
Under consideration for publication in Theory and Practice of Logic Programming 1

Active Integrity Constraints and Revision
Programming

Luciano Caroprese1 and Miros law Truszczyński2
1Università della Calabria

87030 Rende, Italy

E mail: caroprese@deis.unical.it and
2Department of Computer Science, University of Kentucky

Lexington, KY 40506, USA

E mail: mirek@cs.uky.edu

submitted 25 April 2009; revised 18 November 2009, 17 May 2010; accepted 3 August 2010

Abstract

We study active integrity constraints and revision programming, two formalisms designed
to describe integrity constraints on databases and to specify policies on preferred ways
to enforce them. Unlike other more commonly accepted approaches, these two formalisms
attempt to provide a declarative solution to the problem. However, the original seman-
tics of founded repairs for active integrity constraints and justified revisions for revision
programs differ. Our main goal is to establish a comprehensive framework of semantics
for active integrity constraints, to find a parallel framework for revision programs, and
to relate the two. By doing so, we demonstrate that the two formalisms proposed inde-
pendently of each other and based on different intuitions when viewed within a broader
semantic framework turn out to be notational variants of each other. That lends support
to the adequacy of the semantics we develop for each of the formalisms as the foundation
for a declarative approach to the problem of database update and repair. In the paper
we also study computational properties of the semantics we consider and establish results
concerned with the concept of the minimality of change and the invariance under the
shifting transformation.

KEYWORDS: inconsistent databases, active integrity constraints, revision programming

1 Introduction

Integrity constraints are conditions on databases. If a database violates integrity
constraints, it needs to be repaired — updated so that the integrity constraints hold
again. Often there are several ways to enforce integrity constraints. The paper is
concerned with the problem to specify policies for preferred ways to repair databases
in a declarative way as part of the description of integrity constraints.

A database can be viewed as a finite set of ground atoms in the language of
first-order logic determined by the database schema and an infinite countable set of
constants. An integrity constraint can be modeled by a formula in this language. A
database satisfies an integrity constraint if it is its Herbrand model. Since databases
and sets of integrity constraints are finite, without loss of generality, we will limit

2 L. Caroprese and M. Truszczyński

our attention to the case when databases are subsets of some finite set At of propo-

sitional atoms, and integrity constraints are clauses in the propositional language
generated by At. The notions we propose and the results we obtain in that restricted
setting lift to the first-order one (including aggregate operations and built-in predi-
cates) via the standard concept of grounding. We do not discuss this matter here in
more detail, as our main objective is to develop a semantic framework for declara-
tive specifications of repair policies rather than to study practical issues of possible
implementations.

To illustrate the problem of database repair with respect to integrity constraints,
let us consider the database I = {a, b} and the integrity constraint ¬a∨¬b. Clearly,
I does not satisfy ¬a ∨ ¬b and needs to be “repaired” — replaced by a database
that satisfies the constraint. Assuming At = {a, b, c, d}, the databases ∅, {a}, {b},
{a, c} are examples of databases that could be considered as replacements for I.
Since the class of replacements of I is quite large, the question arises whether there
is a principled way to narrow it down. One of the most intuitive and commonly
accepted postulates is that the change between the initial database I and the revised
database R, given by I ÷ R, be minimal (an example of an early work exploiting
that idea is the paper by Winslett (1990); for a more detailed discussion of the role
of minimality in studies of database updates we refer to the paper by Chomicki
(2007)). In our case, the minimality of change narrows down the class of possible
revisions to {a} and {b}.

In some cases, the minimality of change is not specific enough and may leave too
many candidate revisions. The problem can be addressed by formalisms that allow
the database designer to formulate integrity constraints and, in addition, to state
preferred ways for enforcing them. In this paper, which represents an extended ver-
sion of two conference papers (Caroprese and Truszczyński 2008b; Caroprese and
Truszczyński 2008a), we study two such formalisms: active integrity constraints
introduced by Caroprese, Greco, Sirangelo and Zumpano (2006), and revision pro-
gramming introduced by Marek and Truszczyński (1998).

Active integrity constraints and revision programs are languages for specifying
integrity constraints. However, unlike in the standard case, when integrity con-
straints are just first-order formulas that make no distinctions among its models,
both sets of active integrity constraints and revision programs are meant to rep-
resent policies for preferring some models over others. In other words, they give
database system designers means to express policies for narrowing down the space
of models that need to be considered when repairing inconsistencies or when query-
ing an inconsistent database. In a sense, the two formalisms arise from the need
to provide declarative counterparts to procedural attempts to accomplish the same
objective (Widom and Ceri 1996; Jagadish et al. 1999). An in-depth understanding
of the semantics and, in general, properties of these two formalisms is then essential.
Developing that understanding is the main goal of our paper.

To recall, active integrity constraints explicitly encode both integrity constraints
and preferred basic actions to repair them, in the case when the constraints are
violated. To specify a precise meaning of sets of active integrity Caroprese et al.

Active Integrity Constraints and Revision Programming 3

(2006) proposed the semantics of founded repairs. Founded repairs are change-
minimal and satisfy a certain groundedness condition.

Revision programs consist of revision rules. Each revision rule represents an in-
tegrity constraint, and implicitly encodes preferred ways to enforce it by means of
a certain syntactic convention. Following intuitions from logic programming, Marek
and Truszczyński (1998) proposed two semantics for revision programs: the seman-
tics of justified revisions and the semantics of supported revisions. Each semantics
reflects some form of preferences on ways to repair a database given a revision
program.

The original semantics of active integrity constraints and revision programming
seemingly cannot be related in any direct way. They have different computational
properties. For instance, the problem of the existence of a founded repair for a
set of normal active integrity constraints is Σ2

P -complete, while the same problem
for justified revisions of normal revision programs is NP-complete. Furthermore,
while the semantics for revision programming do not have the minimality of change
property, founded repairs with respect to active integrity constraints do.

In this paper, we demonstrate that despite the differences in the syntax, and the
lack of a simple correspondence between justified revisions and founded repairs,
the formalisms of revision programs and active integrity constraints are closely
related. There are two keys to the relationship. First, we need a certain syntactic
restriction on revision programs. Specifically, we introduce the class of proper

revision programs and show that restricting to proper programs does not affect the
expressive power.

Second, we need to broaden the families of the semantics for each formalism so
that the two sides could be aligned. To this end for active integrity constraints we
introduce new semantics by dropping the minimality of change condition, which
results in the semantics of weak repairs and founded weak repairs. We also adapt
to the case of active integrity constraints the semantics of justified revisions (jus-
tified weak revisions), which leads us to the semantics of justified weak repairs

and justified repairs. For revision programs, we modify the semantics of revisions
and justified revisions by imposing on them the minimality condition. Moreover we
introduce the semantics of founded revisions (founded weak revisions) that corre-
sponds to the semantics of founded repairs (founded weak repairs). We show that
under a simple bijection between proper revision programs and active integrity
constraints, founded (weak) revisions correspond to founded (weak) repairs and
justified (weak) revisions correspond to justified (weak) repairs. This result demon-
strates that both formalisms, even though rooted in different intuitions, can be
“completed” so that to become notational variants of each other.

Both in the case of active integrity constraints and revision programs, the con-
cepts of “groundedness” we consider do not imply, in general, the property of the
minimality of change. However, there are broad classes of sets of active integrity
constraints, as well as classes of revision programs when it is so. In the paper, we
present one class of sets of active integrity constraints, for which, independently
of what database they are considered with, groundedness based on the notion of
being justified does imply minimality, that is, for which justified weak repairs are

4 L. Caroprese and M. Truszczyński

minimal and so, are justified repairs (cf. Theorem 4). We also show that for ev-
ery set of active integrity constraints there is a class of databases such that the
minimality of justified weak repairs is guaranteed (cf. Theorem 3). Because of the
correspondence between active integrity constraints and revision programs, one can
derive analogous results for revisions programs.

A fundamental property of semantics describing database updates is the invari-
ance under a certain transformation of repair instances that consists of (1) remov-
ing some elements from a database and adding to it some other elements (thus,
“shifting” the database into a different one), and then (2) rewriting active integrity
constraints by replacing literals to reflect the changed status of some atoms in the
database (cf. Section 13 for a detailed definition). Intuitively such a transformation,
we call it shifting, when applied to a database and a set of integrity constraints
should result in a new database repair instance, “isomporphic” to the original one
under any reasonable database repair semantics. We show that it indeed is so for all
the semantics we consider in the paper. Thanks to the correspondence between the
setting of active integrity constraints and revision programs, the same holds true in
that latter setting, too. Shifting is an important property. It allows us to reduce the
general database repair (revision) problem, which is specified by two parameters,
a database and a set of active integrity constraints (or a revision program), to a
special case, when the database to be repaired is empty. The resulting setting is
simpler as it involves one parameter only (a set of active integrity constraints or
a revision program, respectively). An important consequence of this is the exis-
tence of a direct way, in which database repair problem can be related to standard
logic programming with the semantics of supported and stable models (Marek and
Truszczyński 1998; Pivkina 2001). This paves the way to computational techniques
for finding database repairs and revisions.

The paper is organized as follows. In the following section, we situate our paper
in the context of some related work. In Section 3, we give a formal introduction
to the database update problem. In Section 4, we recall basic concepts related to
active integrity constraints, including the semantics of repairs and founded repairs
(Caroprese et al. 2006). Next, for a set of active integrity constraints we define weak
repairs, founded weak repairs, justified weak repairs and justified repairs. We then
discuss the normalization of active integrity constraints in Section 6. We prove
that justified repairs of a database with respect to the “normalization” of a set
of arbitrary active integrity constraints are justified repairs of this database with
respect to the original (“non-normalized”) active integrity constraints (cf. Theorem
5). This class of justified repairs is the most restrictive semantics for the database
repair problem among those we consider. Thus, it offers repairs that can be regarded
as most strongly grounded in a database repair instance (a database and a set of
active integrity constraints).

Section 7 contains complexity results concerning the existence of repairs of the
types we consider in the paper, and Section 8 gives a brief summary of our knowledge
concerning the semantics of active integrity constraints. In particular, we discuss
there the relationships among the semantics as well as how one could take advantage

Active Integrity Constraints and Revision Programming 5

of the multitude of the semantics considered to handle inconsistency (non-existence
of repairs of the most restrictive types).

Next, we recall basic concepts of revision programming. We then introduce some
new semantics for revision programs. In Section 11 we establish a precise connection
between active integrity constraints and revision programs. We also obtain some
complexity results.

Section 13 is concerned with the shifting transformation (Marek and Truszczyński
1998; Pivkina 2001). We show that all semantics discussed in the paper (for either
formalism) are invariant under the shifting transformation (the proofs of those
results are quite technical and we provide them in the appendix). The last section
of the paper offers additional discussion of the contributions of the paper and lists
some open problems.

We close the introduction by stressing that our goal is not to single out any of the
semantics as the “right” one. For instance, while the semantics of justified repairs
(revisions) seems to be best motivated by the principles of groundedness and mini-
mality, the semantics given by the justified repairs (revisions) of the normalization
of active integrity constraints (revision programs), being even more restrictive, cer-
tainly deserves attention. And, in those cases when justified semantics do not offer
any repairs (revisions) relaxing the minimality requirement or the groundedness
requirement offers justified weak repairs (revisions) or founded repairs (revisions)
that one could use to enforce constraints. We discuss this matter, as well as com-
putational trade-offs, in Section 8 and at the end of Section 12.

2 Related Work

Integrity constraints may render a database inconsistent. Addressing database in-
consistency is a problem that has been studied extensively in the literature, and
several approaches to database maintenance under integrity constraints have been
proposed.

Our work is closely related to studies of event-condition-event (ECA) rules in
active databases (Widom and Ceri 1996). The main difference is that while the
formalisms of active integrity constraints and revision programs are declarative,
ECA rules have only been given a procedural interpretation.

To recall, an ECA rule consists of three parts:

1. Event: It specifies situations that trigger the rule (e.g. the insertion, deletion
or update of a tuple, the execution of a query, the login by a user)

2. Condition: It usually models an integrity constraint. Being true in a triggered
ECA rule means the constraint is violated and causes the execution of the
action

3. Action: Typically, it is a set of update actions (insert, delete, update). It is
executed when the condition of a triggered rule is true.

ECA rules without the event part are called condition-action (CA) rules. The
structure of CA rules is similar to normal active integrity constraints, as we con-
sider them here. In this sense, the formalisms of ECA rules and active integrity

6 L. Caroprese and M. Truszczyński

constraints are similar. However, there are significant differences, too. Most im-
portantly, the work on ECA rules focused so far only on procedural semantics and
particular rule processing algorithms. These algorithms determine which ECA rules
are invoked and in what order. They use different methods for conflict resolution
(needed when several rules are triggered at the same time), and for ensuring termi-
nation (executing an action of a rule may make another triggered rule applicable,
whose action in turn may make the first rule applicable again).

Another approach to specify the policy for selecting a rule from among those
that were activated was proposed by Jagadish et al. (1999). It is based on the
specification of a set of meta-rules of four types:

1. Positive requirement meta-rules: A meta-rule of this type specifies that if a
rule A executes, than a rule B must execute as well.

2. Disabling Rules: A meta-rule of this type specifies if a rule A is executed then
a rule B will not be executed and vice versa.

3. Preference meta-rules: A preference meta-rule specifies a preference between
two rules. If A is preferable over B and both are fireable then A will be fired.

4. Scheduling meta-rules: A meta-rule of this type specifies the order of execution
of two fireable rules.

Again, so far only procedural approaches to interpret meta-rules have been devel-
oped and studied.

In the two cases discussed, the lack of declarative semantics means there are no
grounds for a principled evaluation of rule processing algorithms. In contrast, in
our work we focus on declarative semantics for sets of active integrity constraints
and revision programs. In particular, we propose several new semantics and study
their properties. Our results apply to CA rules and, in fact, they are more general,
as active integrity constraints allow several possible actions to choose from. On the
other hand, at present our formalisms do not allow us to specify triggering events.

Our work is also related to studies of consistent query answering (Arenas et al.
1999; Arenas et al. 2003).1 That research established a logical characterization of
the notion of a consistent answer in a relational database that may violate integrity
constraints, developed properties of consistent answers, and methods to compute
them.

The notion of a consistent answer is based on the notion of repair. A repair of
a database is a database that is consistent with respect to a given set of integrity
constraints and differs minimally from the original one. A consistent answer to a
query Q over a (possibly inconsistent) database I with respect to a set of integrity
constraints is a tuple that belongs to the answers to the same query over all repairs
of I. Computing consistent answers exploits the notion of a residue (Chakravarthy
et al. 1990). Given a query and a set of integrity constraints over a database I,
instead of computing all the repairs of I and querying them, the consistent answers
are obtained by computing a new query and submitting it to I. The answers to

1 Chomicki (2007) gives an in-depth overview of this line of research.

Active Integrity Constraints and Revision Programming 7

the new query are exactly the consistent answers to the original one. The sound-
ness, completeness and termination of this technique is proved for several classes
of constraints and queries. However, the completeness is lost in the case of disjunc-
tive or existential queries. Arenas, Bertossi and Chomicki (2003) present a more
general approach that allows us to compute consistent answers to any first-order
query. It is based on the notion of a logic program with exceptions. Bravo and
Bertossi (2006) study the problem of consistent query answering for databases with
null values. They propose a semantics for integrity constraint satisfaction for that
setting. Marileo and Bertossi (2007) developed a system for computing consistent
query answers based on that semantics.

In research on consistent query answering, the semantics of choice is that of
minimal change — queries are answered with respect to all databases that differ
minimally from the present one and that satisfy all integrity constraints. Thus, no
distinction is made among different ways inconsistencies could be removed and no
formalisms for specifying policies for removing inconsistencies are discussed. The
objectives of the research on active integrity constraints and revision programs have
been, in a sense, orthogonal. Up to now (including this paper), the main focus was
on embedding within integrity constraints declarative policies for removing incon-
sistencies, and on establishing possible semantics identifying candidate databases
to consider as repairs. It has not yet addressed the problem of consistent query
answering with respect to these semantics, an intriguing and important problem to
address in the future.

A closely related framework to ours was proposed and studied by Greco et al.
(2003). It was designed for computing repairs and consistent answers over inconsis-
tent databases. Greco et al. (2003) defined a repair as an inclusion-minimal set of
update actions (insertions and deletions) that makes the database consistent with
respect to a set of integrity constraints. The framework relies on repair constraints,
rules that specify a set of insertions and deletions which are disallowed, and pri-

oritized constraints, rules that define priorities among repairs. In that framework,
to compute repairs or the consistent answers, one rewrites the constraints into a
prioritized extended disjunctive logic programs with two different forms of negation
(negation as failure and classical negation). As shown by Caroprese et al. (2006),
the framework can be cast as a special case of the formalism of active integrity con-
straints. A different notion of minimality, based on the cardinality of sets of insert
and delete actions, is studied in (Lopatenko and Bertossi 2006). This work presents
a set of detailed complexity results of the problem of consistent query answering in
the case only cardinality-based repairs are considered.

