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Abstract

Some search problems are most directly specified by conjunctionstefd
disjunctions of pseudo-Boolea®B) constraints. We study a logieL”Z whose
formulas are of such form, and design local-search methods to aemmdels of
PLFB theories. In our approach we viewRd.”Z theoryT as a data structure, a
concise representation of a certain propositional conjunctive nowwnal (CNF)
theorycl(T') logically equivalent tdl". The key idea is an observation that param-
eters needed by local-search algorithms for CNF theories, suchlasat, can be
estimated on the basis &fwithout the need to computg(T") explicitly.

We compare our methods to a local-search algorithyat (oip). The exper-
iments demonstrate that our approach performs better. In orderstgr oip) to
handle arbitraryPL" 2 theories, it is necessary to represent disjunction® Bf
constraints bysetsof PB constraints, which often increases the size of the theory
dramatically. A better performance of our method underscores theriamue of
developing solvers that work directly dPL"Z theories.

1 Introduction

We propose a stochastic local-search solver for theoriesviersion of propositional
logic, in which formulas are Boolean combinations of pseBdolean constraints.

Inrecent years, propositional logic has attracted conalie attention as a general-
purpose modeling and computational tool well suited fovisg) search problems. For
instance, to solve a grapghcoloring problem for an undirected graph we construct
a propositional theor{” so that (1) models df’ correspond td:-colorings ofG, and
(2) there is a polynomial-time method to reconstruéteoloring of G from a model
of T'. Once we have such a thedfy we can use a satisfiability solver to compute a
model of 7", and then reconstruct from it the correspondingoloring of G. If T has
no modelsG has nok-colorings.

Instances of many other search problems can be encodedpmssii@nal theories
in a similar way. This modeling capability of propositionadjic has been known for a

*This paper combines and extends results included in cordengspers [14, 15].



long time. With recent dramatic advances in propositioatisfiability [23, 12, 26, 19,
20, 7], state-of-the-art SAT solvers can often decide &altiity of sets of hundreds
of thousands and even millions of clauses. That makes th®agipto solving search
problems outlined above computationally viable and of tarifal practical interest.

There are however limitations. The repertoire of operatweglable for building
formulas to represent problem constraints is restricteBlamlean connectives. More-
over, since satisfiability solvers usually require CNF tiesoas input, for the most part
the only formulas one can use to express constraints areedasince clausal repre-
sentations of even quite simple problem constraints aemaftry large, the use of SAT
solvers as a general problem solving tool is hindered.

Recognizing this problem researchers proposed extengiotie basic language
with the equivalence operator [11], with cardinality atof8s 5] and with pseudo-
Boolean constraints [2]. They also developed more genehetis capable of comput-
ing models of theories in the enriched syntax.

The extension most relevant to our work is thatpsieudo-Boolean constraints
(PB constraints, for short), that is, expressions represgrtiteger constraints over
binary domains PB constraints generalize propositional clauses and set&afon-
straints, orPB theories generalize propositional CNF theories. Sifd¢B constraints
frequently appear in specifications of search problems itnportant to design fast
methods to compute models #B theories. To the best of our knowledge, the first
such solver was introduced in [2], followed with solversatédsed in [25, 1, 21]. More
recently several new solvers fétB theories were developed; we refer to [16, 18] for
details and references.

In this paper, we focus on an extension of the formalisn¥8ftheories. Specifi-
cally, we consider theories in which formulas &eolean combinatiorfsof PB con-
straints. We call this formalism thpropositional logic with pseudo-Boolean con-
straintsand denote it by?ZL””. Under the restriction to Boolean combinations of the
so calledcardinality constraintshis logic was first considered in [5] and a complete
solver for theories in this logic was described there, a$. wel

In this paper, we drop the restriction from [5] and considepBan combinations
of arbitrary PB constraints. In our main contribution we propose a locarde al-
gorithm to compute models for theories in the logié”?. In our work we built on
ideas first used imalksat, one of the most effective local-search satisfiability sodv
for propositional logic [23]. In particular, as malksat, we proceed by executing a
prespecified number dfies. Each try starts with a random truth assignment and con-
sists of a sequence of local modification steps cdlipd. Each flip is determined by
an atom selected from amsatisfiectlause. We base the choice on a measure of how
much the corresponding flip changes the degree to which theses in the theory are
violated. In designing such measures, we are guided by theepts of thebreak-
countand make-counused inwalksat, which are defined as the numbers of clauses
that become unsatisfied and satisfied, respectively, asith oés: flip.

A straightforward extension of these concepts to the caseIdf® makes each

1we give a more formal definition later in the paper.
2We only focus on conjunctions of disjunctions BB constraints. Every gener@L” B formula has an
equivalent representation as conjunctions of disjunstwPB constraints.



PLP® clause contribute at most 1 to theeak-count or make-count of an atom. Our
implementation of this method does not perform well in ekpents. Therefore, we
present and study here an alternative approach, in which adifynthe definitions
of the break-countand make-counby exploiting the fact thatPB constraints have
equivalent representations by means of propositionatiggo_etT be aPL”? theory
and letT” be its propositional-logic equivalent (with a!B constraints “compiled”
away). We define the break-count of an atenin 7' as the number of clauses in
T’ that become unsatisfied after we flip We define the make-count afsimilarly.
An important point is that we do not computé explicitly in order to determine the
break-count and the make-count @f We estimate these measures directly on the
basis ofT alone. We note that this basic idea was proposed and use@]inn[2an
effort to extend local-search methods from CNF to arbitpargpositional theories.
Our setting ofPL? theories is much more complex. For instanB&-constraints are
not formulas in the syntax of logic. Thus, the implementatid the idea developed in
[22] does not apply in the case we consider here.

In the paper, we describe two basic implementations of oneige approach and
discuss experimental studies of their performance on abgearch problems: the
graph vertex-cover problem, the traveling salesman proptee bounded spanning-
tree problem, a variant of the graph dominating-set probland the weightech-
gueens problem.

We studied the performance of our algorithms and compatedtiat ofwsat(oip)
[25]. Wsat(oip) was designed to compute modelsiB theories. To use it on arbi-
trary PLTP theories, we proposed and implemented a transformatianréfpéaces
PLFP clauses with sets aPB constraints. Whenever necessary (that is, whenever an
input PLYZ theory contains disjunctions @B constraints), we used this transforma-
tion to preprocess inputL”? theories prior to invokingusat (oip).

The encodings of the problems we chose fall into two claseas:that does not
require Boolean combinations &B constraints in a clause, and one that does. For the
first class of encodingsysat(oip) and our solvers accept the same input. Encodings
in the second class are preprocesseddart(oip) by means of the transformation we
mentioned above. In this case, the comparison is not dinece she solvers work on
different inputs.

