⊆M . We will now prove the converse inclusion. To this end, let
us consider a ∈M . We will prove by induction on the rank k of a that a ∈ Xk+1.
If a ∈ M has rank 0, then a has an empty M -justification, that is, there is a rule r
such that a ∈ hset(r) and ∅ is an M -trigger for r. It follows that r ∈ P0 and so,
a ∈ hset(P0) ∩M = X1. The reasoning for the inductive step is essentially the
same. Let us consider a ∈M such that k(a) = k ≥ 1. By definition, there is a rule
r such that Y is an M -trigger for r and Y consists of atoms of ranks strictly lower
than a. By the induction hypothesis, Y ⊆ Xk. Thus, r ∈ Pk and so, a ∈ Xk+1.
It follows that M ⊆ X∞. Consequently, M = X∞. To complete the proof all
that remains is to show is that X∞ is a supported model of P , that is, that 〈Xi〉∞i=0

satisfies the principle (C′). To this end, we recall that for every i ≥ 0, Pi = Pi(M).
Thus, Pi ⊆ P (M) and, since Xi ⊆ hset(Pi), M = X∞ ⊆ hset(P (M)). Since M
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is a model of P , it follows that X∞ is a supported model of P . 2

7.2 Answer-Set Semantics and Program Transformations

Program transformations are mappings assigning programs to programs. They form
a useful tool in the studies of semantics of programs. Invariance of a semantics to a
particular program transformation yields methods for program rewriting and sim-
plification, as well as normal form representations of programs. Alternatively, pro-
gram transformations can be used to generalize a semantics defined for programs
of some simple syntactic form to those without syntactic restrictions.
We will consider here a simple transformation of programs with arbitrary con-
straints to programs with convex constraints. We will show that the transforma-
tion preserves the semantics of answer sets. Given that all major proposals for the
semantics of programs with convex constraints coincide, that result provides addi-
tional support for the notion of an answer set as we defined it here.
First, we show that every program with arbitrary constraints can be transformed into
a head-convex program. A rule r is head-convex if hd(r) is a convex constraint. A
program is head-convex if all its rules are head-convex.
Let r = A ← A1, . . . , Ak be a rule with arbitrary constraints. We represent it by
two head-convex rules cstr(r) and sppt(r). The first rule is

cstr(r) = ⊥ ← A, A1, . . . , Ak

where A denotes the complement of A, that is, the constraint B such that Bdom =
Adom and Bsat = {X ⊆ Adom | X /∈ Asat}. The second rule is

sppt(r) = (Adom , {X | X ⊆ Adom})← A1, . . . , Ak.

Clearly, both ⊥ and (Adom , {X | X ⊆ Adom}) are convex. Thus, rules cstr(r)
and sppt(r) are head-convex. The role of cstr(r) is to capture precisely the same
constraint as the one expressed by r. The role of sppt(r) is to “support” precisely
the same atoms as r and in exactly the same circumstances. For a program with
arbitrary constraints, P , we define

hc(P ) = {cstr(r) | r ∈ P} ∪ {sppt(r) | r ∈ P}.

Theorem 3 Let P be a program with arbitrary constraints and M ⊆ At . Then M
is an answer set of P if and only if M is an answer set of hc(P ).
Proof It is evident that M is a model of P if and only if M is a model of hc(P ).
Moreover, directly from the definition it follows that M is strongly grounded with
respect to P if and only if M is strongly grounded with respect to hc(P ). Thus, the
result follows from Theorem 2. 2

Next, we will show that every head-convex program can be transformed into a
program with convex constraints so that the answer sets are preserved. Let A, B be a
constraints. We say that A is a subconstraint of B if Adom = Bdom and Asat ⊆ Bsat .
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For a constraint A, we denote by mc(A) the set of maximal convex subconstraints of
A. We note that every satisfier X of A is a satisfier of at least one of the constraints
in mc(A).
Given a head-convex rule A ← A1, . . . , Ak, we define Cvx (r) to be the set of
all rules of the form A ← A′1, . . . , A

′
k, where A′i ∈ mc(Ai). For a head-convex

program P , we set
Cvx (P ) =

⋃
r∈P

Cvx (r).