Katsuno and Mendelzon (1991), consider the problem of knowledge base updates.
They analyze some knowledge base update operators and propose a set of postulates
knowledge base update operators should satisfy, but do not advocate any particular
update operator. For Katsuno and Mendelzon a knowledge base is a propositional
formula. Our setting is much more concrete as we consider databases, knowledge
bases that are conjunctions of atoms and integrity constraints and, importantly,
where updates are restricted to insertion or deletions of atoms. Moreover, our focus
is not in update operators but on defining types of databases that can result from

8 L. Caroprese and M. Truszczyński

a given database when integrity constraints are enforced according to policies they
encode. However, the semantics we propose and study in the paper give rise to
knowledge base operators that could be considered from the standpoint of Katsuno-
Mendelzon postulates. We provide additional comments on that mater in the last
section of the paper.

3 Integrity Constraints and Database Repairs — Basic Concepts

Databases and entailment. We consider a finite set At of propositional atoms.
We represent databases as subsets of At. A database I entails a literal L = a
(respectively, L = not a), denoted by I |= L, if a ∈ I (respectively, a 6∈ I).
Moreover, I entails a set of literals S , denoted by I |= S , if it entails each literal in
S .
Update actions, consistency. Databases are updated by inserting and deleting
atoms. An update action is an expression of the form +a or −a, where a ∈ At.
Update action +a states that a is to be inserted. Similarly, update action −a states
that a is to be deleted. We say that a set U of update actions is consistent if it does
not contain update actions +a and −a, for any a ∈ At.

Sets of update actions determine database updates. Let I be a database and U
a consistent set of update actions. We define the result of updating I by means of

U as the database

I ◦ U = (I ∪ {a | + a ∈ U}) \ {a | − a ∈ U}·

We have the following straightforward property of the operator ◦, which asserts
that if a set of update actions is consistent, the order in which they are executed is
immaterial.

Proposition 1
If U1 and U2 are sets of update actions such that U1 ∪ U2 is consistent, then for
every database I, I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2

Integrity constraints, entailment (satisfaction). It is common to impose on
databases conditions, called integrity constraints, that must always be satisfied. In
the propositional setting, an integrity constraint is a formula

r = L1, . . . , Lm ⊃ ⊥, (1)

where Li , 1 ≤ i ≤ m, are literals and ‘,’ stands for the conjunction. Any subset of
At (and so, also any database) can be regarded as a propositional interpretation.
We say that a database I satisfies an integrity constraint r , denoted by I |= r , if
I satisfies the propositional formula represented by r . Moreover, I satisfies a set R
of integrity constraints, denoted by I |= R, if I satisfies each integrity constraint
in R. In this way, an integrity constraint encodes a condition on databases: the
conjunction of its literals must not hold (or equivalently, the disjunction of the
corresponding dual literals must hold).

Any language of (propositional) logic could be used to describe integrity con-
straints (in the introduction we used the language with the connectives ∨ and ¬).

Active Integrity Constraints and Revision Programming 9

Our present choice is reminiscent of the syntax used in logic programming. It is
not coincidental. While for integrity constraints we adopt a classical meaning of
the logical connectives, for active integrity constraints the meaning depends on and
is given by the particular semantics considered. We discuss later several possible
semantics for active integrity constraints and discuss their properties. In most of
them, the way we interpret boolean connectives, in particular, the negation and
the disjunction, has some similarities to the default negation operator in logic pro-
gramming and so, as it is common in the logic programming literature, we denote
them with not and | rather than ¬ and ∨.

Given a set η of integrity constraints and a database I, the problem of database

repair is to update I so that integrity constraints in η hold.

Definition 1 (Weak Repairs and Repairs)
Let I be a database and η a set of integrity constraints. A weak repair for 〈I, η〉 is
a consistent set U of update actions such that ({+a | a ∈ I} ∪ {−a | a ∈ At \ I})∩
U = ∅ (U consists of “essential” update actions only), and I ◦ U |= η (constraint
enforcement).

A consistent set U of update actions is a repair for 〈I, η〉 if it is a weak repair for
〈I, η〉 and for every U ′ ⊆ U such that I ◦ U ′ |= η, U ′ = U (minimality of change).
2

If an original database satisfies integrity constraints (formally, if I |= η), then
no change is needed to enforce the constraints and so U = ∅ is the only repair
for 〈I, η〉. However, there may be other weak repairs for 〈I, η〉. This points to the
problem with weak repairs. They allow for the possibility of updating I by means
of a weak repair U for 〈I, η〉 even when I does not violate η. Thus, the minimality
of change is a natural and useful property and, for the most part, we are interested
in properties of repairs and their refinements. However, considering weak repairs
explicitly is useful as it offers a broader perspective.

If a set η of integrity constraints is inconsistent, there is no database satisfying it
(constraints cannot be enforced). In such case, the database repair problem is trivial
and not interesting. For that reason, it is common in the database research to re-
strict investigations to the case when integrity constraints are consistent. However,
assuming consistency of integrity constraints does not yield any significant simpli-
fications in our setting. Moreover, as we point out in the next section, a different
notion of inconsistency arises in formalisms we study here that is more relevant and
interesting. Therefore, in this paper, we do not adopt the assumption that integrity
constraints are consistent.

Finally, we note that the problem of the existence of a weak repair is NP-complete
(it is just a simple reformulation of the SAT problem). Indeed, given a database I
and a set of integrity constraints η = {L1,1, . . . ,L1,m1 ⊃ ⊥, . . . ,Ln,1, . . . ,Ln,mn

⊃
⊥}, a weak repair for 〈I, η〉 exists if and only if η is satisfiable (we point out
that the class of propositional integrity constraints is, modulo a standard syntactic
transformation, the same as the class of all propositional CNF theories). Since
repairs exist if and only if weak repairs do, the problem of the existence of a repair
is NP-complete, too.

10 L. Caroprese and M. Truszczyński

4 Active Integrity Constraints - an Overview

Given no other information but a set of integrity constraints, we have no reason
to prefer one repair over another. If several repairs are possible, guidance on how
to select a repair to execute could be useful. The formalism of active integrity

constraints (Caroprese et al. 2006) was designed to address this problem. We will
now review it and offer a first extension by introducing the semantics of founded
weak repairs.
Dual literals, dual update actions, mappings ua(·) and lit(·). For a propo-
sitional literal L, we write LD for the dual literal to L. Further, if L = a, we define
ua(L) = +a. If L = not a, we define ua(L) = −a. Conversely, for an update action
α = +a, we set lit(α) = a and for α = −a, lit(α) = not a. We call +a and −a the
duals of each other, and write αD to denote the update action dual to an update
action α. Finally, we extend the notation introduced here to sets of literals and sets
of update actions, as appropriate.
Active integrity constraints, the body and head. An active integrity con-

straint (aic, for short) is an expression of the form

r = L1, . . . , Lm ⊃ α1| . . . |αk (2)

where Li are literals, αj are update actions, and

{lit(α1)D , . . . , lit(αk)D} ⊆ {L1, . . . ,Lm}· (3)

The set {L1, . . . ,Lm} is the body of r ; we denote it by body(r). Similarly, the set
{α1, . . . , αk} is the head of r ; we denote it by head(r).
Active integrity constraints as integrity constraints; entailment (satisfac-
tion). An active integrity constraint with the empty head can be regarded as an
integrity constraint (and so, we write the empty head as ⊥, for consistency with the
notation of integrity constraints). An active integrity constraint with a non-empty
body can be viewed as an integrity constraint that explicitly provides support for
some update actions to apply. Namely, the body of an active integrity constraint
r of the form (2) represents a condition that must be false and so, it represents
the integrity constraint L1, . . . , Lm ⊃ ⊥. Thus, we say that a database I satisfies

an active integrity constraint r if it satisfies the corresponding integrity constraint
L1, . . . , Lm ⊃ ⊥. We write I |= r to denote that. This concept extends to sets
of active integrity constraints in the standard way. However, an active integrity
constraint is more than just an integrity constraint. It also provides support for use
of update actions that are listed in its head.
Updatable and non-updatable literals. The role of the condition (3) is to en-
sure that an active integrity constraint supports only those update actions that
can “fix” it (executing them ensures that the resulting database satisfies the con-
straint). The condition can be stated concisely as follows: [lit(head(r))]D ⊆ body(r).
We call literals in [lit(head(r))]D updatable by r . They are precisely those liter-
als that can be affected by an update action in head(r). We call every literal in
body(r)\[lit(head(r))]D non-updatable by r . We denote the set of literals updatable
by r as up(r) and the set of literals non-updatable by r as nup(r).

Active Integrity Constraints and Revision Programming 11

With the notation we introduced, we can discuss the intended meaning of an
active integrity constraint r of the form (2) in more detail. First, r functions as
an integrity constraint L1, . . . ,Lm ⊃ ⊥. Second, it provides support for one of the
update actions αi , assuming all non-updatable literals in r hold in the repaired

database. In particular, the constraint a, b ⊃ −a| − b, given I = {a, b}, provides
the support for −a or −b, independently of the repaired database, as it has no
non-updatable literal. In the same context of I = {a, b}, the constraint a, b ⊃ −a
provides support for −a but only if b is present in the repaired database.

It is now straightforward to adapt the concept of a (weak) repair to the case of
active integrity constraints. Specifically, a set U of update actions is a (weak) repair

for a database I with respect to a set η of active integrity constraints if it is a repair
for I with respect to the set of integrity constraints represented by η.

Let us consider the active integrity constraint r = a, b ⊃ −b, and let I = {a, b}
be a database. Clearly, I violates r as the condition expressed in the body of r is
true. There are two possible repairs of I with respect to r or, more precisely, with
respect to the integrity constraint encoded by r : performing the update action −a
(deleting a), and performing the update action −b (deleting b). Since r provides
support for the update action −b, we select the latter.

Repairs do not need to obey preferences expressed by the heads of active integrity
constraints. To formalize the notion of “support” and translate it into a policy
to select “preferred” repairs, Caroprese et al. (2006) proposed the concept of a
founded repair — a repair that is grounded (in some sense, implied) by a set of
active integrity constraints. The following definition, in addition to founded repairs,
introduces a new semantics of founded weak repairs.

Definition 2 (Founded (weak) repairs)
Let I be a database, η a set of active integrity constraints, and U a consistent set
of update actions.

1. An update action α is founded with respect to 〈I, η〉 and U if there is r ∈ η
such that α ∈ head(r), I ◦ U |= nup(r), and I ◦ U |= lit(β)D , for every
β ∈ head(r) \ {α}.

2. The set U is founded with respect to 〈I, η〉 if every element of U is founded
with respect to 〈I, η〉 and U .

3. U is a founded (weak) repair for 〈I, η〉 if U is a (weak) repair for 〈I, η〉 and
U is founded with respect to 〈I, η〉. 2

The notion of foundedness of update actions is not restricted to update actions
in U . In other words, any update action whether in U or not may be founded
with respect to 〈I, η〉 and U . However, if an update action, say α, is founded with
respect to 〈I, η〉 and U , and U enforces constraints, that is, I ◦U |= η, then U must
contain α. Indeed, let us assume that α is founded with respect to 〈I, η〉 and U
by means of an active integrity constraint r ∈ η. Let us also assume that I 6|= r ,
that is, I |= body(r). By the foundedness, all literals in body(r), except possibly for
lit(α)D , are satisfied in I ◦ U . Thus, since U enforces r , it must contain α. In other
words, foundedness of α “grounds” α in 〈I, η〉 and U

12 L. Caroprese and M. Truszczyński

In the same time, it is important to note that just foundedness of a set U of
update actions does not imply the constraint enforcement nor the minimality of
change. We show that in the example below. Therefore, in the definition of founded
(weak) repairs, the property of being a (weak) repair must be imposed explicitly.

Example 1
Let I = ∅ and η consist of the following active integrity constraints:

r1 = not a ⊃ +a
r2 = not b, c ⊃ +b
r3 = b, not c ⊃ +c·

The unique founded repair for 〈I, η〉 is {+a}. The set {+a,+b,+c} is founded,
guarantees constraint enforcement (and so, it is a founded weak repair), but it is
not change-minimal. The set {+b,+c} is founded but does not guarantee constraint
enforcement. We also note that foundedness properly narrows down the class of
repairs. If η = {a, b ⊃ −b}, and I = {a, b} (an example we considered earlier),
U = {−a} is a repair for 〈I, η〉 but not a founded repair. 2

We emphasize that founded repairs are not minimal founded weak repairs but
founded weak repairs that happen to be repairs (are minimal among all repairs).
In particular, it is possible that founded weak repairs exist but founded repairs do
not.

Example 2
Let I = ∅ and η consist of the following active integrity constraints:

not a, b, c ⊃ +a not b, a, c ⊃ +b
not c, a, b ⊃ +c not a ⊃ ⊥

We recall that the integrity constraint not a ⊃ ⊥ is a special active integrity con-
straint (with an empty head).One can check that the only founded sets of update
actions are U1 = ∅ (∅ is always vacuously founded) and U2 = {+a,+b,+c}. More-
over, U3 = {+a} is a repair and U2 is a weak repair. Thus, U2 is a founded weak
repair but, as it is not minimal, not a founded repair. In fact, there are no founded
repairs in this example. 2

This example demonstrates that when we encode into integrity constraints a
policy for selecting preferred repairs, that policy may be “non-executable” for some
databases under the semantics of founded repairs, as founded repairs may simply
not exist. Moreover, it may be so even if the set of integrity constraints underlying
the active integrity constraints involved is consistent, that is, if weak repairs exist
(or, equivalently, if repairs exist, as repairs exist if and only if weak repairs do).
The same is possible under the semantics of founded weak repairs and under all
other semantics we consider later in the paper. In other words, the assumption of
consistency of integrity constraints does not buy us much and so, we decided not
to adopt it.

Finally, we discuss the key issue arising in the context of founded repairs that
points out to the need of considering other semantics for active integrity constraints.
In some cases, founded repairs, despite combining foundedness with change-minimality,
are still not grounded strongly enough. The problem is the circularity of support.

Active Integrity Constraints and Revision Programming 13

Example 3
Let I = {a, b} and let η1 consist of the following aic’s:

r1 = a, b ⊃ −a
r2 = a, not b ⊃ −a
r3 = not a, b ⊃ −b·

One can check that U = {−a,−b} is a repair for 〈I, η1〉. Moreover, it is a founded
repair: −a is founded with respect to 〈I, η1〉 and U , with r2 providing the support
necessary for foundedness of −a (i.e. Item 1 of Definition 2 is satisfied by −a, η1,
I, U and r2),while −b is founded with respect to 〈I, η1〉 and U because of r3 (i.e.
Item 1 of Definition 2 is satisfied by −b, η1, I, U and r3).

The problem is that, arguably, U = {−a,−b} supports itself through circular

dependencies. The constraint r1 is the only one violated by I and is the one forcing
the need for a repair. However, r1 does not support foundedness of −a with respect
to 〈I, η1〉 and U , as I ◦ U does not satisfy the literal b ∈ nup(r1) (required by Item
1 of Definition 2). Similarly, r1 does not support foundedness of −b with respect
to 〈I, η1〉 and U (in fact, −b is not even mentioned in the head of r1). Thus, the
support for the foundedness of −a and −b in U must come from r2 and r3 only. In
fact, r2 provides the support needed for −a to be founded with respect to 〈I, η1〉
and U . However, that requires that b be absent from I ◦ U and so, U must contain
the update action −b. Similarly, the support for foundedness of −b is given by
r3, which requires that a be absent from I ◦ U , that is, that −a be in U . Thus,
in order for −b to be founded, U must contain −a, and for −a to be founded, U
must contain −b. In other words, the foundedness of {−a,−b} is “circular”: −a is
founded (and so included in U) due to the fact that −b has been included in U , and
−b is founded (and so included in U) due to the fact that −a has been included
in U , and there is no independent justification for having any of these two actions
included — as we noted, r1 does not “found” any of −a nor −b. 2

The problem of circular justifications cannot be discarded by simply hoping they
will not occur in practice. If there are several independent sources of integrity
constraints, such circular dependencies may arise, if only inadvertently.

To summarize this section, the semantics of repairs for active integrity con-
straints enforces constraints and satisfies the minimality of change property. It
has no groundedness properties beyond what is implied by the two requirements.
The semantics of founded repairs gives preference to some ways of repairing con-
straints over others. It only considers repairs whose all elements are founded. How-
ever, foundedness may be circular and some founded (weak) repairs may be “self-
grounded” as in the example above. In the next section, we address the issue of
self-groundedness of founded (weak) repairs.