Our experiments show that our methods (at least one of thedweut(oip) per-
form similarly on instances from the first class. Howeven salvers perform sig-
nificantly better on instances from the second class, underg the importance of
developing solvers that work directly dPZ.”? theories.

2 Logic PL"P

A pseudo-Boolearconstraint PB constraint for short) is an integer-programming
constraint of the form
I <wizy + ... +wpxr < u, (1)

30ne of the reasons may be that the simple treatme®idf Z clauses does not take into account the
structure ofPLY B clauses and its components.



wherez; are integer variables, each with the dom&in1}, w; are integers called
weights andl andu are integers called thewer boundand theupper boundrespec-
tively. An assignment of Os and 1s ta:s is amodelof (or satisfie} the constraint (1)
if

I <wv(zr) + ... +wpv(zg) <u
holds.

If one of the bounds in the constraint (1) is missing, we dalnormal PB con-
straint. Typically only normaPB constraints are considered as eveiy constraint is
equivalent to a set of two norm&lB constraints. For us it will be more convenient to
consider (generalB constraints, as we defined them above.

To simplify the notation, we will write &B constraint (1) as

lwiz, ... wezklu. 2

We omit the appropriate bound for normBB constraints. Ifw; = 1, or —1, we

simplify the notation further and write; and —z; for 1z; and —1x;, respectively,
when specifying the?B constraint (2). In particular, if all weights; are equal to 1,
we write thePB constraint (2) as

l[l’h PN ,mk}u.

We refer toPB constraints with all weights equal to 1 eardinality constraints

By establishing the correspondence between integer valaed 1 on the one hand,
and truth values (false) and: (true), respectively, on the other, we can view integer 0-1
variables as propositional atoms. Furthermore, we vi&Wconstraints as represen-
tations of propositional formulas. Specifically, we saytth@onstraint (1) represents
a propositional formula, built of the same variables; interpreted as propositional
atoms, if (1) andp have the same models (modulo the correspondence betweth
and{f, t}). In particular, a (normalPB constraint

(1*m)[xlv"'7Ikaiy17"'77y7n] (3)
represents a propositional clause
1 V... VagVyp V...V Ypn,. 4)

In this way, PB constraints generalize clauses, and setBBfconstraints generalize
propositional CNF theories. As a special case, a propositiatoma is equivalent to
the PB constraintl[a] and a negated propositional atem is equivalent to the’B
constrain[—a].

A PB theoryis a set of PB constraints. Many search and optimization problems
have concise encodings B® theories, often significantly smaller than their respectiv
CNF representations. Hence, researchers started extetadinniques developed for
and implemented in SAT solvers to handt® theoriedirectly [2, 25, 1, 4, 21, 5].

In this paper we are interested in an even broader classarfi¢ise namely proposi-
tional theories consisting of Boolean combination®éf constraints, viewed as propo-
sitional formulas. We refer to the formalism we are aboutdealibe apropositional



Algorithm 1 wsat(plpb)-generic(T).

INPUT: T —aPL"® theory
OUTPUT: I — a satisfying assignment @f, or no output
BEGIN
For ¢ < 1to Maz-Tries, do
I — randomly generated truth assignment;
For j « 1to Maz-Flips, do
If I =T thenreturn I;
C « randomly selected unsatisfied clause;
a — Heuristic(T, I,C);
I — Flip(I,a);
End for of j
End for of i

MOX®NOTAWNE
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logic with PB constraints(or PL”Z, for short). While it can be given a more general
treatment, in this paper we focus only on a certain classrofidtas.
A PLFB clause(or, simply, aclausg is an expression of the form

WiV...V Wy, (5)

wherelV;’s are PB constraints. APL”? theoryis any set ofPL”? clauses.

The notions ofsatisfiabilityand amodelof a PB constraint extend in the natural
way to PLY? clauses and theories. We wrife= F, when[ is a model of aPL"?
clause or aPL"? theoryE.

3 Local-search Algorithmsfor the Logic PL™?

In this section we describe a local-search algorithsat(plpb)-generic designed to
test satisfiability of theories in the logieL” 2. It follows a general pattern afalksat
[23]. The algorithm executeslaz- Tries independentries. Each try starts in a ran-
domly generated truth assignment and consists of a seqoénpedo Mazx- Flips flips,
that is, local changes to the current truth assignment. Tdaithm terminates with
a truth assignment that is a model of the input theory, or witoutput at all (even
though the input theory may in fact be satisfiable). We predadietailed description
of the algorithmwsat(plpb)-generic in Algorithm 1.

The procedurdfeuristic picks an atom from claus€ that was chosen in the pre-
vious step. A typical heuristic function selects betweemeeedy choice and a random
choice based on some probabilitgalled thenoise ratio It is known that the existence
of a random move can guarantee the local-search solversapefrom local minima.

To obtain a concrete implementation of the algoritlgat (plpb)-generic, we need
to define aheuristicfor the choice of an atom in an unsatisfied clause. In thispape
adapt to our needs two effectiuailksat heuristics:SKC[23] andRNovelty+?9, 8, 10].
Both heuristics are defined for inputs given in terms of CNéoties and rely on two



Algorithm 2 FunctionSKC(T, I, C).

INPUT: T -aPL? theory
I - a truth assignment d&f
C - an “unsat” clause from which an atom is chosen
OUTPUT: « - an atom chosen by the heuristic function
BEGIN
For each atomz in C, computebreak-count(x);
If any of these atoms haseak-count O then
randomly choose an atom with break-count O and return it;
Else
with probabilityp, return an atom with minimum break-count(x);
with probabilityl — p, return a randomly chosen atomdh
End If
ND
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important quantities assigned to each atom given a trutigrasent. They are the
break-countof an atom and thenake-counbf an atom. Théreak-countof an atom
denotes the number of clauses that will become unsatisfibd &om’s value is flipped
to its dual value. Similarly, thenake-counof an atom denotes the number of clauses
that will become satisfied if the atom’s value is flipped taditgl value.

It is straightforward to generalize these two concepts &odhase of an arbitrary
PLFP theoryT as we described in Section 1. However, the resulting héesigr
choosing an atom to flip do not perform well in our experimeifitserefore, we propose
a different approach based on thigtual break-countand thevirtual make-counof an
atom in7T. These two quantities are defined as the break-count anddke-oount,
respectively, of an atom in a certain CNF the@ryequivalent taI'. The termvirtual
is to underline that we do not construct explicitly (its size would often be too large)
but compute the two counts directly from

We discuss how to compute virtual counts later in this sactidssuming that
we have the two counts for each atom, we defined two instarigbf the function
Heuristic, SKC and RNovelty+, presented in Algorithms 2 and 3. RNovelty+,
we use theageof an atom, which records when the atom was lastly flipped. thma
that has the maximum age is the atom that was flipped mostthgten

Finally, one consideration in implementing these algonishis that it is time con-
suming to calculate the break-count and the make-count @ft@am. Therefore, re-
searchers often use cached break-count and make-countaibamnin the heuristic
function. Initially, the break-count and the make-counéath atom is computed with
respect to the initial truth assignment using their definisi and stored in the cache.
Then, within each try, the cache will be updated each timer @b atome is flipped.
To be precise, we update, in the cache, the two counts of an layotheir changes,
Abreak-count(x) and Amake-count(x), assuminge is the atom flipped.