It is clear that Cvx (P ) is a program with convex constraints.
Theorem 4 Let P be a head-convex program with arbitrary constraints and M ⊆
At . Then M is an answer set of P if and only if M is an answer set of Cvx (P ).
Proof (Sketch) As before, we first note that M is a model of P if and only if M is
a model of Cvx (P ). Next, we note that X is an M -trigger of a rule r ∈ P if and
only if there is a rule r′ ∈ Cvx (r) such that X is an M -trigger for r′. It follows
that M is strongly grounded in P if and only if M is strongly grounded in Cvx (P ).
Thus, as before, the result follows from Theorem 2. 2

It follows that the transformation of P to Cvx (hc(P )) preserves answer sets. We
note that the role of the transformation is conceptual rather than practical. The
program Cvx (hc(P )) may grow exponentially relative to P (the size explosion
potentially occurs in the second step of the transformation).

7.3 More About Self-justified Weak .f
c -Computations

Several interesting classes of models can be defined by specifying the mapping
from sets to quasi-satisfiability relations, which determines a class of self-justified
weak computations and so, a class of models. Each class of models that can be de-
fined in this way consists of supported models—since we require that weak com-
putations satisfy the convergence principle. We will now show that, in particular,
the class of supported models can be defined in these terms.
Definition 9 Let X be a set of atoms. For a set Y of atoms and a constraint A we
define the relation .supp

X as follows:

Y .supp
X A if X |= A.

We denote the mapping X 7→ .supp
X by supp.

Let M be a supported model of P . We have that the sequence C = 〈∅, M,M, . . .〉
satisfies (P′), (C′), and hence, is a weak computation. Furthermore, since M is a
supported model of P , P supp(M) = P (M). This implies that M ∈ T nd;supp

P (M).
Thus, C is a weak .supp

M -computation. As M is the result of C, C is a self-justified
weak .supp

M -computation. Thus, supported models of P are supp-models of P . As
we observed earlier, all f -models are supported models. It follows that supported
models of P are precisely supp-models of P .

Next, we will discuss the semantics of programs with abstract constraints proposed
by Marek and Remmel (2004). That proposal is based on a specialized notion of
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program reduct. Let A be a constraint. By Â we denote the closure of A, that is, the
constraint (Adom, {Y | Y ⊆ Adom, (∃Z ∈ Asat)(Z ⊆ Y )}). Now, given a program
P and an interpretation M , the NSS-reduct of P with respect to M is obtained by
(i) removing all rules whose body is not satisfied by M , and (ii) replacing each
remaining rule A ← A1, . . . , Ak with the set of rules {a ← Â1, . . . , Âk | a ∈
M ∩ Adom}. A set M of atoms is an mr-answer set if M is the unique least model
of the NSS-reduct of P with respect to M ; one can show that NSS-reducts do have
unique least models (Marek and Remmel, 2004).
Definition 10 Let X be a set of atoms. For a set Y of atoms and a constraint A we
define the relation .mr

X as follows:

Y .mr
X A if there exists Y ′ ⊆ Y such that Y ′ |= A, and X |= A.

We will now show that mr -models of P are precisely the mr -answer sets of P . Let
M be an mr-answer set of P and Q be the NSS-reduct of P with respect to M . By
definition, M is the fixpoint of the operator 4 TQ(X) = {hd(r) : r ∈ Q, X |=
body(r)}. Consider the sequence C = 〈Xi〉∞i=0 where Xi = T i

Q(∅). Because every
constraint in Q is monotone, we have that TQ is a monotonic operator. Thus, C
is a weak computation. Furthermore, by definition of .mr

M we have that for every
X ⊆ Y ⊆M , P .mr

M (X) ⊆ P .mr
M (Y ), and hence, Xi+1 ∈ T nd;.mr

M (Xi). This implies
that C is a self-justified weak .mr

M -computation whose result is M , i.e., M is an
mr-model of P .
Conversely, if M is an mr-model of P , then M is the result of a self-justified weak
.mr

M -computation C = 〈Xi〉∞i=0. Again, let Q be the NSS-reduct of P with respect to
M . Since M |= A implies M |= Ã for every constraint A, we have that M is also a
model of Q. Let Yi = T i

Q(∅). By definition of the operator T nd;.mr
M , the construction

of Q, and the operator TQ, we can conclude that X1 ⊆ Y1. Using induction and
similar arguments, we conclude that Xi ⊆ Yi. Thus, the least fixpoint of Q, say M ′,
satisfying that M ⊆ M ′. This, together with the fact that M ′ is the least model of
Q, implies that M ′ = M , i.e., M is an mr-answer set of P .

