Properties of Programs with Monotone and Convex Constraints

Lengning Liu and Mirostaw Truszczynhski
Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract

We study properties of programs withonotoneand con-
vexconstraints. We extend to these formalisms concepts and
results from normal logic programming. They include tight
programs and Fages Lemma, program completion and loop
formulas, and the notions of strong and uniform equivalence
with their characterizations. Our results form an abstract ac-
count of properties of some recent extensions of logic pro-
gramming with aggregates, especially the formalissnbd-

els

Introduction
We study programs witimonotoneand convexconstraints.

2002), often referred to asmodelswhich remains one of
the most commonly used extensions of logic programming
with weight constraints. Since rules smodelsprograms
may have weight constraints as their heads, the concept of
one-step provability is nondeterministic and so, esthbicp
direct parallels with normal logic programming is difficult

An explicit connection emerged only recently, when
(Marek et al. 2004; Marek and Truszchgki 2004) intro-
duced logic programs with monotone constraint¥hese
programs allow aggregates in the heads of rules and sup-
port nondeterministic computations. (Marek al. 2004;
Marek and Truszc#yski 2004) proposed a generalization
of the van Emden-Kowalski one-step provability operator
to account for that nondeterminism, defined supported and

These formalisms allow constraints to appear in the heads of stable models for programs with monotone constraints that

program rules. That sets them apart from other recent pro-
posals for integrating constraints with logic programs+De
neckeret al. 2001; Pelowet al. 2004; Dell’Armi et al. 2003;
Pelov 2004; Fabeet al. 2004) and makes them suitable as
an abstract basis for formalisms suchsasodelgorograms
(Simonset al. 2002). In this paper we develop a theory of
programs with monotone and convex constraints and show
that main concepts, techniques and results from normat logi
programming extend to these abstract formalisms.

Normal logic programming with the semantics of sta-
ble models is an effective knowledge representation formal
ism, mostly due to its ability to express default assumgtion
(Baral 2003; Gelfond and Leone 2002). However, model-
ing numeric constraints on sets in normal logic program-
ming is cumbersome, requires many auxiliary atoms and
leads to large programs hard to process efficiently. Since
such constraints, often callegjgregatesare ubiquitous, re-

mirror their normal logic programming counterparts, and
showed encodings afmodelsprograms as programs with
monotone constraints.

In this paper, we continue investigations of programs with
monotone constraints. We adapt to programs with monotone
constraints the notion of ight program (Erdem and Lifs-
chitz 2003) and generalize Fages Lemma (Fages 1994).

We introduce extensions of propositional logic with
monotone constraints. We define the completion of a
monotone-constraint program with respect to this logid, an
generalize the notion of a loop formula. We then prove
the loop-formula characterization of stable models of pro-
grams with monotone constraints, extending to the setting
of monotone-constraint programs results obtained for nor-
mal logic programs in (Clark 1978; Lin and Zhao 2002).

We show that the notions of uniform and strong equiva-
lence of programs (Lifschitet al. 2001; Lin 2002; Turner

soarohers proposed extensions of normal logic programming 2003; Eiter and Fink 2003) extend to programs with mono-
with explicit means to express aggregates, and generalizedigne constraints, and that their characterizations (Furne

the stable-model semantics to the extended settings.
Aggregates imposing bounds on weights of sets of atoms
and literals, calledweight or pseudoboolearconstraints,
are especially common in practical applications and are in-
cluded in all recent extensions of logic programs with aggre
gates. Typically, these extensions do not allow aggredgates
appear in the heads of rules. A notable exception is the for-
malism of programs with weight constraints (Simarsal.

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2003; Eiter and Fink 2003) generalize, as well.

Programs with monotone constraints make explicit refer-
ences to the default negation operator. We show that by al-
lowing a more general class of constraints, caltetvex
default negation can be eliminated from the language. We
argue that all results in our paper extend to programs with
convex constraints.

