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Abstract

We study properties of programs withmonotoneand con-
vexconstraints. We extend to these formalisms concepts and
results from normal logic programming. They include tight
programs and Fages Lemma, program completion and loop
formulas, and the notions of strong and uniform equivalence
with their characterizations. Our results form an abstract ac-
count of properties of some recent extensions of logic pro-
gramming with aggregates, especially the formalism ofsmod-
els.

Introduction
We study programs withmonotoneandconvexconstraints.
These formalisms allow constraints to appear in the heads of
program rules. That sets them apart from other recent pro-
posals for integrating constraints with logic programs (De-
neckeret al.2001; Pelovet al.2004; Dell’Armi et al.2003;
Pelov 2004; Faberet al. 2004) and makes them suitable as
an abstract basis for formalisms such assmodelsprograms
(Simonset al. 2002). In this paper we develop a theory of
programs with monotone and convex constraints and show
that main concepts, techniques and results from normal logic
programming extend to these abstract formalisms.

Normal logic programming with the semantics of sta-
ble models is an effective knowledge representation formal-
ism, mostly due to its ability to express default assumptions
(Baral 2003; Gelfond and Leone 2002). However, model-
ing numeric constraints on sets in normal logic program-
ming is cumbersome, requires many auxiliary atoms and
leads to large programs hard to process efficiently. Since
such constraints, often calledaggregates, are ubiquitous, re-
searchers proposed extensions of normal logic programming
with explicit means to express aggregates, and generalized
the stable-model semantics to the extended settings.

Aggregates imposing bounds on weights of sets of atoms
and literals, calledweight or pseudobooleanconstraints,
are especially common in practical applications and are in-
cluded in all recent extensions of logic programs with aggre-
gates. Typically, these extensions do not allow aggregatesto
appear in the heads of rules. A notable exception is the for-
malism of programs with weight constraints (Simonset al.
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2002), often referred to assmodels, which remains one of
the most commonly used extensions of logic programming
with weight constraints. Since rules insmodelsprograms
may have weight constraints as their heads, the concept of
one-step provability is nondeterministic and so, establishing
direct parallels with normal logic programming is difficult.

An explicit connection emerged only recently, when
(Marek et al. 2004; Marek and Truszczyński 2004) intro-
duced logic programs with monotone constraints. These
programs allow aggregates in the heads of rules and sup-
port nondeterministic computations. (Mareket al. 2004;
Marek and Truszczýnski 2004) proposed a generalization
of the van Emden-Kowalski one-step provability operator
to account for that nondeterminism, defined supported and
stable models for programs with monotone constraints that
mirror their normal logic programming counterparts, and
showed encodings ofsmodelsprograms as programs with
monotone constraints.

In this paper, we continue investigations of programs with
monotone constraints. We adapt to programs with monotone
constraints the notion of atight program (Erdem and Lifs-
chitz 2003) and generalize Fages Lemma (Fages 1994).

We introduce extensions of propositional logic with
monotone constraints. We define the completion of a
monotone-constraint program with respect to this logic, and
generalize the notion of a loop formula. We then prove
the loop-formula characterization of stable models of pro-
grams with monotone constraints, extending to the setting
of monotone-constraint programs results obtained for nor-
mal logic programs in (Clark 1978; Lin and Zhao 2002).

We show that the notions of uniform and strong equiva-
lence of programs (Lifschitzet al. 2001; Lin 2002; Turner
2003; Eiter and Fink 2003) extend to programs with mono-
tone constraints, and that their characterizations (Turner
2003; Eiter and Fink 2003) generalize, as well.

Programs with monotone constraints make explicit refer-
ences to the default negation operator. We show that by al-
lowing a more general class of constraints, calledconvex,
default negation can be eliminated from the language. We
argue that all results in our paper extend to programs with
convex constraints.

Our paper shows that programs with monotone and con-
vex constraints have a rich theory that closely follows that
of normal logic programming. It implies that programs with



monotone and convex constraints form an abstract general-
ization of extensions of normal logic programming such as
smodels. In particular, all results we obtain in this abstract
setting specialize tosmodelsprograms and, in most cases,
yield results that are new.