4In some other implementations, the atom with the minimum age isrta¢hat was flipped most recently.



Algorithm 3 FunctionRNovelty+(T, I, C).

INPUT: T -aPL? theory
I - a truth assignment d&f
C - an “unsat” clause from which an atom is chosen
OUTPUT: « - an atom chosen by the heuristic function
BEGIN
1.  With probabilitywp, return a random atom fro;
2. For each atomz in C, w(x) < break-count(x) — make-count(x);
3. agemq: < the maximum age of atoms ;
4. best — the list of atomse with the leastw(z);
5.  second < the list of atomse with the second least(z);
6. diff — w(z) — w(y), wherez € best andy € second,;
7. If Ja € best such that its age& age,qz, returna;
8
9

If diff > 1, then

with probabilitymin{2 — 2p, 1}, return a random atom froiest;
10. with probabilityl — min{2 — 2p, 1}, return a random atom frosecond,;
11. EndIf

12. With probabilitymaz{1 — 2p, 0}, return a random atom froiest;
13. With probabilityl — maz{1 — 2p, 0}, return a random atom frogecond;
END

3.1 Virtual break-count and make-count

These two concepts depend on a particular representatianPéf ® theory T as a
multisetof propositional clauses;/(T"). We allow repetitions of clauses in sets and
repetitions of literals in clauses, as by doing so we sim@dme calculations.

We recall that we viewPB constraints as propositional formulas. GiverP&
constraintWV, by Ty, we denote a certain CNF formula (which we also view as a
multiset of its clauses) such thdjy is logically equivalent tdV. We will specify Ty
later.

Let us consider &L"” clauseC of the form (5). We define:l(C) to be the
multiset of propositional clauses that are disjuncts in G- formula obtained by
replacing inC' eachPB constrainti?/; with the CNF formulélyy,, and by applying the
distributivity law. For aPL"? theoryT we then set

c(T) = U{cl(C): CeT}.

Let I be a truth assignment. We define tfigual break and make-count®f an
atomz in a PLY® theory T with respect tol as the break- and make-countsof
in ¢l(T') with respect tol. We denote these two quantities @sak-countr(x) and
make-countp(x), respectively (we drop the reference idrom the notation, ag is
always determined by the context). It follows that

break-countr(x) = break-count ,ry(z) = Z{break-countcl(c)(w): CeT}.



Similarly,
make-countr(x) = make-count o1 (x Z{make count ooy (z): C € T}.

We now estimaté)reak-countcl(c)(:v) andmake-count iy (). To this end we
need more notation. Lél” be aPB constraint,/ an interpretation angd a proposi-
tional atom. ByI® we denote the truth assignment obtained fiohy flipping the truth
value ofz. Next, we define three sets of clauses that are relevahtdok-count ;¢ (x)
andmake-count .oy (x) (We once again omit in the notation):

1. Ew(z) = the set of clauses ify, that are satisfied by but not by7*

2. Fw (z) = the set of clauses iy, that are not satisfied bi/but are satisfied by
I.’Tc

3. Gw(z) = the set of clauses iy, that are not satisfied biynor by I*.

We observe that ifc does not appear i, Ew(z) = Fw(z) = 0. We set
e(x) = |Ew (x)|, f(z) = [Fw ()| andg(z) = |Gw ()].

We now have the following theorem.
Theorem 1. Let C be aPL"® clause of the form (5). Let/ be the transformation
we define above. Let(z), f;(x), andg;(z)’'s be the cardinalities of the three sets
Ew,(x), Fw,(z) and Gw, (z) with respect to an atom and ¢/. Then we have the
following equations:

n n

break-count iy () = [[(ei(@) + gi(2)) — [[ 9ia)- ©)
=1 =1
and .
make-count .oy () = H(fl )+ gi(x ng @)
Proof. Equation (6). Every clause ilnll(C’) is of the form D1 ...V D,, where

D; € Tw,, 1 < i < n. For such a clause to get “unsatisfied” with the flipeofall D;’s
in cl(C") must satisfy the following two conditions:

1. eachD; is chosen fronEy, () U Gw, (x); and
2. atleast ond; is chosen fronEyy, ().

Since Ew, (z) N Gw, (z) = 0, the number of clauses iel(C) such that eactD; is
chosen fromEw, () U Gw, (x) is given by

n

H(ei(l’) + 9i(2)).

i=1
Among these clauses, the ones in which eBghs chosen fromGyy, (x) do not con-
tribute to the break-count af. The number of such clauses is given by

ng‘(fﬂ)

Thus, the equation (6) follows. The proof of the equationig&imilar. |



3.1.1 Estimatinge, fandg

To make formulas (6) and (7) complete, we need to specify a (dFesentatiofiy;
of a PB constrainti¥ and, given this representation and a truth assignrhgior each
atomz find formulas fore, f andg (in this section, we omit in e(x), f(x) andg(x)
aszx always exists in the context).

We first consider the case offaB constraintiV:

W =lway,...,wag]u,

where allw; arenon-negative For each atom; we introduce new atoms{ 1< <
w;. We then define a cardinality constraint

W' =llai,...,a}", ... a, ..., a4 % u,
and a set of formulas
EQ={a;=al:1<i<k1<j<w}

The PB constraint and{W'} U EQ are equivalent in the following sense. There
is a one-to-one correspondence between model§ aind models of W'} U EQ).
The corresponding models coincide on the{gat, ..., ax}. In the case of the theory
{W’} U EQ, the part of the model contained {1, . .., a;} determines the rest, as
models of{ W’} U EQ must satisfy formulas i’ Q.

Let setS consist of the following clauses:

L4y V...V _|£C7;u+1 (8)
for every(u + 1)-element subseftz;, , . .., z;,,, } of {ai,...,a{", ... a},...,a*},
and

3Ci1V~-~Vl‘iK71+1 (9)
forevery(K —I+1)-element subs€tz;,, ...,z , }of {a},...,a}* ... a},...,a}*},

whereK = > w;.
The following theorem is an easy consequence of Propogitiofrom [3], It states
that the cardinality constraifit’”’ is equivalent taS.