Our paper shows that programs with monotone and con-
vex constraints have a rich theory that closely follows that
of normal logic programming. It implies that programs with

monotone and convex constraints form an abstract general- Nondeterministic one-step provability. Let P be a con-

ization of extensions of normal logic programming such as
smodelsIn particular, all results we obtain in this abstract
setting specialize temodelsprograms and, in most cases,
yield results that are new.

Due to space limitations we omit proofs or provide only
short sketches of arguments.

Preliminaries

We consider the propositional case only. It does not lead

to loss of generality, as programs with variables typically

straint program and/ a set of atoms. A set/’ is nonde-
terministically one-step provabfeom M by means ofP, if
M’ C hset(P(M)) and M’ = hd(r), for every ruler in
P(M).

The nondeterministic one-step provability operatbp?
for a programP is an operator of(At) such that for every
M C At, TR(M) consists of all sets that are nondetermin-
istically one-step provable from/ by means ofP.

The operatofl 3¢ is nondeterministi@s it assigns to each
M C At afamily of subsets ofd¢, each being a possible

are interpreted in terms of propositional ones. We also as- outcome of applyingP to M. In general, T3¢ is partial,

sume a fixed and countably infinite sét of propositional

since there may be sefd such thatI'z¢(M) = 0 (no set

atoms. The definitions and results we present in this section can be derived frond/ by means ofP).

come from (Marek and Truszcagki 2004). Some of them

Monotone constraints.A constraint(X, C') is monotonef

are more general as in the present paper we also considerC' is closed under superset, that is, for evléryY C X, if

programs with inconsistent constraints in the heads.

Constraints. A constraintis an expressiom = (X,C),
whereX C At is finite, we call it thedomainof the con-
straint, and”' C P(X) (P(X) denotes the powerset &f).

The assumption of the finiteness of constraint domains can

be dropped. We adopt it here as it simplifies the presentation
A constraint(X, C') describes a property of subsets of its

W e CandW CY thenY € C.

Cardinality constraintsin smodelsare examples of
monotone constraints. A cardinality constraint
k{ay,...,a,} requires that the number of atoms in
{a1,...,a,} thatare true in an interpretation be at lefadt
M E AandM’ O M, thenM’ | A as well. Thus, cardi-
nality constraints are indeed monotonesinodelscardinal-

domain, withC' consisting precisely of these subsetsXof
thatsatisfythe constraint (have property).

In the paper, we represent truth assignments (interpreta-
tions) by the sets of atoms that are true in them. An interpre-
tation M C At satisfiesa constraintd = (X, C) (M = A),

ity constraints may also specify upper bounds. In such ¢ases
we can split the constraint into the conjunction of a mono-
tone constraint and the negation of a monotone constraint.
Smodelsweight constraints with all weights non-negative
and without negative literals are also examples of monotone

if MNX e C or, informally, if the set of atoms fronX that
are true inM satisfies constraint (property). Otherwise,
M does not satisfy, (M = A).

A constraintdA = (X, C) is consistentf there isM such
that M = A. Itis so precisely whel' = ().
Constraint programs. Constraints are building blocks of
rules and programs. (Marek and Truszutgki 2004) defined
constraint programso consist ofconstraintrules

A<_Ala'"aAanOt(Ak-‘rl)a'"anOt(Am) (1)

whereA, Ay,..., A, are constraints andot denotesle-
fault negation The constraintd is the head and the set
{41,..., A, not(Ag11),...,n0t(A,,)} is thebodyof r.
We denote them byid(r) andbd(r), respectively.

We denote byAt(P) the set of atoms in the domains
of constraints in a constraint prografd. We denote by
hset(P), theheadsebf P, that is, the union of the domains
of the heads of all rules i.

Models. The concept of satisfiability extends in a standard
way to negated literals and rules. An interpretatddnC At

is amodelof a constraint progran® if it satisfies every rule

in P.