On the computational side, the complexity of the semantics of repairs is lower
than that of founded repairs. From the result stated in the previous section, it
follows that the problem of the existence of a repair is NP-complete, while the
problem of the existence of a founded repair is Σ2

P -complete (Caroprese et al. 2006).
As we observed earlier, founded repairs are not minimal founded weak repairs and,
in general, the existence of founded weak repairs is not equivalent to the existence
of founded repairs. Thus, the complexity of the problem to decide whether founded

14 L. Caroprese and M. Truszczyński

weak repairs exist need not be the same as that of deciding the existence of founded
repairs. Indeed, the complexities of the two problems are different (assuming no
collapse of the polynomial hierarchy). Namely, the problem of the existence of
founded weak repairs is “only” NP-complete (the proof is simple and we omit it).

5 Justified repairs

In this section, we will introduce another semantics for active integrity constraints
that captures a stronger concept of groundedness than the one behind founded
repairs. The goal is to disallow circular dependencies like the one we discussed in
Example 3.

We start by defining when a set of update actions is closed under active integrity
constraints. Let η be a set of active integrity constraints and let U be a set of update
actions. If r ∈ η, and for every non-updatable literal L ∈ body(r) there is an update
action α ∈ U such that lit(α) = L then, after applying U or any of its consistent
supersets to the initial database, the result of the update, say R, satisfies all non-
updatable literals in body(r). To guarantee that R satisfies r , R must falsify at
least one literal in body(r). To this end U must contain at least one update action
from head(r).
Closed sets of update actions. A set U of update actions is closed under an aic
r if nup(r) ⊆ lit(U) implies head(r) ∩ U 6= ∅. A set U of update actions is closed

under a set η of active integrity constraints if it is closed under every r ∈ η.
If a set of update actions is not closed under a set η of active integrity constraints,

executing its elements does not guarantee to enforce constraints represented by η.
Therefore closed sets of update actions are important. We regard closed sets of
update actions that are also minimal as “forced” by η, as all elements in a minimal
set of update actions closed under η are necessary (no nonempty subset can be
dropped).

Example 4
Let us consider the database and active integrity constraints from Example 3. The
set U = {−a,−b} is closed under η1. We observe that the empty set is also closed
under η1. Therefore U is not minimal. 2

No-effect actions. Another key notion in our considerations is that of no-effect

actions. Let I be a database and R a result of updating I. An update action
+a (respectively, −a) is a no-effect action with respect to (I,R) if a ∈ I ∩ R
(respectively, a /∈ I ∪R). Informally, a no-effect action does not change the status
of its underlying atom. We denote by ne(I,R) the set of all no-effect actions with
respect to (I,R). We note the following two simple properties reflecting the nature
of no-effect actions — their redundancy.

Proposition 2
Let I be a database. Then

1. For every databases R,R′, if ne(I,R) ⊆ ne(I,R′), then R′ ◦ ne(I,R) = R′

Active Integrity Constraints and Revision Programming 15

2. For every set E of update actions such that E ∪ ne(I, I ◦ E) is consistent, if
E ′ ⊆ E , then I ◦ E ′ = I ◦ (E ′ ∪ ne(I, I ◦ E)).

Proof:

1. Since ne(I,R) = {+a | a ∈ I ∩ R} ∪ {−a | a /∈ I ∪ R} and ne(I,R′) =
{+a | a ∈ I ∩ R′} ∪ {−a | a /∈ I ∪ R′}, we have I ∩ R ⊆ I ∩ R′ and
I∪R′ ⊆ I∪R. It follows that I∩R ⊆ R′ andR′ ⊆ I∪R. Thus,R′◦ne(I,R) =
(R′ ∪ (I ∩ R)) ∩ (I ∪ R) = R′.

2. As E ′ ⊆ E , then ne(I, I ◦E) ⊆ ne(I, I ◦E ′). Since E ∪ne(I, I ◦E) is consistent,
Propositions 1 and 2(1) imply that I◦(E ′∪ne(I, I◦E)) = (I◦E ′)◦ne(I, I◦E) =
I ◦ E ′. 2

Our semantics of justified repairs is based on the knowledge-representation prin-
ciple, a form of the frame axiom (McCarthy and Hayes 1969), that remaining in
the previous state requires no reason (persistence by inertia). Thus, when justify-
ing update actions necessary to transform I into R based on η we assume the set
ne(I,R) as given. This brings us to the notion of a justified weak repair.

Definition 3 (Justified weak repairs)
Let I be a database and η a set of active integrity constraints. A consistent set U
of update actions is a justified action set for 〈I, η〉 if U is a minimal set of update
actions containing ne(I, I ◦ U) and closed under η.

If U is a justified action set for 〈I, η〉, then E = U \ne(I, I ◦U) is a justified weak
repair for 〈I, η〉. 2

Intuitively, a set U of update actions is a justified action set, if it is precisely
the set of update actions forced or justified by η and the no-effect actions with
respect to I and I ◦ U . This “fixpoint” aspect of the definition is reminiscent of
the definitions of semantics of several non-monotonic logics, including (disjunctive)
logic programming with the answer set semantics. The connection can be made
more formal and we take advantage of it in the section on the complexity and
computation.

Before we proceed, we will illustrate the notion of justified weak repairs.

Example 5
Let us consider again Example 3. The set U = {−a,−b} is not a justified weak
repair for 〈I, η1〉. One can check that U ∪ ne(I, I ◦ U) (= {−a,−b}) contains
ne(I, I ◦ U) (= ∅), and is closed under η1. But, as we observed in Example 4, it is
not a minimal set of update actions containing ne(I, I ◦ U) and closed under η1.
Indeed, ∅ has these two properties, too. In fact, one can check that 〈I, η1〉 has no
justified weak repairs.

Next, let us consider a new set, η2, of aic’s, where r1 is replaced with r ′1 = a, b ⊃
−a| − b. The constraint r ′1 provides support for −a or −b independently of the
repaired database (as there are no non-updatable literals in r ′1). If −a is selected
(with support from r ′1), r3 supports −b. If −b is selected (with support from r ′1),
r2 supports −a, Thus the cyclic support given by r2 and r3 in the presence of r1 is
broken. Indeed, one can check that {−a,−b} is a justified weak repair, in fact, the
only one. 2

16 L. Caroprese and M. Truszczyński

We note that the set ne(I, I ◦U) can be quite large. In particular, the cardinality
of the set of update actions −a, where a 6∈ I ∪R, cannot be bounded by the size of
the database repair problem, which is given by the size of I and η. However, only
those update actions −a of that type are important from the perspective of justified
weak revisions, whose literals not (a) occur in the bodies of active integrity con-
straints in η (as no other update action of that type can play a role in determining
minimal sets of update actions closed under integrity constraints).

We will now study justified action sets and justified weak repairs. We start with
an alternative characterization of justified weak repairs.

Theorem 1
Let I be a database, η a set of active integrity constraints and E a consistent
set of update actions. Then E is a justified weak repair for 〈I, η〉 if and only if
E ∩ ne(I, I ◦ E) = ∅ and E ∪ ne(I, I ◦ E) is a justified action set for 〈I, η〉.

Proof: (⇒) Since E is a justified weak repair for 〈I, η〉, E = U \ne(I, I◦U) for some
consistent set U of update actions such that U is minimal containing ne(I, I ◦ U)
and closed under η. By Proposition 2(2), I ◦ U = I ◦ E . Thus, E ∩ ne(I, I ◦ E) = ∅.
Moreover, since ne(I, I ◦ U) ⊆ U , U = E ∪ ne(I, I ◦ E). Hence, E ∪ ne(I, I ◦ E) is a
justified action set for 〈I, η〉.
(⇐) Let U = E ∪ne(I, I ◦E). We will show that ne(I, I ◦U) = ne(I, I ◦E). To this
end, let +a ∈ ne(I, I ◦U). Then, a ∈ I and −a /∈ U (the latter property follows by
the consistency of U). It follows that −a /∈ E and, consequently, +a ∈ ne(I, I ◦ E).
Similarly, we show that if −a ∈ ne(I, I ◦ U), then −a ∈ ne(I, I ◦ E). Thus, we
obtain that ne(I, I ◦ U) ⊆ ne(I, I ◦ E).

Conversely, let +a ∈ ne(I, I ◦ E). Then a ∈ I and +a ∈ U . Since U is consistent
(it is a justified action set for 〈I, η〉), I ◦ U is well defined and +a ∈ ne(I, I ◦ U).
The case −a ∈ ne(I, I ◦ E) is similar. Thus, ne(I, I ◦ E) ⊆ ne(I, I ◦ U) and the
claim follows.

Since E ∩ ne(I, I ◦ E) = ∅, we obtain that E = U \ ne(I, I ◦ U). Since U is a
justified action set for 〈I, η〉, E is a justified weak repair for 〈I, η〉. 2

Justified weak repairs have two key properties for the problem of database update:
constraint enforcement (hence the term “weak repair”) and foundedness.

Theorem 2
Let I be a database, η a set of active integrity constraints, and E a justified weak
repair for 〈I, η〉. Then

1. For every atom a, exactly one of +a and −a is in E ∪ ne(I, I ◦ E)
2. I ◦ E |= η

3. E is founded for 〈I, η〉.

Proof: Throughout the proof, use the notation U = E ∪ ne(I, I ◦ E).

1. Since U is consistent (cf. Theorem 1), for every atom a, at most one of +a,
−a is in U . If +a ∈ ne(I, I ◦ E) or −a ∈ ne(I, I ◦ E) then the claim follows.
Otherwise, the status of a changes as we move from I to I ◦E . That is, either
+a or −a belongs to E and, consequently, to U , as well.

Active Integrity Constraints and Revision Programming 17

2. Let us consider r ∈ η. Since U is closed under η (cf. Theorem 1), we have
nup(r) 6⊆ lit(E ∪ ne(I, I ◦ E)) or head(r) ∩ (E ∪ ne(I, I ◦ E)) 6= ∅. Let us
assume the first possibility, and let L be a literal such that L ∈ nup(r) and
ua(L) /∈ U . By (1), ua(LD) ∈ U . Consequently, I ◦ U 6|= L. By Proposition
2(2), I ◦ E 6|= L. Since L ∈ body(r), I ◦ E |= r .
Thus, let us assume that head(r) ∩ U 6= ∅ and let α ∈ head(r) ∩ U . Then
α ∈ head(r) and so, lit(α)D ∈ body(r). Furthermore, α ∈ U and so, I ◦ U |=
lit(α). By Proposition 2(2), I ◦ E |= lit(α). Thus, I ◦ E |= r in this case, too.

3. Let α ∈ E . By Theorem 1, α /∈ ne(I, I ◦ E). Thus, ne(I, I ◦ E) ⊆ U \ {α}.
Since U is a minimal set closed under η and containing ne(I, I ◦ E), U \ {α}
is not closed under η. That is, there is r ∈ η such that nup(r) ⊆ lit(U \ {α})
and head(r) ∩ (U \ {α}) = ∅. We have

I ◦ (U \ {α}) = I ◦ (ne(I, I ◦ E) ∪ (E \ {α}))
= (I ◦ ne(I, I ◦ E)) ◦ (E \ {α})·

By Proposition 2 (and the fact that ne(I,R) = ne(R, I), for every databases
I and R),

I ◦ (U \ {α}) = I ◦ (E \ {α})· (4)

From nup(r) ⊆ lit(U \ {α}), it follows that I ◦ (U \ {α}) |= nup(r). By
(4), I ◦ (E \ {α}) |= nup(r). Since α ∈ head(r), lit(αD) /∈ nup(r). Thus,
I ◦ E |= nup(r).
The inclusion nup(r) ⊆ lit(U \ {α}) also implies nup(r) ⊆ lit(U). Since U is
closed under η, head(r) ∩ U 6= ∅ and so, head(r) ∩ U = {α}.
Let us consider β ∈ head(r) such that β 6= α. It follows that β /∈ U . By (1),
βD ∈ U and, consequently, I ◦ U |= βD . Since I ◦ U = I ◦ E (Proposition 2),
it follows that α is founded with respect to 〈I, η〉 and E . 2

Theorem 2 directly implies that justified weak repairs are founded weak repairs.

Corollary 1
Let I be a database, η a set of active integrity constraints, and E a justified weak
repair for 〈I, η〉. Then, E is a founded weak repair for 〈I, η〉.

Examples 3 and 5 show that the converse to Corollary 1 does not hold. That is,
there are founded weak repairs that are not justified weak repairs.

While a stronger property than foundedness, being a justified weak repair still
does not guarantee change-minimality (and so, the term weak cannot be dropped).

Example 6
Let I ′ = ∅, and η3 be a set of aic’s consisting of

r1 = not a, b ⊃ +a| − b
r2 = a, not b ⊃ −a|+ b·

Clearly, I ′ is consistent with respect to η3.Let us consider the set of update actions
E = {+a,+b}. It is easy to verify that E is a justified weak repair for 〈I ′, η3〉.
Therefore, it ensures constraint enforcement and it is founded. However, E is not
minimal and the empty set of update actions is its only repair. 2

18 L. Caroprese and M. Truszczyński

Thus, to have change-minimality, it needs to be enforced directly as in the case
of founded repairs. By doing so, we obtain the notion of justified repairs.

Definition 4 (Justified repair)
Let I be a database and η a set of active integrity constraints. A set E of update
actions is a justified repair for 〈I, η〉 if E is a justified weak repair for 〈I, η〉, and
for every E ′ ⊆ E such that I ◦ E ′ |= η, E ′ = E . 2

Theorem 2 has yet another corollary, this time concerning justified and founded
repairs.

Corollary 2
Let I be a database, η a set of active integrity constraints, and E a justified repair
for 〈I, η〉. Then, E is a founded repair for 〈I, η〉.

Proof: Let E be a justified repair for 〈I, η〉. It follows by Theorem 2 that I ◦E |= η.
Moreover, by the definition of justified repairs, E is change minimal. Thus, E is a
repair. Again by Theorem 2, E is founded. Thus, E is a founded repair for 〈I, η〉. 2

Examples 3 and 5 show that the inclusion asserted by Corollary 2 is proper. In-
deed, we argued in Example 3 that {−a,−b} is a founded repair. Then, in Example
5 we showed that it is not a justified weak repair. Thus, {−a,−b} is not a justified
repair, either.

As illustrated by Example 6, in general, justified repairs form a proper subclass
of justified weak repairs. However, in some cases the two concepts coincide — the
minimality is a consequence of the groundedness underlying the notion of a justified
weak repair. One such case is identified in the next theorem. The other important
case is discussed in the next section.

Theorem 3
Let I be a database and η a set of active integrity constraints such that for each
update action α ∈

⋃
r∈η head(r), I |= lit(αD). If E is a justified weak repair for

〈I, η〉, then E is a justified repair for 〈I, η〉.

Proof: Let E be a justified weak repair for 〈I, η〉 and let E ′ ⊆ E be such that
I ◦ E ′ |= η.

We define U = E ∪ ne(I, I ◦ E). By Theorem 1 and Proposition 2(2), U is a
minimal set of update actions containing ne(I, I ◦ E) and closed under η. Let
U ′ = E ′ ∪ne(I, I ◦E) and let r ∈ η be such that ua(nup(r)) ⊆ U ′. Since I ◦E ′ |= η,
I ◦ E ′ 6|= body(r). Thus, it follows that there is L ∈ up(r) such that I ◦ E ′ 6|= L.
Since L ∈ up(r), there is α ∈ head(r) such that L = lit(αD). By the assumption,
I |= L, that is, I |= lit(αD). Since I ◦ E ′ 6|= L, I ◦ E ′ |= lit(α). Thus, α ∈ E ′
and, consequently, α ∈ U ′. It follows that U ′ is closed under r and, since r was
an arbitrary element of η, under η. too. Thus, U ′ = U , that is, E ′ ∪ ne(I, I ◦ E) =
E ∪ ne(I, I ◦ E). Since E ′ ⊆ E and E ∩ ne(I, I ◦ E) = ∅, E ′ = E . It follows that E is
a minimal set of update actions such that I ◦ E |= η. 2

The theorem above states that whenever each update action occurring in η is
essential with respect to I (it is able to perform a real change over I), the minimality
of each justified weak repair is guaranteed (that is, it is a justified repair).

Active Integrity Constraints and Revision Programming 19

6 Normal active integrity constraints and normalization

An active integrity constraint r is normal if |head(r)| ≤ 1. We will now study
properties of normal active integrity constraints. First, we will show that for that
class of constraints, updating by justified weak repairs guarantees the minimality
of change property and so, the explicit reference to the latter can be omitted from
the definition of justified repairs.

Theorem 4
Let I be a database and η a set of normal active integrity constraints. If E is a
justified weak repair for 〈I, η〉 then E is a justified repair for 〈I, η〉.

Proof: Let E be a justified weak repair for 〈I, η〉. We have to prove that E is
minimal with respect to constraint enforcement. To this end, let us consider E ′ ⊆ E
such that I ◦ E ′ |= η.