Theorem 2. Let W’ be the cardinality constraint and the set of clauses we defined
above. Then a truth assignmehsatisfiesV’ if and only if I satisfiesS.

Thus, W is equivalent toS U EQ (in the same sense as before). Consequently,
W is equivalent (has the same models) as the multiset of dautstained froms' by
replacing each atonma! with a;,. We defineT}y to be this multiset. We also note that
clauses in this multiset may contain multiple occurrendéb@same literals.

We do not simplifyTy, further (that is, we do not eliminate duplicate clauses nor
duplicate occurrences of literals in clauses) since theisetilform of Ty, makes it
easier to compute the cardinalities f and g of the sub-multiset¥y ., Fi,, and
Gw, of Ty and their cardinalities, f andg. Namely, we have the following formulas
fore, f andg:



0 case 1
e= (Iév——il_f&-ul) - (K—J\l[+1) case 2 (10)
(") = (L) otherwise
0 case 1
f= () — () case2 (11)
(1) — (25%)) otherwise
(K—J\é+1) + (uil) case 1
9= (K—]\;—H) + (IZ;T) case 2 (12)
(uil) + (KN—_lj-]l) otherwise.

Case 1 covers all situations whemloes not occur if. Case 2 covers situations when
z occurs inV and! = z. In these formulas we use the notatish= > w;, P =
Dora; Wi, N =3 p,, wi, and writew for the weight of atonz in W (if = occurs
in W).

We now provide arguments for each case of (10), (11), and (h2he following,

let I be atruth assignment. Letus assulie= {a}: 1 <i <k, 1 <j <w;, I }~a;}
andP = {al:1<i<k 1<j<uw,IEa} ltisclearthatN = |N]| and
P=1P|.
Case 1. Sincex does not occur i, by the definition of setéy , andFyy ,, e =
f = 0. Therefore, (10) and (11) are correct in this case. By thenitiefn of Gy .,
clauses irGyy . are those satisfied by neithenor I*. Sincexr does not occur iV, all
clauses that are not satisfied bjorm precisely the se¥. That is, a claus€’ € G
if and only if

1. C is obtained from a claus€’ in S of the form (8) such tha€”’ contains only
atoms fromP; or

2. C'is obtained from a claus€”’ in S of the form (9) such thaf” contains only
atoms from\/.

There are(uil) clauses of the first type ar(d, 7 .1) clauses of the second type$h

Since we do not remove duplicate clauses when we genéyatiom .S, the number
of clauses irGyw,,, is precisely(,. ) + (,};). Thus, case 1 of (12) holds.

Case 2. We first look at the case 2 of the equation (10). In this casegcurs inW/
and/ = z. Let us assume that = a;. Sincel = ay, {al,...,a{*} NN = 0.
The definitions ofS and Eyw,, imply thatC' € Eyw,, if and only if C' is obtained
from a clauseC” in S of the form (9) such tha€’ contains at least one atoaf,
1 < p < wy, and for every other disjungtof C’, y € N. SinceN = |N|, there are
(I](V_*;j’rll) — (K_Alfﬂ) such clause§”. Since when generatingy, from S we do not
remove any clauses, the formula (10), case 2, follows.

With the same assumption, a clauséelongs tafyy . if and only if C is obtained
from a clause”’ in S of the form (8) such thaf” contains at least one atoamf, for
somel < p < wy, and for every other disjungtof C’, y € P. SinceP = |P|, there
are(,”,) — (".%") such clause€"”, which is also the number of claus€s Thus the

u+1 u+1
formula (11), case 2, holds.

10



For the formula (12), again, a clauéebelongs toGyy ., if and only if one of the
two conditions listed in case 1 is true. Since this time W and! = z, the number
of the first type of the clauses becorr(é%j:{l), while the number of the second type
of clauses does not change. Therefore, case 2 of the ford2jdélds.

Case 3. The reasoning is similar to that in case 2. This tim@ccurs inWW andI [~ z.
Again we assume that= a;. Sincel } a1, {al,...,a{*} NP = . The definitions

of S andEyy, imply thatC € Ey . if and only if C' is obtained from a claus@’ in S

of the form (8) such thaf”’ contains at least one atom§, 1 < p < wy, and for every
other disjuncty of C’, y € P. SinceP = |P|, there arg" ") — (,%,) such clauses
C’. Since when generating, from S we do not remove any clauses, the formula
(10), case 3, follows.

With the same assumption, a clauséelongs talyy . if and only if C is obtained
from a clause”’ in S of the form (9) such thaf” contains at least one atosmj, for
somel < p < ws, and for every other disjungtof C’, y € N. SinceN = |\, there
are(K_]\l[H) - (;(V:lljrll) such clauseé”, which is also the number of claus€s Thus
the formula (11), case 3, holds.

For the formula (12), a claus€ belongs toGyy,, if and only if one of the two
conditions listed in case 1 is true. Since this time& W andI [~ x, the number of
the second type of the clauses becor(ﬁgﬁrll), while the number of the first type of
clauses does not change. Therefore, case 3 of the formylagids. |

To deal with negative weights BB constraint may contain, we follow a standard
and well known normalization method. We briefly recall itéaelcet us consider B
constraint:

W =l[wiay, ..., WnG;m, Wnt1Gmil, - - - WEGE|U (13)

wherew; < 0,1 <i<m,andw; > 0,m+1<1i<k. Let
W' = (Il + d)[wral, ..., WG, Wy i1Gmi1, - - -, Wrag](u + d) (14)

whered = >~,_,  w;andaj, 1 < i < m, are new 0-1 variables. We now define
Ty to be the CNF theory consisting of all clauseg g, in which we replace; with
—a; and—a), with a;.

One can check thal’ is equivalent to the set dPB constraints consisting i’
and PB constraintsi; + a; = 1, 1 < i < m. Thus, sincéV’ is equivalent tdlyy-, it
follows thatI¥ is equivalent tdl'y;, as defined above.

Moreover, it follows thate, f andg can be computed using the formulas we de-
veloped earlier with the following modifications: (1) theumals in the formulas must
be replaced witti + d andu + d, whered is specified above, and (2)df, is assigned
a negative weight, the conditioh = a;, must be replaced with [~ a; (andvice
versg. In this way, the computation of virtual break- and makewtdor arbitraryPB
constraints can be accomplished without any overhead.

We will now illustrate how to compute the virtual break- andka-count of an
atom.

Example. LetC = WivWovWs, Wherer = 2[&1, as, a3]2, Wy = 4[2(12, 1(137 40,4]5,
andWs; = 3[100,5, 3as, 8(16}10
Let I = {ay, a3, a4, a5} be the truth assignment. We first note that:
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1. nW,Ki=3N1=1,P, =2
2. InWy, K9 =7,Ny =2,P, =5
3. InW3, K3 =21, N3 =8, P3 = 13.

