
Satisfiability Testing of Boolean Combinations of
Pseudo-Boolean Constraints using Local-search

Techniques∗

Lengning Liu Mirosław Truszczýnski

February 13, 2007

Abstract

Some search problems are most directly specified by conjunctions of (sets of)
disjunctions of pseudo-Boolean (PB) constraints. We study a logicPLPB whose
formulas are of such form, and design local-search methods to compute models of
PLPB theories. In our approach we view aPLPB theoryT as a data structure, a
concise representation of a certain propositional conjunctive normal form (CNF)
theorycl(T) logically equivalent toT . The key idea is an observation that param-
eters needed by local-search algorithms for CNF theories, such aswalksat , can be
estimated on the basis ofT without the need to computecl(T) explicitly.

We compare our methods to a local-search algorithmwsat(oip). The exper-
iments demonstrate that our approach performs better. In order forwsat(oip) to
handle arbitraryPLPB theories, it is necessary to represent disjunctions ofPB

constraints bysetsof PB constraints, which often increases the size of the theory
dramatically. A better performance of our method underscores the importance of
developing solvers that work directly onPLPB theories.

1 Introduction

We propose a stochastic local-search solver for theories ina version of propositional
logic, in which formulas are Boolean combinations of pseudo-Boolean constraints.

In recent years, propositional logic has attracted considerable attention as a general-
purpose modeling and computational tool well suited for solving search problems. For
instance, to solve a graphk-coloring problem for an undirected graphG, we construct
a propositional theoryT so that (1) models ofT correspond tok-colorings ofG, and
(2) there is a polynomial-time method to reconstruct ak-coloring ofG from a model
of T . Once we have such a theoryT , we can use a satisfiability solver to compute a
model ofT , and then reconstruct from it the correspondingk-coloring ofG. If T has
no models,G has nok-colorings.

Instances of many other search problems can be encoded as propositional theories
in a similar way. This modeling capability of propositionallogic has been known for a

∗This paper combines and extends results included in conference papers [14, 15].

1

long time. With recent dramatic advances in propositional satisfiability [23, 12, 26, 19,
20, 7], state-of-the-art SAT solvers can often decide satisfiability of sets of hundreds
of thousands and even millions of clauses. That makes the approach to solving search
problems outlined above computationally viable and of substantial practical interest.

There are however limitations. The repertoire of operatorsavailable for building
formulas to represent problem constraints is restricted toBoolean connectives. More-
over, since satisfiability solvers usually require CNF theories as input, for the most part
the only formulas one can use to express constraints are clauses. Since clausal repre-
sentations of even quite simple problem constraints are often very large, the use of SAT
solvers as a general problem solving tool is hindered.

Recognizing this problem researchers proposed extensionsto the basic language
with the equivalence operator [11], with cardinality atoms[3, 5] and with pseudo-
Boolean constraints [2]. They also developed more general solvers capable of comput-
ing models of theories in the enriched syntax.

The extension most relevant to our work is that ofpseudo-Boolean constraints
(PB constraints, for short), that is, expressions representing integer constraints over
binary domains1. PB constraints generalize propositional clauses and sets ofPB con-
straints, orPB theories, generalize propositional CNF theories. SincePB constraints
frequently appear in specifications of search problems, it is important to design fast
methods to compute models ofPB theories. To the best of our knowledge, the first
such solver was introduced in [2], followed with solvers described in [25, 1, 21]. More
recently several new solvers forPB theories were developed; we refer to [16, 18] for
details and references.

In this paper, we focus on an extension of the formalism ofPB theories. Specifi-
cally, we consider theories in which formulas areBoolean combinations2 of PB con-
straints. We call this formalism thepropositional logic with pseudo-Boolean con-
straintsand denote it byPLPB . Under the restriction to Boolean combinations of the
so calledcardinality constraintsthis logic was first considered in [5] and a complete
solver for theories in this logic was described there, as well.

In this paper, we drop the restriction from [5] and consider Boolean combinations
of arbitraryPB constraints. In our main contribution we propose a local-search al-
gorithm to compute models for theories in the logicPLPB . In our work we built on
ideas first used inwalksat , one of the most effective local-search satisfiability solvers
for propositional logic [23]. In particular, as inwalksat , we proceed by executing a
prespecified number oftries. Each try starts with a random truth assignment and con-
sists of a sequence of local modification steps calledflips. Each flip is determined by
an atom selected from anunsatisfiedclause. We base the choice on a measure of how
much the corresponding flip changes the degree to which the clauses in the theory are
violated. In designing such measures, we are guided by the concepts of thebreak-
countandmake-countused inwalksat , which are defined as the numbers of clauses
that become unsatisfied and satisfied, respectively, as a result of a flip.

A straightforward extension of these concepts to the case ofPLPB makes each
1We give a more formal definition later in the paper.
2We only focus on conjunctions of disjunctions ofPB constraints. Every generalPLPB formula has an

equivalent representation as conjunctions of disjunctions ofPB constraints.

2

PLPB clause contribute at most 1 to thebreak -count or make-count of an atom. Our
implementation of this method does not perform well in experiments3. Therefore, we
present and study here an alternative approach, in which we modify the definitions
of the break-countand make-countby exploiting the fact thatPB constraints have
equivalent representations by means of propositional theories. LetT be aPLPB theory
and letT ′ be its propositional-logic equivalent (with allPB constraints “compiled”
away). We define the break-count of an atoma in T as the number of clauses in
T ′ that become unsatisfied after we flipa. We define the make-count ofa similarly.
An important point is that we do not computeT ′ explicitly in order to determine the
break-count and the make-count ofa. We estimate these measures directly on the
basis ofT alone. We note that this basic idea was proposed and used in [22] in an
effort to extend local-search methods from CNF to arbitrarypropositional theories.
Our setting ofPLPB theories is much more complex. For instance,PB -constraints are
not formulas in the syntax of logic. Thus, the implementation of the idea developed in
[22] does not apply in the case we consider here.

In the paper, we describe two basic implementations of our general approach and
discuss experimental studies of their performance on several search problems: the
graph vertex-cover problem, the traveling salesman problem, the bounded spanning-
tree problem, a variant of the graph dominating-set problem, and the weightedn-
queens problem.

We studied the performance of our algorithms and compared itto that ofwsat(oip)
[25]. Wsat(oip) was designed to compute models ofPB theories. To use it on arbi-
trary PLPB theories, we proposed and implemented a transformation that replaces
PLPB clauses with sets ofPB constraints. Whenever necessary (that is, whenever an
inputPLPB theory contains disjunctions ofPB constraints), we used this transforma-
tion to preprocess inputPLPB theories prior to invokingwsat(oip).

The encodings of the problems we chose fall into two classes:one that does not
require Boolean combinations ofPB constraints in a clause, and one that does. For the
first class of encodings,wsat(oip) and our solvers accept the same input. Encodings
in the second class are preprocessed forwsat(oip) by means of the transformation we
mentioned above. In this case, the comparison is not direct since the solvers work on
different inputs.

Our experiments show that our methods (at least one of them) and wsat(oip) per-
form similarly on instances from the first class. However, our solvers perform sig-
nificantly better on instances from the second class, underscoring the importance of
developing solvers that work directly onPLPB theories.

2 Logic PL
PB

A pseudo-Booleanconstraint (PB constraint, for short) is an integer-programming
constraint of the form

l ≤ w1x1 + . . . + wkxk ≤ u, (1)
3One of the reasons may be that the simple treatment ofPLPB clauses does not take into account the

structure ofPLPB clauses and its components.

3

wherexi are integer variables, each with the domain{0, 1}, wi are integers called
weights, andl andu are integers called thelower boundand theupper bound, respec-
tively. An assignmentv of 0s and 1s tox′

is is amodelof (or satisfies) the constraint (1)
if

l ≤ w1v(x1) + . . . + wkv(xk) ≤ u

holds.
If one of the bounds in the constraint (1) is missing, we call it a normalPB con-

straint. Typically only normalPB constraints are considered as everyPB constraint is
equivalent to a set of two normalPB constraints. For us it will be more convenient to
consider (general)PB constraints, as we defined them above.

