Approximating the stable model semantics is hard

Georg Gottlob Mirostaw Truszczynski
Institut fiir Informationssysteme Computer Science Department
Technische Universitdit Wien University of Kentucky
Paniglgasse 16, 1040 Wien, Austria Lexington, KY 40506, USA
Abstract

In this paper we investigate the complexity of problems concerned with approxi-
mating the stable model semantics. We show that under rather weak assumptions it
is NP-hard to decide whether the size of a polynomially computable approximation is
within a constant factor from the size of the intersection (union) of stable models of
a program. We also show that unless P=NP, no approximation exists that uniformly
bounds the intersection (union) of stable models.

1 Introduction

In the past several years the complexity of reasoning with nonmonotonic logics has been
studied extensively [EG93b, EG92, EG93a, Got92, ST93]. In particular, it is well-known
that several decision problems involving stable models of logic programs are NP-complete
or co-NP-complete [MT91, Sch94]. For example, the problem whether a finite propositional
logic program has a stable model is NP-complete, and the problem whether a given atom
is in the intersection of all stable models is co-NP-complete. In this note we consider the
complexity of several related approximation problems.

Let P be a class of finite propositional logic programs over a denumerable set of propo-
sitional variables VAR. Let P be a logic program from P. By At(P) (N(P)) we denote
the set (the number) of atoms occurring in P. By S(P) we denote the family of all stable
models of P.

B}%/ a lower approzimation for the stable model semantics we mean any operator V: P +—
2 VAR uch that
v(P)C)S(P).

B%} an upper approximation for the stable model semantics we mean any operator V: P +—
9 VAR gych that
US(P) C ¥(P) C AY(P).

The well-founded semantics [VRS91] yields examples of approximation operators. Let us
recall that the well founded-semantics assigns to a program P two disjoint sets of atoms:
T(P) and F(P). The atoms in T(P) are interpreted as true and the atoms in F(P) are
treated as false under the well-founded semantics of P. It is well-known that

T(P) C()S(P) and F(P)C A{(P)\[JS(P).

Let us define
M(P) = At(P) \ F(P).

The atoms in M(P) may be regarded as possibly true under the well-founded semantics, as
it failed to establish that they are false. Clearly,

US(P) € M(P) C AY(P).

Hence, T'(P) is a lower and M (P) is an upper approximation operator.

Clearly, the closer the lower (upper) approximation comes to the intersection (union)
of all stable models of a program, the better. The question that we deal with in this note
is: how difficult it is to decide whether an approximation produces a good estimate of the
intersection (union) of the stable models of a program. For instance, how difficult it is to
decide whether the size of the approximation is within a constant factor from the size of the
intersection (union). More formally, let f : N — N (throughout the paper, N denotes the
set of non-negative integers) and let U be an arbitrary approximation operator for the stable
model semantics. In the paper we consider the following two problems. In the first of them
¥ is assumed to be a lower approximation, in the second one — an upper approximation.

LA(Y, f): Let ¥ be a lower approximation for the stable model semantics and let f : N —
N (¥ and f are fixed and are not part of the input). Given a logic program P decide
whether |\ S(P)| < f(1%(P)]).

UA(Y, f): Let ¥ be an upper approximation for the stable model semantics and let f :
N — N (U and f are arbitrary but fixed and are not part of the input). Given a logic
program P decide whether |¥(P)| < f(|US(P)]).

We show that for every lower approximation ¥ that can be computed in polynomial time
in the size of a program, the problem LA (W, f) is NP-hard (and, even for some very simple
functions f, NP-complete). In particular, the problem is NP-hard for the well-founded
semantics operator 1T'. In other words, after one computes T'(P), it is infeasible to establish
whether the approximation T'(P) is close to (| S(P). In addition, it follows that if P#NP
then there is no polynomially-computable lower approximation operator ¥ and no function
f : N — N such that for every logic program P € P:

(N SP)| < F(1E(P))).

Similar results are also shown for the problem UA(V, f) and the well-founded semantics
operator M.

2 Results

Let k£ be a non-negative integer. Define:

Pj: Given a logic program P, decide whether | S(P)| < k.
We have the following result on the complexity of Py.
Theorem 2.1 For every non-negative integer k, the problem Py is NP-complete.

Proof: First, let us observe that, for every k£ > 0, Py, is in NP. Indeed, if £ > N(P) (recall
that N(P) is the number of all atoms in P), then P is a YES instance to Py. Otherwise, a
witness that an instance of the problem Py is a YES instance consists of a set A of N(P)—k
atoms occurring in P and a collection {S,:v € A} of sets of atoms such that:

1. S, is a stable model of P
2. v ¢S,
It is clear that given a set of atoms A and a collection {S,:v € A}, it can be checked in

polynomial time that the conditions (1) - (2) are satisfied.

To show NP-hardness, we reason as follows. We first introduce k + 2 new atoms (not
appearing in P): ¢q, q1,...,qx+1- Let P’ be a logic program consisting of the following
clauses:

1. ¢; < not(q), for every 7, 1 <i <k +1,

2. ¢ + not(q1),

3. a<+by,...,by,not(cy),...,not(c,),not(q;),
for every rule a < by,...,by,not(c1),...,not(c,) € P.