Due to space limitations we omit proofs or provide only
short sketches of arguments.

Preliminaries
We consider the propositional case only. It does not lead
to loss of generality, as programs with variables typically
are interpreted in terms of propositional ones. We also as-
sume a fixed and countably infinite setAt of propositional
atoms. The definitions and results we present in this section
come from (Marek and Truszczyński 2004). Some of them
are more general as in the present paper we also consider
programs with inconsistent constraints in the heads.
Constraints. A constraint is an expressionA = (X,C),
whereX ⊆ At is finite, we call it thedomainof the con-
straint, andC ⊆ P(X) (P(X) denotes the powerset ofX).
The assumption of the finiteness of constraint domains can
be dropped. We adopt it here as it simplifies the presentation.

A constraint(X,C) describes a property of subsets of its
domain, withC consisting precisely of these subsets ofX
thatsatisfythe constraint (have property)C.

In the paper, we represent truth assignments (interpreta-
tions) by the sets of atoms that are true in them. An interpre-
tationM ⊆ At satisfiesa constraintA = (X,C) (M |= A),
if M ∩X ∈ C or, informally, if the set of atoms fromX that
are true inM satisfies constraint (property)A. Otherwise,
M does not satisfyA, (M 6|= A).

A constraintA = (X,C) is consistentif there isM such
thatM |= A. It is so precisely whenC 6= ∅.
Constraint programs. Constraints are building blocks of
rules and programs. (Marek and Truszczyński 2004) defined
constraint programsto consist ofconstraintrules

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (1)

whereA, A1, . . . , Am are constraints andnot denotesde-
fault negation. The constraintA is the head and the set
{A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} is thebodyof r.
We denote them byhd(r) andbd(r), respectively.

We denote byAt(P ) the set of atoms in the domains
of constraints in a constraint programP . We denote by
hset(P ), theheadsetof P , that is, the union of the domains
of the heads of all rules inP .
Models. The concept of satisfiability extends in a standard
way to negated literals and rules. An interpretationM ⊆ At
is amodelof a constraint programP if it satisfies every rule
in P .
M -applicable rules. Let M ⊆ At be an interpretation. A
rule (1) isM -applicableif M satisfies every literal inbd(r).
We denote byP (M) the set of allM -applicable rules inP .
Supported models.Supportedness is a property of models.
Intuitively, every atoma in a supported model must have
“reasons” for being “in”. Such reasons areM -applicable
rules whose heads containa in their domains. Formally, let
P be a constraint program andM a subset ofAt(P ). A
modelM of P is supportedif M ⊆ hset(P (M)).

Nondeterministic one-step provability. Let P be a con-
straint program andM a set of atoms. A setM ′ is nonde-
terministically one-step provablefrom M by means ofP , if
M ′ ⊆ hset(P (M)) andM ′ |= hd(r), for every ruler in
P (M).

The nondeterministic one-step provability operatorTnd
P

for a programP is an operator onP(At) such that for every
M ⊆ At , Tnd

P (M) consists of all sets that are nondetermin-
istically one-step provable fromM by means ofP .

The operatorTnd
P is nondeterministicas it assigns to each

M ⊆ At a family of subsets ofAt , each being a possible
outcome of applyingP to M . In general,Tnd

P is partial,
since there may be setsM such thatTnd

P (M) = ∅ (no set
can be derived fromM by means ofP ).
Monotone constraints.A constraint(X,C) is monotoneif
C is closed under superset, that is, for everyW,Y ⊆ X, if
W ∈ C andW ⊆ Y thenY ∈ C.