To simplify the notation, we will write aPB constraint (1) as

l[w1x1, . . . , wkxk]u. (2)

We omit the appropriate bound for normalPB constraints. Ifwi = 1, or −1, we
simplify the notation further and writexi and−xi for 1xi and−1xi, respectively,
when specifying thePB constraint (2). In particular, if all weightswi are equal to 1,
we write thePB constraint (2) as

l[x1, . . . , xk]u.

We refer toPB constraints with all weights equal to 1 ascardinality constraints.
By establishing the correspondence between integer values0 and 1 on the one hand,

and truth valuesf (false) andt (true), respectively, on the other, we can view integer 0-1
variables as propositional atoms. Furthermore, we viewPB constraints as represen-
tations of propositional formulas. Specifically, we say that a constraint (1) represents
a propositional formulaϕ, built of the same variablesxi interpreted as propositional
atoms, if (1) andϕ have the same models (modulo the correspondence between{0, 1}
and{f , t}). In particular, a (normal)PB constraint

(1−m)[x1, . . . , xk,−y1, . . . ,−ym] (3)

represents a propositional clause

x1 ∨ . . . ∨ xk ∨ ¬y1 ∨ . . . ∨ ¬ym. (4)

In this way,PB constraints generalize clauses, and sets ofPB constraints generalize
propositional CNF theories. As a special case, a propositional atoma is equivalent to
thePB constraint1[a] and a negated propositional atom¬a is equivalent to thePB

constraint0[−a].
A PB theory is a set ofPB constraints. Many search and optimization problems

have concise encodings asPB theories, often significantly smaller than their respective
CNF representations. Hence, researchers started extending techniques developed for
and implemented in SAT solvers to handlePB theoriesdirectly [2, 25, 1, 4, 21, 5].

In this paper we are interested in an even broader class of theories, namely proposi-
tional theories consisting of Boolean combinations ofPB constraints, viewed as propo-
sitional formulas. We refer to the formalism we are about to describe aspropositional

4

Algorithm 1 wsat(plpb)-generic(T).

INPUT: T — aPLPB theory
OUTPUT: I — a satisfying assignment ofT , or no output
BEGIN
1. For i← 1 to Max -Tries, do
2. I ← randomly generated truth assignment;
3. For j ← 1 to Max -Flips, do
4. If I |= T then return I;
5. C ← randomly selected unsatisfied clause;
6. a← Heuristic(T, I, C);
7. I ← Flip(I, a);
8. End for of j
9. End for of i
END

logic withPB constraints(or PLPB , for short). While it can be given a more general
treatment, in this paper we focus only on a certain class of formulas.

A PLPB clause(or, simply, aclause) is an expression of the form

W1 ∨ . . . ∨Wn, (5)

whereWi’s arePB constraints. APLPB theoryis any set ofPLPB clauses.
The notions ofsatisfiabilityand amodelof a PB constraint extend in the natural

way toPLPB clauses and theories. We writeI |= E, whenI is a model of aPLPB

clause or aPLPB theoryE.

3 Local-search Algorithms for the Logic PL
PB

In this section we describe a local-search algorithmwsat(plpb)-generic designed to
test satisfiability of theories in the logicPLPB . It follows a general pattern ofwalksat

[23]. The algorithm executesMax -Tries independenttries. Each try starts in a ran-
domly generated truth assignment and consists of a sequenceof up toMax -Flips flips,
that is, local changes to the current truth assignment. The algorithm terminates with
a truth assignment that is a model of the input theory, or withno output at all (even
though the input theory may in fact be satisfiable). We provide a detailed description
of the algorithmwsat(plpb)-generic in Algorithm 1.

The procedureHeuristic picks an atom from clauseC that was chosen in the pre-
vious step. A typical heuristic function selects between a greedy choice and a random
choice based on some probabilityp called thenoise ratio. It is known that the existence
of a random move can guarantee the local-search solvers to escape from local minima.

To obtain a concrete implementation of the algorithmwsat(plpb)-generic, we need
to define aheuristicfor the choice of an atom in an unsatisfied clause. In this paper, we
adapt to our needs two effectivewalksat heuristics:SKC[23] andRNovelty+[9, 8, 10].
Both heuristics are defined for inputs given in terms of CNF theories and rely on two

5

Algorithm 2 FunctionSKC (T, I, C).

INPUT: T - aPLPB theory
I - a truth assignment ofT
C - an “unsat” clause from which an atom is chosen

OUTPUT: a - an atom chosen by the heuristic function
BEGIN
1. For each atomx in C, computebreak -count(x);
2. If any of these atoms hasbreak -count 0 then
3. randomly choose an atom with break-count 0 and return it;
4. Else
5. with probabilityp, return an atomx with minimumbreak -count(x);
6. with probability1− p, return a randomly chosen atom inC;
7. End If
END

important quantities assigned to each atom given a truth assignment. They are the
break-countof an atom and themake-countof an atom. Thebreak-countof an atom
denotes the number of clauses that will become unsatisfied ifthe atom’s value is flipped
to its dual value. Similarly, themake-countof an atom denotes the number of clauses
that will become satisfied if the atom’s value is flipped to itsdual value.

It is straightforward to generalize these two concepts to the case of an arbitrary
PLPB theoryT as we described in Section 1. However, the resulting heuristics for
choosing an atom to flip do not perform well in our experiments. Therefore, we propose
a different approach based on thevirtual break-countand thevirtual make-countof an
atom inT . These two quantities are defined as the break-count and the make-count,
respectively, of an atom in a certain CNF theoryT ′ equivalent toT . The termvirtual
is to underline that we do not constructT ′ explicitly (its size would often be too large)
but compute the two counts directly fromT .

We discuss how to compute virtual counts later in this section. Assuming that
we have the two counts for each atom, we defined two instantiations of the function
Heuristic, SKC andRNovelty+, presented in Algorithms 2 and 3. InRNovelty+,
we use theageof an atom, which records when the atom was lastly flipped. An atom
that has the maximum age is the atom that was flipped most recently4.

Finally, one consideration in implementing these algorithms is that it is time con-
suming to calculate the break-count and the make-count of anatom. Therefore, re-
searchers often use cached break-count and make-count of anatom in the heuristic
function. Initially, the break-count and the make-count ofeach atom is computed with
respect to the initial truth assignment using their definitions and stored in the cache.
Then, within each try, the cache will be updated each time after an atomx is flipped.
To be precise, we update, in the cache, the two counts of an atom by their changes,
∆break -count(x) and∆make-count(x), assumingx is the atom flipped.

4In some other implementations, the atom with the minimum age is theone that was flipped most recently.

6

Algorithm 3 FunctionRNovelty+(T, I, C).

INPUT: T - aPLPB theory
I - a truth assignment ofT
C - an “unsat” clause from which an atom is chosen

OUTPUT: a - an atom chosen by the heuristic function
BEGIN
1. With probabilitywp, return a random atom fromC;
2. For each atomx in C, w(x)← break -count(x)−make-count(x);
3. agemax ← the maximum age of atoms inC;
4. best← the list of atomsx with the leastw(x);
5. second← the list of atomsx with the second leastw(x);
6. diff ← w(x)− w(y), wherex ∈ best andy ∈ second;
7. If ∃a ∈ best such that its age< agemax, returna;
8. If diff > 1, then
9. with probabilitymin{2− 2p, 1}, return a random atom frombest;
10. with probability1−min{2− 2p, 1}, return a random atom fromsecond;
11. End If
12. With probabilitymax{1− 2p, 0}, return a random atom frombest;
13. With probability1−max{1− 2p, 0}, return a random atom fromsecond;
END

3.1 Virtual break-count and make-count

These two concepts depend on a particular representation ofa PLPB theoryT as a
multisetof propositional clauses,cl(T). We allow repetitions of clauses in sets and
repetitions of literals in clauses, as by doing so we simplify some calculations.

We recall that we viewPB constraints as propositional formulas. Given aPB

constraintW , by TW we denote a certain CNF formula (which we also view as a
multiset of its clauses) such thatTW is logically equivalent toW . We will specifyTW

later.
Let us consider aPLPB clauseC of the form (5). We definecl(C) to be the

multiset of propositional clauses that are disjuncts in theCNF formula obtained by
replacing inC eachPB constraintWi with the CNF formulaTWi

and by applying the
distributivity law. For aPLPB theoryT we then set

cl(T) =
⋃

{cl(C) : C ∈ T}.