We have the following observations:

1. A set S’ is a stable model of P’ if and only if ' = {q1,...,qx+1} or 8" = {q} U S, for
some stable model S of P.

2. The intersection of all stable models of P’ is

(a) {q1,---,qk+1}, if P has no stable models
(b) 0, if P has stable models.

Hence, the problem to decide whether P has a stable model is reduced to the question of
deciding the problem Py, for the program P’ (P has a stable model if and only if | 1 S(P’)| <
k). Since P’ can be constructed in polynomial time, it follows that Py is NP-hard. Since it
is in NP, it is NP-complete. O

The construction described in the proof of Theorem 2.1 can be used to show that the
problem LA (WU, f) (informally, whether the approximation ¥ is “good”) is NP-hard. More
precisely, we have the following result.

Theorem 2.2 Let f : N — N and let ¥ be a lower approzimation for the stable model
semantics. If W(P) can be computed in polynomial time (in the size of P) then the problem
LA(Y, f) is NP-hard. 1If, in addition, f(n) can be computed in polynomial time in n,
LA(Y, f) is NP-complete.

Proof: Assume there is a polynomial-time decision procedure, say A, for the problem
LA(Y, f). Put k = f(0). Next, for a logic program P define P as in the proof of Theorem
2.1. Compute U(P'). If U(P') # (), then P has no stable models. Otherwise, |¥(P’)| = 0.
In this case, run the procedure A to decide whether | S(P")| < f(|T(P)]).

If the answer is YES, then | S(P')| < k (recall that £ = f(0)) and, reasoning as
in the proof of Theorem 2.1, we obtain that P has stable models. If the answer is NO,
then | S(P’)| > k and P has no stable models. In this way we obtain a polynomial-time

decision procedure for the problem whether a logic program has a stable model. Since this
latter problem is NP-complete, NP-hardness of LA(P, f) follows.

If, in addition, f(n) can be computed in polynomial time in n, then LA(V, f) is in NP.
Indeed, to verify that a program P is a YES instance of LA(U, f), one has to compute
k= f(]¥(P)|) and then proceed as described in the proof of Theorem 2.1. O

In particular, the assertion of Theorem 2.2 holds for the lower approximation operator
T determined by the well-founded semantics.

Corollary 2.3 Let f : N — N. The problem LA(T, f) is NP-hard. If, in addition, f can
be computed in polynomial time, LA(T, f) is NP-complete. O

Next, let us observe that if there were a polynomially-computable approximation oper-
ator W such that for every logic program P € P

ISP < F(12(P))),

then LA(W, f) would be in P (indeed, in such case, all instances of the problem LA (U, f) are
YES instances). Since, by Theorem 2.2, LA(W, f) is NP-hard, LA(P, f) € P is impossible,
unless P=NP. Hence, we get the following result.

Corollary 2.4 Let f : N — N. Unless P=NP, there is no polynomially-computable lower
approzimation operator such that |\ S(P)| < f(|T(P)|). O

Let us consider now the problem UA(U, f). Using similar techniques as before we can
prove the following results.

Theorem 2.5 Let f : N — N be such that f(n) > n for every integer n > 0. Let ¥ be
an upper approximation operator. If U can be computed in polynomial time in the size of
a program, then UA(W, f) is NP-hard. If, in addition, f(n) can be computed in polynomial
time in n, UA(V, f) is NP-complete.

Proof: To prove NP-hardness, we will construct a new program P, out of P. First, for
each atom ¢ in P let us introduce a new atom a'. Then, define P’ to be the logic program
obtained from P by replacing, for each atom a, each occurrence of a by a’. Observe that if
S is a stable model of P, then S’ = {a":a € S} is a stable model of P'. Introduce also an
additional set X of new atoms so that |X| = f(0) + 1. Let Px be a logic program defined
as Px = {z <—:z € X}. Finally, define

Py=PxUPUP' U{a <« not(p):a,p € A{P)} U{d' < not(p):a,p € At(P)},

where, recall, At{(P) denotes the set of all atoms occurring in P.

We will derive now some useful properties of stable models of the program F,. Let S
be a stable model of P. Assume first that S = A¢(P). Observe that the reduct Py|At(F)
(see [GL88] or [MT93a] for the definition of the reduct of a logic program) satisfies:

Py|At(Py) = Py U P|At(P) U P'|A(P").

Since At(P) (At(P')) is the least Herbrand model of P|A#(P) (P'|At(P')), At(Py) is the
least Herbrand model of Py. Hence, At(F,) is a stable model of F.

Next, assume that there is p € A#(P) such that p ¢ S. Let T'= S U A{(P') U X and
T' = A{(P) U S’ U X. Observe that the reduct Py|T satisfies

Py|T = Px UP|SU P'|AYP') U {d «:d € A(P)}.