We define U = E ∪ ne(I, I ◦ E) and U ′ = E ′ ∪ ne(I, I ◦ E). We will show that U ′
is closed under η. Let r ∈ η be such that ua(nup(r)) ⊆ U ′.

Since I ◦ E ′ |= r , I ◦ E ′ 6|= body(r). By our assumption, ua(nup(r)) ⊆ U ′. Thus,
I ◦U ′ |= nup(r). Since U ′ is consistent, Proposition 2(2) implies that I ◦E ′ = I ◦U ′.
Thus, I ◦ E ′ |= nup(r). If head(r) = ∅, I ◦ E ′ |= body(r) and so, I ◦ E ′ 6|= r ,
a contradiction. Thus, head(r) = {α}, for some update action α. Moreover, as
I ◦ E ′ |= r , I ◦ E ′ 6|= lit(αD). Consequently, I ◦ E ′ |= lit(α).

Since U ′ ⊆ U , ua(nup(r)) ⊆ U . By Theorem 1, U is closed under η. Thus, α ∈ U .
Since I ◦ U = I ◦ E (Proposition 2(2)), I ◦ E |= lit(α).

If I |= lit(α) then, as I ◦ E |= lit(α), we have α ∈ ne(I, I ◦ E) ⊆ U ′. If I 6|= lit(α)
then, as I ◦ E ′ |= lit(α), we have that α ∈ E ′ ⊆ U ′. Thus, U ′ is closed under r and
so, also under η. Consequently, U ′ = U . Since E ∩ ne(I, I ◦ E) = ∅, it follows that
E ′ = E . Thus, E is a minimal set of update actions such that I ◦ E |= η. 2

Normalization. Next, we introduce the operation of normalization of active in-
tegrity constraints, which consists of eliminating disjunctions from the heads of
rules. For an active integrity constraint r = φ ⊃ α1| . . . |αn , by rn we denote the
set of normal active integrity constraints {φ ⊃ α1, . . . , φ ⊃ αn}. For a set η of
active integrity constraints, we set ηn =

⋃
r∈η rn . It is shown by Caroprese et al.

(2006) that E is founded for 〈I, η〉 if and only if E is a founded for 〈I, ηn〉. Thus, E
is a founded (weak) repair for 〈I, η〉 if and only if E is a founded (weak) repair for
〈I, ηn〉. For justified repairs, we have a weaker result. Normalization may eliminate
some justified repairs. That leads to an even more narrow class of repairs than
justified ones, an issue we discuss later in Section 8.

Theorem 5
Let I be a database and η a set of active integrity constraints.

1. If a set E of update actions is a justified repair for 〈I, ηn〉, then E is a justified
repair for 〈I, η〉

2. If a set E of update action is a justified weak repair for 〈I, ηn〉, then E is a
justified weak repair for 〈I, η〉.

20 L. Caroprese and M. Truszczyński

Proof: Let E be a justified repair for 〈I, ηn〉. We define U = E ∪ ne(I, I ◦ E). By
Corollary 2, E is a founded repair for 〈I, ηn〉. By a result obtained by Caroprese et
al. (2006), E is a founded repair for 〈I, η〉 and, consequently, a repair for 〈I, η〉.

Since E is, in particular, a justified weak repair for 〈I, ηn〉, U is a justified action
set for 〈I, ηn〉 (Theorem 1). Thus, U is a minimal set of update actions containing
ne(I, I ◦ E) and closed under ηn . To prove that E is a justified repair for 〈I, η〉, it
suffices to show that U is a minimal set of update actions containing ne(I, I ◦ E)
and closed under η.

Let us consider an active integrity constraint

r = lit(αD
1), . . . , lit(αD

n), φ ⊃ α1| . . . |αn

in η such that ua(nup(r)) ⊆ U (we note that nup(r) consists precisely of the literals
that appear in φ). It follows that I ◦U |= nup(r). Since E is a repair, I◦E 6|= body(r).
By Proposition 2(2), I ◦ E = I ◦ U . Thus, I ◦ U 6|= body(r). It follows that there is
i , 1 ≤ i ≤ n, such that I ◦ U 6|= lit(αD

i). Thus, αD
i /∈ U . By Theorem 2(1), αi ∈ U .

Thus, U is closed under r and, consequently, under η, as well.
We will now show that U is minimal in the class of sets of update actions con-

taining ne(I, I ◦ E) and closed under η. Let U ′ be a set of update actions such that
ne(I, I ◦ E) ⊆ U ′ ⊆ U and U ′ is closed under η. Let us consider an active integrity
constraint in s ∈ ηn such that ua(nup(s)) ⊆ U ′.

By the definition of ηn , there is an active integrity constraint r ∈ η such that

r = lit(αD
1), . . . , lit(αD

i), . . . , lit(αD
n), φ ⊃ α1| . . . |αi | . . . |αn

and

s = lit(αD
1), . . . , lit(αD

i), . . . , lit(αD
n), φ ⊃ αi ·

Since ua(nup(s) ⊆ U ′, ua(nup(r) ⊆ U ′. As U ′ is closed under η, there is j , 1 ≤ j ≤ n,
such that αj ∈ U ′. For every k such that 1 ≤ k ≤ n and k 6= i , αD

k ∈ U ′. By
the consistency of U ′, we conclude that αi ∈ U ′. Thus, U ′ is closed under s and,
consequently, under ηn . Since U ′ ⊆ U and U is minimal containing ne(I, I ◦E) and
closed under ηn it follows that U ′ = U . Thus, U is minimal containing ne(I, I ◦ E)
and closed under η. Consequently, E is a justified repair for 〈I, η〉.
(2) If E is a justified weak repair for 〈I, ηn〉 then, by Theorem 4, E is a justified
repair for 〈I, ηn〉. By (1), E is a justified repair for 〈I, η〉 and so, a justified weak
repair for 〈I, η〉. 2

The following example shows that the inclusions in the previous theorem are, in
general, proper.

Example 7
Let us consider an empty database I ′ = ∅, the set η4 of aic’s

r1 = not a, not b ⊃ +a|+ b
r2 = a, not b ⊃ +b
r3 = not a, b ⊃ +a,

its normalized version ηn4
r1,1 = not a, not b ⊃ +a r2,1 = a, not b ⊃ +b
r1,2 = not a, not b ⊃ +b r3,1 = not a, b ⊃ +a,

Active Integrity Constraints and Revision Programming 21

and the set of update actions E = {+a,+b}. It is easy to verify that E is a justified
repair for 〈I ′, η4〉. However, E is not a justified weak repair for 〈I ′, ηn4 〉 (and so, not a
justified repair for 〈I ′, ηn4 〉). Indeed, it is not a minimal set containing ne(I ′, I ′◦E) =
∅ and closed under ηn4 , as ∅ is also closed under ηn4 . 2

7 Complexity and Computation

We noted earlier that the problem of the existence of a (weak) repair is NP-complete,
and the same is true for the problem of the existence of founded weak repairs. On
the other hand, the problem of the existence of a founded repair is Σ2

P -complete
(Caroprese et al. 2006). In this section, we study the problem of the existence of
justified (weak) repairs.

For our hardness results, we will use problems in logic programming. We will con-
sider disjunctive and normal logic programs that satisfy some additional syntactic
constraints. Namely, we will consider only programs without rules which contain
multiple occurrences of the same atom (that is, in the head and in the body, negated
or not; or in the body — both positively and negatively). We call such programs
simple. It is well known that the problem of the existence of a stable model of a
normal logic program is NP-complete (Marek and Truszczyński 1991), and of the
disjunctive logic program — ΣP

2 -complete (Eiter and Gottlob 1995). The proofs
provided by Marek and Truszczyński (1991) and Eiter and Gottlob (1995) imply
that the results hold also under the restriction to simple normal and simple dis-
junctive programs, respectively (in the case of disjunctive logic programs, a minor
modification of the construction is required).

Let ρ be a logic programming rule, say

ρ = a1| . . . |ak ← β·

We define

aic(ρ) = not a1, . . . , not ak , β ⊃ +a1| . . . |+ ak ·

We extend the operator aic(·) to logic programs in a standard way. We note that
if a rule ρ is simple, then body(aic(ρ)) is consistent and nup(aic(ρ)) = body(ρ).

We recall that a set M of atoms is an answer set of a disjunctive logic program
P if M is a minimal set closed under the reduct PM , where PM consists of the
rules obtained by dropping all negative literals from those rules in P that do not
contain a literal not a in the body, for any a ∈ M (we refer to the paper by Gelfond
and Lifschitz (1991) for details). Our first two lemmas establish a result needed for
hardness arguments.

Lemma 1
Let P be a simple disjunctive logic program and M ′,M sets of atoms such that
M ′ ⊆ M . Then M ′ is a model of PM if and only if {+a | a ∈ M ′} ∪ {−a | a /∈ M }
is closed under aic(P).

Proof: Let us define U = {+a | a ∈ M ′} ∪ {−a | a /∈ M }. We note that U is
consistent.

22 L. Caroprese and M. Truszczyński

(⇒) Let r ∈ aic(P), ρ ∈ P be a rule such that r = aic(ρ), and ρ′ be the rule
obtained by eliminating from ρ all negative literals.

Since P is simple, nup(r) = body(ρ). Let us assume that nup(r) ⊆ U . It follows
that ρ′ ∈ PM and that M ′ |= body(ρ′). Thus, head(ρ′) ∩M ′ 6= ∅. Since head(ρ) =
head(ρ′) and head(r) = head(aic(ρ)) = ua(head(ρ)), head(r) ∩ U 6= ∅. That is, U
is closed under r and, since r was chosen arbitrarily, under aic(P), too.

(⇐) Let us consider ρ′ ∈ PM . There is ρ ∈ P such that for every negative literal
not a ∈ body(ρ), a /∈ M , and dropping all negative literals from ρ results in ρ′.
If body(ρ′) ⊆ M ′, then body(ρ) ⊆ lit(U). Thus, nup(aic(ρ)) ⊆ U . It follows that
head(aic(ρ)) ∩ U 6= ∅. Thus, head(ρ) ∩ lit(U) 6= ∅. Since head(ρ) consists of atoms
and head(ρ′) = head(ρ), head(ρ′) ∩M ′ 6= ∅. That is, M ′ |= ρ′ and, consequently,
M ′ |= PM . 2

Theorem 6
Let P be a simple disjunctive logic program. A set M of atoms is an answer set of
P if and only if ua(M) is a justified weak repair for 〈∅, aic(P)〉.

Proof: (⇒) Let M be an answer set of P . That is, M is a minimal set closed
under the rules in the reduct PM . By Lemma 1, {+a | a ∈ M } ∪ {−a | a /∈ M } is
closed under aic(P). Let U ′ be a set of update actions such that {−a | a /∈ M } ⊆
U ′ ⊆ {+a | a ∈ M } ∪ {−a | a /∈ M }. We define M ′ = {a | + a ∈ U ′}. Then
M ′ ⊆ M . By Lemma 1, M ′ |= PM . Since M is an answer set of P , M ′ = M and
U ′ = U . It follows that {+a | a ∈ M } ∪ {−a | a /∈ M } is a minimal set closed
under aic(P) and containing {−a | a /∈ M }. Since ua(M) = {+a | a ∈ M } and
ne(∅, ∅ ◦ ua(M)) = {−a | a /∈ M }, Theorem 1 implies that ua(M) is justified weak
repair for 〈∅, aic(P)〉.
(⇐) By Theorem 1, {+a | a ∈ M } ∪ {−a | a /∈ M } is a minimal set containing
{−a | a /∈ M } and closed under aic(P). By Lemma 1, M is a model of PM . Let
M ′ ⊆ M be a model of PM . Again by Lemma 1, {+a | a ∈ M ′} ∪ {−a | a /∈ M }
is closed under aic(P). It follows that {+a | a ∈ M ′} ∪ {−a | a /∈ M } = {+a | a ∈
M } ∪ {−a | a /∈ M }. Thus, M ′ = M and so, M is a minimal model of PM , that is,
an answer set of P . 2

We now move on to results concerning upper bounds (membership) and derive
the main results of this section.

Lemma 2
Let η be a finite set of normal active integrity constraints and let U be a finite set
of update actions. There is the least set of update actions W such that U ⊆ W and
W is closed under η. Moreover, this least set W can be computed in polynomial
time in the size of η and U .

Proof: We prove the result by demonstrating a bottom-up process computing W.
The process is similar to that applied when computing a least model of a Horn
program. We start withW0 = U , Assuming thatWi has been computed, we identify
in η every active integrity constraint r such that nup(r) ⊆ lit(Wi), and add the
head of each such rule r toWi . We call the resultWi+1. IfWi+1 =Wi , we stop. It is

Active Integrity Constraints and Revision Programming 23

straightforward to prove that the last set constructed in the process is closed under
η, contains U , and is contained in every set that is closed under η and contains U .
Moreover, the construction can be implemented to run in polynomial time. 2

Theorem 7
Let I be a database and η a set of normal active integrity constraints. Then checking
if there exists a justified repair (justified weak repair, respectively) for 〈I, η〉 is an
NP-complete problem.

Proof: By Theorem 4, it is enough to prove the result for justified weak repairs.

(Membership) The following algorithm decides the problem: (1) Nondeterminis-
tically guess a consistent set of update actions E . (2) Compute ne(I, I ◦ E). (3)
If E ∩ ne(I, I ◦ E) 6= ∅ return NO. Otherwise, compute the least set W of update
actions that is closed under η and contains ne(I, I ◦E). (4) IfW = E ∪ne(I, I ◦E),
then return YES. Otherwise, return NO. From Lemma 2, it follows that the algo-
rithm runs in polynomial time. From Theorem 1, it follows that the algorithm is
correct.

(Hardness) The problem of the existence of an answer set of a simple normal logic
program P is NP-complete. By Theorem 4 and Theorem 6, P has an answer set if
and only if there exists a justified weak repair for 〈∅, aic(P)〉. Since aic(P) can be
constructed in polynomial time in the size of P , the result follows. 2

Lemma 3
Let η be a finite set of active integrity constraints and let U ′ and U ′′ be sets of
update actions. The problem whether there is a set U of update actions such that
U is closed under η and U ′ ⊆ U ⊂ U ′′ is in NP.

Proof: Once we nondeterministically guess U , checking all the required conditions
can be implemented in polynomial time. 2

Lemma 4
Let η be a finite set of active integrity constraints, I a database, and E be a set of
update actions. The problem whether there is a set E ′ ⊂ E of update actions such
that I ◦ E ′ |= η is in NP.

Proof: Once we nondeterministically guess E , checking all the required conditions
can be implemented in polynomial time. 2

Theorem 8
Let I be a database and η a set of active integrity constraints. The problem of the
existence of a justified weak repair for 〈I, η〉 is a ΣP

2 -complete problem.

Proof: (Membership) The problem can be decided by a nondeterministic polyno-
mial-time Turing Machine with an NP-oracle. Indeed, in the first step, one needs
to guess (nondeterministically) a consistent set E of update actions. Setting U =
E ∪ ne(I, I ◦ E), one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed under η

24 L. Caroprese and M. Truszczyński

3. for each U ′ such that ne(I, I ◦ E) ⊆ U ′ ⊆ U and U ′ closed under η, U ′ = U
(by Lemma 3, one call to an NP-oracle suffices).

(Hardness) The problem of the existence of an answer set of a simple disjunctive
logic program P is ΣP

2 -complete. By Theorem 6, P has an answer set if and only if
there exists a justified weak repair for 〈∅, aic(P)〉. Thus, the result follows. 2

Theorem 9
Let I be a database and η a set of active integrity constraints. The problem of the
existence of a justified repair for 〈I, η〉 is a ΣP

2 -complete problem.

Proof: (Membership) The problem can be decided by a nondeterministic polyno-
mial-time Turing Machine with an NP-oracle. Indeed, in the first step, one needs
to guess (nondeterministically) a consistent set E of update actions. Setting U =
E ∪ ne(I, I ◦ E), one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed under η
3. for each U ′ such that ne(I, I ◦ E) ⊆ U ′ ⊆ U and U ′ closed under η, U ′ = U

(by Lemma 3, one call to an NP-oracle suffices)
4. for each E ′ such that E ′ ⊂ E , I◦E ′ 6|= η (By Lemma 4, one call to an NP-oracle

suffices).

(Hardness) Since for the class of instances 〈∅, aic(P)〉 justified weak repairs coin-
cide with justified repairs (Theorem 3), the result follows. 2

8 Some implications of the results obtained so far

We recall that given a database I and a set η of aic’s, the goal is to replace I
with I ′ so that I ′ satisfies η. The set of update actions needed to transform I into
I ′ must at least be a repair for 〈I, η〉 (assuming we insist on change-minimality,
which normally is the case). However, it should also obey preferences captured
by the heads of constraints in η. Let us denote by R(I, η), WR(I, η), FR(I, η),
FWR(I, η), JR(I, η), and JWR(I, η) the classes of repairs, weak repairs, founded
repairs, founded weak repairs, justified repairs and justified weak repairs for 〈I, η〉,
respectively. Figure 1 shows the relationships among these classes, with all inclu-
sions being in general proper. Under each class we also give the complexity of
deciding whether a repair from that class exists.