Now let us suppose we flip atom. We recall thatl |~ a,. Based on the formulas
for e, f, g, we have the following result:

1. Sinceay; € W1, case 3 applies td/; and so:

o Pituwi\ (P _(2+1) [ 2 .

R TR u+1)  \2+1 241)
f— N1 Nl—w% _ 1 1-1 _
TA\K L+ Ki—lL+1) \8-2+1 3—2+1)

Py Ny —w? 2 1-1
— = :O
o <u1+1)+(K1—l1+1 o41) T 32241

2. Sinceay € W, case 3 applies td/; and so:
o = Potwi\ (P _ (5+2) [ 5 _-
27 L ug+1 ur+1)  \5+1 5+1)
f— N2 Ngfw% o 2 2—2 -0
TRy -+ 1 Ky—lh+1) \7-4+41 7T—441)

o P2 + NQ*M% - 5 + 2—2 —0
N=\a+1) T\ Fo—to+1) = \5+1) " \7—a+1) ~
3. Sinceay ¢ W3, case 1 applies tt/3 and so:

€3 = 3:0

(P, Ny (1B, 8 s
9= \ug +1 Ks—ls+1) — \10+1 21-3+1)

We can now compute the break- and make-count;afsing the formulas (6) and
(7):
3 3
break-countc(a) = [ [(ei+gi)—] ] 9 = (1+0)x (74+0) x (0+78)~0x0x 78 = 546
i=1 =1
3 3
make-countc (ag) = H(fﬂrg,)—H gi = (040)x (040) x (0+78)—0x0x78 =0

=1 1=1
A
We used the formulas (6) and (7) for the break- and make-doutie heuristics
SKC and RNovelty+ given in Algorithms 2 and 3, respectively. We used these two
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heuristics with our generic local-search algorithm andchmt&d its two instantiations
wsat(plpd)-ske andwsat (plpd)-rnp, respectively.

We point out that, in the formulas we have derived, we useeghf the form
(Z) Such values exceed the maximum integer that can be repedsi@na (typical)
computer even for relatively small values of if k is close ton/2. In our imple-
mentations, we replaced each occurrence of such overflowanitertain fixed large
integer. However, we observed that, even though overflowrgaquite common when
we ranwsat(plpd)-ske and wsat(plpb)-rnp in our experiments, it is rarely the case
that wsat (plpb)-ske or wsat(plpb)-rnp chose the “best” atoms (according to their
heuristics) whoséreak-count or make-count computation involves overflows. We
will illustrate this phenomenon in the following sectionhds the overflow does not
cause much problem t@sat(plpb)-ske and wsat(plpdb)-rnp in those instances. It is
possible to use floating point arithmetic and Stirling’s pgmation to approximate
(Z) We did implementwsat (plpb)-ske andwsat(plpb)-rnp following this direction.
With floating point numbers, we can represent significarattgér numbers in the com-
puter than integer representation. However, we still olegkthat overflow happened in
some cases, with much less frequency. We also observedhbed,is a dual problem
associated with floating point arithmetic, which is the logprecision. With a single-
precision 32-bit floating point number, only 23 bits are userkpresent the mantissa.
That means, we have less than 10 decimal digits in the margisd, consequently, we
often cannot distinguish between two large numbers of theesarder.

Finally, we comment here that there is more than one way tesept aPB con-
straint as an equivalent CNF theory. In particular, our apph is not the most concise
representation. Actually, the size of our representasaxponential to the size of the
PB constraint. We could adopt other more concise representatiHowever, those
representations usually rely on auxiliary new atoms andemmmmplex equivalence
formulas to reduce the exponential blow-up in size. Sudhctire hinders the per-
formance of wsat-like local search algorithms [14]. Theref we did not use those
representations to compute virtual counts.

4 Experiments, Results and Discussion

We performed experimental studies of the effectivenessiofazal-search algorithms.
For testing we selected five families of instances geneffabed five search problems.

4.1 Benchmark problemsand instances

We describe first the problems we considered, and illustratethey give rise to spe-
cific PLTP-theories that can be used in testing.

Vertex-cover problem. Let G = (V, E) be an undirected graph, wheveand E are

the sets of vertices and edges@®f respectively, and let be a positive integer. The
objective is to find a s/ C V' with at mostk elements and such that every edge has
at least one of its vertices it (such setd/ arevertex coversor G).
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To build a PL"? theoryvev(G, k) encoding the vertex-cover problem, for every
vertexv € V we introduce an atorin, to represent the statementgertexv is in a
vertex coverWe include invcv (G, k) the following clauses:

1. in, Vin,, for every edgdu,v} € E
These clauses enforce the constraint defining vertex covers

2. [iny:veV]k
This clause guarantees that a selected subset has ak wersices.

It is straightforward to check that models ofv(G, k) are in one-to-one corre-
spondence with those vertex covers(othat have at most elements. In fact, if we
represent a truth assignment by a set of atoms that are titienindels ofvcv (G, k)
are precisely sets of the forfin, : v € U}, whereU is a vertex cover o&F with at
mostk elements.

To create instances for testing solvers, we randomly gée&E0 graphs of 2000
vertices and 4000 edges. For each graph we selected aebjatimall integer as the
bound for the size of the vertex cover in such a way that thelpro still had a solu-
tion. We used these instances to instantiate the encodieg gbove, and obtained the
family vcv of 50 satisfiablePB theories.

Traveling salesperson problem. Let k£ be a non-negative integérandG a complete
undirected weighted graph, in which each edgev} is assigned an integer weight
WW,S. The goal is to find a Hamiltonian cycle @ such that the sum of the weights
of the edges in the cycle is at mdst

To specify the problem as BL"Z theory we use propositional atorasd, ; and
euw, Wherel < i <|V|andu,v € V. Therole of atomsrd, ; is to define an ordering
(permutation) of” specifying a Hamiltonian cycle. Specifically, an atoma,, ; stands
for the statementy is thei*" vertex in the cycleThe role of atoms,, , is to determine
the edgeqw, v} in the graph that are included in the Hamiltonian cycle gilgrthe
atomsord, ;. We use the atoms, , to state the constraint bounding the length of the
cycle. We define the theonyp(G, k) to consist of the following clauses:

1. 1ord, ;: v € V]1, for everyi, 1 < i < |V|
1lord,;: 1 <i < |V]]1, for everyv € V
These clauses enforce the ordering constraints: for eyéngre is exactly one
vertex in the position in the cycle; and for every vertexthere is exactly one
position in the cycle containing.