Let I be a truth assignment. We define thevirtual break- andmake-countsof an
atomx in a PLPB theoryT with respect toI as the break- and make-counts ofx
in cl(T) with respect toI. We denote these two quantities asbreak -countT (x) and
make-countT (x), respectively (we drop the reference toI from the notation, asI is
always determined by the context). It follows that

break -countT (x) = break -countcl(T)(x) =
∑

{break -countcl(C)(x) : C ∈ T}.

7

Similarly,

make-countT (x) = make-countcl(T)(x) =
∑

{make-countcl(C)(x) : C ∈ T}.

We now estimatebreak -countcl(C)(x) andmake-countcl(C)(x). To this end we
need more notation. LetW be aPB constraint,I an interpretation andx a proposi-
tional atom. ByI x̄ we denote the truth assignment obtained fromI by flipping the truth
value ofx. Next, we define three sets of clauses that are relevant forbreak -countcl(C)(x)
andmake-countcl(C)(x) (we once again omitI in the notation):

1. EW (x) = the set of clauses inTW that are satisfied byI but not byI x̄

2. FW (x) = the set of clauses inTW that are not satisfied byI but are satisfied by
I x̄

3. GW (x) = the set of clauses inTW that are not satisfied byI nor byI x̄.

We observe that ifx does not appear inW , EW (x) = FW (x) = ∅. We set
e(x) = |EW (x)|, f(x) = |FW (x)| andg(x) = |GW (x)|.

We now have the following theorem.

Theorem 1. Let C be aPLPB clause of the form (5). Letcl be the transformation
we define above. Letei(x), fi(x), and gi(x)’s be the cardinalities of the three sets
EWi

(x), FWi
(x) and GWi

(x) with respect to an atomx and cl . Then we have the
following equations:

break -countcl(C)(x) =

n
∏

i=1

(ei(x) + gi(x))−
n

∏

i=1

gi(x). (6)

and

make-countcl(C)(x) =

n
∏

i=1

(fi(x) + gi(x))−
n

∏

i=1

gi(x). (7)

Proof. Equation (6). Every clause incl(C) is of the formD1 ∨ . . . ∨ Dn, where
Di ∈ TWi

, 1 ≤ i ≤ n. For such a clause to get “unsatisfied” with the flip ofx, all Di’s
in cl(C) must satisfy the following two conditions:

1. eachDi is chosen fromEWi
(x) ∪GWi

(x); and

2. at least oneDi is chosen fromEWi
(x).

SinceEWi
(x) ∩ GWi

(x) = ∅, the number of clauses incl(C) such that eachDi is
chosen fromEWi

(x) ∪GWi
(x) is given by

n
∏

i=1

(ei(x) + gi(x)).

Among these clauses, the ones in which eachDi is chosen fromGWi
(x) do not con-

tribute to the break-count ofx. The number of such clauses is given by
n

∏

i=1

gi(x).

Thus, the equation (6) follows. The proof of the equation (7)is similar.

8

3.1.1 Estimating e, f and g

To make formulas (6) and (7) complete, we need to specify a CNFrepresentationTW

of aPB constraintW and, given this representation and a truth assignmentI, for each
atomx find formulas fore, f andg (in this section, we omitx in e(x), f(x) andg(x)
asx always exists in the context).

We first consider the case of aPB constraintW :

W = l[w1a1, . . . , wkak]u,

where allwi arenon-negative. For each atomai we introduce new atomsaj
i , 1 ≤ j ≤

wi. We then define a cardinality constraint

W ′ = l[a1
1, . . . , a

w1

1 , . . . , a1
k, . . . , awk

k]u,

and a set of formulas

EQ = {ai ≡ aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi}.

ThePB constraintW and{W ′} ∪ EQ are equivalent in the following sense. There
is a one-to-one correspondence between models ofW and models of{W ′} ∪ EQ.
The corresponding models coincide on the set{a1, . . . , ak}. In the case of the theory
{W ′} ∪ EQ, the part of the model contained in{a1, . . . , ak} determines the rest, as
models of{W ′} ∪ EQ must satisfy formulas inEQ.

Let setS consist of the following clauses:

¬xi1 ∨ . . . ∨ ¬xiu+1
(8)

for every(u + 1)-element subset{xi1 , . . . , xiu+1
} of {a1

1, . . . , a
w1

1 , . . . , a1
k, . . . , awk

k },
and

xi1 ∨ . . . ∨ xiK−l+1
(9)

for every(K−l+1)-element subset{xi1 , . . . , xiK−l+1
} of {a1

1, . . . , a
w1

1 , . . . , a1
k, . . . , awk

k },
whereK =

∑

wi.
The following theorem is an easy consequence of Proposition4.7 from [3], It states

that the cardinality constraintW ′ is equivalent toS.

Theorem 2. Let W ′ be the cardinality constraint andS the set of clauses we defined
above. Then a truth assignmentI satisfiesW ′ if and only ifI satisfiesS.

Thus,W is equivalent toS ∪ EQ (in the same sense as before). Consequently,
W is equivalent (has the same models) as the multiset of clauses obtained fromS by
replacing each atomaj

i with ai. We defineTW to be this multiset. We also note that
clauses in this multiset may contain multiple occurrences of the same literals.

We do not simplifyTW further (that is, we do not eliminate duplicate clauses nor
duplicate occurrences of literals in clauses) since the multiset form ofTW makes it
easier to compute the cardinalitiese, f andg of the sub-multisetsEW,x, FW,x and
GW,x of TW and their cardinalitiese, f andg. Namely, we have the following formulas
for e, f andg:

9

e =

0 case 1
(

N+w
K−l+1

)

−
(

N
K−l+1

)

case 2
(

P+w
u+1

)

−
(

P
u+1

)

otherwise
(10)

f =

0 case 1
(

P
u+1

)

−
(

P−w
u+1

)

case 2
(

N
K−l+1

)

−
(

N−w
K−l+1

)

otherwise
(11)

g =

(

N
K−l+1

)

+
(

P
u+1

)

case 1
(

N
K−l+1

)

+
(

P−w
u+1

)

case 2
(

P
u+1

)

+
(

N−w
K−l+1

)

otherwise.
(12)

Case 1 covers all situations whenx does not occur inW . Case 2 covers situations when
x occurs inW andI |= x. In these formulas we use the notationK =

∑

wi, P =
∑

I|=ai
wi, N =

∑

I 6|=ai
wi, and writew for the weight of atomx in W (if x occurs

in W).
We now provide arguments for each case of (10), (11), and (12). In the following,

let I be a truth assignment. Let us assumeN = {aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi, I 6|= ai}

andP = {aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi, I |= ai}. It is clear thatN = |N | and

P = |P|.
Case 1. Sincex does not occur inW , by the definition of setsEW,x andFW,x, e =
f = 0. Therefore, (10) and (11) are correct in this case. By the definition of GW,x,
clauses inGW,x are those satisfied by neitherI norI x̄. Sincex does not occur inW , all
clauses that are not satisfied byI form precisely the setG. That is, a clauseC ∈ GW,x

if and only if

1. C is obtained from a clauseC ′ in S of the form (8) such thatC ′ contains only
atoms fromP; or

2. C is obtained from a clauseC ′ in S of the form (9) such thatC ′ contains only
atoms fromN .

There are
(

P
u+1

)

clauses of the first type and
(

N
K−l+1

)

clauses of the second type inS.
Since we do not remove duplicate clauses when we generateTW from S, the number
of clauses inGW,x is precisely

(

N
K−l+1

)

+
(

P
u+1

)

. Thus, case 1 of (12) holds.
Case 2. We first look at the case 2 of the equation (10). In this case,x occurs inW
andI |= x. Let us assume thatx = a1. SinceI |= a1, {a1

1, . . . , a
w1

1 } ∩ N = ∅.
The definitions ofS and EW,x imply that C ∈ EW,x if and only if C is obtained
from a clauseC ′ in S of the form (9) such thatC ′ contains at least one atomap

1,
1 ≤ p ≤ w1, and for every other disjuncty of C ′, y ∈ N . SinceN = |N |, there are
(

N+w1

K−l+1

)

−
(

N
K−l+1

)

such clausesC ′. Since when generatingTW from S we do not
remove any clauses, the formula (10), case 2, follows.