Cardinality constraints in smodels are examples of
monotone constraints. A cardinality constraintA =
k{a1, . . . , an} requires that the number of atoms in
{a1, . . . , an} that are true in an interpretation be at leastk. If
M |= A andM ′ ⊇ M , thenM ′ |= A as well. Thus, cardi-
nality constraints are indeed monotone. Insmodels, cardinal-
ity constraints may also specify upper bounds. In such cases,
we can split the constraint into the conjunction of a mono-
tone constraint and the negation of a monotone constraint.
Smodelsweight constraints with all weights non-negative
and without negative literals are also examples of monotone
constraints.
Monotone-constraint programs. We call constraint pro-
grams built of monotone constraintsmonotone-constraint
programs or programs with monotone constraints. From
now we consideronly monotone constraints and programs
with monotone constraints.
Horn constraint programs. A rule (1) isHorn if constraints
A, A1, . . . , Ak are monotone and ifk = m (no occurrences
of default negation). A constraint program isHorn if every
rule in the program is Horn.
Bottom-up computation. Let P be a Horn constraint pro-
gram. AP -computationis a sequence〈Xk〉 (indexed with
non-negative integers) such thatX0 = ∅ and for everyk,

Xk ⊆ Xk+1, and Xk+1 ∈ Tnd
P (Xk).

The resultof a P -computationt = 〈Xk〉 is the set
⋃

k Xk.
We denote it byRt.

Proposition 1 LetP be a Horn constraint program andt a
P -computation. ThenRt is a supported model ofP .

Derivable models.We use computations to definederivable
models of Horn constraint programs. A setM of atoms is
a derivable modelof a Horn constraint programP if there
exists aP -computationt such thatM = Rt. By Proposition
1, derivable models are indeed models.

Since inconsistent monotone constraints may appear in
the heads of Horn rules, there are Horn programsP and
setsX ⊆ At , such thatTnd

P (X) = ∅. Thus, some Horn
constraint programs have no computations and no derivable
models. However, if a Horn constraint program has models,



the existence of computations and derivable models is guar-
anteed.

Let M be a model of a Horn constraint programP . We
defineX

P,M
0 = ∅ and, fork ≥ 0, we set

X
P,M

k+1
= hset(P (XP,M

k )) ∩M.

The sequence〈XP,M

k 〉 is well-defined. We denote it by
tP,M . We have the following result.

Proposition 2 LetP be a Horn constraint program. For ev-
ery modelM of P , the sequencetP,M is aP -computation.

We call the computationtP,M canonicaland denote its
result byCan(P,M). We now gather properties of derivable
models that extend properties of the least model of normal
Horn logic programs.

Proposition 3 LetP be a Horn constraint program. Then:

1. For every modelM ofP , Can(P,M) is a greatest deriv-
able model ofP contained inM

2. A set of atomsM is a derivable model ofP if and only if
M = Can(P,M)

3. If M is a minimal model ofP then M is a derivable
model ofP .

The reduct. Let P be a monotone-constraint program and
M a subset ofAt(P ). The reduct ofP , denoted byPM , is a
program obtained fromP by:

1. removing fromP all rules whose body contains a literal
not(B) such thatM |= B;

2. removing literalsnot(B) for the bodies of the remaining
rules.

Stable models.The reduct of a monotone-constraint pro-
gram is Horn since it contains no occurrences of default
negation. Therefore, the following definition is sound.

Let P be a program. A set of atomsM is astablemodel
of P if M is a derivable model ofPM .

The definitions of the reduct and stable models follow and
generalize those proposed for normal logic programs, if we
take into account that in the setting of Horn constraint pro-
grams, derivable models play the role of a least model.

As in normal logic programming and its standard exten-
sions, stable models of monotone-constraint programs are
supported models and, consequently, models.

Proposition 4 Let P be a monotone-constraint program. If
M ⊆ At(P ) is a stable model ofP , thenM is a supported
model ofP .

If a normal logic program is Horn then its least model is
its (only) stable model. Here we have an analogous situation.

Proposition 5 Let P be a Horn monotone-constraint pro-
gram. ThenM ⊆ At(P ) is a derivable model ofP if and
only if M is a stable model ofP .

Finally, we note that (Mareket al.2004; Marek and Trusz-
czyński 2004) demonstrated thatsmodelsprograms can be
encoded as programs with monotone constraints so that sta-
ble model semantics is preserved.

In the remainder of the paper we show that several funda-
mental results from normal logic programming extend to the
class of monotone-constraint programs.