M-applicable rules.Let M C At be an interpretation. A
rule (1) isM-applicableif M satisfies every literal ibd(r).
We denote byP (M) the set of allM -applicable rules irP.
Supported models.Supportedness is a property of models.
Intuitively, every atoma in a supported model must have
“reasons” for being “in”. Such reasons afd-applicable
rules whose heads containin their domains. Formally, let
P be a constraint program and a subset ofdt¢(P). A
model M of P is supportedf M C hset(P(M)).

constraints.

Monotone-constraint programs. We call constraint pro-
grams built of monotone constraintsonotone-constraint
programs or programs with monotone constraintrom
now we considepnly monotone constraints and programs
with monotone constraints.

Horn constraint programs. A rule (1) isHorn if constraints
A, Aq,..., A, are monotone and ¥ = m (no occurrences
of default negation). A constraint programH®rn if every
rule in the program is Horn.

Bottom-up computation. Let P be a Horn constraint pro-
gram. A P-computationis a sequencéX;) (indexed with
non-negative integers) such thgy = @ and for everyk,

X C Xk+1, and Xk+1 S ng(Xk)

Theresultof a P-computationt = (X},) is the setJ, Xj.
We denote it byR,.

Proposition 1 Let P be a Horn constraint program anda
P-computation. Thei®, is a supported model af.

Derivable models.We use computations to defiderivable
models of Horn constraint programs. A det of atoms is
a derivable modebf a Horn constraint progran® if there
exists aP-computatiort such thatM = R;. By Proposition
1, derivable models are indeed models.

Since inconsistent monotone constraints may appear in
the heads of Horn rules, there are Horn prografhand
setsX C At, such thatT3¢(X) = (. Thus, some Horn
constraint programs have no computations and no derivable
models. However, if a Horn constraint program has models,

the existence of computations and derivable models is guar-
anteed.
Let M be a model of a Horn constraint prografh We
defineX:" = () and, fork > 0, we set
XA = hset(P(XM)) N M.

The sequencedX;"") is well-defined. We denote it by

tPM \We have the following result.

Proposition 2 Let P be a Horn constraint program. For ev-
ery modelM/ of P, the sequence™ is a P-computation.

We call the computation”™ canonicaland denote its
result byCan (P, M). We now gather properties of derivable
models that extend properties of the least model of normal
Horn logic programs.

Proposition 3 Let P be a Horn constraint program. Then:

1. For every modeM of P, Can(P, M) is a greatest deriv-
able model of? contained inM

2. A set of atom4/ is a derivable model oP if and only if
M = Can(P, M)

3.If M is a minimal model ofP then M is a derivable
model ofP.

The reduct. Let P be a monotone-constraint program and
M asubset ofit(P). The reduct ofP, denoted byP" , is a
program obtained fron® by:

1. removing fromP all rules whose body contains a literal
not(B) such that\/ = B;

2. removing literalmot(B) for the bodies of the remaining
rules.

Stable models.The reduct of a monotone-constraint pro-
gram is Horn since it contains no occurrences of default
negation. Therefore, the following definition is sound.

Let P be a program. A set of atomd is astablemodel
of P if M is a derivable model oP™ .

The definitions of the reduct and stable models follow and
generalize those proposed for normal logic programs, if we
take into account that in the setting of Horn constraint pro-
grams, derivable models play the role of a least model.

As in normal logic programming and its standard exten-

Fages Lemma

In general, supported models and stable models of a logic
program (both the normal case and the monotone-constraint
case) do not coincide. Fages Lemma (Fages 1994) (later ex-
tended in (Erdem and Lifschitz 2003)), establishes a suffi-
cient condition under which a supported model of a normal
logic program is stable. In this section, we show that Fages
Lemma extends to programs with monotone constraints.

Definition 1 A monotone-constraint prograr® is called
tight on a setM C At¢(P) of atoms, if there exists a map-
ping A from M to ordinals such that for every rule =
A — Ay,...,Ap,not(Agt1),...,n0t(4,,) in P(M), if
X is the domain ofd and X; the domain ofd;, 1 <: < k,
then for every: € M N X and for everyu € M N Ule X,
Aa) < A(z).

We will now show that tightness provides a sufficient con-
dition for supported model to be stable. In order to prove a
general result, we first establish it in the Horn case.