With the same assumption, a clauseC belongs toFW,x if and only if C is obtained
from a clauseC ′ in S of the form (8) such thatC ′ contains at least one atomap

1, for
some1 ≤ p ≤ w1, and for every other disjuncty of C ′, y ∈ P. SinceP = |P|, there
are

(

P
u+1

)

−
(

P−w1

u+1

)

such clausesC ′, which is also the number of clausesC. Thus the
formula (11), case 2, holds.

10

For the formula (12), again, a clauseC belongs toGW,x if and only if one of the
two conditions listed in case 1 is true. Since this timex ∈ W andI |= x, the number
of the first type of the clauses becomes

(

P−w1

u+1

)

, while the number of the second type
of clauses does not change. Therefore, case 2 of the formula (12) holds.
Case 3. The reasoning is similar to that in case 2. This timex occurs inW andI 6|= x.
Again we assume thatx = a1. SinceI 6|= a1, {a1

1, . . . , a
w1

1 } ∩ P = ∅. The definitions
of S andEW,x imply thatC ∈ EW,x if and only if C is obtained from a clauseC ′ in S
of the form (8) such thatC ′ contains at least one atomap

1, 1 ≤ p ≤ w1, and for every
other disjuncty of C ′, y ∈ P. SinceP = |P|, there are

(

P+w1

u+1

)

−
(

P
u+1

)

such clauses
C ′. Since when generatingTW from S we do not remove any clauses, the formula
(10), case 3, follows.

With the same assumption, a clauseC belongs toFW,x if and only if C is obtained
from a clauseC ′ in S of the form (9) such thatC ′ contains at least one atomap

1, for
some1 ≤ p ≤ w1, and for every other disjuncty of C ′, y ∈ N . SinceN = |N |, there
are

(

N
K−l+1

)

−
(

N−w1

K−l+1

)

such clausesC ′, which is also the number of clausesC. Thus
the formula (11), case 3, holds.

For the formula (12), a clauseC belongs toGW,x if and only if one of the two
conditions listed in case 1 is true. Since this timex ∈ W andI 6|= x, the number of
the second type of the clauses becomes

(

N−w1

K−l+1

)

, while the number of the first type of
clauses does not change. Therefore, case 3 of the formula (12) holds. 2

To deal with negative weights aPB constraint may contain, we follow a standard
and well known normalization method. We briefly recall it here. Let us consider aPB

constraint:
W = l[w1a1, . . . , wmam, wm+1am+1, . . . , wkak]u (13)

wherewi < 0, 1 ≤ i ≤ m, andwi ≥ 0, m + 1 ≤ i ≤ k. Let

W ′ = (l + d)[w1a
′
1, . . . , wma′

m, wm+1am+1, . . . , wkak](u + d) (14)

whered =
∑

i=1,...,m wi anda′
i, 1 ≤ i ≤ m, are new 0-1 variables. We now define

TW to be the CNF theory consisting of all clauses inTW ′ , in which we replacea′
i with

¬ai and¬a′
i with ai.

One can check thatW is equivalent to the set ofPB constraints consisting ofW ′

andPB constraintsa′
i + ai = 1, 1 ≤ i ≤ m. Thus, sinceW ′ is equivalent toTW ′ , it

follows thatW is equivalent toTW as defined above.
Moreover, it follows thate, f andg can be computed using the formulas we de-

veloped earlier with the following modifications: (1) the bounds in the formulas must
be replaced withl + d andu + d, whered is specified above, and (2) ifai is assigned
a negative weight, the conditionI |= ai, must be replaced withI 6|= ai (and vice
versa). In this way, the computation of virtual break- and make-count for arbitraryPB

constraints can be accomplished without any overhead.
We will now illustrate how to compute the virtual break- and make-count of an

atom.
Example. LetC = W1∨W2∨W3, whereW1 = 2[a1, a2, a3]2, W2 = 4[2a2, 1a3, 4a4]5,
andW3 = 3[10a5, 3a3, 8a6]10.

Let I = {a1, a3, a4, a5} be the truth assignment. We first note that:

11

1. In W1, K1 = 3, N1 = 1, P1 = 2

2. In W2, K2 = 7, N2 = 2, P2 = 5

3. In W3, K3 = 21, N3 = 8, P3 = 13.

Now let us suppose we flip atoma2. We recall thatI 6|= a2. Based on the formulas
for e, f, g, we have the following result:

1. Sincea2 ∈W1, case 3 applies toW1 and so:

e1 =

(

P1 + w2
1

u1 + 1

)

−

(

P1

u1 + 1

)

=

(

2 + 1

2 + 1

)

−

(

2

2 + 1

)

= 1

f1 =

(

N1

K1 − l1 + 1

)

−

(

N1 − w2
1

K1 − l1 + 1

)

=

(

1

3− 2 + 1

)

−

(

1− 1

3− 2 + 1

)

= 0

g1 =

(

P1

u1 + 1

)

+

(

N1 − w2
1

K1 − l1 + 1

)

=

(

2

2 + 1

)

+

(

1− 1

3− 2 + 1

)

= 0

2. Sincea2 ∈W2, case 3 applies toW2 and so:

e2 =

(

P2 + w2
2

u2 + 1

)

−

(

P2

u2 + 1

)

=

(

5 + 2

5 + 1

)

−

(

5

5 + 1

)

= 7

f1 =

(

N2

K2 − l2 + 1

)

−

(

N2 − w2
2

K2 − l2 + 1

)

=

(

2

7− 4 + 1

)

−

(

2− 2

7− 4 + 1

)

= 0

g1 =

(

P2

u2 + 1

)

+

(

N2 − w2
2

K2 − l2 + 1

)

=

(

5

5 + 1

)

+

(

2− 2

7− 4 + 1

)

= 0

3. Sincea2 6∈W3, case 1 applies toW3 and so:

e3 = f3 = 0

g3 =

(

P3

u3 + 1

)

+

(

N3

K3 − l3 + 1

)

=

(

13

10 + 1

)

+

(

8

21− 3 + 1

)

= 78

We can now compute the break- and make-count ofa2 using the formulas (6) and
(7):

break -countC(a2) =
3

∏

i=1

(ei+gi)−
3

∏

i=1

gi = (1+0)×(7+0)×(0+78)−0×0×78 = 546

make-countC(a2) =

3
∏

i=1

(fi+gi)−
3

∏

i=1

gi = (0+0)×(0+0)×(0+78)−0×0×78 = 0

△
We used the formulas (6) and (7) for the break- and make-countin the heuristics

SKC andRNovelty+ given in Algorithms 2 and 3, respectively. We used these two

12

heuristics with our generic local-search algorithm and obtained its two instantiations
wsat(plpb)-skc andwsat(plpb)-rnp, respectively.

We point out that, in the formulas we have derived, we use values of the form
(

n
k

)

. Such values exceed the maximum integer that can be represented in a (typical)
computer even for relatively small values ofn, if k is close ton/2. In our imple-
mentations, we replaced each occurrence of such overflow with a certain fixed large
integer. However, we observed that, even though overflow occurs quite common when
we ranwsat(plpb)-skc andwsat(plpb)-rnp in our experiments, it is rarely the case
that wsat(plpb)-skc or wsat(plpb)-rnp chose the “best” atoms (according to their
heuristics) whosebreak -count or make-count computation involves overflows. We
will illustrate this phenomenon in the following section. Thus the overflow does not
cause much problem towsat(plpb)-skc andwsat(plpb)-rnp in those instances. It is
possible to use floating point arithmetic and Stirling’s approximation to approximate
(

n
k

)

. We did implementwsat(plpb)-skc andwsat(plpb)-rnp following this direction.
With floating point numbers, we can represent significantly larger numbers in the com-
puter than integer representation. However, we still observed that overflow happened in
some cases, with much less frequency. We also observed that,there is a dual problem
associated with floating point arithmetic, which is the lossof precision. With a single-
precision 32-bit floating point number, only 23 bits are usedto represent the mantissa.
That means, we have less than 10 decimal digits in the mantissa and, consequently, we
often cannot distinguish between two large numbers of the same order.