The approach of self-justified weak .f
X-computations can be extended further.

Namely, instead of regarding f as assigning quasi-satisfiability relations to sets
of atoms, we could assume that f assigns quasi-satisfiability relations to computa-
tions. To illustrate this point, let us assume that C = 〈Xi〉∞i=0 is a computation and
define .C as follows: Y .C A if Y = Xi, for some i, 0 ≤ i, and Xj |= A for every
j, i ≤ j. This particular approach has interesting connections to the basic idea of
a reduct. We recall that in the normal case we take a set of atoms as a context, and
re-justify it in the “check” phase. Here, we take the whole computation as a con-
text and have to re-justify all its elements in the “check” phase. The corresponding
notion of an .C-model has several desirable properties, yet it seems to be too weak.
One can show that .C-models are answer sets but, in general, not conversely.

4 Abusing the notation, we use the immediate consequence operator TP as defined for
normal logic programs.
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Even in this more general version, the approach to define classes of models through
self-justified weak computations has its limitations. Let us recall the semantics for
programs with aggregates proposed by Faber et al. (2004) (we restate it for pro-
grams with constraints). A set of atoms M is an FLP-answer set of a program with
constraints P if M is a minimal model of P (M). So far, we have been unable to
cast that semantics in terms of self-justified weak computations.

7.4 Answer Sets and Programs with Aggregates

As discussed in other papers considering abstract constraints (Marek and Remmel,
2004; Marek and Truszczyński, 2004; Marek, Niemelä, and Truszczyński, 2008),
abstract constraints can be used to represent several extensions of logic programs,
including aggregates (e.g., (Denecker et al., 2001; Faber et al., 2004; Ferraris, 2005;
Pelov, 2004; Son et al., 2006)). Intuitively, an aggregate atom A can be represented
by a constraint CA = (Adom, Asat), where Adom is the set of atoms occurring in the
set expression of A and Asat contains the subsets of Adom that satisfy the aggregate.
In the remainder of this section, by A(P ) we mean the program with constraints
obtained from a program with aggregates by replacing aggregates with the corre-
sponding constraints. Proposition 12, and the results developed by Son, Pontelli,
and Elkabani (2006); Son, Pontelli, and Tu (2007), allow us to relate answer sets as
we introduced them with semantics for programs with aggregates proposed by oth-
ers. First, we note that when only monotone aggregates (constraints) are allowed,
all approaches coincide.
Proposition 13 ((Son et al., 2007)) For a program with monotone aggregates, say
P , M is an answer set of A(P ) if and only if it is an answer set of P with respect
to the definitions proposed by Faber et al. (2004) and Ferraris (2005).
Another important approach to the semantics of aggregates in logic program-
ming has been investigated by Pelov, Denecker, and Bruynooghe (2004) and Pelov
(2004), based on the approximation theory developed in Denecker et al. (2000).
The proposal of Pelov et al. (2004); Pelov (2004) defines and exploits the so-called
ultimate approximation operator Φaggr

P . A complete (two-valued) interpretation M
is an answer set according to Pelov et al. (2004) if it is a fixpoint of Φaggr

P . If P is a
positive program with aggregates (the notion defined by Pelov et al. (2004); Pelov
(2004)), the program A(P ) has only monotone constraints in bodies of the rules,
and we have the following result.
Proposition 14 Let P be a positive program with aggregates. Then, every answer
set of A(P ) is an answer set according to the definition of Pelov et al. (2004) and
vice versa.
The proof of this proposition relies on Proposition 12 and Theorem 3 by Son and
Pontelli (2007).
The relationship between the semantics discussed above brakes when we allow
programs with aggregates that are not monotone. This is illustrated by the following
examples.
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Example 9 Consider the program P

p(1) ← ({p(1), p(−1)}, {∅, {p(1), p(−1)}})

p(1) ← p(−1)

p(−1) ← p(1)