Thus, given an instance 〈I, η〉 of the database repair problem, one might first at-
tempt to select a repair for 〈I, η〉 from the most restricted set of repairs, JR(I, ηn).
Not only these repairs are strongly tied to preferences expressed by η — the re-
lated computational problems are relatively easy. The problem to decide whether
JR(I, ηn) is empty is NP-complete. However, the class JR(I, ηn) is narrow and
it may be that JR(I, ηn) = ∅. If it is so, the next step might be to try to repair
I by selecting a repair from JR(I, η). This class of repairs for 〈I, η〉 reflects the
preferences captured by η. Since it is broader than the previous one, there is a bet-
ter possibility it will be non-empty. However, the computational complexity grows

Active Integrity Constraints and Revision Programming 25

FR(I, ηn)
[Σ2

P -c]

=

JR(I, ηn) ⊆ JR(I, η) ⊆ FR(I, η) ⊆ R(I, η) = R(I, ηn)
[NP-c] [Σ2

P -c] [Σ2
P -c] [NP-c] [NP-c]

=

⊆ ⊆ ⊆ ⊆

JWR(I, ηn) ⊆ JWR(I, η) ⊆ FWR(I, η) ⊆ WR(I, η) = WR(I, ηn)
[NP-c] [Σ2

P -c] [NP-c] [NP-c] [NP-c]

=

FWR(I, ηn)
[NP-c]

Fig. 1. Relationships among classes of repairs

— the existence problem for JR(I, η) is Σ2
P -complete. If also JR(I, η) = ∅, it still

may be that founded repairs exist. Moreover, deciding whether a founded repair
exists is not harder than the previous step. Finally, if there are no founded repairs,
one still may consider just a repair. This is not quite satisfactory as it ignores
the preferences encoded by η and concentrates only on the constraint enforcement.
However, deciding whether a repair exists is “only” NP-complete. Moreover, this
class subsumes all other classes of repairs and offers the best chance of success.

We note that if we fail to find a justified or founded repair in the process described
above, we may decide that respecting preferences encoded in aic’s is more important
than the minimality of change postulate. In such case, rather to proceed to seek
a repair, as discussed above, we also have an option to consider justified weak
repairs of 〈I, η〉, where the existence problem is ΣP

2 -complete and, then founded
weak repairs for 〈I, η〉, where the existence problem is NP-complete.

Finally, we point out that when we choose a smaller class A of repairs (e.g.,
JR(I, ηn)) instead of a more general one A′ (e.g., JR(I, η)) we observe an im-
portant (and desirable) effect on consistent query answering. In consistent query
answering (conservative reasoning) an atom a is true if it belongs to every repaired
database, false if it does not belong to any repaired database, and unknown other-
wise, that is, when it belongs to a proper subset of the set of repaired databases.
It is clear that if A ⊆ A′, the set of the true atoms under A′ is a subset of the set
of the true atoms obtained by applying A, and the same holds for atoms that are
false. In other words, the stronger the semantics, the larger the set of atoms that
receive a definite truth value (are true or false).

9 Revision Programming — an Overview

We review the basic terminology of revision programming, and recall the two se-
mantics introduced by Marek, Truszczyński and Pivkina (1994; 1998; 2001): the
semantics of supported revisions, and the semantics of justified weak revisions (orig-
inally referred to as justified revisions and renamed here for consistency with the
general naming schema we use).
Revision literals. A revision literal is an expression in(a) or out(a), where a ∈ At.

26 L. Caroprese and M. Truszczyński

Revision literals in(a) and out(a) are duals of each other. If α is a revision literal,
we denote its dual by αD . We extend this notation to sets of revision literals. We
say that a set of revision literals is consistent if it does not contain a pair of dual
literals. Revision literals represent elementary updates one can apply to a database.
We define the result of applying a consistent set U of revision literals to a database
I as follows:

I ⊕ U = (I ∪ {a | in(a) ∈ U}) \ {a |out(a) ∈ U}·

Revision rules, normal rules and constraints. A revision rule is an expression
of the form

r = α1| . . . |αk ← β1, . . . , βm , (5)

where k ,m ≥ 0, k +m ≥ 1, and αi and βj are revision literals. The set {α1, . . . , αk}
is the head of the rule (5); we denote it by head(r). Similarly, the set {β1, . . . , βm}
is the body of the rule (5); we denote it by body(r). A revision rule is normal if
|head(r)| ≤ 1. As in the case of active integrity constraints, we denote the empty
head as ⊥. We call rules with the empty head constraints. If |body(r)| = 0 we omit
the implication symbol. Examples of revision rules are: (1) in(a)|out(b) ← in(c),
(2) in(a)|in(c), (3) in(a) ← out(b), and (4) ⊥ ← in(a),out(b). The second rule
is an example of a rule with the empty body, the third one is an example of a
normal rule and the last one is an example of a constraint. The informal reading of
a revision rule, say the first rule given above, in(a)|out(b)← in(c), is: insert a or

delete b, if c is present.
Revision programs. A revision program is a collection of revision rules. A revision
program is normal if all its rules are normal.
Entailment (satisfaction). A database I satisfies a revision literal in(a) (out(b),
respectively), if a ∈ I (b /∈ I, respectively). A database I satisfies a revision rule
(5) if it satisfies at least one literal αi , 1 ≤ i ≤ k , whenever it satisfies every literal
βj , 1 ≤ j ≤ m. Finally, a database I satisfies a revision program P , if I satisfies
every rule in P . We use the symbol |= to denote the satisfaction relation.

For revision literals α = in(a) and β = out(b), we set lit(α) = a and lit(β) =
not b. We extend this notation to sets of revision literals. We note that every
database interprets revision literals and the corresponding propositional literals
in the same way. That is, for every database I and for every set of revision literals
L, I |= L if and only if I |= lit(L).

It follows that a revision rule (5) specifies an integrity constraint equivalent to
the propositional formula: lit(β1), . . . , lit(βm) ⊃ lit(α1), . . . , lit(αk). However, a
revision rule is not only an integrity constraint. Through its syntax, it also encodes a
preference on how to “fix” a database, when it violates the constraint. Not satisfying
a revision rule r means satisfying all revision literals in the body of r and not
satisfying any of the revision literals in the head of r . Thus, enforcing the constraint
means constructing a database that (1) does not satisfy some revision literal in the
body of r , or (2) satisfies at least one revision literal in the head of r . The underlying
idea of revision programming is to prefer those revisions that result in databases
with the property (2).

Active Integrity Constraints and Revision Programming 27

As an example, let us consider the revision rule r = in(a) ← out(b), and the
empty database I. Clearly, I does not satisfy r . Although I can be fixed either
by inserting a, so that head(r) becomes true, or by inserting b, so that body(r)
becomes false, the syntax of r makes the former preferred.

Normal revision programs were introduced and studied by Marek and Truszczyń-
ski (1994; 1998), who proposed the syntax and the semantics of supported and
justified weak revisions. The formalism was extended by Pivkina (2001) to allow
disjunctions of revision literals in the heads of rules, and the semantics of justified
weak revisions was generalized to that case. We will now recall these definitions.

First, we define the notion of the inertia set. Let I and R be databases. We define
the inertia set wrt I and R, denoted I (I,R), by setting

I (I,R) = {in(a) | a ∈ I ∩R} ∪ {out(a) | a /∈ I ∪R}·

In other words, I (I,R) is the set of all no-effect revision literals for I and R, that
is, revision literals that have no effect when revising I into R.

Now, let P be a normal revision program and R be a database. By PR we denote
the program obtained from P by removing each rule r ∈ P such that R 6|= body(r).

Definition 5 (Supported updates and supported revisions)
Let P be a normal revision program and I a database. A set U of revision literals
is a supported update of I wrt P if U is consistent and U = head(PI⊕U). A set E
is a supported revision of I wrt P if E = U \ I (I, I ⊕ U), where U is a supported
update. 2

Intuitively, a consistent set U of revision literals is a supported update if it is
precisely the set of literals “supported” by P and the database resulting from
updating I with U . Eliminating from a supported revision all no-effect literals
yields a supported revision.

While not evident explicitly from the definition, supported updates and revisions
guarantee constraint enforcement, as proved by Marek and Truszczyński (1998).

Proposition 3
Let P be a normal revision program and I a database. If E is a supported revision
of P , then I ⊕ E |= P . 2

Supported updates do not take into account the inertia set. Supported revisions
do, but only superficially: simply removing no-effect literals from the corresponding
supported update. It is then not surprising that supported updates and revisions
may be self-grounded and non-minimal, as we show in the following example.

Example 8
Let P be a revision program containing the rules {in(a) ← in(b), in(b) ← in(a),
in(c)← out(d)}, and let I the empty database. I does not satisfy P as it violates
the rule in(c)← out(d). One can check that set U = {in(a), in(b), in(c)} modeling
the insertions of a, b and c, is a supported update and a supported revision. However
it is not minimal as its subset {in(c)} is sufficient to guarantee the satisfaction of
P . 2

28 L. Caroprese and M. Truszczyński

The problem in the previous example is self-groundedness or the circularity of
support between in(a) and in(b). Each of them supports the other one but the set
containing both is superfluous. To address the problem, Marek and Truszczyński
(1994; 1998) proposed for normal revision programs the semantics of justified weak
revisions, later extended to the disjunctive case by Pivkina (2001). The idea was to
“ground” justified weak revisions in the program and the inertia set by means of a
minimal closure.

Definition 6 (Minimal closed sets of revision literals)
A set U of revision literals is closed under a revision program P (not necessarily
normal) if for every rule r ∈ P , whenever body(r) ⊆ U , then head(r) ∩ U 6= ∅. If U
is closed under P and for every set U ′ ⊆ U closed under P , we have U ′ = U , then
U is a minimal closed set for P . 2

With this definition in hand, we can define the concepts of justified updates and
justified weak revisions.

Definition 7 (Justified updates and justified weak revisions)
Let P be a revision program and let I be a database. A consistent set U of revision
literals is a P -justified update for I if it is a minimal set closed under P∪I (I, I⊕U).

If U is a P -justified update for I, then U \ I (I, I ⊕ U) is a P -justified weak

revision for I. 2

We note that P∪I (I, I⊕U) is well defined as revision literals (and so, in particular,
the revision literals in I (I, I⊕U)) are special revision rules (normal and with empty
bodies).

The inertia set plays an essential role in the definition, as it is used directly
in the definition of a P -justified update. Again, it is not self-evident from the
definition that justified updates and justified weak revisions, when applied to an
initial database yield a database satisfying the program. However, the definition
does indeed imply so (Marek and Truszczyński 1998; Pivkina 2001).

Proposition 4
Let P be a revision program and I a database. If U is a justified update or justified
weak revision of P , then I ⊕ U |= P . 2

We point out that the original term for the justified weak revisions was justified

revisions (Marek and Truszczyński 1998). We changed the name for consistency
with the naming schema we used for active integrity constraints.

10 A Family of Declarative Semantics for Revision Programming

The two semantics in the previous section were defined based on how revisions are
“grounded” in a program, an initial database, and the inertia set. The fundamental
postulates of constraint enforcement and minimality of change played no explicit
role in those considerations. The first one is no problem as it is a side effect of each
of the two types of groundedness considered (cf. Propositions 3 and 4). The sec-
ond one does not hold for supported revisions. And while Marek and Truszczyński

Active Integrity Constraints and Revision Programming 29

(1998) proved that justified weak revisions are change-minimal in the case of normal

revision programs, it is not so in the general case.

Example 9
Let P be a revision program consisting of the rules in(a)|out(b), out(a)|in(b), and
let I be the empty database. It is easy to verify that set {in(a), in(b)} is a justified
weak revision. However, it is not minimal as I is already consistent and no update
is needed (or, in other words, the empty update fixes the consistency). 2

We will now develop a range of semantics for revision programs by taking the
postulates of constraint enforcement and minimality of change explicitly into con-
sideration.

Definition 8 (Weak Revisions and Revisions)
A consistent set U of revision literals is a weak revision of I wrt a revision program
P if (1) U ∩ I (I, I ⊕ U) = ∅ (relevance — all revision literals in U actually change
I or, in other words, none of them is a no-effect literal wrt I and I ⊕ U); and (2)
I ⊕ U |= P (constraint enforcement). Further, U is a revision of I with respect to
a revision program P if it is a weak revision and for every U ′ ⊆ U , I ⊕ U ′ |= P
implies that U ′ = U (minimality of change). 2

Example 10
Let P be the program consisting of the two rules from Example 9 and the rule
in(c) ← out(d). As before, let I = ∅. There are several weak revisions of I with
respect to P , for instance, U1 = {in(d)}, U2 = {in(d), in(a), in(b)}, U3 = {in(c)},
and U4 = {in(c), in(a), in(b)}. The weak revisions U1 and U3 are minimal and so,
they are revisions. 2

(Weak) revisions do not reflect the preferences on how to revise a database en-
coded in the syntax of revision rules. Justified weak revisions and supported revi-
sions, which we discussed in the previous section, do.

Example 10 (continued)
Both the semantics of supported revisions and justified weak revisions exclude the
weak revisions U1 = {in(d)} and U2 = {in(d), in(a), in(b)}, in favor of U3 =
{in(c)} and U4 = {in(c), in(a), in(b)} (U3 and U4 indeed are supported and justified
weak revisions), thus preferring to satisfy the head of the rule in(c)← out(d) rather
than to violate its the body. Indeed, one can check that U3 and U4 are indeed both
supported and justified weak revisions, while U1 and U2 are neither. 2

We will now introduce several additional semantics that aim to capture this
preference. First, we define a new semantics for revision programs by strengthening
the semantics of justified weak revisions. We do so simply by imposing change-
minimality explicitly.

Definition 9 (Justified Revisions)
Let P be a revision program and let I be a database. A P -justified weak revision
E for I is a P -justified revision for I if E is a revision of I wrt P (that is, for every
set E ′ ⊆ E such that I ⊕ E ′ |= P , E ′ = E). 2

30 L. Caroprese and M. Truszczyński

Example 10 (continued)

Let us consider again Example 10. The set U3 is a P -justified revision for I, while
U4 is not, reflecting the fact that we require that P -justified revisions be revisions
(that is, satisfy change minimality). 2

Justified revisions have several useful properties. They are change-minimal and
are grounded in the program and the inertia set. However, as stable models of
logic programs, to which they are closely related, in some settings they may be too
restrictive.

Example 11
Let P = {in(a)← in(a), in(a)← out(a)} and let I = ∅. Clearly, I is inconsistent
with respect to P . The set U = {in(a)} is a revision of I and one might argue that
P provides it a justification: the two rules together “force” a into I, as in any
particular situation one of them applies and provides a justification for in(a). This
type of an argument is known as “reasoning by cases.” However, one can check that
U is not a P -justified revision of I and not a P -justified weak revision, either. Thus,
justified (weak) revisions in general exclude such reasonings as valid. 2

To provide a semantics capturing such justifications, we introduce now the con-
cept of foundedness and the semantics of founded (weak) revisions. We follow closely
intuitions behind founded (weak) repairs.

Definition 10 (Founded (weak) revisions)
Let I be a database, P a revision program and, and E a consistent set of revision
literals.

1. A revision literal α is P -founded wrt I and E if there is r ∈ P such that
α ∈ head(r), I ⊕ E |= body(r), and I ⊕ E |= βD , for every β ∈ head(r) \ {α}.

2. The set E is P -founded wrt I if every element of E is P -founded wrt I and
E .

3. E is a P -founded (weak) revision for I if E is a (weak) revision of I wrt P
and E is P -founded wrt I. 2

It is clear from the definition that P -foundedness of a revision literal α with
respect to a consistent set of revision literals E can be established by considering
rules in P independently of each other, which supports reasoning by cases such as
the one used in Example 11 (in this specific case, in(a) is founded either because of
the first rule or becaue of the second rule). Indeed, one can verify that the revision
U in Example 11 is founded.

We note that condition (3) of the definition guarantees that founded (weak)
revisions enforce constraints of the revision program. Next, directly from the defi-
nition, it follows that founded weak revisions are weak revisions. Similarly, founded
revisions are revisions and so, they are change-minimal. Furthermore, founded revi-
sions are founded weak revisions. However, there are (weak) revisions that are not
founded, and founded weak revisions are not necessarily founded revisions, that is,
are not change-minimal. The latter observation shows that foundedness is too weak
a condition to guarantee change-minimality.