Lemma 1 Let P be a Horn monotone-constraint program
and let M be a supported model d@?. If P is tight on M,
then is a stable model oP.

Given that lemma, the general result follows easily.

Theorem 1 Let P be a monotone-constraint program and
let M be a supported model @?. If P is tight on M, then
M is a stable model oP.

Proof: One can check that iff is a supported model a?,
then it is a supported model of the reduet!. SinceP is
tight on M, the reductP is tight on M, too. Thus,M is

a stable model o™ (by the lemma) and, consequently, a
derivable model ofP™ (by Proposition 5). It follows that
M is a stable model oP. O

Logic PL™¢ and completion of
monotone-constraint programs
The completionof a normal logic program (Clark 1978) is a
propositional theory whose models are precisely supported

models of the program. Thus, supported models of the pro-
gram can be computed by means of SAT solvers. In those

sions, stable models of monotone-constraint programs are cases, when supported models are stable (e.g., when the as-

supported models and, consequently, models.
Proposition 4 Let P be a monotone-constraint program. If

M C At(P) is a stable model oP, thenM is a supported
model ofP.

If a normal logic program is Horn then its least model is
its (only) stable model. Here we have an analogous situation

Proposition 5 Let P be a Horn monotone-constraint pro-
gram. ThenM C At(P) is a derivable model oP if and
only if M is a stable model oP.

Finally, we note that (Marekt al.2004; Marek and Trusz-
czynski 2004) demonstrated thatnodelsprograms can be

encoded as programs with monotone constraints so that sta-

ble model semantics is preserved.

In the remainder of the paper we show that several funda-
mental results from normal logic programming extend to the
class of monotone-constraint programs.

sumptions of Fages Lemma hold) that allows us to use SAT
solvers to compute stable models of normal programs, an
idea proposed in (Babovich, Erdem, & Lifschitz 2000) and
incorporated ircmodelgBabovich and Lifschitz 2002).

Our goal is to extend the concept of the completion to
programs with monotone constraints. It will allow us, in
the restricted setting admodelsprograms, to use solvers
of propositional weight (pseudoboolean) constraints ta-co
pute supported models. UnlikenodelgBabovich and Lif-
schitz 2002), the resulting approach does not require that
pseudoboolean constraints be compiled away prior to the ap-
plication of SAT solvers, as it can use solvers of weight con-
straints developed by the SAT community (e.g., SATZOO
(Eén and $rensson 2003)).

To define the completion, we first introduce an extension
of propositional logic with monotone constraints, a formal
ism that we denote by?L™¢. A formulain the logic PL™*

is a boolean combinations of monotone constraints. The no-
tion of a model of a constraint, as introduced earlier, edgen
in a standard way to the class of formulas in the lagic™c.
Let P be a monotone-constraint program. Toenpletion
of P, denoted byComp(P), is the collection of the follow-
ing PL™* formulas:

AN NAR A=A Ao A—A,, — Aforeach rule
re P;

2. ¢ — bd(ry) V...V bd(r;), for each atome € At¢(P),
where rulesry, ..., r; are the rules inP containingz in
the domains of their heads (we write the body of a rule as
a conjunction of monotone constraints so that it follows
the syntax ofPL™c).

The following theorem shows that the completion we de-
fined generalizes the completion of normal logic programs.

Theorem 2 Let P be a monotone-constraint program and
S a subset ofdt(P). S is a supported model aP if and
only if S'is a model ofComp(P).

Loops and loop formulas in
monotone-constraint programs

The completion alone is not quite satisfactory as it relates
supportednot stable models of monotone-constraint pro-
grams with models of’L™¢ theories. Loop formulas, pro-
posed in (Lin and Zhao 2002), provide a way to eliminate
non-stable models from among supported models of a nor-
mal logic program (models of its completion). Thus, they
allow us to use SAT solvers to compute stable modebsr-of
bitrary normal logic programs and not only those for which
supported and stable models coincide.