2. —ordy; V —ordy ip1 V ey, for everyu, v € V and for everyi, 1 <i < |V
“ey,y V Tordy; Voord, i+1, for everyu, v € V and for everyi, 1 <i < |V|
Note: when incrementing indices by one, we assume aritiematidulo|V'| on
the set{1,...,|V|}; in particular,|V| + 1 = 1.
These clauses define the edggs that form the Hamiltonian cycle specified by
the permutation given by atorasd,, ;.

3. [I/Vu,veu,,v Tu,v € V]kﬁ
This clause enforces the bound on the length of the cycle.

5SinceG is an undirected graph, we hali, , = W, ,,
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One can verify that the atoag ,, in a model oftsp(G, k) form a Hamiltonian cycle
of length at most: and that each such cycle is determined by a modedgiG, k) (in
fact, by2|V| models as there ai&’| choices for the first vertex and two directions in
which the cycle can be traversed).

For testing, we randomly generated 50 weighted completehgraf 40 vertices.
The weight of each edge was uniformly chosen from the rdhge#9]. Next, for each
instance we selected a relatively small integer as the T8Rdm such a way that the
problem still had a solution. These graphs together withetimoding specified above
yielded the familytsp of 50 satisfiablePL”? theories.

Bounded spanning-tree problem. Let G = (V, E) be an undirected graph with each
edge{u,v} € E assigned an integer weight,, ,. Further, letw be an integer. The
goal is to find a spanning tréé in G such that for each vertex € V, the sum of the
weights of all edges ifi" incident tox is at mostw.

Let us assume thal’| = n. We observe that a s&t of edges of a graply is
a spanning tree fofs if and only if there is an ordering (permutationy, . .., z,, of
vertices ofG such that

(ST) for every: > 1, there is exactly ong such thatl < j < ¢and{z;,z;} € T

To build thePL? B theorybst(G, k) encoding the bounded spanning-tree problem,
we use atomsrd, ; andte, ,, wherel < ¢ < nandz,y € V. Atomsord,; are
meant to establish an ordering (permutation) of vertic&s,iwhile atomge,, , express
the statement that the edge, y} € T, written so that: precedes; in the ordering
determined by atomsrd, ;, is chosen into the spanning tree. To model the desired
properties obrd, ; andte, ,, the condition (ST), and the weight-bound constraint on
vertices, we include in the theobyt(G, k) the following clauses:

1. lford,; : x € V]1,foreveryi =1,....n
llord,; :i=1,...n]1, foreveryz € V
These clauses generate an ordering of verticés in

2. mordy; V —ordy, ; V Ttey ,, foreveryl <j <i<n
These clauses ensure that each edge selectEdstoepresented by the pair of
its endpoints ordered according to the ordering specifiedtbgns of the form
ordy ;.

3. (n—1)ftegy: {z,y} € El(n —1)
This clause guarantees that exaeily 1 edges are selected infa It is implied
by other constraints and could be omitted.

4. —ordy ; V 1[tey ,: {x,y} € E]1, foreveryi > 1landy € V
These clauses model the condition (ST)

5. Wy ytesy: {z,y} € E; W,y otey ot {z,y} € Elw, foreveryy € V
Note: the “;” stands for the operator of concatenation of tists of weighted
propositional atoms.
These clauses ensure the weight-bound constraint on egelx ye
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To createPL" B -theories for testing we generated 50 random graphs of 3zesr
and 240 edges. The weight of each edge was uniformly chosemtfre rang¢l..29).
We setw to 15, as forw = 15 all instances were satisfiable. The encoding of the
bounded spanning-tree problem instantiated with thesghgrdetermined the family
bst of 50 satisfiablePB theories.

Weighted dominating-set problem. This is a variant of the dominating-set problem
[6]. Let G = (V, E) be a directed graph. Each edge v) € E has an integer weight
W, . Letw be an integer. A seD C V is w-dominatingif for every vertexv € V
one of the following three conditions holds:

1. v e D;

2. the sum of weights of edges “fromto D" is at leastw:
w < Z(v,u)EE,uED W%U

3. the sum of weights of edges “from to v” is at leastw:
w < Z(u,v)GE,uGD WU,U'

Given a weighted directed gragh an integerw, and a positive integek, theweighted
dominating-set problemsonsists of finding av-dominating set of7 with at mostk
elements.

As in the other three cases, instances of this problem camdmmled as &L
theories so that models of theories correspond to solutmtige problem. We refer to
[13] for a detailed description of the encoding. Here we anbntion that it utilizes
PLPPB clauses that are disjunctions B3 constraints.

We generated 50 random graphs of 500 vertices and 2000 edesweight of
each edge was generated uniformly frfm19]. The value ofw was set to 40 and
to 330. All instances we generated were satisfiable. Tharess and the encoding
yielded the familywdm of 50 satisfiablePL”? theories.

Weighted n-queens problem with an additional separation constraint. It is a vari-

ant of the well-knowm-queens problem. We are givenax n chess board, with each
square(i, j) assigned an integer weigh; ;. Given two integersv andd, the goal is

to find an arrangement af queens on the board so that (1) no two queens attack each
other (standard constraint); (2) the sum of weights of theasegs with queens does not
exceedw (hence the term ‘weighted”); and (3) for each quégrthere is at least one
qgueen’ in a neighboring row or column such that the Manhattan destdetweer)
and@’ exceedsl! (a separationconstraint) . We refer to [13] for the encoding of this
problem as aPL”? theory and note only that it contains clauses that are ditijpms

of PB constraints.

We generated 50 random weight2@ x 20 chess boards, where the weights are
uniformly chosen from rangf..19]. The value ofw was set to 80 and to 10. All
instances we generated were satisfiable. The encoding iti3he&se 50 instances of
the problem gave rise to the last familyng, of 50 satisfiablePL”? theories we used
in testing.

We conclude this subsection by pointing out that all encgslotiscussed here make
use of PB constraints. It makes the encodings more concise than arfydbidoding
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of the same problems we are aware of. For instance, jusPdheonstraint is needed
to enforce the upper bound on the number of vertices in axerdeer (clause (2) in
the theoryvev (G, k)), while the best CNF representation known to us @g¥ | 1g k)
clauses. Moreover, some encodings 4e constraints with both the lower and the
upper boundstp(G, k) and bst(G, k)). Two normal PB constraints are needed to
represent each such constraint. Finallfm (G, w, k) uses “proper’PB clauses, that
is, disjunctions ofPB constraints, to encode the weighted dominating-set ptaper
SeveralPB constraints and additional propositional atoms are neeuledpture dis-
junctions of PB constraints.

Thus, logic PLY? yields more concise encodings not only with respect to CNF
representations but also with respect to representatiotesms of (normal)’B con-
straints. It points to its modeling effectiveness and ulies the need to develop
solvers for generaPB theories.