Fages Lemma
In general, supported models and stable models of a logic
program (both the normal case and the monotone-constraint
case) do not coincide. Fages Lemma (Fages 1994) (later ex-
tended in (Erdem and Lifschitz 2003)), establishes a suffi-
cient condition under which a supported model of a normal
logic program is stable. In this section, we show that Fages
Lemma extends to programs with monotone constraints.

Definition 1 A monotone-constraint programP is called
tight on a setM ⊆ At(P ) of atoms, if there exists a map-
ping λ from M to ordinals such that for every ruler =
A ← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) in P (M), if
X is the domain ofA andXi the domain ofAi, 1 ≤ i ≤ k,
then for everyx ∈M ∩X and for everya ∈M ∩

⋃k

i=1
Xi,

λ(a) < λ(x).

We will now show that tightness provides a sufficient con-
dition for supported model to be stable. In order to prove a
general result, we first establish it in the Horn case.

Lemma 1 Let P be a Horn monotone-constraint program
and letM be a supported model ofP . If P is tight onM ,
thenM is a stable model ofP .

Given that lemma, the general result follows easily.

Theorem 1 Let P be a monotone-constraint program and
let M be a supported model ofP . If P is tight onM , then
M is a stable model ofP .

Proof: One can check that ifM is a supported model ofP ,
then it is a supported model of the reductPM . SinceP is
tight onM , the reductPM is tight onM , too. Thus,M is
a stable model ofPM (by the lemma) and, consequently, a
derivable model ofPM (by Proposition 5). It follows that
M is a stable model ofP . 2

Logic PL
mc and completion of

monotone-constraint programs
Thecompletionof a normal logic program (Clark 1978) is a
propositional theory whose models are precisely supported
models of the program. Thus, supported models of the pro-
gram can be computed by means of SAT solvers. In those
cases, when supported models are stable (e.g., when the as-
sumptions of Fages Lemma hold) that allows us to use SAT
solvers to compute stable models of normal programs, an
idea proposed in (Babovich, Erdem, & Lifschitz 2000) and
incorporated incmodels(Babovich and Lifschitz 2002).

Our goal is to extend the concept of the completion to
programs with monotone constraints. It will allow us, in
the restricted setting ofsmodelsprograms, to use solvers
of propositional weight (pseudoboolean) constraints to com-
pute supported models. Unlikecmodels(Babovich and Lif-
schitz 2002), the resulting approach does not require that
pseudoboolean constraints be compiled away prior to the ap-
plication of SAT solvers, as it can use solvers of weight con-
straints developed by the SAT community (e.g., SATZOO
(Eén and S̈orensson 2003)).

To define the completion, we first introduce an extension
of propositional logic with monotone constraints, a formal-
ism that we denote byPLmc . A formula in the logicPLmc



is a boolean combinations of monotone constraints. The no-
tion of a model of a constraint, as introduced earlier, extends
in a standard way to the class of formulas in the logicPLmc .

Let P be a monotone-constraint program. Thecompletion
of P , denoted byComp(P ), is the collection of the follow-
ing PLmc formulas:

1. A1 ∧ . . . ∧Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am → A for each rule
r ∈ P ;

2. x → bd(r1) ∨ . . . ∨ bd(rl), for each atomx ∈ At(P ),
where rulesr1, . . . , rl are the rules inP containingx in
the domains of their heads (we write the body of a rule as
a conjunction of monotone constraints so that it follows
the syntax ofPLmc).

The following theorem shows that the completion we de-
fined generalizes the completion of normal logic programs.

Theorem 2 Let P be a monotone-constraint program and
S a subset ofAt(P ). S is a supported model ofP if and
only if S is a model ofComp(P ).

Loops and loop formulas in
monotone-constraint programs

The completion alone is not quite satisfactory as it relates
supportednot stable models of monotone-constraint pro-
grams with models ofPLmc theories. Loop formulas, pro-
posed in (Lin and Zhao 2002), provide a way to eliminate
non-stable models from among supported models of a nor-
mal logic program (models of its completion). Thus, they
allow us to use SAT solvers to compute stable models ofar-
bitrary normal logic programs and not only those for which
supported and stable models coincide.