Active Integrity Constraints and Revision Programming 31

Example 12
Let P be the revision program containing the rules {in(b) ← in(a), in(a) ←
in(b), in(c)← out(d)} and I the empty database. The set {in(d)} is a revision of
I wrt P . Therefore it is a weak revision of I wrt P . However, it is not a P -founded
weak revision for I. Therefore, it is not a P -founded revision for I, either. The
set {in(c), in(a), in(b)} is a P -founded weak revision for I but not a P -founded
revision for I. Indeed, {in(c)} is also a revision of I wrt P . 2

In the case of normal revision programs, founded weak revisions coincide with
supported revisions.

Theorem 10
Let P be a normal revision program and I a database. A set E of revision literals
is a P -founded weak revision of I if and only if E is a P -supported revision of I.
2

Proof:(⇒) Let E be a P -founded weak revision of I and let U = E ∪ (I (I, I ⊕E)∩
head(PI⊕E)). As E is a weak revision of I with respect to P , E ∩ I (I, I ⊕ E) = ∅.
Therefore, E = U \ I (I, I⊕E) and I⊕E = I⊕U . It follows that E = U \ I (I, I⊕U)
and so, it will suffice to prove that U is a supported update of I with respect to P .

To this end, we first note that U is consistent. Indeed:

1. E is consistent (it is a weak revision);
2. I (I, I ⊕ E) is consistent;
3. If α ∈ E then the literal αD /∈ I (I, I ⊕ E).

Next, we prove that U = head(PI⊕U). Let α ∈ U . We have two cases: either
α ∈ I (I, I⊕E)∩head(PI⊕E) or α ∈ E . The first case trivially verifies the assertion.
In the second case, as E is a P -founded weak revision of I, there exists r ∈ P such
that α = head(r) and I ⊕ E |= body(r) (cf. Definition 5). Thus, r ∈ PI⊕E and
α ∈ head(PI⊕E). As I ⊕ E = I ⊕ U we have α ∈ head(PI⊕U).

Conversely, let α ∈ head(PI⊕U). We have two cases: α ∈ I (I, I ⊕ E), and α 6∈
I (I, I ⊕ E). In the first case, α ∈ U (by the definition of U). In the second case, we
reason as follows. Since α ∈ head(PI⊕U), there exists r ∈ P such that α = head(r)
and I ⊕ U |= body(r). Thus, I ⊕ E |= body(r). As E is a weak revision, I ⊕ E |= r .
Consequently, I ⊕E |= α. Since α /∈ I (I, I ⊕E), I 6|= α and so, α ∈ E . Thus, α ∈ U .

(⇐) Let E be a P -supported revision of I. It follows that E = U \I (I, I⊕U), where
U is a P -supported update of I wrt P . It follows that I ⊕E = I ⊕U . Consequently,
E ∩ I (I, I ⊕ E) = ∅ and, by Proposition 3, I ⊕ E |= P . Since E ⊆ U , E is consistent
and so, E is a weak revision of P .

Let α ∈ E . As E ⊆ U , there exists r ∈ P such that α = head(r) and I ⊕ U |=
body(r). Thus, I ⊕ E |= body(r), too. Consequently, α is P -founded wrt I and E .
It follows that E is a P -founded weak revision of I. 2

At an intuitive level, we already argued earlier that foundedness is less restric-
tive than the condition defining justified updates, which is behind justified (weak)
revisions. We will now make this intuition formal.

32 L. Caroprese and M. Truszczyński

Theorem 11
Let P be a revision program and let I be a database. If a set E of revision literals
is a P -justified (weak) revision of I, then it is a P -founded (weak) revision of I.

Proof: Let E be a P -justified weak revision of I. By Proposition 4, I ⊕ E |= P .
Moreover, there is a P -justified update U for I such that E = U \ I (I, I ⊕ U). It
follows that I ⊕ U = I ⊕ E and E ∩ I (I, I ⊕ E) = ∅. Since U s consistent (by the
definition), E is consistent and so, E is a weak revision of I with respect to P .

To show that E is a P -founded weak revision of I, we need to prove that E is
P -founded wrt I. Let α ∈ E . We recall that by the definition, U is a minimal set
closed under P ∪ I (I, I ⊕ U). As U is minimal, U ′ = U \ {α} is not closed under
P ∪ I (I, I ⊕ U). As α 6∈ I (I, I ⊕ U) there is a revision rule r ∈ P such that
body(r) ⊆ U ′ and head(r) ∩ U ′ = ∅. Since U ′ ⊆ U , body(r) ⊆ U . It follows that
I ⊕ U |= body(r) and so, I ⊕ E |= bd(r).

We recall that U is closed under P . Thus, head(r) ∩ U = {α}. Let β ∈ head(r) \
{α}. It follows that β 6∈ U and so, β 6∈ E and β 6∈ I (I, I ⊕ U). If I |= β, then
β 6∈ I (I, I ⊕U) implies that I ⊕U 6|= β. If I 6|= β, then β 6∈ E implies I ⊕E 6|= β. In
each case I ⊕ E |= βD . It follows that α is P -founded wrt I. Thus, E is P -founded
wrt I and so, it is a P -founded weak revision of I

Next, let us assume that E is a P -justified revision of I. Then, E is a P -justified
weak revision of I and so, a P -founded weak revision of I (by the argument above).
In particular, it is P -founded wrt I. Moreover, since E is a P -justified revision of
I, it is a revision of I wrt P . Therefore, E it is a P -founded revision of I wrt P . 2

The converse implications do not hold in general (cf. Example 11).
As in the case of active integrity constraints, revision rules can be normalized.

Namely, for a revision rule r = α1| . . . |αk ← φ by rn we denote the set of normal

revision rules as follows: rn = {r}, if k ≤ 1 or, if k ≥ 2, rn = {r1, . . . , rk}, where
ri = αi ← αD

1 , . . . , α
D
i−1, α

D
i+1, . . . , α

D
k , φ. For a revision program P , we define

Pn =
⋃

r∈P rn . One can prove the following result (we omit the details as they are
quite similar to those we presented above).

Theorem 12
Let P be a revision program and let I be a database. A set E of revision literals
is a (weak) revision of I with respect to Pn (Pn -founded (weak) revision of I,
respectively) if and only if it is a (weak) revision of I with respect to P (P -founded
(weak) revision of I, respectively). Moreover, if E is a Pn -justified (weak) revision
of I, then it is a P -justified (weak) revision of I.

To summarize our discussion so far, revision programs can be assigned the se-
mantics of (weak) revisions, justified (weak) revisions and founded (weak) revisions.
Thanks to Theorem 12, we can also assign to a revision program P the semantics
of Pn -justified revisions. Let us denote the classes of the corresponding types of
revisions by Rev(I,P), WRev(I,P), JRev(I,P), JWRev(I,P), FRev(I,P)
and FWRev(I,P). The relationships between the semantics we discussed above
are demonstrated in Figure 2. One can show that none of the containment relations
can be replaced with the equality.

Active Integrity Constraints and Revision Programming 33
FRev(I, Pn)

=

JRev(I, Pn) ⊆ JRev(I, P) ⊆ FRev(I, P) ⊆ Rev(I, P) = Rev(I, Pn)
=

⊆ ⊆ ⊆ ⊆
JWRev(I, Pn) ⊆ JWRev(I, P) ⊆ FWRev(I, P) ⊆ WRev(I, P) = WRev(I, Pn)

=

FWRev(I, Pn)

Fig. 2. The containment relations for the semantics of revision programs

The similarities revision programs show to sets of active integrity constraints are
striking. In the next section, we will now establish the precise connection.

11 Connections between Revision Programs and Active Integrity
Constraints

To relate revision programs and active integrity constraints, we first note that we
can restrict the syntax of revision programs without affecting their expressivity.

A proper revision rule is a revision rule that satisfies the following condition: any
literal in the head is not the dual of any literal in the body.

Let P be a revision program and let r1 and r2 be revision rules

α|α1| . . . |αk ← αD , β1, . . . , βm

and

α1| . . . |αk ← αD , β1, . . . , βm ,

respectively (that is, r2 differs from r1 in that it drops α from the head).

Lemma 5
Let I be a database. Under the notation introduced above, a set of revision literals
U is a (weak) revision of I with respect to P ∪ {r1} (P ∪ {r1}-founded (weak)
revision, P ∪ {r1}-justified (weak) revision of I, respectively) if and only if U is a
(weak) revision of I with respect to P ∪ {r2} (P ∪ {r2}-founded (weak) revision,
P ∪ {r2}-justified (weak) revision of I, respectively).

Proof: The claim is evident for the case of weak revisions and revisions. The case
of justified (weak) revisions follows from the observation that a consistent set U of
revision literals is a closed set for P ∪ {r1} ∪ I (I, I ⊕U) if and only if U is a closed
set for P ∪ {r2} ∪ I (I, I ⊕ U).

For the case of founded (weak) revisions, it is enough to prove that a set U of
revision literals is P ∪ {r1}-founded wrt I if and only if U is P ∪ {r2}-founded wrt
I. When proceeding in either direction, we have that U is consistent.

Let β ∈ U be P ∪ {r1}-founded wrt I and U , and let r ∈ P ∪ {r1} be the rule
providing support to β. If r 6= r1, r ∈ P and so, β is P ∪{r2}-founded wrt I and U .
Thus, let us assume that r = r1. If β = α, then α ∈ U and, consequently, I⊕U |= α.
Since I ⊕ U |= body(r1), I ⊕ U |= αD , a contradiction. Thus, β 6= α. It is easy to
see that in such case, r2 supports β (given U). Thus, β is P ∪ {r2}-founded wrt I
in this case, too. It follows that U is P ∪ {r2}-founded wrt I.

Conversely, let β ∈ U be P ∪ {r2}-founded wrt I and U , and let r ∈ P ∪ {r2} be
the rule providing support to β. As before, if r 6= r2, the claim follows. If r = r2,

34 L. Caroprese and M. Truszczyński

then β 6= α. Since r2 supports β, one can check that r1 supports, β, too. Thus, β is
P ∪ {r1}-founded wrt I and U . Consequently, U is P ∪ {r1}-founded wrt I 2

Lemma 5 shows that the literals in the head of a revision rule which are dual of
literals in the body are useless and can be dropped. In other words, there is no loss
of generality in considering just proper revision programs.

Example 13
Let P be the revision program containing the rules {in(b)|out(a)← in(a),out(d)|
in(c)← out(c)}. Its properized version is {in(b)← in(a), out(d)← out(c)}. 2

Theorem 13
Let P be a revision program. There is a proper revision program P ′ such that for
every database I, (weak) revisions of I with respect to P (P -founded (weak) revi-
sions, P -justified (weak) revisions of I, respectively) coincide with (weak) revisions
of I with respect to P ′ (P ′-founded (weak) revisions, P ′-justified (weak) revisions
of I, respectively).

Proof: Lemma 5 implies that the program P ′ obtained from P by repeated appli-
cation of the process described above (replacement of rules of the form r1 with the
corresponding rules of the form r2) has the required property. 2

We denote the “properized” version of a revision program P as prop(P).
We extend to revision literals the operator ua(·) defined for propositional literals.
If α = in(a), we define ua(α) = +a. If α = out(a), we define ua(α) = −a.

Definition 11
Given a proper revision rule r of the form

α1| . . . |αk ← β1, . . . βm

we denote by AIC (r) the active integrity constraint

lit(β1), . . . , lit(βm), lit(α1)D , . . . , lit(αk)D ⊃ ua(α1)| . . . |ua(αk)· 2

For example, given the proper revision rule r : in(a)← out(b), the correspond-
ing active integrity constraint AIC (r) is of the form not b, not a ⊃ +a. We note that
if r is a constraint (k = 0), AIC (r) is simply an integrity constraint. The operator
AIC (·) is extended to proper revision programs in the standard way. It is easy to
show that for each database I, I |= P if and only if I |= AIC (P). The following
lemma establishes a direct connection between the concepts of closure under active
integrity constraints and revision programs.

Lemma 6
Let r be a proper revision rule. A set E of revision literals is closed under P if and
only if ua(E) is closed under AIC (r).

Proof: First, we observe that as r is proper, nup(AIC (r)) = lit(body(r)). Moreover
head(AIC (r)) = ua(head(r)). We know that E is closed under r if and only if
body(r) 6⊆ E or head(r) ∩ E 6= ∅. This holds if and only if lit(body(r)) 6⊆ lit(E) =
lit(ua(E)) or ua(head(r)) ∩ ua(E) 6= ∅, which is equivalent to nup(AIC (r)) 6⊆
lit(ua(E)) or head(AIC (r))∩ua(E) 6= ∅. This, however, is the definition of AIC (r)
closed under ua(E)). 2

Active Integrity Constraints and Revision Programming 35

Corollary 3
Let P be a proper revision program. A set E of revision literals is a minimal set
closed under P if and only if ua(E) is a minimal set closed under AIC (r).

Proof: Straightforward from Lemma 6. 2

Theorem 14
Let P be a proper revision program. A set E of revision literals is a (weak) revision
(respectively, P -justified (weak) revision, P -founded (weak) revision) of I wrt P if
and only if ua(E) is a (weak) repair (respectively, justified (weak) repair, founded
(weak) repair) for 〈I,AIC (P)〉.

Proof:
(1) A set E of revision literals is a weak revision of I wrt P if and only if ua(E) is
a weak repair for 〈I,AIC (P)〉.
Indeed, by the definition, E is a weak revision of I with respect to P if and only if

(a) I ∩ {a | in(a) ∈ E} = ∅, {a |out(a) ∈ E} ⊆ I; and
(b) I ⊕ E |= P .

Similarly, ua(E) is a weak repair for 〈I,AIC (P)〉 if and only if

(a) I ∩ {a | + a ∈ ua(E)} = ∅, {a | − a ∈ ua(E)} ⊆ I; and
(b) I ◦ ua(E) |= AIC (P).

By our earlier comments, for every database J , J |= P if and only if J |= AIC (P).
Since I ⊕ E = I ◦ ua(E), the assertion follows.

(2) Next, we prove that E is a revision of I wrt P if and only if ua(E) is a repair
for 〈I,AIC (P)〉.
By (1), E is a weak revision of I wrt P if and only if ua(E) is a weak repair for
〈I,AIC (P)〉. Moreover, we have that the mapping E 7→ ua(E) is a bijection between
sets of revision literals and sets of update actions such that I⊕E |= P if and only if
I ◦ ua(E) |= AIC (P). Thus, a set E of revision literals is such that for each E ′ ⊆ E
the fact I ⊕ E ′ |= P implies E ′ = E (minimality of E) if and only if ua(E) is a set
of update actions such that for each F ′ ⊆ ua(E) the fact I ◦ F ′ |= AIC (P) implies
F ′ = ua(E) (minimality of ua(E).

(3) We now prove that E is a P -justified weak revision of I if and only if ua(E) is
a justified weak repair for 〈I,AIC (P)〉.
(⇒) Since E is a P -justified weak revision of I, there exists a P -justified weak update
of I, say U , such that E = U\I (I, I⊕U). By the definition, U is consistent and it is a
minimal set containing I (I, I⊕U) and closed under P . It follows that the action set
ua(U) is consistent and, by Corollary 3, it is a minimal set containing ua(I (I, I⊕U))
and closed under AIC (P). We now observe that ua(I (I, I⊕U)) = ne(I, I ◦ua(U)).
Thus, ua(U) is a justified action set for 〈I,AIC (P)〉 and ua(U)\ne(I, I ◦ua(U)) =
ua(E) is a justified weak repair for 〈I,AIC (P)〉.
(⇐) There exists a justified action set for 〈I,AIC (P)〉, say U , such that ua(E) =
U \ne(I, I ◦U). The action set U is consistent, contains ne(I, I ◦U) and it is closed
under AIC (P). By our comments above, there is a set of revision literals V such

36 L. Caroprese and M. Truszczyński

that ua(V) = U . Moreover, ne(I, I ◦ U) = ua(I (I, I ⊕ V)). It follows that the set
V is consistent and, by Corollary 3, it is a minimal set containing I (I, I ⊕ V) and
closed under P . Thus, V is a P -justified weak update for I and V \ I (I, I ⊕V) = E
is a P -justified weak revision for I.

(4) By (3) and by the argument we used in (2) to show that the minimality of E is
equivalent to the minimality of ua(E), E is a P -justified revision of I if and only if
ua(E) is a justified repair for 〈I,AIC (P)〉.
(5) Finally, we prove that E is a P -founded (weak) revision of I if and only if ua(E)
is a founded (weak) repair for 〈I,AIC (P)〉.
(⇒) Let E be a P -founded (weak) revision of I. By (1) and (2), ua(E) is a (weak)
repair for 〈I,AIC (P)〉. Therefore, we have to show that ua(E) is founded wrt
〈I,AIC (P)〉. Let us consider an arbitrary element of ua(E). It is of the form ua(α),
for some revision literal α ∈ E .