Finally, we comment here that there is more than one way to represent aPB con-
straint as an equivalent CNF theory. In particular, our approach is not the most concise
representation. Actually, the size of our representation is exponential to the size of the
PB constraint. We could adopt other more concise representations. However, those
representations usually rely on auxiliary new atoms and more complex equivalence
formulas to reduce the exponential blow-up in size. Such structure hinders the per-
formance of wsat-like local search algorithms [14]. Therefore, we did not use those
representations to compute virtual counts.

4 Experiments, Results and Discussion

We performed experimental studies of the effectiveness of our local-search algorithms.
For testing we selected five families of instances generatedfrom five search problems.

4.1 Benchmark problems and instances

We describe first the problems we considered, and illustratehow they give rise to spe-
cific PLPB-theories that can be used in testing.

Vertex-cover problem. Let G = (V,E) be an undirected graph, whereV andE are
the sets of vertices and edges ofG, respectively, and letk be a positive integer. The
objective is to find a setU ⊆ V with at mostk elements and such that every edge has
at least one of its vertices inU (such setsU arevertex coversfor G).

13

To build aPLPB theoryvcv(G, k) encoding the vertex-cover problem, for every
vertexv ∈ V we introduce an atominv to represent the statements:vertexv is in a
vertex cover. We include invcv(G, k) the following clauses:

1. inu ∨ inv, for every edge{u, v} ∈ E
These clauses enforce the constraint defining vertex covers

2. [inv : v ∈ V]k
This clause guarantees that a selected subset has at mostk vertices.

It is straightforward to check that models ofvcv(G, k) are in one-to-one corre-
spondence with those vertex covers ofG that have at mostk elements. In fact, if we
represent a truth assignment by a set of atoms that are true init, models ofvcv(G, k)
are precisely sets of the form{inu : u ∈ U}, whereU is a vertex cover ofG with at
mostk elements.

To create instances for testing solvers, we randomly generated 50 graphs of 2000
vertices and 4000 edges. For each graph we selected a relatively small integer as the
bound for the size of the vertex cover in such a way that the problem still had a solu-
tion. We used these instances to instantiate the encoding given above, and obtained the
family vcv of 50 satisfiablePB theories.

Traveling salesperson problem. Let k be a non-negative integerk andG a complete
undirected weighted graph, in which each edge{u, v} is assigned an integer weight
Wu,v

5. The goal is to find a Hamiltonian cycle inG such that the sum of the weights
of the edges in the cycle is at mostk.

To specify the problem as aPLPB theory we use propositional atomsordv,i and
eu,v, where1 ≤ i ≤ |V | andu, v ∈ V . The role of atomsordv,i is to define an ordering
(permutation) ofV specifying a Hamiltonian cycle. Specifically, an atomordv,i stands
for the statement:v is theith vertex in the cycle. The role of atomseu,v is to determine
the edges{u, v} in the graph that are included in the Hamiltonian cycle givenby the
atomsordv,i. We use the atomseu,v to state the constraint bounding the length of the
cycle. We define the theorytsp(G, k) to consist of the following clauses:

1. 1[ordv,i : v ∈ V]1, for everyi, 1 ≤ i ≤ |V |
1[ordv,i : 1 ≤ i ≤ |V |]1, for everyv ∈ V
These clauses enforce the ordering constraints: for everyi, there is exactly one
vertex in the positioni in the cycle; and for every vertexv there is exactly one
position in the cycle containingv.

2. ¬ordu,i ∨ ¬ordv,i+1 ∨ eu,v, for everyu, v ∈ V and for everyi, 1 ≤ i ≤ |V |
¬eu,v ∨ ¬ordu,i ∨ ordv,i+1, for everyu, v ∈ V and for everyi, 1 ≤ i ≤ |V |
Note: when incrementing indices by one, we assume arithmetic modulo|V | on
the set{1, . . . , |V |}; in particular,|V |+ 1 = 1.
These clauses define the edgeseu,v that form the Hamiltonian cycle specified by
the permutation given by atomsordv,i.

3. [Wu,veu,v : u, v ∈ V]k
This clause enforces the bound on the length of the cycle.

5SinceG is an undirected graph, we haveWu,v = Wv,u

14

One can verify that the atomseu,v in a model oftsp(G, k) form a Hamiltonian cycle
of length at mostk and that each such cycle is determined by a model oftsp(G, k) (in
fact, by2|V | models as there are|V | choices for the first vertex and two directions in
which the cycle can be traversed).

For testing, we randomly generated 50 weighted complete graphs of 40 vertices.
The weight of each edge was uniformly chosen from the range[1..39]. Next, for each
instance we selected a relatively small integer as the TSP bound in such a way that the
problem still had a solution. These graphs together with theencoding specified above
yielded the familytsp of 50 satisfiablePLPB theories.

Bounded spanning-tree problem. Let G = (V,E) be an undirected graph with each
edge{u, v} ∈ E assigned an integer weightWu,v. Further, letw be an integer. The
goal is to find a spanning treeT in G such that for each vertexx ∈ V , the sum of the
weights of all edges inT incident tox is at mostw.

Let us assume that|V | = n. We observe that a setT of edges of a graphG is
a spanning tree forG if and only if there is an ordering (permutation)x1, . . . , xn of
vertices ofG such that

(ST) for everyi > 1, there is exactly onej such that1 ≤ j < i and{xj , xi} ∈ T

To build thePLPB theorybst(G, k) encoding the bounded spanning-tree problem,
we use atomsordx,i and tex,y, where1 ≤ i ≤ n andx, y ∈ V . Atomsordx,i are
meant to establish an ordering (permutation) of vertices inG, while atomstex,y express
the statement that the edge{x, y} ∈ T , written so thatx precedesy in the ordering
determined by atomsordx,i, is chosen into the spanning tree. To model the desired
properties ofordx,i andtex,y, the condition (ST), and the weight-bound constraint on
vertices, we include in the theorybst(G, k) the following clauses:

1. 1[ordx,i : x ∈ V]1, for everyi = 1, . . . , n
1[ordx,i : i = 1, . . . n]1, for everyx ∈ V
These clauses generate an ordering of vertices inG.

2. ¬ordx,i ∨ ¬ordy,j ∨ ¬tex,y, for every1 ≤ j < i ≤ n
These clauses ensure that each edge selected toT is represented by the pair of
its endpoints ordered according to the ordering specified byatoms of the form
ordx,i.

3. (n− 1)[tex,y : {x, y} ∈ E](n− 1)
This clause guarantees that exactlyn− 1 edges are selected intoT . It is implied
by other constraints and could be omitted.

4. ¬ordy,i ∨ 1[tex,y : {x, y} ∈ E]1, for everyi > 1 andy ∈ V
These clauses model the condition (ST)

5. [Wx,ytex,y : {x, y} ∈ E;Wy,xtey,x : {x, y} ∈ E]w, for everyy ∈ V
Note: the “;” stands for the operator of concatenation of twolists of weighted
propositional atoms.
These clauses ensure the weight-bound constraint on each vertexy.

15

To createPLPB-theories for testing we generated 50 random graphs of 30 vertices
and 240 edges. The weight of each edge was uniformly chosen from the range[1..29].
We setw to 15, as forw = 15 all instances were satisfiable. The encoding of the
bounded spanning-tree problem instantiated with these graphs determined the family
bst of 50 satisfiablePB theories.

Weighted dominating-set problem. This is a variant of the dominating-set problem
[6]. Let G = (V,E) be a directed graph. Each edge(u, v) ∈ E has an integer weight
Wu,v. Let w be an integer. A setD ⊆ V is w-dominatingif for every vertexv ∈ V
one of the following three conditions holds:

1. v ∈ D;

2. the sum of weights of edges “fromv to D” is at leastw:
w ≤

∑

(v,u)∈E,u∈D Wv,u

3. the sum of weights of edges “fromD to v” is at leastw:
w ≤

∑

(u,v)∈E,u∈D Wu,v.

Given a weighted directed graphG, an integerw, and a positive integerk, theweighted
dominating-set problemconsists of finding aw-dominating set ofG with at mostk
elements.

As in the other three cases, instances of this problem can be encoded as aPLPB

theories so that models of theories correspond to solutionsto the problem. We refer to
[13] for a detailed description of the encoding. Here we onlymention that it utilizes
PLPB clauses that are disjunctions ofPB constraints.