We will now extend this idea to monotone-constraint pro-
grams. LetP be a monotone-constraint program. Thes-
itive dependency grapbf P is the directed graplép =
(V, E), whereV = At(P) and(u,v) is an edge ir¥ if and
only if there exists a rule € P such that: occurs in the do-
main of the head constraint efandv occurs in the domain
of some non-negated monotone constraint in the body of

Let G = (V, E) be a directed graph. Asdt C V is a
loopin G if the subgraph ofz induced byL is strongly con-
nected. A maximal lood in G (maximal loops are vertex
sets of strongly connected componentg:)fis terminating
if there is no path inG from L to any other maximal loop.

A rule r of the form (1) that belongs to a monotone-
constraint progran® participatesin a loopL of Gp, written
asr < L, if LN X # (), whereX is the domain of the head
constraintA of r. Let us assume eadch; in rule r has the
form (X;, C;). By B.(r), we mean the following®L™¢ for-
mula obtained from the body of(of the form (1)):

AN CONAL A=A A A DA,

whereA, = (X;\ L,C;)fori=1,... k.

If L is a loop of a monotone-constraint progrdmthen
theloop formulaof L, denoted byL P(L), is the PL™¢ for-
mula

LP(L)=\/L—\/{Bu(r): r€ P&r<L}.

We have the following theorem:

Theorem 3 Let P be a monotone-constraint program and
M a subset ofAt(P). ThenM is a stable model oP if and
only if M is a model olComp(P) U {LP(L): Lis aloop

in Gp}

Let M be a supported model @? that is not stable. By
Proposition 3,M contains a greatest derivable modet
of PM. Let M~ = M \ M'. By Gp[M~] we denote the
subgraph ofGp induced by atoms in/~. The following
result provides us with a way to filter out specific non-stable
supported models froromp(P).

Theorem 4 Let P be a monotone-constraint program and
M a model ofComp(P). If M~ is not empty, thed/ vio-
lates the loop formula of every terminating loop(®# [M).

Strong and uniform equivalence of
monotoneconstraint programs

Program equivalence (Lifschitet al. 2001; Lin 2002;
Turner 2003; Eiter and Fink 2003) is an important concept
due to its potential uses in program rewriting and optimiza-
tion. (Turner 2003) presented an elegant characterizafion
strong equivalence afmodelgprograms and (Eiter and Fink
2003) described a similar characterization of uniform equi
alence of normal and disjunctive logic programs. We show
that both characterizations can be adapted to the case of
monotone-constraint programs.
M-maximal models.A key role in our approach is played
by models of Horn constraint programs satisfying a certain
maximality condition. LetP be a Horn constraint program.
Let M and N be models ofP such thatv C M C A¢(P).
ThenN is anM-maximalmodel of P, written N =, P, if
for everyr € P(N), M N X C N, whereX is the domain
of hd(r).

Intuitively, N is anM-maximal model ofP if N satisfies
each ruler € P(N) “maximally” with respect toM. That
is, if NV contains all atoms i/ that belong to the domain
of the constraint in the head of

Here is an example of af/-maximal model. LetP =
{1{p,q,7} <« 1{s,t}}. It is evident thatP is Horn. Let
M ={p,q,s,t} andN = {p, q, s}. We can verify that both
M and N are models ofP. Moreover, since the only rule
in P is N-applicable, and/ N {p,q,r7} C N, NisanM-
maximal model ofP. With similar reasoning, we can see
that N/ = {p, s} is not M-maximal even thougtN’ is a
model of P and it is contained i/ .

M-maximal models have several interesting properties.
Due to space limitations, we list here only one that plays
an important role in our further considerations.

Proposition 6 Let P be a Horn constraint program and
let M be a model ofP. ThenCan(P, M) is the leastM -
maximal model of.

Strong equivalence and SE-modeldMonotone-constraint
programsP and@ arestrongly equivalentdenoted by’ =,
Q, if for every monotone-constraint progral) P U R and
@ U R have the same set of stable models.