Since E is P -founded wrt I, there exists r ∈ P such that I ⊕ E |= body(r),
and I ⊕ E |= γD , for every γ ∈ head(r) different from α. Let ρ be the cor-
responding active integrity constraint in AIC(P), that is, ρ = AIC(r). Since
r is proper, lit(body(r)) = nup(ρ). Thus, I ◦ ua(E) |= nup(ρ). Moreover, since
head(ρ) = ua(head(r)), for every δ ∈ head(ρ) other than ua(α), I ◦ ua(E) |= δD .

Thus, ua(α) is founded wrt 〈I,AIC (P)〉 and ua(E) and so, ua(E) is founded with
respect to 〈I,AIC (P)〉.
(⇐) This implication can be proved by a similar argument. We omit the details. 2

The results of this section show that proper revision programs can be interpreted
as sets of active integrity constraints so that the corresponding semantics match.
However, it is easy to see that the mapping AIC(·) is a one-to-one and onto mapping
between the collection of proper revision programs and the collections of sets of
active integrity constraints. Thus, also conversely, sets of active integrity constraints
can be interpreted as revision programs.

Example 14
Let η be the following set of active integrity constraints:

r1 = a, b, not c ⊃ −a|+ c
r2 = not d ⊃ +d
r3 = a ⊃ ⊥

The corresponding revision program is:

ρ1 = out(a)|in(c) ← in(b)
ρ2 = in(d) ←
ρ3 = ⊥ ← in(a)·

The correspondence between sets of active integrity constraints and proper revi-
sion programs allows us to adapt results from one setting to another and conversely.
Moreover, in many cases, once we have a result for proper revision programs, we
can lift it to the general case, too. For instance, as in the case of sets of active
integrity constraints and justified (weak) repairs, a special structure of a revision
program with respect to the original database ensures minimality of justified weak
revisions. Specifically, we have the following corollary of Theorem 3.

Active Integrity Constraints and Revision Programming 37

Theorem 15
Let I be a database and P a revision program such that for each revision literal α
appearing in the head of a rule in P , I |= αD . If E is a P -justified weak revision
for I, then E is a P -justified revision for I.

Proof: (Sketch) Clearly, the properized version P ′ of P also satisfies the assumption
of the theorem. By the correspondence results between proper revision programs
and sets of aic’s, it follows that E is a P ′-justified revision for I. As I has the same
justified revisions with respect to P ′ and P , the result follows. 2

Moreover, for normal revision programs justified weak revisions are justified re-
visions no matter what the initial database, as stated in the following corollary to
Theorem 4. The argument is essentially the same as the one above and we omit it.

Theorem 16
Let I be a database and P a normal revision program. If E is a P -justified weak
revision for I, then E is a justified revision for I.

12 Computation and Complexity Results for Revision Programming

Thanks to the equivalence properties reported in Section 11 we can derive the
results about computation and complexity for revision programming from the cor-
responding results for active integrity constraints presented in Section 7.

Theorem 17
Let I be a database and P a normal revision program. Then checking if there
exists a P -justified revision (P -justified weak revision, respectively) for I is an
NP-complete problem.

Proof. By Theorem 13 we know that this problem is equivalent to check if there
exists a P ′-justified revision (P ′-justified weak revision, respectively) for I where
P ′ is the properized version of P that can be computed in polynomial time. The
result follows from Theorems 7 and Theorem 14. 2

Theorem 18
Let I be a database and P a revision program. Then checking if there exists a
P -justified revision (P -justified weak revision, respectively) for I is a ΣP

2 -complete
problem.

Proof. By Theorem 13 we know that this problem is equivalent to check if there
exists a P ′-justified revision (P ′-justified weak revision, respectively) for I where
P ′ is the properized version of P that can be computed in polynomial time. The
result follows from Theorems 8, 9 and 14. 2

Theorem 19
Let I be a database and P a revision program. Then checking if there exists a
P -founded revision (P -founded weak revision, respectively) for I is a ΣP

2 -complete
(NP-complete, respectively) problem.

38 L. Caroprese and M. Truszczyński
FRev(I, Pn)

[Σ2
P

-c]

=

JRev(I, Pn) ⊆ JRev(I, P) ⊆ FRev(I, P) ⊆ Rev(I, P) = Rev(I, Pn)
[NP-c] [Σ2

P
-c] [Σ2

P
-c] [NP-c] [NP-c]

=

⊆ ⊆ ⊆ ⊆

JWRev(I, Pn) ⊆ JWRev(I, P) ⊆ FWRev(I, P) ⊆ WRev(I, P) = WRev(I, Pn)
[NP-c] [Σ2

P
-c] [NP-c] [NP-c] [NP-c]

=

FWRev(I, Pn)
[NP-c]

Fig. 3. Complexity results for the semantics of revision programs

Proof. By Theorem 13 we know that this problem is equivalent to check if there
exists a P ′-founded revision (P ′-founded weak revision, respectively) for I where
P ′ is the properized version of P that can be computed in polynomial time. The
result follows from complexity results by Caroprese et al. (2006) and Theorem 14.
2

We summarize the complexity results obtained in this section in Figure 3.
We note that comments we made at the end of Section 8 apply here as well. In a

nutshell, a semantics of justified revisions, reflecting the principles of groundedness
(no circular “self-justifications”) and minimality of change, seems to be well moti-
vated and so most appealing for applications. However, as we pointed out earlier,
it may be too restrictive. Thus, in all these cases, when consistency of a database
needs to be restored and justified revisions do not exist, other semantics may provide
an acceptable solution. The discussion of that issue, involving also computational
complexity trade-offs, follows essentially the same line as that in Section 8.

13 Shifting Theorem

In this section we study the shifting transformation (Marek and Truszczyński 1998).
The process consists of transforming an instance 〈I, η〉 of the database repair prob-
lem to a syntactically isomorphic instance 〈I ′, η′〉 by changing integrity constraints
to reflect the “shift” of I into I ′. A semantics for database repair problem has the
shifting property if the repairs of the “shifted” instance of the database update
problem are precisely the results of modifying the repairs of the original instance
according to the shift from I to I ′. The shifting property is important. If a seman-
tics of database updates has it, the study of that semantics can be reduced to the
case when the input database is the empty set, a major conceptual simplification.

Example 15
Let I = {a, b} and let η5 = {a, b ⊃ −a| − b}. There are two founded repairs
for 〈I, η5〉: E1 = {−a} and E2 = {−b}. Let W = {a}. We will now “shift” the
instance 〈I, η5〉 with respect to W. To this end, we will first modify I by changing
the status in I of elements in W, in our case, of a. Since a ∈ I, we will remove it.
Thus, I “shifted” with respect to W becomes J = {b}. Next, we will modify η5
correspondingly, replacing literals and update actions involving a by their duals.
That results in η′5 = {not a, b ⊃ +a|−b}. One can check that the resulting instance
〈J , η′5〉 of the update problem has two founded repairs: {+a} and {−b}. Moreover,

Active Integrity Constraints and Revision Programming 39

they can be obtained from the founded repairs for 〈I, η5〉 by consistently replacing
−a with +a and +a with −a (the latter does not apply in this example). In other
words, the original update problem and its shifted version are isomorphic. 2

The situation presented in Example 15 is not coincidental. In this section we
will show that the semantics of (weak) repairs, founded (weak) repairs and justified
(weak) repairs satisfy the shifting property. To facilitate the presentation, we placed
proofs of all the results in the appendix.

We start by observing that shifting a database I to a database I ′ can be modeled
by means of the symmetric difference operator. Namely, we have I ′ = I÷W, where
W = I÷I ′. This identity shows that one can shift any database I into any database
I ′ by forming a symmetric difference of I with some set W of atoms (specifically,
W = I ÷I ′). We will now extend the operation of shifting a database with respect
to W to the case of literals, update actions and integrity constraints. To this end,
we introduce a shifting operator TW .

Definition 12
Let W be a database and ` a literal or an update action. We define

TW(`) =
{
`D if the atom of ` is in W
` if the atom of ` is not in W

and we extend this definition to sets of literals or update actions, respectively.
Furthermore, if op is an operator on sets of literals or update actions (such as

conjunction or disjunction), for every set X of literals or update actions, we define

TW(op(X)) = op(TW(X))·

Finally, for an active integrity constraint r = φ ⊃ ψ, we set

TW(r) = TW(φ) ⊃ TW(ψ)·

We extend the notation to sets active integrity constraints in the standard way. 2

To illustrate the last two parts of the definition, we note that when op stands
for the conjunction of a set of literals and X = {L1, . . . ,Ln}, where every Li is a
literal, TW(op(X)) = op(TW(X)) specializes to

TW(L1, . . . ,Ln) = TW(L1), . . . ,TW(Ln)·

Similarly, for an active integrity constraint

r = L1, . . . ,Ln ⊃ α1| . . . |αm

we obtain

TW(r) = TW(L1), . . . ,TW(Ln) ⊃ TW(α1)| . . . |TW(αm)·

To summarize, we overload the notation TW and interpret it based on the type of
the argument.

40 L. Caroprese and M. Truszczyński

Theorem 20 (Shifting theorem for (weak) repairs and founded repairs)

Let I and W be databases. For every set η of active integrity constraints and for
every consistent set E of update actions, we have

1. E is a weak repair for 〈I, η〉 if and only if TW(E) is a weak repair for 〈I ÷
W,TW(η)〉

2. E is a repair for 〈I, η〉 if and only if TW(E) is a repair for 〈I ÷W,TW(η)〉
3. E is founded for 〈I, η〉 if and only if TW(E) is founded for 〈I ÷W,TW(η)〉
4. E is a founded (weak) repair for 〈I, η〉 if and only if TW(E) is a founded

(weak) repair for 〈I ÷W,TW(η)〉
5. E is an justified (weak) repair for 〈I, η〉 if and only if TW(E) is a justified

(weak) repair for 〈I ÷W,TW(η)〉.

Theorem 20 implies that in the context of (weak) repairs, founded (weak) repairs
or justified (weak) repairs, an instance 〈I, η〉 of the database update problem can be
shifted to the instance with the empty initial database. That property can simplify
studies of these semantics as well as the development of algorithms for computing
repairs and for consistent query answering, as it allows us to eliminate one of the
parameters (the initial database) from considerations. In many cases it also allows
us to relate semantics of database repairs to some semantics of logic programs with
negation. Formally, we have the following corollary.

Corollary 4
Let I be a database and η a set of active integrity constraints. Then E is a weak
repair (repair, founded weak repair, founded repair, justified weak repair, justified
repair, respectively) for 〈I, η〉 if and only if TI(E) is a weak repair (repair, founded
weak repair, founded repair, justified weak repair, justified repair, respectively) for
〈∅,TI(η)〉.

The concept of of shifting can also be stated for revision programming. First, we
note that the operator TW(·) defined above can be extended to revision literals,
revision rules and revision programs. Its formal definition and many properties have
been presented by Marek et al. (1999). The following theorem gathers those results,
as well as their extensions to the case of new semantics we introduced in our paper.

Theorem 21
(Shifting theorem for revision programs) Let I and W be databases. For
every revision program G and every consistent set E of revision literals, we have

1. E is a (weak) revision for I with respect to G if and only if TW(E) is a (weak)
revision for I with respect to TW(G)

2. E is a G-justified (weak) revision for I if and only if TW(E) is a TW(G)-
justified (weak) revision for I

3. E is a G-founded (weak) revision for I if and only if TW(E) is a TW(G)-
founded (weak) revision for I

Active Integrity Constraints and Revision Programming 41

14 Conclusion

In the paper we studied two formalisms for describing policies on enforcing integrity
constraints on databases in the presence of preferences on alternative ways to do
so: active integrity constraints (Caroprese et al. 2006) and revision programming

(Marek and Truszczyński 1998).
The original semantics proposed for active integrity constraints is based on the

concept of a founded repair. A founded repair is a set of update actions (insertions

and deletions) to be performed over the database in order to make it consistent, that
is minimal and supported by active integrity constraints. The original semantics for
revision programs is based on the concept of justified revision. A justified revision
is a set of revision literals that can be inferred by means of the revision program
and by the inertia set, that is the set of all atoms that do not change their state of
presence in or absence from a database during the revision process.

We proved that in the context of their original semantics, these two formalisms
differ. That is, under some natural interpretation of revision programs as sets of
active integrity constraints the set of repairs corresponding to justified revisions is
contained in the set of founded repairs (and the containment is, in general, proper).
This observation demonstrated that basic intuitions behind the two semantics are
essentially different and opened a possibility of expanding each formalism by se-
mantics grounded in the ideas developed in the other one.

Following this direction, we introduced a new semantics for active integrity con-
straints, based on ideas underlying revision programming and, conversely, a new
semantics for revision programs based on intuitions behind founded repairs. With
the new semantics available, we showed that the interpretation of revision programs
as sets of active integrity constraints, mentioned above, establishes a precise match
between these two formalism: it preserves their semantics once they are correctly
aligned. In other words, we proved that the two formalisms are equivalent through a
simple modular (rule-wise) syntactic transformation. That offers a strong indication
of the adequacy of each formalism as the foundation for declarative specifications
of policies for enforcing integrity constraints. Moreover, the broad frameworks of
semantics we have available in each case provide us with means of handling the
problem of “non-executability” of the policies encoded into integrity constraints
under a particular semantics: once that turns out to be the case, one can chose to
select a less restrictive one.

For each formalism and each semantics we established the complexity of the
basic existence of repair (revision) problem. Furthermore, we proved that each
formalism and each semantics satisfies the shifting property. Shifting consists of
transforming an instance of a database repair problem to another syntactically
isomorphic instance by changing active integrity constraints or revision programs
to reflect the “shift” from the original database to the new one.

These latter results are essential for relating repair (revision) formalisms we stud-
ied with logic programming and, specifically, with programs that generalize stan-
dard disjunctive logic programs by allowing default literals also in the heads of
disjunctive rules (the Lifschitz-Woo programs (Lifschitz and Woo 1992); cf. work

42 L. Caroprese and M. Truszczyński

by Marek at al. (1999) and Pivkina (2001) for some early results exploiting shifting
to relate revision and logic programming).

Our work opens and forms the foundation for several research directions. The first
of them concerns implementations of algorithms for computing repairs (revisions)
under the semantics discussed here in the first-order setting covering built-in pred-
icates and aggregates. An important aspect of that research is to identify classes of
databases and integrity constraints, for which the existence and the uniqueness of
repairs (revisions) of particular types is assured.

The second problem concerns consistent query answering in the setting of active
integrity constraints. The problem is to compute answers to queries to a database
that is inconsistent with respect to its active integrity constraints without comput-
ing the repairs explicitly, thus extending the approach of consistent query answering
(Arenas et al. 1999; Arenas et al. 2003; Chomicki 2007) to the setting of active in-
tegrity constraints.

Next, there is the question whether a still narrower classes of repairs could be
identified based on the analysis of all active integrity constraints (revision program
rules) that would resolve conflicts among them (multiple possible repairs or revisions
result precisely from the need to choose which constraint or rule to use when several
are applicable) either based on their specificity (an approach used with some success
in default logic) or on explicit rankings of the relative importance of active integrity
constraints and revision rules.

Finally, we note that all the semantics discussed in the paper give rise to knowl-
edge base operators that could be analyzed from the standpoint of Katsuno-Mendel-
zon postulates. To this end, we observe that we can view a set of databases as the set
of models of some formula and so, as a knowledge base in the sense of Katsuno and
Mendelzon (Katsuno and Mendelzon 1991). Let η be a set of active integrity con-
straints and, for the sake of illustration, let us focus our attention on the semantics
of justified repairs. Given a set of databases (a knowledge base), I, we can assign to
it another set of databases (knowledge base), I ′, consisting of all η-justified repairs
of all databases in I. In that way we obtain a knowledge base update operator
determined by η and the semantics justified repairs. It is an interesting problem to
determine which of the Katsuno-Mendelzon postulates are satisfied by that operator
(and by the other ones that arise by choosing a different update semantics).

Acknowledgments

The authors thank anonymous reviewers for many insightful comments that resulted
in substantial improvements to the original manuscript. This work was partially
supported by the NSF grants IIS-0325063 and IIS-0913459, and the KSEF grant
KSEF-1036-RDE-008.

References

Arenas, M., Bertossi, L. E., and Chomicki, J. 1999. Consistent query answers in
inconsistent databases. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems - PODS 1999. ACM Press, 68–79.

Active Integrity Constraints and Revision Programming 43

Arenas, M., Bertossi, L. E., and Chomicki, J. 2003. Answer sets for consistent query
answering in inconsistent databases. TPLP 3, 4-5, 393–424.

Bravo, L. and Bertossi, L. 2006. Semantically correct query answers in the presence
of null values.

Caroprese, L., Greco, S., Sirangelo, C., and Zumpano, E. 2006. Declarative seman-
tics of production rules for integrity maintenance. In Proceedings of 22th International
Conference on Logic Programming (ICLP-2006). Springer, 26–40.

Caroprese, L. and Truszczyński, M. 2008a. Declarative semantics for active integrity
constraints. In Proceedings of 24th International Conference on Logic Programming
(ICLP-2008). Springer, 269–283.