We generated 50 random graphs of 500 vertices and 2000 edges.The weight of
each edge was generated uniformly from[1..19]. The value ofw was set to 40 andk
to 330. All instances we generated were satisfiable. The instances and the encoding
yielded the familywdm of 50 satisfiablePLPB theories.

Weighted n-queens problem with an additional separation constraint. It is a vari-
ant of the well-knownn-queens problem. We are given ann×n chess board, with each
square(i, j) assigned an integer weightWi,j . Given two integersw andd, the goal is
to find an arrangement ofn queens on the board so that (1) no two queens attack each
other (standard constraint); (2) the sum of weights of the squares with queens does not
exceedw (hence the term ‘weighted”); and (3) for each queenQ, there is at least one
queenQ′ in a neighboring row or column such that the Manhattan distance betweenQ
andQ′ exceedsd (a separationconstraint) . We refer to [13] for the encoding of this
problem as aPLPB theory and note only that it contains clauses that are disjunctions
of PB constraints.

We generated 50 random weighted20 × 20 chess boards, where the weights are
uniformly chosen from range[1..19]. The value ofw was set to 80 andd to 10. All
instances we generated were satisfiable. The encoding [13] and these 50 instances of
the problem gave rise to the last family,wnq , of 50 satisfiablePLPB theories we used
in testing.

We conclude this subsection by pointing out that all encodings discussed here make
use ofPB constraints. It makes the encodings more concise than any CNF encoding

16

of the same problems we are aware of. For instance, just onePB constraint is needed
to enforce the upper bound on the number of vertices in a vertex cover (clause (2) in
the theoryvcv(G, k)), while the best CNF representation known to us usesΘ(|V | lg k)
clauses. Moreover, some encodings usePB constraints with both the lower and the
upper bounds (tsp(G, k) andbst(G, k)). Two normalPB constraints are needed to
represent each such constraint. Finally,wdm(G,w, k) uses “proper”PB clauses, that
is, disjunctions ofPB constraints, to encode the weighted dominating-set property.
SeveralPB constraints and additional propositional atoms are neededto capture dis-
junctions ofPB constraints.

Thus, logicPLPB yields more concise encodings not only with respect to CNF
representations but also with respect to representations in terms of (normal)PB con-
straints. It points to its modeling effectiveness and underlines the need to develop
solvers for generalPB theories.

4.2 The design of the experiments

We studied our solverswsat(plpb)-skc andwsat(plpb)-rnp and compared their per-
formance to that ofwsat(oip). Sincewsat(oip) accepts only theories consisting of
normalPB constraints, direct comparison is possible only for instances from thevcv
family.

Instances in the familytsp consist ofPB constraints that involve both lower and
upper bounds. As we noted, such constraints can be represented in a direct way by two
normal PB constraints, and theories obtained by applying this transformation have
essentially the same structure (no new atoms needed, no essential change in the ex-
pression of the constraint, except that it is split into two inequalities, one for each
bound).

Instances in the familiesbst , wdm, andwnq contain clauses that are disjunctions
of weight atoms andwsat(oip) cannot be used directly. The approach we adopted
consisted of replacing such clauses with sets of normalPB constraints. This approach
requires new atoms and introduces additional structure into the representation. We will
now outline the specific method we used.

Given aPLPB clauseC, our transformationτ(C) converts it into a set of pseudo-
Boolean constraints and maintains the models, modulo the new atoms introduced in
the transformation. Let us consider aPLPB clauseC of form (5). We introduce new
propositional atomsW1, . . . ,Wn to represent eachPB constraint in the clause. With
the new atoms, the clause (5) can be written as the propositional clause

W1 ∨ . . . ∨Wn

and then represented by thePB constraint:

1[W1, . . . ,Wn]. (15)

In order for this representation to work, we must also specify PB constraints to
enforce the equivalence of the newly introduced atomsWi and the correspondingPB -
constraintsWi, for i = 1, . . . , n.

17

To show how it can be done, let us consider aPB constraintW = l[w1a1, . . . , wmam]u.
LetW+ andW− be two additional propositional atoms. We observe that the following
two PB constraints:

[

(
∑

{wi : wi > 0} − u)W−, w1a1, . . . , wmam

]

∑

{wi : wi > 0} (16)

(u + 1)
[

(u + 1−
∑

{wi : wi < 0})W−, w1a1, . . . , wmam

]

(17)

are equivalent to the propositional formula

W− ≡ [w1a1, . . . , wmam]u

(we view thePB constraint[w1a1, . . . , wmam]u as a propositional formula here). Sim-
ilarly, the following twoPB constraints:

∑

{wi : wi < 0}
[

(
∑

{wi : wi < 0} − l)W+, w1a1, . . . , wmam

]

(18)

[

(l − 1−
∑

{wi : wi > 0})W+, w1a1, . . . , wmam

]

(l − 1) (19)

are equivalent to the propositional formula

W+ ≡ l[w1a1, . . . , wmam].

Finally, the following threePB constraints:

0[−W,W+] (20)

0[−W,W−] (21)

−1[−W+,−W−,W] (22)

are equivalent to the formula
W ≡W ∧W−.

It follows that the formulaW ≡ l[w1a1, . . . , wmam]u is equivalent toPB constraints
(16), (17), (18), (19), (20), (21) and (22).

For aPLPB-clauseC = W1 ∨ . . .∨Wn, we defineτ(C) to consist of thePB con-
straint (15) and ofPB constraints (16), (17), (18), (19), (20), (21) and (22), constructed
as described above for everyPB constraintWi in C by means of propositional atoms
W+

i andW−
i). One can verify that the size ofτ(C) is linear in the size ofC.

Given aPLPB theoryT , by τ(T) we denote the set of normalPB constraints

τ(T) = {τ(C) : C ∈ T}.

To summarize our observations made above

1. (15) is equivalent toW1 ∨ . . . ∨Wn

2. (16) and (17) are equivalent toW− ≡ [w1a1, . . . , wmam]u

18

3. (18) and (19) are equivalent toW+ ≡ l[w1a1, . . . , wmam], and

4. (20), (21) and (22) are equivalent toW ≡W ∧W−.

Thus, we obtain the following theorem. To state it, we writeAt(T) to denote the set of
propositional atoms that occur in aPLPB or PB theoryT .

Theorem 3. LetT be aPLPB theory andM a set of atoms,M ⊆ At(T). ThenM is
a model ofT in the logicPLPB if and only ifM has a unique extensionM ′ by some
of the new atoms inAt(τ(T)) such thatM ′ is a model of the normalPB theoryτ(T).

We note that our encoding of thebst problem involvesPLPB clauses of the form:

¬ordy,i ∨ 1[tex,y : {x, y} ∈ E]1

In this case, we do not need to introduce a new propositional atom to represent the
PB constraint1[tex,y : {x, y} ∈ E]1. Instead, the following twoPB constraints are
equivalent to thePLPB clause in the encoding of thebst problem:

[(|E| − 1)ordy,i; tex,y : {x, y} ∈ E](|E|)

which is a special case of (16), and

0[−ordy,i; tex,y : {x, y} ∈ E]

which is a special case of (18).
When comparing our solvers withwsat(oip) on familiesbst , wdm, andwnq , we

ran our solvers directly on the instances from the two families andwsat(oip) on their
transformations by means of the mappingτ .

We used four identical machines in all our experiments. Eachof these machines
is equipped with a Pentium 4 3.2GHz CPU and 1GB memory, and runs Linux with
kernel version 2.6.10. We used gcc 3.3.4 as a compiler for oursolvers (with two flags
“-Wall -O3”). We did not have access to the source code ofwsat(oip) and used in the
experiments the binary code obtained from the author’s website [24].

We set a 1000-second run-time limit to each solver we test. There is no limitation,
other than the physical one, on the memory usage.

We set theMax -Tries to 1 andMax -Flips to a large value so that the local search
solvers will not exhaust all flips during the 1000-second time limit. Therefore, a solver
in our experiments halts either because it finds a model or it reaches the time limit.
We perform a systematic experimental study on the noise ratio p as it may affect local
search solvers’ performance. We discuss this matter in moredetail in the latter part of
this section.