Since the least Herbrand model of P|S is S, it follows that 7" is the least Herbrand model
of Py|T. Consequently, T is a stable model of Py. A similar argument shows that 7" is a
stable model of Py, as well.

Assume now that T is a stable model of Fy. Observe that X C 1. Assume that for
some p € At(P), p ¢ T. Then, the reduct Py|T contains all clauses of the form a’ <, where
a' € A{P'). Consequently, A(P') C T. Let S =T\ (A{P') U X). Since S C AtP)
and since p ¢ S, Py|T = Px U P|S U P'|A{(P") U {da' <—:d' € At(P')}. Since T is the least
Herbrand model of Py|T', it follows that S is the least Herbrand model of P|S. Consequently,
S is a stable model of P. Similarly, if p’ ¢ T for some p’ € At(P’), then 8" = T\ (A{(P)UX)
is a stable model of P’ and, consequently, S = {a:a’ € S’} is a stable model of P. Finally,
if T = At(P) U At(P') U X, it follows that A#(P) is a stable model of P.

Our discussion proves that:

1. If P has a stable model then |JS(Fy) = AH{(), and

2. If P has no stable models then |JS(F) = 0.
In particular, observe that if P has stable models then U (F,) = At(Fy) (it follows from the
fact that ¥ is an upper approximation operator),

Now, the following procedure decides whether P has a stable model or not. First,
compute Py and V(F). If U(Fy) # At(Py) then P has no stable models. Assume then that

U(FPy) = AH(FPy). Use the decision procedure for UA(V, f) to decide whether |V (Fp)| <
FQUS(Fo)|). If no, then

|At(Po)| = [¥(Po) > F([US@)]) > [US(R)l.
Hence, |JS(Py) = 0 and P has no stable models. Otherwise,
|At(Po)| = [¥(Po)| < F(IJS(Po)])

Since |At(Fo)| = |Y(Fo)| > | X| > f(0), it follows that |JS(Py) = At(Fp). Consequently, P
has stable models.

If, in addition, f(n) can be computed in polynomial time in 7, the problem UA(V, f)
is in NP. Indeed, the following procedure can be used to verify that an instance to the
problem UA(V, f) is a YES instance. Compute |V(P)|. If |U(P)| = 0, then P is a YES
instance (since f is nondecreasing, f(k) > 0 for every integer k£ > 0). Otherwise, P is a
YES instance if and only if there is a set A of atoms and a collection {S,:v € A} of sets of
atoms such that:

1. A#0,
2. |w(P)[< f(IA]),
3. for every v € A, S, is a stable model of P,
4. for every a € A, a € S,.
Hence, at this point the procedure nondeterministically guesses A and {S,:v € A}, and

checks that conditions (1) — (4) hold. Since it takes polynomial time to check conditions
(1) — (4), the problem UA(V, f) is in NP. O

Similarly as before, we have two corollaries. First of them deals with the operator M (P)
— an upper approximation operator implied by the well-founded semantics.

Corollary 2.6 Let f : N — N be such that f(n) > n for every integer n > 0. Then, the
problem UA(M, f) is NP-hard. If, in addition, ¥ can be computed in polynomial time in
the size of a program, then the problem UA(M, f) is NP-complete. O

Corollary 2.7 Let f : N — N be such that f(n) > n for every integer n > 0. Unless P =
NP, there is no polynomially-computable upper approzimation operator such that |V(P)| <

FAUS(P))). O

Acknowledgements

The second author was partially supported by National Science Foundation under grants
IRI-9012902 and IRI-9400568.

References

[EG92]

[EG93a]

[EG93b]

[GLSS]

[Got92]

[MT91]

[MT93a]

[Sch94]

[ST93]

[VRS91]

T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and moder-
ately grounded expansions. Fundamenta Informaticae, 17:31-53, 1992.

T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming
and application to nonmonotonic logics. In D. Miller, editor, Proceedings of the
1993 International Symposium on Logic Programming, pages 266-278. MIT Press,
1993.

T. Eiter and G. Gottlob. Propositional circumscription and extended closed world
reasoning are 115 -complete. Theoretical Computer Science, 114:231 — 245, 1993.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowal-
ski and K. Bowen, editors, Proceedings of the 5th international symposium on logic
programming, pages 1070-1080, Cambridge, MA., 1988. MIT Press.

G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2:397-425, 1992.

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the ACM, 38:588—
619, 1991.

W. Marek and M. Truszczynski. Nonmonotonic logics; context-dependent reason-
ing. Berlin: Springer-Verlag, 1993.

J. Schlipf. The expressive powers of the logic programming semantics. Journal
of the Computer Systems and Science, 1994. To appear, A preliminary version
appeared in the Ninth ACM Symposium on Principles of Database Systems, 1990.

G.F. Schwarz, and M. Truszczyniski. Nonmonotonic reasoning is sometimes eas-
ier. Proceedingsof the Kurt Godel Symposium, pp. 313 — 324, Lecture Notes in
Computer Science, Springer-Verlag.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. Journal of the ACM, 38:620 — 650, 1991.

