
Approximating the stable model semantics is hardGeorg GottlobInstitut f�ur InformationssystemeTechnische Universit�at WienPaniglgasse 16, 1040 Wien, Austria Miros law Truszczy�nskiComputer Science DepartmentUniversity of KentuckyLexington, KY 40506, USAAbstractIn this paper we investigate the complexity of problems concerned with approxi-mating the stable model semantics. We show that under rather weak assumptions itis NP-hard to decide whether the size of a polynomially computable approximation iswithin a constant factor from the size of the intersection (union) of stable models ofa program. We also show that unless P=NP, no approximation exists that uniformlybounds the intersection (union) of stable models.1 IntroductionIn the past several years the complexity of reasoning with nonmonotonic logics has beenstudied extensively [EG93b, EG92, EG93a, Got92, ST93]. In particular, it is well-knownthat several decision problems involving stable models of logic programs are NP-completeor co-NP-complete [MT91, Sch94]. For example, the problem whether a �nite propositionallogic program has a stable model is NP-complete, and the problem whether a given atomis in the intersection of all stable models is co-NP-complete. In this note we consider thecomplexity of several related approximation problems.Let P be a class of �nite propositional logic programs over a denumerable set of propo-sitional variables VAR. Let P be a logic program from P. By At(P) (N(P)) we denotethe set (the number) of atoms occurring in P . By S(P) we denote the family of all stablemodels of P .By a lower approximation for the stable model semantics we mean any operator 	:P 7!2VAR such that 	(P) �\S(P):By an upper approximation for the stable model semantics we mean any operator 	:P 7!2VAR such that [S(P) � 	(P) � At(P):The well-founded semantics [VRS91] yields examples of approximation operators. Let usrecall that the well founded-semantics assigns to a program P two disjoint sets of atoms:T (P) and F (P). The atoms in T (P) are interpreted as true and the atoms in F (P) aretreated as false under the well-founded semantics of P . It is well-known thatT (P) �\S(P) and F (P) � At(P) n[S(P):1

Let us de�ne M(P) = At(P) n F (P):The atoms in M(P) may be regarded as possibly true under the well-founded semantics, asit failed to establish that they are false. Clearly,[S(P) �M(P) � At(P):Hence, T (P) is a lower and M(P) is an upper approximation operator.Clearly, the closer the lower (upper) approximation comes to the intersection (union)of all stable models of a program, the better. The question that we deal with in this noteis: how di�cult it is to decide whether an approximation produces a good estimate of theintersection (union) of the stable models of a program. For instance, how di�cult it is todecide whether the size of the approximation is within a constant factor from the size of theintersection (union). More formally, let f : N! N (throughout the paper, N denotes theset of non-negative integers) and let 	 be an arbitrary approximation operator for the stablemodel semantics. In the paper we consider the following two problems. In the �rst of them	 is assumed to be a lower approximation, in the second one | an upper approximation.LA(; f): Let 	 be a lower approximation for the stable model semantics and let f : N!N (and f are �xed and are not part of the input). Given a logic program P decidewhether jTS(P)j � f(j	(P)j).UA(; f): Let 	 be an upper approximation for the stable model semantics and let f :N! N (and f are arbitrary but �xed and are not part of the input). Given a logicprogram P decide whether j	(P)j � f(jSS(P)j).We show that for every lower approximation 	 that can be computed in polynomial timein the size of a program, the problem LA(; f) is NP-hard (and, even for some very simplefunctions f , NP-complete). In particular, the problem is NP-hard for the well-foundedsemantics operator T . In other words, after one computes T (P), it is infeasible to establishwhether the approximation T (P) is close to TS(P). In addition, it follows that if P6=NPthen there is no polynomially-computable lower approximation operator 	 and no functionf : N! N such that for every logic program P 2 P:j\S(P)j � f(j	(P)j):Similar results are also shown for the problem UA(; f) and the well-founded semanticsoperator M .2 ResultsLet k be a non-negative integer. De�ne: 2

Pk: Given a logic program P , decide whether jTS(P)j � k.We have the following result on the complexity of Pk.Theorem 2.1 For every non-negative integer k, the problem Pk is NP-complete.Proof: First, let us observe that, for every k � 0, Pk is in NP. Indeed, if k � N(P) (recallthat N(P) is the number of all atoms in P), then P is a YES instance to Pk. Otherwise, awitness that an instance of the problem Pk is a YES instance consists of a set A of N(P)�katoms occurring in P and a collection fSv : v 2 Ag of sets of atoms such that:1. Sv is a stable model of P2. v =2 Sv.It is clear that given a set of atoms A and a collection fSv: v 2 Ag, it can be checked inpolynomial time that the conditions (1) - (2) are satis�ed.To show NP-hardness, we reason as follows. We �rst introduce k + 2 new atoms (notappearing in P): q, q1; : : : ; qk+1. Let P 0 be a logic program consisting of the followingclauses:1. qi not(q), for every i, 1 � i � k + 1,2. q not(q1),3. a b1; : : : ; bm;not(c1); : : : ;not(cn);not(q1),for every rule a b1; : : : ; bm;not(c1); : : : ;not(cn) 2 P .We have the following observations:1. A set S0 is a stable model of P 0 if and only if S0 = fq1; : : : ; qk+1g or S0 = fqg [S, forsome stable model S of P .2. The intersection of all stable models of P 0 is(a) fq1; : : : ; qk+1g, if P has no stable models(b) ;, if P has stable models.Hence, the problem to decide whether P has a stable model is reduced to the question ofdeciding the problem Pk for the program P 0 (P has a stable model if and only if jTS(P 0)j �k). Since P 0 can be constructed in polynomial time, it follows that Pk is NP-hard. Since itis in NP, it is NP-complete. 2The construction described in the proof of Theorem 2.1 can be used to show that theproblem LA(; f) (informally, whether the approximation 	 is \good") is NP-hard. Moreprecisely, we have the following result. 3