Intuitively, the abstract atom A = ({p(1), p(−1)}, {∅, {p(1), p(−1)}}) represents
the aggregate atom SUM({X | p(X)}) = 0 or COUNT({X | p(X)}) 6= 1
(where the domain of the variable X is {1,−1}). This program has a model
M1 = {p(1), p(−1)}. The approaches by Marek and Remmel (2004), Faber et al.
(2004), and Ferraris (2005) accept M1 as an answer set, while our approach and
that by Pelov (2004) and Denecker et al. (2001) do not admit any answer sets. It is
easy to see that there is no founded computation for P whose result is M1. In fact,
this program does not have a computation: the only applicable rule given X0 = ∅
is the first rule and so X1 = {p(1)}; the only applicable rule with respect to X1

is the last rule, and thus, X2 = {p(−1)}; and the sequence violates the property
(P′).
Alternatively, we could argue against semantics allowing {p(1), p(−1)} as an an-
swer set by noting that the model {p(1), p(−1)} is self-supported. Indeed, it is not
strongly grounded, that is, no “proper” ranking of its elements can be found (we
note that the program P is isomorphic to the program P6 considered in Example
8).
Let us now consider the program consisting of two rules

p ← p

p ← ({p}, ∅)

The approach by Pelov et al. (2004) accepts M = {p} as an answer set, while our
approach does not. 2

Finally, we note that the proposals developed by Faber et al. (2004) and Pelov
(2004) do not allow aggregates in the head of the rules, but they consider disjunctive
logic programs with aggregates.

7.5 Other Semantics of Programs with Abstract Constraints

We have already mentioned the relationship between the computation characteri-
zation of answer sets and the characterization proposed by Son et al. (2007)—the
latter can be described by the sub-satisfiability relation .spt

X .
For the semantics proposed by Marek and Remmel (2004) we have the following
observations as corollaries from our results and the results by Son et al. (2007):
(1) Each answer set of P according to the definition given in this paper is also an

answer set according to Marek and Remmel—this result can be derived from
the observation that the analogous property holds for answer sets as discussed
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by Son et al. (2007).
(2) There are answer sets according to Marek and Remmel that are not answer sets

according to the definitions in this paper. This can be seen in the program:

a ←

b ←

c ← ({a, b, c}, {{a}, {a, b, c}})

The characterization by Marek and Remmel accepts {a, b, c} as an answer set.
On the other hand, a computation, in order to produce {a, b, c} will need to be
organized as follows: ∅, {a}, {a, b, c}, . . . . But this computation is clearly not
founded.

Marek and Truszczyński (2004) and Marek et al. (2008) propose a characterization
of answer sets for program with monotone constraints, later extended to the case
of convex constraints by Liu and Truszczyński (2005). These two semantics are
proved to coincide with the answer sets obtained using .spt

X by Son et al. (2007),
that is, with answer sets as defined in this paper.
Another interesting line of research has been recently proposed by Shen and You
(2007). The authors propose a model-theoretic semantic characterization for pro-
grams with constraints which is based on a generalized Gelfond-Lifschitz transfor-
mation. The resulting semantics is proved to coincide with the notion of answer sets
we discuss in this work (and with the answer sets as defined by Son et al. (2007)).
This provides further reinforcement of the validity of the semantics we discuss in
this paper. The work by Shen and You (2007) nicely complements our computation-
based approach, by offering a model-theoretic characterization of answer sets.