4.2 Thedesign of the experiments

We studied our solversisat(plpb)-ske and wsat(plpb)-rnp and compared their per-
formance to that ofwsat(oip). Sincewsat(oip) accepts only theories consisting of
normal PB constraints, direct comparison is possible only for instesnfrom thevcv
family.

Instances in the familysp consist of PB constraints that involve both lower and
upper bounds. As we noted, such constraints can be repeederd direct way by two
normal PB constraints, and theories obtained by applying this tanshtion have
essentially the same structure (no new atoms needed, notiesshange in the ex-
pression of the constraint, except that it is split into twedualities, one for each
bound).

Instances in the familiesst, wdm, andwnq contain clauses that are disjunctions
of weight atoms andvsat(oip) cannot be used directly. The approach we adopted
consisted of replacing such clauses with sets of nodaktonstraints. This approach
requires new atoms and introduces additional structucetlive representation. We will
now outline the specific method we used.

Given aPL"? clauseC, our transformation(C') converts it into a set of pseudo-
Boolean constraints and maintains the models, modulo theatems introduced in
the transformation. Let us consided””? clauseC of form (5). We introduce new
propositional atom3Vy, ..., W, to represent eacRB constraint in the clause. With
the new atoms, the clause (5) can be written as the propaaititause

WiV...VW,
and then represented by t## constraint:
1IWhy .o s W) (15)

In order for this representation to work, we must also sgefiB constraints to
enforce the equivalence of the newly introduced atd®sind the correspondingB-
constraintdV;, fori = 1,...,n.

17



To show how it can be done, let us considétR constraintV = l[wyay, . .., Wpmam|u.
Let Wt andW~ be two additional propositional atoms. We observe thataheving
two PB constraints:

[(Z{wl cw; >0} —u)W™ wia,. .. ,wmam} Z{wz cw; > 0} (16)

(u+1) [(u +1- Z{wl cw; < 0P)W™ L way,. - ,wmam} a7
are equivalent to the propositional formula
W™ = [wia,. .., Wnam|u
(we view thePB constrainfw; ay, . . . , wy,a.,|u as a propositional formula here). Sim-

ilarly, the following two PB constraints:
Z{U}i Twy < O} [(Z{U}z Twy < 0} - Z)WJr;wlah s 7wmam:| (18)
[(z 13w w > 0)WH wia, . ,wmam} (- 1) (19)
are equivalent to the propositional formula
Wt =l[wiay, ..., Wnam).

Finally, the following threePB constraints:

0-W, W] (20)
0[-W, W] (21)
—1[-Wt, W= W] (22)
are equivalent to the formula
W=WAW".
It follows that the formulaV = [[wyay, . . . , wman]u is equivalent taPB constraints

(16), (17), (18), (19), (20), (21) and (22).

For aPL"®-clauseC' = W, ...V W, we definer(C) to consist of thePB con-
straint (15) and of’B constraints (16), (17), (18), (19), (20), (21) and (22),stauncted
as described above for eveRB constrainti; in C' by means of propositional atoms
W;" andW;"). One can verify that the size ofC) is linear in the size of’.

Given aPL"? theoryT, by 7(T) we denote the set of norm&B constraints

T(T) ={r(C): C eT}.
To summarize our observations made above
1. (15)is equivalentt®V; V...V W,

2. (16) and (17) are equivalent ¥~ = [wyay, . .., Wnam|u



3. (18) and (19) are equivalentW™ = i[w;ay, . . . , Wymam], and
4. (20), (21) and (22) are equivalent}td = W AW~

Thus, we obtain the following theorem. To state it, we wrt€T') to denote the set of
propositional atoms that occur inLZ or PB theoryT.

Theorem 3. LetT be aPL"? theory andM a set of atoms) C At(T). ThenM is
a model off in the logic PL”Z if and only if M has a unique extensial’ by some
of the new atoms id¢(7(T")) such thatM/’ is a model of the normaPB theoryr(T).

We note that our encoding of tiet problem involvesPL?? clauses of the form:
—ordy; V 1[tey ,: {z,y} € E|1

In this case, we do not need to introduce a new propositictosh @ represent the
PB constraintl[te, ,: {x,y} € E]1. Instead, the following twaPB constraints are
equivalent to the?L"? clause in the encoding of thet problem:

[(|E] = L)ordy,;;tesy: {z,y} € E](|E])
which is a special case of (16), and
0[—ordy i;teg y: {z,y} € E]

which is a special case of (18).

When comparing our solvers withsat(oip) on familiesbst, wdm, andwng, we
ran our solvers directly on the instances from the two familindwsat(oip) on their
transformations by means of the mapping

We used four identical machines in all our experiments. Exdhese machines
is equipped with a Pentium 4 3.2GHz CPU and 1GB memory, andl kimux with
kernel version 2.6.10. We used gcc 3.3.4 as a compiler fosolwers (with two flags
““Wall -03"). We did not have access to the source codeaft(oip) and used in the
experiments the binary code obtained from the author’s itee[4].

We set a 1000-second run-time limit to each solver we testrdIs no limitation,
other than the physical one, on the memory usage.

We set theMax- Tries to 1 andMaz- Flips to a large value so that the local search
solvers will not exhaust all flips during the 1000-secondetiimit. Therefore, a solver
in our experiments halts either because it finds a model @aithies the time limit.
We perform a systematic experimental study on the noise pads it may affect local
search solvers’ performance. We discuss this matter in ohetasl in the latter part of
this section.

All solvers we test report the amount of time they spenddivean instance. By
solving an instancewve mean the solver finds a model of the instance. For a fair com
parison, we use the GNU time program (version 1.7) to gatietiming information
of all solvers. We report or perform statistical analysigtios “user time” reported by
the GNU time program, which is the CPU time spent by the sslver

For comparison, we report the following statistics of allveos tested for each
benchmark problem. We first compare the solvers instancedigirice. A solvewins

19



| | wsat(plpb)-skc | wsat(plpb)-rnp | wsat(oip) |

vew 30/0 48/44 12/4
tsp 1/0 50/48 50/2
bst 50/10 50/41 50/0
wdm 49/25 50/26 1/0
wng 50/39 46/11 2/0

Table 1:wsat(plpb) versuswsat(oip): summary on all instances.

on an instance if the amount of time it uses to solve the ingtasmthe minimum one
(no other solver uses less time). We report, for each bendghpnablem, in how many
instances a solver wins. Then we aggregate the timing irdtom of a solver in the
family of random instances by means of thm-time distribution(or RTD for short)
instead of the simple statistical measures such as averagarmlard deviation. The
reason is that, experiments show that the hardness of aestagenerated randomly
with fixed parameters varies significantly. Therefore, tine ime of a solver solving
an instance, which can be viewed as a random variable, \&ge#icantly as well. In
other words, the probability distribution on the run timesliggh variance. Moreover,
the run-time of a local search solver is itself a random ‘dgi@ven on a single in-
stance. In this case, simple statistics such as averagemwamlbes not provide enough
information about the performance of different solvers [9]

We estimate the run-time distribution of a solver over a farof randomly gener-
ated instances as follows. We run the solver on each instamteecord the amount
of time it takes to solve the instance. Then we estimate thbahility for a solverS
to solve an instance in the familly within time 0 < ¢ < 1000 by the ratioM;/N,
where M; is the number of instances that are solvedSbhwithin time ¢t and NV is the
total number of instances in that family.