Theorem 2.2 Let f : N ! N and let 	 be a lower approximation for the stable modelsemantics. If 	(P) can be computed in polynomial time (in the size of P) then the problemLA(; f) is NP-hard. If, in addition, f(n) can be computed in polynomial time in n,LA(; f) is NP-complete.Proof: Assume there is a polynomial-time decision procedure, say A, for the problemLA(; f). Put k = f(0). Next, for a logic program P de�ne P 0 as in the proof of Theorem2.1. Compute 	(P 0). If 	(P 0) 6= ;, then P has no stable models. Otherwise, j	(P 0)j = 0.In this case, run the procedure A to decide whether jTS(P 0)j � f(j	(P 0)j).If the answer is YES, then jTS(P 0)j � k (recall that k = f(0)) and, reasoning asin the proof of Theorem 2.1, we obtain that P has stable models. If the answer is NO,then jTS(P 0)j > k and P has no stable models. In this way we obtain a polynomial-timedecision procedure for the problem whether a logic program has a stable model. Since thislatter problem is NP-complete, NP-hardness of LA(; f) follows.If, in addition, f(n) can be computed in polynomial time in n, then LA(; f) is in NP.Indeed, to verify that a program P is a YES instance of LA(; f), one has to computek = f(j	(P)j) and then proceed as described in the proof of Theorem 2.1. 2In particular, the assertion of Theorem 2.2 holds for the lower approximation operatorT determined by the well-founded semantics.Corollary 2.3 Let f : N ! N. The problem LA(T; f) is NP-hard. If, in addition, f canbe computed in polynomial time, LA(T; f) is NP-complete. 2Next, let us observe that if there were a polynomially-computable approximation oper-ator 	 such that for every logic program P 2 Pj\S(P)j � f(j	(P)j);then LA(; f) would be in P (indeed, in such case, all instances of the problem LA(; f) areYES instances). Since, by Theorem 2.2, LA(; f) is NP-hard, LA(; f) 2 P is impossible,unless P=NP. Hence, we get the following result.Corollary 2.4 Let f : N! N. Unless P=NP, there is no polynomially-computable lowerapproximation operator such that jTS(P)j � f(j	(P)j). 2Let us consider now the problem UA(; f). Using similar techniques as before we canprove the following results.Theorem 2.5 Let f : N ! N be such that f(n) � n for every integer n � 0. Let 	 bean upper approximation operator. If 	 can be computed in polynomial time in the size ofa program, then UA(; f) is NP-hard. If, in addition, f(n) can be computed in polynomialtime in n, UA(; f) is NP-complete. 4

Proof: To prove NP-hardness, we will construct a new program P0 out of P . First, foreach atom a in P let us introduce a new atom a0. Then, de�ne P 0 to be the logic programobtained from P by replacing, for each atom a, each occurrence of a by a0. Observe that ifS is a stable model of P , then S0 = fa0: a 2 Sg is a stable model of P 0. Introduce also anadditional set X of new atoms so that jXj = f(0) + 1. Let PX be a logic program de�nedas PX = fx :x 2 Xg. Finally, de�neP0 = PX [P [P 0 [fa not(p0): a; p 2 At(P)g [fa0 not(p): a; p 2 At(P)g;where, recall, At(P) denotes the set of all atoms occurring in P .We will derive now some useful properties of stable models of the program P0. Let Sbe a stable model of P . Assume �rst that S = At(P). Observe that the reduct P0jAt(P0)(see [GL88] or [MT93a] for the de�nition of the reduct of a logic program) satis�es:P0jAt(P0) = PX [P jAt(P) [P 0jAt(P 0):Since At(P) (At(P 0)) is the least Herbrand model of P jAt(P) (P 0jAt(P 0)), At(P0) is theleast Herbrand model of P0. Hence, At(P0) is a stable model of P0.Next, assume that there is p 2 At(P) such that p =2 S. Let T = S [At(P 0) [X andT 0 = At(P) [S0 [X. Observe that the reduct P0jT satis�esP0jT = PX [P jS [P 0jAt(P 0) [fa0 : a0 2 At(P 0)g:Since the least Herbrand model of P jS is S, it follows that T is the least Herbrand modelof P0jT . Consequently, T is a stable model of P0. A similar argument shows that T 0 is astable model of P0, as well.Assume now that T is a stable model of P0. Observe that X � T . Assume that forsome p 2 At(P), p =2 T . Then, the reduct P0jT contains all clauses of the form a0 , wherea0 2 At(P 0). Consequently, At(P 0) � T . Let S = T n (At(P 0) [X). Since S � At(P)and since p =2 S, P0jT = PX [P jS [P 0jAt(P 0) [fa0 : a0 2 At(P 0)g. Since T is the leastHerbrand model of P0jT , it follows that S is the least Herbrand model of P jS. Consequently,S is a stable model of P . Similarly, if p0 =2 T for some p0 2 At(P 0), then S0 = T n(At(P)[X)is a stable model of P 0 and, consequently, S = fa: a0 2 S0g is a stable model of P . Finally,if T = At(P) [At(P 0) [X, it follows that At(P) is a stable model of P .Our discussion proves that:1. If P has a stable model then SS(P0) = At(P0), and2. If P has no stable models then SS(P0) = ;.In particular, observe that if P has stable models then 	(P0) = At(P0) (it follows from thefact that 	 is an upper approximation operator),Now, the following procedure decides whether P has a stable model or not. First,compute P0 and 	(P0). If 	(P0) 6= At(P0) then P has no stable models. Assume then that5