To study the strong equivalence of monotone-constraint
programs, we generalize the concept ofSErmodefrom
(Turner 2003).

Let P be a monotone-constraint program andXety” C
At(P). We say that X,Y") is anSE-modebf P if the fol-
lowing conditions hold: (1)X C Y; (2) Y = P; and (3)

X =y PY. We denote bySE(P) the set of all SE-models
of P.

If M is a model of a monotone-constraint programit
follows directly from the definition that bott, M) and
(Can(PM M), M) are SE-models aP.

SE-models yield a simple characterization of strong
equivalence of monotone-constraint programs.

Theorem 5 Let P and Q be monotone-constraint pro-
grams. TherP =; @ if and only if SE(P) = SE(Q).

Proof (sketch). €) the following two properties are easy
to check: (1) IfSE(P) = SE(Q), thenP and(@ have the
same stable models; and @F(PUR) = SE(P)NSE(R)
holds for any monotone-constraint programand R.

Let R be an arbitrary monotone-constraint program. Prop-
erty (2) implies thaSE(P U R) = SE(P) N SE(R) and
SE(QUR)=SE(Q)NSE(R).SinceSE(P) = SE(Q),
we have thaSE(P U R) = SE(Q U R). By property (1),

P U R and @ U R have the same stable models. Hence,
P =, Q holds.

(=) One can show that iP =, @ then the following two
properties hold: (1P and@ have the same set of models;
and (2) for anyX,Y such thatX C Y andY E P U Q,

X Ey PYifandonly if X =y QY.

Let us assume tha? =, @ and let us consider an SE-
model (N, M) of P. By the definition,N C M, M |= P,
andN =), PM. By property (1), we havé/ = Q. By
property (2), we haveV =5, QM. Hence,(N, M) is an
SE-model ofQ), as well. It follows thatSE(P) C SE(Q).
The other inclusion follows by symmetry. |
Uniform equivalence and UE-models. Monotone-
constraint programg® and @) are uniformly equivalent
denoted byP =, Q, if for every set ofatomsX, P U X
and@ U X have the same stable models.

An SE-model(X,Y) of a monotone-constraint program
P is aUE-modelof P if for every SE-model(X', Y) of P
with X C X', eitherX = X’ or X’ =Y holds.

We writeU E(P) to denote the set of all UE-models Bf

Our notion of a UE-model is a generalization of the notion
of a UE-model from (Eiter and Fink 2003) to the setting of
monotone-constraint programs.

We have the following characterization of uniform equiv-
alence in terms of UE-models.

Theorem 6 Let P and Q be two monotone-constraint pro-
grams. TherP =, Q ifand only ifUE(P) = UE(Q).

Proof (sketch). We outline only the proof of the implication
(«). Let X be an arbitrary set of atoms aidd be a stable
model of PU X . Then) is a model ofP and, consequently,
(M, M) € UE(P). It follows that(M, M) € UE(Q) and
so, M is a model of@. SinceM is a model ofX, too, M is

a model ofQ U X and thus, also of@ U X).

Let N = Can((QU X)™, M). ThenX C N C M and,
by Proposition 6V is an M -maximal model of Q U X)M.
Consequently)N is an M -maximal model ofQ"!. One can
now show that(N, M) € UE(Q). By the assumption,

(N,M) € UE(P). It follows that N |=,; P™ and since
X C N, N =y (PUX)M. Thus,N is an M-maximal
model of (P U X)™. SinceM is a stable model oP U X,
M = Can((PUX)™ M). By Proposition 6 is the least
M-maximal model of P U X)M. Thus,M C N.

It follows that M = N = Can((Q U X)M, M). Thus,
M is a stable model of) U X. By symmetry, every stable
model ofQ U X is also a stable model ¢? U X. O
Examples. Let P = {1{p,q} < mnot(2{p,q})}, and
Q = {p < not(q). ¢ — not(p)}. Then P and Q
are strongly equivalent. We note that both programs have
{p}, {q}, and{p,q} as models. Furthermoré{p}, {p}),
({a}:{a}), ({p}. {p,a}), {a}, {p. a}), ({p. ¢}, {p.q}) and

(0,{p,q}) are all SE-models of the two programs. Thus, by
Theorem 5, andQ are strongly equivalent.