We will now extend this idea to monotone-constraint pro-
grams. LetP be a monotone-constraint program. Thepos-
itive dependency graphof P is the directed graphGP =
(V,E), whereV = At(P ) and〈u, v〉 is an edge inE if and
only if there exists a ruler ∈ P such thatu occurs in the do-
main of the head constraint ofr andv occurs in the domain
of some non-negated monotone constraint in the body ofr.

Let G = (V,E) be a directed graph. A setL ⊆ V is a
loop in G if the subgraph ofG induced byL is strongly con-
nected. A maximal loopL in G (maximal loops are vertex
sets of strongly connected components ofG) is terminating
if there is no path inG from L to any other maximal loop.

A rule r of the form (1) that belongs to a monotone-
constraint programP participatesin a loopL of GP , written
asr � L, if L ∩X 6= ∅, whereX is the domain of the head
constraintA of r. Let us assume eachAi in rule r has the
form (Xi, Ci). By βL(r), we mean the followingPLmc for-
mula obtained from the body ofr (of the form (1)):

A′

1 ∧ . . . ∧A′

k ∧ ¬Ak+1 ∧ . . . ∧ ¬Am,

whereA′

i = (Xi \ L,Ci) for i = 1, . . . , k.
If L is a loop of a monotone-constraint programP , then

the loop formulaof L, denoted byLP (L), is thePLmc for-
mula

LP (L) =
∨

L→
∨
{βL(r) : r ∈ P & r � L}.

We have the following theorem:

Theorem 3 Let P be a monotone-constraint program and
M a subset ofAt(P ). ThenM is a stable model ofP if and
only if M is a model ofComp(P ) ∪ {LP (L) : L is a loop
in GP }.

Let M be a supported model ofP that is not stable. By
Proposition 3,M contains a greatest derivable modelM ′

of PM . Let M− = M \M ′. By GP [M−] we denote the
subgraph ofGP induced by atoms inM−. The following
result provides us with a way to filter out specific non-stable
supported models fromComp(P ).

Theorem 4 Let P be a monotone-constraint program and
M a model ofComp(P ). If M− is not empty, thenM vio-
lates the loop formula of every terminating loop ofGP [M−].

Strong and uniform equivalence of
monotoneconstraint programs

Program equivalence (Lifschitzet al. 2001; Lin 2002;
Turner 2003; Eiter and Fink 2003) is an important concept
due to its potential uses in program rewriting and optimiza-
tion. (Turner 2003) presented an elegant characterizationof
strong equivalence ofsmodelsprograms and (Eiter and Fink
2003) described a similar characterization of uniform equiv-
alence of normal and disjunctive logic programs. We show
that both characterizations can be adapted to the case of
monotone-constraint programs.
M -maximal models.A key role in our approach is played
by models of Horn constraint programs satisfying a certain
maximality condition. LetP be a Horn constraint program.
Let M andN be models ofP such thatN ⊆ M ⊆ At(P ).
ThenN is anM -maximalmodel ofP , writtenN |=M P , if
for everyr ∈ P (N), M ∩X ⊆ N , whereX is the domain
of hd(r).

Intuitively, N is anM -maximal model ofP if N satisfies
each ruler ∈ P (N) “maximally” with respect toM . That
is, if N contains all atoms inM that belong to the domain
of the constraint in the head ofr.

Here is an example of anM -maximal model. LetP =
{1{p, q, r} ← 1{s, t}}. It is evident thatP is Horn. Let
M = {p, q, s, t} andN = {p, q, s}. We can verify that both
M andN are models ofP . Moreover, since the only rule
in P is N -applicable, andM ∩ {p, q, r} ⊆ N , N is anM -
maximal model ofP . With similar reasoning, we can see
that N ′ = {p, s} is not M -maximal even thoughN ′ is a
model ofP and it is contained inM .

M -maximal models have several interesting properties.
Due to space limitations, we list here only one that plays
an important role in our further considerations.