	(P0) = At(P0). Use the decision procedure for UA(; f) to decide whether j	(P0)j �f(jSS(P0)j). If no, thenjAt(P0)j = j	(P0)j > f(j[S(P0)j) � j[S(P0)j:Hence, SS(P0) = ; and P has no stable models. Otherwise,jAt(P0)j = j	(P0)j � f(j[S(P0)j):Since jAt(P0)j = j	(P0)j > jXj > f(0), it follows that SS(P0) = At(P0). Consequently, Phas stable models.If, in addition, f(n) can be computed in polynomial time in n, the problem UA(; f)is in NP. Indeed, the following procedure can be used to verify that an instance to theproblem UA(; f) is a YES instance. Compute j	(P)j. If j	(P)j = 0, then P is a YESinstance (since f is nondecreasing, f(k) � 0 for every integer k � 0). Otherwise, P is aYES instance if and only if there is a set A of atoms and a collection fSv: v 2 Ag of sets ofatoms such that:1. A 6= ;,2. j	(P)j � f(jAj),3. for every v 2 A, Sv is a stable model of P ,4. for every a 2 A, a 2 Sa.Hence, at this point the procedure nondeterministically guesses A and fSv: v 2 Ag, andchecks that conditions (1) | (4) hold. Since it takes polynomial time to check conditions(1) | (4), the problem UA(; f) is in NP. 2Similarly as before, we have two corollaries. First of them deals with the operator M(P)| an upper approximation operator implied by the well-founded semantics.Corollary 2.6 Let f : N ! N be such that f(n) � n for every integer n � 0. Then, theproblem UA(M;f) is NP-hard. If, in addition, 	 can be computed in polynomial time inthe size of a program, then the problem UA(M;f) is NP-complete. 2Corollary 2.7 Let f : N! N be such that f(n) � n for every integer n � 0. Unless P =NP, there is no polynomially-computable upper approximation operator such that j	(P)j �f(jSS(P)j). 2AcknowledgementsThe second author was partially supported by National Science Foundation under grantsIRI-9012902 and IRI-9400568. 6

References[EG92] T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and moder-ately grounded expansions. Fundamenta Informaticae, 17:31{53, 1992.[EG93a] T. Eiter and G. Gottlob. Complexity results for disjunctive logic programmingand application to nonmonotonic logics. In D. Miller, editor, Proceedings of the1993 International Symposium on Logic Programming, pages 266{278. MIT Press,1993.[EG93b] T. Eiter and G. Gottlob. Propositional circumscription and extended closed worldreasoning are �P2 -complete. Theoretical Computer Science, 114:231 { 245, 1993.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowal-ski and K. Bowen, editors, Proceedings of the 5th international symposium on logicprogramming, pages 1070{1080, Cambridge, MA., 1988. MIT Press.[Got92] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic andComputation, 2:397{425, 1992.[MT91] W. Marek and M. Truszczy�nski. Autoepistemic logic. Journal of the ACM, 38:588{619, 1991.[MT93a] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent reason-ing. Berlin: Springer-Verlag, 1993.[Sch94] J. Schlipf. The expressive powers of the logic programming semantics. Journalof the Computer Systems and Science, 1994. To appear, A preliminary versionappeared in the Ninth ACM Symposium on Principles of Database Systems, 1990.[ST93] G.F. Schwarz, and M. Truszczy�nski. Nonmonotonic reasoning is sometimes eas-ier. Proceedingsof the Kurt G�odel Symposium, pp. 313 { 324, Lecture Notes inComputer Science, Springer-Verlag.[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-foundedsemantics for general logic programs. Journal of the ACM, 38:620 { 650, 1991.

7