Caroprese, L. and Truszczyński, M. 2008b. Declarative semantics for revision pro-
gramming and connections to active integrity constraints. In Proceedings of 11th Euro-
pean Conference on Logics in Artificial Intelligence (JELIA-2008). Springer, 100–112.

Chakravarthy, U. S., Grant, J., and Minker, J. 1990. Logic-based approach to
semantic query optimization. ACM Trans. Database Syst. 15, 2, 162–207.

Chomicki, J. 2007. Consistent query answering: Five easy pieces. In Proceedings of
the 11th International Conference on Database Theory - ICDT 2007. Lecture Notes in
Computer Science, vol. 4353. Springer, 1–17.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic pro-
gramming: propositional case. Annals of Mathematics and Artificial Intelligence 15,
289–323.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9, 365–385.

Greco, G., Greco, S., and Zumpano, E. 2003. A logical framework for querying and
repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15, 6, 1389–1408.

Jagadish, H. V., Mendelzon, A. O., and Mumick, I. S. 1999. Managing conflicts
between rules. Journal of Computer and System Sciences 58, 1, 13–28.

Katsuno, H. and Mendelzon, A. O. 1991. On the difference between updating a
knowledge base and revising it. In KR. 387–394.

Lifschitz, V. and Woo, T. 1992. Answer sets in general nonmonotonic reasoning. In
Proceedings of 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR-1992). Springer, 603–614.

Lopatenko, A. and Bertossi, L. 2006. Consistent query answering by minimal-size
repairs. Database and Expert Systems Applications, International Workshop on 0,
558–562.

Marek, W., Pivkina, I., and Truszczyński, M. 1999. Revision programming = logic
programming + integrity constraints. In Proceedings of 12th International Workshop
on Computer Science Logic (CSL-1998). Springer, 73–89.

Marek, W. and Truszczyński, M. 1991. Autoepistemic logic. Journal of the ACM 38,
588–619.

Marek, W. and Truszczyński, M. 1994. Revision specifications by means of programs.
In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA-
1994). Springer, 122–136.

Marek, W. and Truszczyński, M. 1998. Revision programming. Theoretical Computer
Science 190, 241–277.

Marileo, M. C. and Bertossi, L. E. 2007. The consistency extractor system: Querying
inconsistent databases using answer set programs. In Proceedings of the 1st Interna-
tional Conference on Scalable Uncertainty Management - SUM 2007, H. Prade and V. S.
Subrahmanian, Eds. Lecture Notes in Computer Science, vol. 4772. Springer, 74–88.

44 L. Caroprese and M. Truszczyński

McCarthy, J. and Hayes, P. 1969. Some philosophical problems from the standpoint
of artificial intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie, Eds.
Edinburgh University Press, 463–502.

Pivkina, I. 2001. Revision programming: a knowledge representation formalism. Ph.D.
thesis, Department of Computer Science, University of Kentucky.

Widom, J. and Ceri, S. 1996. Conclusions and future directions. In Active Database
Systems: Triggers and Rules For Advanced Database Processing. Morgan Kaufmann,
293–302.

Winslett, M. 1990. Updating Logical Databases. Cambridge University Press.

Appendix

We present here the proofs of the two shifting theorems. The proofs are based on
several auxiliary results.

Lemma 7
Let W be a database.

1. For every update action α, TW(lit(α)) = lit(TW(α))
2. For every set A of literals (update actions, active integrity constraints, re-

spectively) TW(TW(A)) = A
3. For every consistent set A of literals (update actions, respectively), TW(A)

is consistent
4. For every databases I and R, TW(ne(I,R)) = ne(I ÷W,R÷W)
5. For every active integrity constraint r , nup(TW(r)) = TW(nup(r)).

Proof: (1) - (3) follow directly from the definitions. We omit the details.

4. Let α ∈ ne(I ÷W,R ÷W). If α = +a, then it follows that a ∈ (I ÷W) ∩
(R ÷ W). Let us assume that a ∈ W. Then a /∈ I ∪ R and, consequently,
−a ∈ ne(I,R). Since a ∈ W, +a = TW(−a). Thus, α ∈ TW(ne(I,R)).
The case when α = −a can be dealt with in a similar way. It follows that
ne(I ÷W,R÷W) ⊆ TW(ne(I,R)).
Let I ′ = I ÷W and R′ = R÷W. Then I = I ′ ÷W, R = R′ ÷W and, by
applying the inclusion we just proved to I ′ and R′, we obtain

ne(I,R) = ne(I ′ ÷W,R′ ÷W) ⊆ TW(ne(I ′,R′))·

Consequently,

TW(ne(I,R)) ⊆ TW(TW(ne(I ′,R′))) = ne(I ÷W,R÷W)·

Thus, the claim follows.
5. Let L ∈ nup(TW(r)). We have L ∈ body(TW(r)) and LD /∈ lit(head(TW(r)).

Clearly, head(TW(r)) = TW(head(r)) and body(TW(r)) = TW(body(r)).
Thus, L ∈ TW(body(r)) and LD /∈ TW(head(r)). Consequently, TW(L) ∈
body(r). Moreover, since TW(LD) = (TW(L))D , (TW(L))D /∈ head(r). It fol-
lows that TW(L) ∈ nup(r) and so, L ∈ TW(nup(r)). Hence, nup(TW(r)) ⊆
TW(nup(r)).
Applying this inclusion to an active integrity constraint s = TW(r), we

Active Integrity Constraints and Revision Programming 45

obtain nup(r) ⊆ TW(nup(TW(r))). This, in turn, implies TW(nup(r)) ⊆
TW(TW(nup(TW(r)))) = nup(TW(r)). Thus, the equality nup(TW(r)) =
TW(nup(r)) follows. 2

Lemma 8
Let I and W be databases and let L be a literal or an update action. Then I |= L
if and only if I ÷W |= TW(L).

Proof: (⇒) Let us assume that I |= L. If L = a, where a is an atom, then
a ∈ I. There are two cases: a ∈ W and a /∈ W. In the first case, a /∈ I ÷W and
TW(a) = not a. In the second case, a ∈ I ÷ W and TW(a) = a. In each case,
I ÷W |= TW(a), that is, I ÷W |= TW(L).

The case L = not a, where a is an atom, is similar. First, we have that a /∈ I.
If a ∈ W then a ∈ I ÷ W and TW(not a) = a. If a 6∈ W then a /∈ I ÷ W and
TW(not a) = not a. In each case, I ÷W |= TW(not a), that is, I ÷W |= TW(L).

(⇐) Let us assume that I÷W |= TW(L). Then, (I÷W)÷W = I and TW(TW(L)) =
L. Thus, I |= L follows by the implication (⇒). 2

Lemma 9
Let I and W be databases, and let U be a consistent set of update actions. Then
(I ◦ U)÷W = (I ÷W) ◦ TW(U).

Proof: We note that since U is consistent, TW(U) is consistent, too. Thus, both

sides of the identity are well defined.
Let a ∈ (I ◦ U) ÷W. If +a ∈ TW(U), then a ∈ (I ÷W) ◦ TW(U). Thus, let us

assume that +a /∈ TW(U). We have two cases.
Case 1: a /∈ W. From the definition of TW , +a /∈ U . Since a ∈ (I ◦ U) ÷ W,
a ∈ I ◦ U and, consequently, a ∈ I and −a /∈ U . Thus, a ∈ (I ÷ W) and −a /∈
TW(U) (otherwise, as TW(−a) = −a, we would have −a ∈ U). Consequently,
a ∈ (I ÷W) ◦ TW(U).
Case 2: a ∈ W. From the definition of TW , −a /∈ U . Since a ∈ (I◦U)÷W, a /∈ I◦U .
Thus, a /∈ I and +a /∈ U . It follows that a ∈ I÷W and −a /∈ TW(U) (otherwise we
would have +a ∈ U , as TW(−a) = +a, in this case). Hence, a ∈ (I ÷W) ◦TW(U).

If a /∈ (I◦U)÷W, we reason similarly. If −a ∈ TW(U), then a /∈ (I÷W)◦TW(U).
Therefore, let us assume that −a /∈ TW(U). As before, there are two cases.
Case 1: a /∈ W and thus −a /∈ U . Since a /∈ (I◦U)÷W, a /∈ I◦U and, consequently,
a /∈ I and +a /∈ U . Thus, a /∈ (I ÷ W) and +a /∈ TW(U). Consequently, a /∈
(I ÷W) ◦ TW(U).
Case 2: a ∈ W and thus +a /∈ U . In this case, a ∈ I ◦ U . Thus, a ∈ I and −a /∈ U .
It follows that a /∈ I ÷W and +a /∈ TW(U). Hence, a /∈ (I ÷W) ◦ TW(U). 2

Lemma 10
Let I and W be databases, U a consistent set of update actions, and L a literal or
an action update. Then I ◦ U |= L if and only if (I ÷W) ◦ TW(U) |= TW(L). 2

Proof : By Lemma 8, I ◦U |= L if and only if (I ◦U)÷W |= TW(L). By Lemma 9,
the latter condition is equivalent to the condition (I ÷W) ◦ TW(U) |= TW(L). 2

46 L. Caroprese and M. Truszczyński

Lemma 11
Let I and W be databases. For every set η of active integrity constraints and for
every set U of update actions, U is a justified action set for 〈I, η〉 if and only if
TW(U) is a justified action set for 〈I ÷W,TW(η)〉.

Proof: (⇒) We have to prove that TW(U) is consistent, and minimal among all
supersets of ne(I ÷W, (I ÷W) ◦ TW(U)) that are closed under TW(η).

Since U is a justified action set for 〈I, η〉, U is consistent and ne(I, I ◦ U) ⊆ U .
The former implies that TW(U) is consistent (cf. Lemma 7(1)). The latter implies
that ne(I ÷W, (I ÷W) ◦ TW(U)) ⊆ TW(U) (cf. Lemma 7(2) and 9).

Next, we prove that TW(U) is closed under TW(η). Let r be an active integrity
constraint in TW(η) such that body(r) is consistent, nup(r) ⊆ lit(TW(U)). Then,
there exists s ∈ η such that r = TW(s). By Lemma 7(5), nup(r) = TW(nup(s)). As
TW(nup(s)) ⊆ lit(TW(U)), we have that nup(s) ⊆ lit(U). Since U is closed under
s, there exists α ∈ head(s) such that α ∈ U . Thus, we obtain that TW(α) ∈
TW(head(s)) = head(r), and that TW(α) ∈ TW(U). Consequently, head(r) ∩
TW(U) 6= ∅. It follows that TW(U) is closed under r and so, also under TW(η).

Finally, let us consider a set V of update actions such that ne(I ÷ W, (I ÷
W) ◦ TW(U)) ⊆ V ⊆ TW(U) and closed under TW(η). By Lemma 7(2) and 9,
ne(I÷W, (I÷W)◦TW(U)) = TW(ne(I, I ◦U)). Thus, ne(I, I ◦U) ⊆ TW(V) ⊆ U .
From the fact that V is closed under TW(η) it follows that TW(V) is closed under
η (one can show it reasoning similarly as in the previous paragraph). As U is
minimal in the class of supersets of ne(I, I ◦ U) closed under η, TW(V) = U and
so, V = TW(U). This completes the proof of the implication (⇒).

(⇐) If TW(U) is a justified action set for 〈I ÷ W,TW(η)〉, the implication (⇒)
yields that TW(TW(U)) = U is a justified action set for 〈(I ÷W)÷W = I, η〉. 2

Proof of Theorem 20:

1. Let us assume that E is a weak repair for 〈I, η〉. It follows that E is consistent.
Since I ◦ E |= η, by Lemma 10, (I ÷ W) ◦ TW(E) |= TW(η). The converse
implication follows from the one we just proved by Lemma 7(2).

2. As before, it suffices to show only one implication. Let E be a repair for
〈I, η〉. Then, E is a weak repair for 〈I, η〉. By (1), E is a weak repair for
〈I ÷ W,TW(η)〉. Let E ′ ⊆ TW(E) be such that (I ÷ W) ◦ E ′ |= TW(η). It
follows that TW(E ′) ⊆ TW(TW(E)) = E . Since E is consistent, TW(E ′) is
consistent, too. By Lemma 10 and Lemma 7(2), since (I ÷W) ◦ E ′ |= TW(η),
then I ◦TW(E ′) |= η. Since E is a repair and TW(E ′) ⊆ E , TW(E ′) = E . Thus,
E ′ = TW(E) and so, TW(E) is a repair for 〈I ÷W,TW(η)〉.

3. As in two previous cases, we show only one implication. Thus, let us assume
that E is founded for 〈I, η〉. Let α ∈ TW(E). It follows that there is β ∈ E
such that α = TW(β). Since E is founded with respect to 〈I, η〉, there is an
active integrity constraint r such that β ∈ head(r), I ◦ E |= nup(r), and for
every γ ∈ head(r) \ {β}, I ◦ E |= γD .
Clearly, the active integrity constraint TW(r) belongs to TW(η) and α =
TW(β) is an element of head(TW(r)). By Lemma 7(5), we have nup(r) =

Active Integrity Constraints and Revision Programming 47

nup(TW(r)). Thus, by Lemma 10, (I÷W)◦TW(E) |= nup(TW(r)). Next, let
γ ∈ head(TW(r))\{α}. Then, there is δ ∈ head(r)\{β} such that γ = TW(δ).
Since I ◦ E |= γD , it follows that (I ÷ W) ◦ TW(E) |= TW(δD), that is,
(I ÷W) ◦TW(E) |= γD . Thus, α is founded with respect to 〈I ÷W,TW(η)〉
and TW(E) and TW(E) is founded with respect to 〈I ÷W,TW(η)〉.

4. This property is a direct consequence of (1), (2), and (3).
5. If E is a justified weak repair for 〈I, η〉, then E ∩ ne(I, I ◦ E) = ∅ and E ∪
ne(I, I ◦ E) is a justified action set for 〈I, η〉 (Theorem 1). It follows that
TW(E)∩TW(ne(I, I ◦E)) = ∅. Moreover, by Lemma 11, TW(E ∪ne(I, I ◦E))
is a justified action set for 〈I ÷W,TW(η)〉.
We have TW(ne(I, I ◦ E)) = ne(I ÷ W, (I ÷ W) ◦ TW(E)). Thus, again by
Theorem 1, TW(E) is a justified weak repair for 〈I ÷W,TW(η)〉.
If E is a justified repair for 〈I, η〉, then our argument shows that TW(E) is
a justified weak repair for 〈I ÷W,TW(η)〉. Moreover, since E is a repair for
I, by Theorem 20(2) we have that TW(E) is a repair for I ÷ W. It follows
that TW(E) is a justified repair for 〈I ÷ W,TW(η)〉. The other implication
can now be argued in the same way as in several other similar cases in the
paper. 2

Proof of Corollary 4: The assertion follows directly from Theorem 20. 2

Next we turn to the shifting properties of revision programs. We will derive
Theorem 21 from Theorem 20. To this end we need one more lemma.

Lemma 12
Let I and W be databases, E a set of revision literals, G a revision program and
P a proper revision program. Then TW(prop(G)) = prop(TW(G)), TW(ua(E)) =
ua(TW(E)) and TW(AIC(P)) = aic(TW(P)).

Proof: Straightforward from the definitions of prop(·), TW(·), ua(·) and AIC(·).
2

Proof of Theorem 21: Let P = prop(G) (that is the “properized” version of G).
The following properties are equivalent:

1. E is a (weak) revision for I with respect to G (respectively, G-justified (weak)
revision for I, G-founded (weak) revision for I)

2. E is a (weak) revision for I with respect to P (respectively, P -justified (weak)
revision for I, P -founded (weak) revision for I)

3. ua(E) is a (weak) repair (respectively, justified (weak) repair, founded (weak)
repair) for 〈I,AIC (P)〉

4. TW(ua(E)) is a (weak) repair (respectively, justified (weak) repair, founded
(weak) repair) for 〈I ÷W,TW(AIC (P))〉

5. TW(E) is a (weak) revision for I ÷W with respect to TW(P) (respectively,
TW(P)-justified (weak) revision for I ÷W, TW(P)-founded (weak) revision
for I ÷W)

6. TW(E) is a (weak) revision for I ÷W with respect to TW(G) (respectively,
TW(G)-justified (weak) revision for I ÷W, TW(G)-founded (weak) revision
for I ÷W).

48 L. Caroprese and M. Truszczyński

Indeed, (1) and (2) are equivalent by Theorem 13, (2) and (3) are equivalent by
Theorem 14, (3) and (4) — by Theorems 6 and 7 of [8] (the shifting theorem for

(weak) repairs, founded (weak) repairs and justified (weak) repairs). Next, (4) and
(5) are equivalent by Theorem 14, as well as Lemma 12, and (5) and (6) — by
Theorem 13 and Lemma 12. Thus, the assertion follows. 2