Proposition 6 Let P be a Horn constraint program and
let M be a model ofP . ThenCan(P,M) is the leastM -
maximal model ofP .

Strong equivalence and SE-models.Monotone-constraint
programsP andQ arestrongly equivalent, denoted byP ≡s

Q, if for every monotone-constraint programR, P ∪ R and
Q ∪R have the same set of stable models.

To study the strong equivalence of monotone-constraint
programs, we generalize the concept of anSE-modelfrom
(Turner 2003).



Let P be a monotone-constraint program and letX,Y ⊆
At(P ). We say that(X,Y ) is anSE-modelof P if the fol-
lowing conditions hold: (1)X ⊆ Y ; (2) Y |= P ; and (3)
X |=Y PY . We denote bySE(P ) the set of all SE-models
of P .

If M is a model of a monotone-constraint programP , it
follows directly from the definition that both(M,M) and
(Can(PM ,M),M) are SE-models ofP .

SE-models yield a simple characterization of strong
equivalence of monotone-constraint programs.

Theorem 5 Let P and Q be monotone-constraint pro-
grams. ThenP ≡s Q if and only ifSE(P ) = SE(Q).

Proof (sketch). (⇐) the following two properties are easy
to check: (1) IfSE(P ) = SE(Q), thenP andQ have the
same stable models; and (2)SE(P∪R) = SE(P )∩SE(R)
holds for any monotone-constraint programsP andR.

LetR be an arbitrary monotone-constraint program. Prop-
erty (2) implies thatSE(P ∪ R) = SE(P ) ∩ SE(R) and
SE(Q ∪R) = SE(Q) ∩ SE(R). SinceSE(P ) = SE(Q),
we have thatSE(P ∪ R) = SE(Q ∪ R). By property (1),
P ∪ R and Q ∪ R have the same stable models. Hence,
P ≡s Q holds.
(⇒) One can show that ifP ≡s Q then the following two
properties hold: (1)P andQ have the same set of models;
and (2) for anyX,Y such thatX ⊆ Y andY |= P ∪ Q,
X |=Y PY if and only if X |=Y QY .

Let us assume thatP ≡s Q and let us consider an SE-
model(N,M) of P . By the definition,N ⊆ M , M |= P ,
andN |=M PM . By property (1), we haveM |= Q. By
property (2), we haveN |=M QM . Hence,(N,M) is an
SE-model ofQ, as well. It follows thatSE(P ) ⊆ SE(Q).
The other inclusion follows by symmetry. 2

Uniform equivalence and UE-models. Monotone-
constraint programsP and Q are uniformly equivalent,
denoted byP ≡u Q, if for every set ofatomsX, P ∪ X
andQ ∪X have the same stable models.

An SE-model(X,Y ) of a monotone-constraint program
P is aUE-modelof P if for every SE-model(X ′, Y ) of P
with X ⊆ X ′, eitherX = X ′ or X ′ = Y holds.

We writeUE(P ) to denote the set of all UE-models ofP .
Our notion of a UE-model is a generalization of the notion

of a UE-model from (Eiter and Fink 2003) to the setting of
monotone-constraint programs.

We have the following characterization of uniform equiv-
alence in terms of UE-models.

Theorem 6 Let P andQ be two monotone-constraint pro-
grams. ThenP ≡u Q if and only ifUE(P ) = UE(Q).

Proof (sketch). We outline only the proof of the implication
(⇐). Let X be an arbitrary set of atoms andM be a stable
model ofP ∪X. ThenM is a model ofP and, consequently,
(M,M) ∈ UE(P ). It follows that(M,M) ∈ UE(Q) and
so,M is a model ofQ. SinceM is a model ofX, too,M is
a model ofQ ∪X and thus, also of(Q ∪X)M .