8 Conclusions

In this paper, we conducted an in-depth investigation of semantics of logic pro-
grams with general abstract constraints. Programs with such constraints are im-
portant. Arbitrary abstract constraints subsume many types of constraints and ag-
gregates that arise in practice. Moreover, the use of arbitrary constraints allows us
to eliminate the explicit use of the negation as failure without compromising the
expressive power. Our effort extends and complements earlier proposals, general-
izing the well-established notions of answer sets of normal logic programs, and of
programs with monotone and convex abstract constraints.
The backbone of our proposal is the notion of a computation, viewed as a regu-
lated sequence of interpretations. Computations are specified in terms of some ba-
sic principles: revision, convergence, persistence of beliefs, persistence of reasons,
and founded persistence of reasons. These principles have been derived through an
analysis of properties of answer sets of normal logic programs. Building on that
connection, we proposed as answer sets of programs with arbitrary constraints the
results of computations that are founded, that is, satisfy all the properties listed
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above.
The problem of assigning an “answer-set” semantics to programs with arbitrary
constraints has received much attention lately. In the paper, we compared our pro-
posal with several alternative ones. Clearly, the question which of the proposed
generalizations of the answer-set semantics from the case of normal programs to
the case of programs with arbitrary constraints is the “correct” one cannot be given
a definitive answer. Indeed, the concept of “correctness” does not have a formal
definition. However, one can identify some desirable properties that answer sets
should satisfy, and evaluate proposed semantics based on how they behave relative
to those properties.
In this respect, we note that our concept of an answer set has a strong constructive
flavor. It is rooted in the notion of a computation which, in turn, is based on some
fundamental principles computations should obey. Next, it coincides with an earlier
proposal by Son et al. (2007) and, as should be expected of any semantics of answer
sets for programs with arbitrary constraints, it generalizes answer sets of normal
logic programs and of programs with convex constraints. Furthermore, answer sets
as defined here have several equivalent characterizations. They are: the definition
provided in Section 5, the definition given by Son et al. (2007), a closely related
characterization in terms of sub-satisfiability relations from Section 6, and the char-
acterization in terms of a transformation of programs with arbitrary constraints to
programs with convex ones. All these characterizations point to the multitude of
intuitions that underlie the semantics we proposed here. Lastly, our answer sets are
free of self-supportedness, a feature lacking in other proposals for the semantics of
programs with arbitrary constraints, most notably the proposal developed by Faber
et al. (2004).
We conclude by noting a challenging open problem. Namely, so far we have been
unable to extend our computation-based approach so that to capture as a special
case the semantics of answer sets of disjunctive logic programs. Answer sets of
disjunctive programs are minimal models. Therefore, we are after a class of com-
putations that are guaranteed to produce minimal models only. However, finding
such a concept of a computation is not easy. In particular, an obvious attempt to
require that computations increase minimally in each step of a computation does
not address the problem (Pelov and Truszczyński, 2004). For instance, let us con-
sider a program consisting of two rules: a ∨ b and b ← a. Every reasonable class
of computations (that do not look ahead to the result but decides how to expand
based on what has been computed so far) seems to have to contain the computa-
tion ∅, {a}, {a, b}, {a, b}, . . .}. But the result of that computation is not a minimal
model. In the same time, there is no way to determine that computing {a} in the
first step is incorrect based only on the current (in this case, initial) state of the
computation. It seems possible that in order to capture minimality it is necessary to
impose some “global” minimality requirement (as opposed to “local” definition of
how to increment from step to step). This difficulty seems also to be at the heart of
the problem of expressing the semantics of Faber et al. (2004) in terms of compu-
tations, which we noted earlier.

31



Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments.

References

Apt, K., 1990. Logic programming. In: van Leeuven, J. (Ed.), Handbook of theo-
retical computer science. Elsevier, Amsterdam, pp. 493–574.

Balduccini, M., Gelfond, M., Nogueira, M., 2006. Answer Set Based Design of
Knowledge Systems. Annals of Mathematics and Artificial Intelligence, 47(1–
2):183–219.

Baral, C., 2003. Knowledge Representation, Reasoning, and Declarative Problem
Solving, Cambridge University Press.

Baral, C., 2005. From Knowledge to Intelligence – Building Blocks and
Applications. Invited Talk, AAAI, www.public.asu.edu/˜cbaral/
aaai05-invited-talk.ppt.

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A., 2001. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 33(3):374–425.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G., 2003. Aggregate Func-
tions in Disjunctive Logic Programming: Semantics, Complexity, and Imple-
mentation in DLV. In: Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI) 2003. pp. 847–852.
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