All solvers we test report the amount of time they spend tosolvean instance. By
solving an instance, we mean the solver finds a model of the instance. For a fair com-
parison, we use the GNU time program (version 1.7) to gather the timing information
of all solvers. We report or perform statistical analysis onthe “user time” reported by
the GNU time program, which is the CPU time spent by the solvers.

For comparison, we report the following statistics of all solvers tested for each
benchmark problem. We first compare the solvers instance by instance. A solverwins

19

wsat(plpb)-skc wsat(plpb)-rnp wsat(oip)

vcv 30/0 48/44 42/4
tsp 1/0 50/48 50/2
bst 50/10 50/41 50/0

wdm 49/25 50/26 4/0
wnq 50/39 46/11 2/0

Table 1:wsat(plpb) versuswsat(oip): summary on all instances.

on an instance if the amount of time it uses to solve the instance is the minimum one
(no other solver uses less time). We report, for each benchmark problem, in how many
instances a solver wins. Then we aggregate the timing information of a solver in the
family of random instances by means of therun-time distribution(or RTD for short)
instead of the simple statistical measures such as average or standard deviation. The
reason is that, experiments show that the hardness of instances generated randomly
with fixed parameters varies significantly. Therefore, the run time of a solver solving
an instance, which can be viewed as a random variable, variessignificantly as well. In
other words, the probability distribution on the run time has high variance. Moreover,
the run-time of a local search solver is itself a random variable even on a single in-
stance. In this case, simple statistics such as average run time does not provide enough
information about the performance of different solvers [9].

We estimate the run-time distribution of a solver over a family of randomly gener-
ated instances as follows. We run the solver on each instanceand record the amount
of time it takes to solve the instance. Then we estimate the probability for a solverS
to solve an instance in the familyF within time 0 ≤ t ≤ 1000 by the ratioMt/N ,
whereMt is the number of instances that are solved byS within time t andN is the
total number of instances in that family.

Since the choice of the noise ratiop often has strong effect on the performance of
wsat(plpb)-rnp, we test all methods with 9 different noise ratios0.1, 0.2, . . . , 0.9. For
comparisons, we use results obtained with the best value ofp for each method.

For each instance, we ran each solver in one try, with the maximum number of flips
set so that to guarantee the unsuccessful try does not end prior to the 1000-second limit.
We set other parameters of each solver to their default settings.

4.3 Results

We first present a summary of all experiments in Table 1. It shows two values in the
form s/w. Value s denotes the number of instances a solver solved in a family of
instances. Valuew denotes the number of instances that it solves with the shortest
amount of time among all solvers we tested.

These results demonstrate the superiority of our methods over wsat(oip) on the
instances we use in experiments. Of the two methods we proposed,wsat(plpb)-rnp

performs better in four out of five problems, withwsat(plpb)-skc being significantly
better for the remaining one. We emphasize thatwsat(plpb)-rnp algorithm performs
better thanwsat(oip) even for problems that were encoded directly as sets of normal

20

PB constraints or required only small and simple modifications(splitting PB con-
straints into pairs of normalPB constraints in problemtsp, and rewriting disjunctions
of a propositional literal and a singlePB constraint into sets of normalPB constraints
in problembst , according to the method described after Theorem 3). We notethat
there were two ties in the experiments. Thebst and thewdm families contain one
instance on whichwsat(plpb)-rnp andwsat(plpb)-skc terminate successfully in the
same amount of time.

We now present and discuss RTD graphs for the five problems.
Figure 1(a) concerns with problemvcv . It shows that the run-time behavior of

wsat(plpb)-rnp andwsat(oip) is close withwsat(plpb)-rnp being better thanwsat(oip).
Wsat(oip) has a slightly higher probability of success thanwsat(plpb)-rnp only at the
pointTime ≤ 128 seconds.

Figure 1(b) shows the RTD behavior of solvers on problemtsp. Even though
wsat(plpb)-skc andwsat(oip) both have a probability 1 of success when they are given
enough time (> 256 seconds),wsat(plpb)-skc has a clear advantage overwsat(oip)
for time between4 seconds and256 seconds.

Figure 1(c) shows that bothwsat(plpb)-rnp andwsat(plpb)-skc perform uniformly
better thanwsat(oip) in problembst .

Figure 1(d) corresponds to problemwdm. It shows thatwsat(oip) is not effective.
It also shows thatwsat(plpb)-skc has a higher probability of solving easy instances
(instances that can be solved in up to about 8 seconds). Thenwsat(plpb)-rnp catches
up and the performance of the two algorithms becomes similar, with wsat(plpb)-rnp

being slightly better (in fact, it is the only algorithm thatsolves all instances in the
family).

Figure 1(e) tells a similar story in problemwnq . Wsat(oip) is not effective when
thePLPB theory involves generalPB clauses. In this case,wsat(plpb)-skc performs
uniformly better thanwsat(plpb)-rnp.

All the run-time distributions we just showed further confirm that our local search
solvers designed forPLPB theories perform better thanwsat(oip) in most of the test
cases.

Finally, we discuss therobustnessof a local search solver to the choice of the noise
ratio. The noise ratio is an important parameter to allwalksat-like solvers as it has
much effect on the performance. By the range ofgood behaviorwe mean the range
of values for the noise ratio for which a local-search algorithm performs well. A large
range of good behavior is a highly desirable feature of a local-search algorithm as it
makes it easier to find such values. Our graphs showing RTDs asa function of the noise
ratios for the three algorithms tested (Figures 2, 3, 4, 5, and 6), show that the range of
good behavior for the algorithmwsat(plpb)-rnp is larger than that for the other two
algorithms, with one exception. For the problemwnq the range of good behavior is
larger for the algorithmwsat(plpb)-skc.

Finally, we present our observations on the overflow problemwe discussed in the
previous section. We ranwsat(plpb)-skc in a short try (100000 flips) of one instance
of each of the five benchmark problems. We recorded the total number of

(

n
k

)

com-
putation, the number of times there is an overflow, and the number of times the “best”
atom chosen is involved in overflow.

21

The data show that the “best” atoms are rarely the ones whosebreak -count in-
volves overflow. Indeed, only in thewdm problem,wsat(plpb)-skc ever chose the
“best” atoms that involve in overflow. Furthermore, among about 18 million of

(

n
k

)

computation, out of which 3.4 million had the overflow problem, only 16 “best” atoms
are the ones that involve overflow.

In addition to the five benchmark problems we considered, we also tailored our
solvers toPB theories, and submitted them for thePB evaluation 2006 [17]. Our
solver, calledwildcat, won the SATUNSAT-SMALLINT category, in which it solved
all 163 SAT instances. The second best solver solved 153 of the SAT instances in this
category. Except forwildcat, all the participating solvers were complete solvers.

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

vertex cover v=2000 e=4000

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.4)

wsatoip (p=0.1)

(a)vcv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

TSP n=40 WRange=[1..39]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.3)

wsatoip (p=0.1)

(b) tsp

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.7)

wsatoip (p=0.2)

(c) bst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

w-dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.6)

wsatoip (p=0.3)

(d) wdm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

weighted nqueens n=20 w=80 d=10 wrange=[1..19]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.6)

wsatoip (p=0.3)

(e)wnq

Figure 1: Run-time distributions.

23

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-vbc

Time (<=)

Noise

RTD

(a)wsat(plpb)-skc

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-rnp

Time (<=)

Noise

RTD

(b) wsat(plpb)-rnp

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsatoip

Time (<=)

Noise

RTD

(c) wsat(oip)

Figure 2: Robustness:vcv , v=2000, e=4000.

 0

 0.005

 0.01

 0.015

 0.02

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-vbc

Time (<=)

Noise

RTD

(a)wsat(plpb)-skc

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-rnp

Time (<=)

Noise

RTD

(b) wsat(plpb)-rnp

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsatoip

Time (<=)

Noise

RTD

(c) wsat(oip)

Figure 3: Robustness:tsp, n=40, weight range [1..39].

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-vbc

Time (<=)

Noise

RTD

(a)wsat(plpb)-skc

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-rnp

Time (<=)

Noise

RTD

(b) wsat(plpb)-rnp

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsatoip

Time (<=)

Noise

RTD

(c) wsat(oip)

Figure 4: Robustness:bst , v=30, e=240, w=15, weight range [1..29].