We also observe that the first five SE-models are precisely
UE-models ofP and@. Therefore, by Theorem &, and@
are also uniformly equivalent.

It is possible for two monotone-constraint programs to be
uniformly but not strongly equivalent. If we add ryle— to
P, and rulep «— ¢ to @, then the two resulting programs,
say P’ and@’, are uniformly equivalent. However, they are
not strongly equivalent. The progran® U {¢ «— p} and
Q' U {q < p} have different stable models. Another way to
show it is by observing tha®), {p, ¢}) is an SE-model of)’
but not an SE-model of’.

Programs with convex constraints

We will now discuss a syntactic variant of programs with
monotone constraints.

A constraint(X, C) is antimonotonef it is closed under
subset, that is, forevey, Y C X,if Y e CandW C Y
thenW € C. A constraint(X, C) is convex if for every
W)Y, Z C X suchthat? C Y C ZandW,Z € C, we
haveY € C.

The upwardanddownward closuresf a constraintd =
(X, C) are constraintslt = (X,C*T)andA~ = (X,C),
respectively, where

Ct ={Y C X: forsomelWW € C,W C Y}, and
C-={Y CX:forsomeW € C,Y C W}.

Proposition 7 A constraint(X, C) is convex if and only if
c=CctncC-.

Programs with monotone constraints make use of the de-
fault negation operator. Allowing convex constraints itesu
leads to arequivalentformalism, without the need for de-
fault negation in the language. éonvex-constraint rulés
an expression of the form

A— Ay, ... A 2
where A, Ai,..., A, are convex constraints. Aonvex-
constraint prograrmis a set of convex-constraint rules. Pro-
grams with convex constraints are of interest, as theirasynt
is more directly aligned with that a@modelgprograms.
Programs with monotone and convex constraints are
closely related. IfA is a monotone constraint, a literal

not(A) behaves as an antimonotone constraintMif =

not(A) and M’ C M, thenM’ E not(A). Thus, pro-
grams with monotone constraints can be regarded directly
as programs with convex constraints.

The converse embedding also exists. It relies on Propo-
sition 7, which allows us to split a convex constraint into
the conjunction of two constraints, one monotone and the
other one — antimonotone. To construct it, we note that
if A = (X,C) is antimonotone thell = (X, (), where
C = P(X)\ C, is monotone. Let = A «— Ay,..., Ay
be a rule built of convex constraints. We encodeith the
following two rulesr’ andr” built of monotone constraints:

A*HAf,notA_l_w..,A,j,notA_;
I— A=, Af not A7 ,..., A} not A;

n?
wherel is a fixed inconsistent constraint, sg).

We can formally show that under the embeddings we out-
lined above, the formalisms of programs with monotone and
convex constraints are equivalent with respect to all seman
tics we consider in the paper and all results we stated here
in terms of monotone-constraint programs can be restated
in terms of convex-constraint programs. In particularolt f
lows from our results that default negation can be expressed
in terms of antimonotone constraints.

Conclusions

Our work shows that concepts, techniques and results from
normal logic programming generalize to the abstract ggttin
of programs with monotone and convex constraints allowing
constraints in the heads of program rules.

Several results we obtained in the paper for these general
classes of programs specializertewresults abousmodels
programs. While characterizations of strong equivalence of
smodelgprograms were obtained in (Turner 2003), the char-
acterization of uniform equivalence sfnodelsprograms
implied by Theorem 6 is new.

Specializations to the case sfnodelof Theorems 1, 2,

3 and 4, concerning Fages Lemma, the completion of a pro-
gram and loop formulas, are also new. Given these results
we are currently working on an implementation of a new
software for computing stable modelssrhodelgprograms.
The idea is to follow the approach developedassat(Lin

and Zhao 2002), and use the results we mentioned above to

reduce the problem to that of finding models of theories con-
sisting of pseudoboolean constraints, for which sevestl fa
solvers exist (En and $rensson 2003).