Let N = Can((Q ∪X)M ,M). ThenX ⊆ N ⊆M and,
by Proposition 6,N is anM -maximal model of(Q∪X)M .
Consequently,N is anM -maximal model ofQM . One can
now show that(N,M) ∈ UE(Q). By the assumption,

(N,M) ∈ UE(P ). It follows thatN |=M PM and since
X ⊆ N , N |=M (P ∪ X)M . Thus,N is anM -maximal
model of(P ∪X)M . SinceM is a stable model ofP ∪X,
M = Can((P ∪X)M ,M). By Proposition 6,M is the least
M -maximal model of(P ∪X)M . Thus,M ⊆ N .

It follows that M = N = Can((Q ∪ X)M ,M). Thus,
M is a stable model ofQ ∪ X. By symmetry, every stable
model ofQ ∪X is also a stable model ofP ∪X. 2

Examples. Let P = {1{p, q} ← not(2{p, q})}, and
Q = {p ← not(q). q ← not(p)}. Then P and Q
are strongly equivalent. We note that both programs have
{p}, {q}, and {p, q} as models. Furthermore,({p}, {p}),
({q}, {q}), ({p}, {p, q}), ({q}, {p, q}), ({p, q}, {p, q}) and
(∅, {p, q}) are all SE-models of the two programs. Thus, by
Theorem 5,P andQ are strongly equivalent.

We also observe that the first five SE-models are precisely
UE-models ofP andQ. Therefore, by Theorem 6,P andQ
are also uniformly equivalent.

It is possible for two monotone-constraint programs to be
uniformly but not strongly equivalent. If we add rulep← to
P , and rulep ← q to Q, then the two resulting programs,
sayP ′ andQ′, are uniformly equivalent. However, they are
not strongly equivalent. The programsP ′ ∪ {q ← p} and
Q′ ∪ {q ← p} have different stable models. Another way to
show it is by observing that(∅, {p, q}) is an SE-model ofQ′

but not an SE-model ofP ′.

Programs with convex constraints
We will now discuss a syntactic variant of programs with
monotone constraints.

A constraint(X,C) is antimonotoneif it is closed under
subset, that is, for everyW,Y ⊆ X, if Y ∈ C andW ⊆ Y
thenW ∈ C. A constraint(X,C) is convex, if for every
W,Y,Z ⊆ X such thatW ⊆ Y ⊆ Z andW,Z ∈ C, we
haveY ∈ C.

Theupwardanddownward closuresof a constraintA =
(X,C) are constraintsA+ = (X,C+) andA− = (X,C−),
respectively, where

C+ = {Y ⊆ X : for someW ∈ C, W ⊆ Y }, and
C− = {Y ⊆ X : for someW ∈ C, Y ⊆W}.

Proposition 7 A constraint(X,C) is convex if and only if
C = C+ ∩ C−.

Programs with monotone constraints make use of the de-
fault negation operator. Allowing convex constraints in rules
leads to anequivalentformalism, without the need for de-
fault negation in the language. Aconvex-constraint ruleis
an expressionr of the form

A← A1, . . . , Ak (2)

where A, A1, . . . , Ak are convex constraints. Aconvex-
constraint programis a set of convex-constraint rules. Pro-
grams with convex constraints are of interest, as their syntax
is more directly aligned with that ofsmodelsprograms.

Programs with monotone and convex constraints are
closely related. IfA is a monotone constraint, a literal
not(A) behaves as an antimonotone constraint: ifM |=



not(A) and M ′ ⊆ M , thenM ′ |= not(A). Thus, pro-
grams with monotone constraints can be regarded directly
as programs with convex constraints.

The converse embedding also exists. It relies on Propo-
sition 7, which allows us to split a convex constraint into
the conjunction of two constraints, one monotone and the
other one — antimonotone. To construct it, we note that
if A = (X,C) is antimonotone thenA = (X,C), where
C = P(X) \ C, is monotone. Letr = A ← A1, . . . , Ak

be a rule built of convex constraints. We encoder with the
following two rulesr′ andr′′ built of monotone constraints:

A+ ← A+

1 ,not A−

1 , . . . , A+

k ,not A−

n

I ← A−, A+

1 ,not A−

1 , . . . , A+
n ,not A−

k

whereI is a fixed inconsistent constraint, say(∅, ∅).
We can formally show that under the embeddings we out-

lined above, the formalisms of programs with monotone and
convex constraints are equivalent with respect to all seman-
tics we consider in the paper and all results we stated here
in terms of monotone-constraint programs can be restated
in terms of convex-constraint programs. In particular, it fol-
lows from our results that default negation can be expressed
in terms of antimonotone constraints.