24

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-vbc

Time (<=)

Noise

RTD

(a)wsat(plpb)-skc

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-rnp

Time (<=)

Noise

RTD

(b) wsat(plpb)-rnp

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsatoip

Time (<=)

Noise

RTD

(c) wsat(oip)

Figure 5: Robustness:wdm, v=500, e=2000, w=40, k=330, weight range [1..19].

 0
 0.2
 0.4
 0.6
 0.8
 1

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-vbc

Time (<=)

Noise

RTD

(a)wsat(plpb)-skc

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsat(wa)-rnp

Time (<=)

Noise

RTD

(b) wsat(plpb)-rnp

 0

 0.005

 0.01

 0.015

 0.02

256
64

16
4

0.80.60.40.2

 0
 0.2
 0.4
 0.6
 0.8

 1

RTD

wsatoip

Time (<=)

Noise

RTD

(c) wsat(oip)

Figure 6: Robustness:wnq , n=20, w=80, d=10, weight range [1..19].

of
(

n
k

)

computation # of overflow # of best atoms involving in overflow

vcv 152368 97204 0
tsp 8724203 7729844 0
bst 13185212 4324504 0

wdm 18118808 3403398 16
wnq 16155580 8653700 0

Figure 7: Observation on overflow problem.

25

5 Conclusions

We designed a family of extensible SLS algorithms forPLPB theories. The key idea
behind our algorithms is to view aPLPB theoryT as a concise representation of a
certain propositional CNF theorycl(T) logically equivalent toT , and to show that key
parameters needed by SLS solvers developed for CNF theoriescan be computed on the
basis ofT , without the need to buildcl(T) explicitly. Our experiments demonstrate
that our methods are superior to those relying on explicit representations ofPLPB

clauses as sets ofPB constraints and resorting to off-the-shelf local-search solvers for
PB constraints such aswsat(oip).

Clearly, CNF representations ofPB constraints other than the one we used exist
and could be used within a general approach we developed, as long as one can derive
formulas (or procedures) to compute values ofe, f andg. In fact, we can push this idea
even further. For an arbitrary constraint (not necessarilya PB constraint), if we can
evaluatee, f andg in some translation that converts it into a set of propositional clauses,
our general framework yields solvers accepting theories containing such constraints.

Finally, we point out that the formulas we derived use valuesof the form
(

n
k

)

,
which will overflow already for relatively small values ofn, if k is close ton/2. In
our experiments, even though in some cases overflows occurred quite often (which we
replaced with a certain fixed large integer), for the atoms our solvers selected to flip
the computation of virtual counts only rarely involved overflows. Still, in our future
research we will study how to approximate

(

n
k

)

to avoid overflows. Since we only care
about the relative order of the break- and make-counts of atoms, any approximation
that maintains this ordering will be appropriate.

Acknowledgments

We acknowledge the support of NSF grant IIS-0325063 and KSEFgrant KSEF-1036-
RDE-008. We are thankful to the reviewers of the paper for many helpful comments.

References

[1] F.A. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: a backtrack-search
pseudo-Boolean solver and optimizer. InProceedings of the 5th International
Symposium on Theory and Applications of Satisfiability, pages 346 – 353, 2002.

[2] P. Barth. A Davis-Putnam based elimination algorithm for linear pseudo-Boolean
optimization. Technical Report, Max-Planck-Institut für Informatik, 1995. MPI-
I-95-2-003.

[3] B. Benhamou, L. Sais, , and P. Siegel. Two proof procedures for a cardinality
based language in propositional calculus. InProceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science (STACS-1994), volume
775 ofLNCS, pages 71–82. Springer, 1994.

26

[4] H.E. Dixon and M.L. Ginsberg. Inference methods for a pseudo-Boolean satisfi-
ability solver. InThe 18th National Conference on Artificial Intelligence (AAAI-
2002), pages 635–640. AAAI Press, 2002.

[5] D. East and M. Truszczýnski. Propositional satisfiability in answer-set program-
ming. InProceedings of Joint German/Austrian Conference on Artificial Intelli-
gence (KI-2001), volume 2174 ofLNAI, pages 138–153. Springer, 2001.

[6] M.R. Garey and D.S. Johnson.Computers and Intractability. A Guide to the
Theory of NP-completeness. W.H. Freeman and Co., San Francisco, Calif., 1979.

[7] E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-solver. InDATE-
2002, pages 142–149. 2002.

[8] H. Hoos. On the run-time behaviour of stochastic local search algorithms for sat.
In Proceedings of The Sixteenth National Conference on Artificial Intelligence
(AAAI-99), pages 661–666, Orlando, Florida, 1999.

[9] Holger H. Hoos and Thomas Stutzle. A characterization the run-time be-
haviour of stochastic local search.http://www.cs.ubc.ca/˜hoos/
Publ/aida-98-01.ps , 1998.

[10] Holger H. Hoos and Thomas Stützle. Stochastic Local Search Foundations and
Applications. Morgan Kaufmann, San Francisco (CA), USA, 2004.

[11] C.M. Li. Integrating equivalency reasoning into Davis-Putnam procedure. In
Proccedings of the 17th National Conference on Artificial Intelligence (AAAI-
2000), pages 291–296. AAAI Press, 2000.

[12] C.M. Li and M. Anbulagan. Look-ahead versus look-back for satisfiability prob-
lems. InProceedings of the 3rd International Conference on Principles and Prac-
tice of Constraint Programming, volume 1330 ofLNCS, pages 342–356. Springer,
1997.

[13] L. Liu. Computational tools for solving hard search problems. PhD thesis, Uni-
versity of Kentucky, 2006.ftp://ftp.cs.uky.edu/cs/manuscripts/
LiuDissertation.pdf .

[14] L. Liu and M. Truszczýnski. Local-search techniques in propositional logic ex-
tended with cardinality atoms. In F. Rossi, editor,Proceedings of the 9th In-
ternational Conference on Principles and Practice of Constraint Programming
(CP-2003), volume 2833 ofLNCS, pages 495–509. Springer, 2003.

[15] L. Liu and M. Truszczýnski. Local search techniques for Boolean combinations
of pseudo-Boolean constraints. InProceedings of The Twentieth National Con-
ference on Artificial Intelligence (AAAI-06), pages 98–103. AAAI Press, 2006.

[16] V. Manquinho and O. Roussel. Pseudo Boolean evaluation2005, 2005.http:
//www.cril.univ-artois.fr/PB05/ .

27

[17] V. Manquinho and O. Roussel. Pseudo Boolean evaluation2006, 2006.http:
//www.cril.univ-artois.fr/PB06/ .

[18] V.M. Manquinho and O. Roussel. The first evaluation of pseudo-Boolean solvers
(pb’05). Journal on Satisfiability, Boolean Modeling and Computation, 2:103–
143, 2006.

[19] J.P. Marques-Silva and K.A. Sakallah. GRASP: A new search algorithm for sat-
isfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient SAT solver. InProceedings of the 38th ACM IEEE Design Automation
Conference, pages 530–535. ACM Press, 2001.

[21] S.D. Prestwich. Randomised backtracking for linear pseudo-Boolean constraint
problems. InProceedings of the 4th International Workshop on Integration of
AI and OR techniques in Constraint Programming for Combinatorial Optimisa-
tion Problems, (CPAIOR-2002), pages 7–20, 2002.http://www.emn.fr/
x-info/cpaior/Proceedings/CPAIOR.pdf .

[22] R. Sebastiani, Applying GSAT to Non-Clausal Formulas (Research Note).Jour-
nal of Artificial Intelligence Research, 1:309–314, 1994.

[23] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local
search. InProceedings of the 12th National Conference on Artificial Intelligence
(AAAI-1994), pages 337–343, Seattle, USA, 1994. AAAI Press.

[24] J. Walser. SLS PB solverwsatoip, 1997. http://www.ps.uni-sb.de/
˜walser/wsatpb/wsatpb.html .

[25] J.P. Walser. Solving linear pseudo-Boolean constraints with local search. In
Proceedings of the 11th National Conference on Artificial Intelligence (AAAI-97),
pages 269–274. AAAI Press, 1997.

[26] H. Zhang. SATO: an efficient propositional prover. InProceedings of the Interna-
tional Conference on Automated Deduction (CADE-97), volume 1104 ofLNAI,
pages 308–312, 1997.

28