Acknowledgments

We acknowledge the support of NSF grants 11S-0097278 and
[1S-0325063.

References

Y. Babovich and V. Lifschitz.Cmodels package002. ht t p:
/I ww. cs. ut exas. edu/ users/tag/cnodel s. htm .

Babovich, Y.; Erdem, E.; and Lifschitz, V. 2000. Fages’ theo-
rem and answer set programming. froceedings of NMR-2000
http://xxx.lanl.gov/htm /cs. Al/0003073.

C. Baral. Knowledge representation, reasoning and declarative
problem solving Cambridge University Press, 2003.

K. Clark 1978. Negation as failure. In Gallaire, H., and Minker,
J., eds.Logic and data base®New York-London: Plenum Press.

T. DellArmi, W. Faber, G. lelpa, N. Leone, and G. Pfeifer. Ag-
gregate functions in disjunctive logic programming: semantics,
complexity, and implementation in DLV. IRroc. of IJCAI-2003
pages 847-852. Morgan Kaufmann, 2003.

M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-
founded and stable semantics for logic programs with aggre-
gates. IrProc. of ICLP-2001vol. 2237 ofLNCS pages 212—-226.
Springer, 2001.

N. Eén and N. 8rensson”. An extensible SAT solver. Rioc. of
SAT-2003vol. 2919 ofLNCS pages 502-518, Springer, 2003.

T. Eiter and M. Fink. Uniform equivalence of logic programs
under the stable model semantics. Rroc. of ICLP-2003 vol.
2916 ofLNCS pages 224-238. Springer, 2003.

E. Erdem and V. Lifschitz. Tight logic programsTheory and
Practice of Logic Programming(4-5):499-518, 2003.

W. Faber, N. Leone and G. Pfeifer. Recursive aggregates in dis-
junctive logic programs: semantics and complexity. Proceedings
of JELIA-2004, vol. 3229 ofLNAI, pages 200-212, Springer,
2004.

F. Fages. Consistency of Clark’s completion and existence of sta-
ble models. Journal of Methods of Logic in Computer Science
1:51-60, 1994.

M. Gelfond and N. Leone. Logic programming and knowledge
representation — the A-prolog perspectiyetificial Intelligence
138:3-38, 2002.

M. Gelfond and V. Lifschitz. The stable semantics for logic pro-
grams. InProc. of ICLP-1988 pages 1070-1080. MIT Press,
1988.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent
logic programs ACM Trans. on Computational Logi2(4):526—
541, 2001.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic
program by SAT solvers. IProceedings of AAAI-2002ages
112-117. AAAI Press, 2002.

F. Lin. Reducing strong equivalence of logic programs to en-
tailment in classical propositional logic. IRroc. of KR-2002
Morgan Kaufmann, 2002.

V.W. Marek and M. Truszczyski. Logic programs with abstract
constraint atoms. IRroc. of AAAI-O4pages 86—91. AAAI Press,
2004.

V.W. Marek, |. Niemeh, and M. Truszczyski. Characteriz-
ing stable models of logic programs with cardinality constraints.
In Proc. of LPNMR-2004vol. 2923 of LNAI, pages 154-166.
Springer, 2004.

N. Pelov. Semantics of logic programs with aggregateh.D.
Thesis Department of Computer Science, K.U.Leuven, Leuven,
Belgium, 2004.

N. Pelov, M. Denecker, and M. Bruynooghe. Partial stable models
for logic programs with aggregates. Rroc. of LPNMR-2004
vol. 2923 ofLNAI, pages 207-219. Springer, 2004.

P. Simons, I. Niemé, and T. Soininen. Extending and im-
plementing the stable model semanticArtificial Intelligence
138:181-234, 2002.

H. Turner. Strong equivalence made easy: Nested expressions and
weight constraintsTheory and Practice of Logic Programming
3, (4&5):609-622, 2003.