Conclusions
Our work shows that concepts, techniques and results from
normal logic programming generalize to the abstract setting
of programs with monotone and convex constraints allowing
constraints in the heads of program rules.

Several results we obtained in the paper for these general
classes of programs specialize tonewresults aboutsmodels
programs. While characterizations of strong equivalence of
smodelsprograms were obtained in (Turner 2003), the char-
acterization of uniform equivalence ofsmodelsprograms
implied by Theorem 6 is new.

Specializations to the case ofsmodelsof Theorems 1, 2,
3 and 4, concerning Fages Lemma, the completion of a pro-
gram and loop formulas, are also new. Given these results
we are currently working on an implementation of a new
software for computing stable models ofsmodelsprograms.
The idea is to follow the approach developed inassat(Lin
and Zhao 2002), and use the results we mentioned above to
reduce the problem to that of finding models of theories con-
sisting of pseudoboolean constraints, for which several fast
solvers exist (Éen and S̈orensson 2003).

Acknowledgments
We acknowledge the support of NSF grants IIS-0097278 and
IIS-0325063.

References
Y. Babovich and V. Lifschitz.Cmodels package, 2002. http:
//www.cs.utexas.edu/users/tag/cmodels.html.

Babovich, Y.; Erdem, E.; and Lifschitz, V. 2000. Fages’ theo-
rem and answer set programming. In:Proceedings of NMR-2000.
http://xxx.lanl.gov/html/cs.AI/0003073.

C. Baral. Knowledge representation, reasoning and declarative
problem solving. Cambridge University Press, 2003.

K. Clark 1978. Negation as failure. In Gallaire, H., and Minker,
J., eds.,Logic and data bases. New York-London: Plenum Press.

T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Ag-
gregate functions in disjunctive logic programming: semantics,
complexity, and implementation in DLV. InProc. of IJCAI-2003,
pages 847–852. Morgan Kaufmann, 2003.

M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-
founded and stable semantics for logic programs with aggre-
gates. InProc. of ICLP-2001, vol. 2237 ofLNCS, pages 212–226.
Springer, 2001.

N. Eén and N. S̈orensson”. An extensible SAT solver. InProc. of
SAT-2003, vol. 2919 ofLNCS, pages 502–518, Springer, 2003.

T. Eiter and M. Fink. Uniform equivalence of logic programs
under the stable model semantics. InProc. of ICLP-2003, vol.
2916 ofLNCS, pages 224–238. Springer, 2003.

E. Erdem and V. Lifschitz. Tight logic programs.Theory and
Practice of Logic Programming, 3(4-5):499–518, 2003.

W. Faber, N. Leone and G. Pfeifer. Recursive aggregates in dis-
junctive logic programs: semantics and complexity. Proceedings
of JELIA-2004, vol. 3229 ofLNAI, pages 200–212, Springer,
2004.

F. Fages. Consistency of Clark’s completion and existence of sta-
ble models.Journal of Methods of Logic in Computer Science,
1:51–60, 1994.

M. Gelfond and N. Leone. Logic programming and knowledge
representation – the A-prolog perspective.Artificial Intelligence,
138:3–38, 2002.

M. Gelfond and V. Lifschitz. The stable semantics for logic pro-
grams. InProc. of ICLP-1988, pages 1070–1080. MIT Press,
1988.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent
logic programs.ACM Trans. on Computational Logic, 2(4):526–
541, 2001.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic
program by SAT solvers. InProceedings of AAAI-2002, pages
112–117. AAAI Press, 2002.

F. Lin. Reducing strong equivalence of logic programs to en-
tailment in classical propositional logic. InProc. of KR-2002,
Morgan Kaufmann, 2002.
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