Since the choice of the noise rapmften has strong effect on the performance of
wsat(plpb)-rnp, we test all methods with 9 different noise ratins, 0.2, ...,0.9. For
comparisons, we use results obtained with the best valpdasfeach method.

For each instance, we ran each solver in one try, with themaxi number of flips
set so that to guarantee the unsuccessful try does not emdgtihe 1000-second limit.
We set other parameters of each solver to their defaulhgetti

4.3 Reaults

We first present a summary of all experiments in Table 1. Itwshiwo values in the
form s/w. Value s denotes the number of instances a solver solved in a family of
instances. Valuev denotes the number of instances that it solves with the estort
amount of time among all solvers we tested.

These results demonstrate the superiority of our methodswsut(oip) on the
instances we use in experiments. Of the two methods we pedpesat(plpb)-rnp
performs better in four out of five problems, wittsat(pipb)-skc being significantly
better for the remaining one. We emphasize thait(pipb)-rnp algorithm performs
better thanwsat(oip) even for problems that were encoded directly as sets of Horma
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PB constraints or required only small and simple modificati(spsitting PB con-
straints into pairs of normaPB constraints in problemsp, and rewriting disjunctions
of a propositional literal and a singfeB constraint into sets of norm&B constraints
in problem bst, according to the method described after Theorem 3). We thate
there were two ties in the experiments. The and thewdm families contain one
instance on whichusat(plpb)-rnp and wsat(plpb)-skc terminate successfully in the
same amount of time.

We now present and discuss RTD graphs for the five problems.

Figure 1(a) concerns with problemtv. It shows that the run-time behavior of
wsat (plpb)-rnp andwsat(oip) is close withwsat (plpd)-rnp being better thawsat (oip).
Wsat(oip) has a slightly higher probability of success thasut (plpb)-rnp only at the
pointTime < 128 seconds.

Figure 1(b) shows the RTD behavior of solvers on problem Even though
wsat (plpd)-skc andwsat (oip) both have a probability 1 of success when they are given
enough time £ 256 seconds)wsat(plpb)-skc has a clear advantage ovesat (oip)
for time betweent seconds and56 seconds.

Figure 1(c) shows that bothsat(plpb)-rnp andwsat (plpb)-ske perform uniformly
better thanwsat(oip) in problembst.

Figure 1(d) corresponds to problemam. It shows thatwsat(oip) is not effective.

It also shows thatusat(plpb)-skc has a higher probability of solving easy instances
(instances that can be solved in up to about 8 seconds). Wherplpb)-rnp catches
up and the performance of the two algorithms becomes simiiétn wsat (plpb)-rnp
being slightly better (in fact, it is the only algorithm thetlves all instances in the
family).

Figure 1(e) tells a similar story in problemng. Wsat(oip) is not effective when
the PL”P theory involves generaPB clauses. In this caseysat(plpb)-ske performs
uniformly better thanvsat (plpb)-rnp.

All the run-time distributions we just showed further confithat our local search
solvers designed foPL"” theories perform better thamsat(oip) in most of the test
cases.

Finally, we discuss theobustnes®f a local search solver to the choice of the noise
ratio. The noise ratio is an important parameter touallksat-like solvers as it has
much effect on the performance. By the rangegyobd behaviomwe mean the range
of values for the noise ratio for which a local-search aldponi performs well. A large
range of good behavior is a highly desirable feature of aldisearch algorithm as it
makes it easier to find such values. Our graphs showing RTB&axtion of the noise
ratios for the three algorithms tested (Figures 2, 3, 4, 8,8nshow that the range of
good behavior for the algorithmusat(plpb)-rnp is larger than that for the other two
algorithms, with one exception. For the problemq the range of good behavior is
larger for the algorithmwsat (plpb)-ske.

Finally, we present our observations on the overflow probidiscussed in the
previous section. We ramsat(plpb)-skc in a short try (100000 flips) of one instance
of each of the five benchmark problems. We recorded the totalber of(Z) com-
putation, the number of times there is an overflow, and thebmurof times the “best”
atom chosen is involved in overflow.
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The data show that the “best” atoms are rarely the ones whasé-count in-
volves overflow. Indeed, only in thedm problem, wsat(plpb)-skc ever chose the
“best” atoms that involve in overflow. Furthermore, amonguthl8 million of (7))
computation, out of which 3.4 million had the overflow prableonly 16 “best” atoms
are the ones that involve overflow.

In addition to the five benchmark problems we considered, s t@ilored our
solvers toPB theories, and submitted them for ti#3 evaluation 2006 [17]. Our
solver, calledwildcat, won the SATUNSAT-SMALLINT category, in which it solved
all 163 SAT instances. The second best solver solved 153d AT instances in this
category. Except fowildcat, all the participating solvers were complete solvers.
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Probability of solving an instance

Probability of solving an instance
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Figure 1: Run-time distributions.
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Figure 2: Robustnessicv, v=2000, e=4000.
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Figure 3: Robustnesssp, n=40, weight range [1..39].
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Figure 4: Robustnes#st, v=30, e=240, w=15, weight range [1..29].
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Figure 5: Robustnesssdm, v=500, e=2000, w=40, k=330, weight range [1..19].
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Figure 6: Robustnessing, n=20, w=80, d=10, weight range [1..19].

\ | #of (1) computation| # of overflow | # of best atoms involving in overflow

vev 152368 97204 0

tsp 8724203 7729844 0

bst 13185212 4324504 0
wdm 18118808 3403398 16
wngq 16155580 8653700 0

Figure 7: Observation on overflow problem.
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5 Conclusions

We designed a family of extensible SLS algorithms Rir’’? theories. The key idea
behind our algorithms is to view 2L"7 theoryT as a concise representation of a
certain propositional CNF theory(T') logically equivalent tdl’, and to show that key
parameters needed by SLS solvers developed for CNF theandse computed on the
basis ofT', without the need to build!(T") explicitly. Our experiments demonstrate
that our methods are superior to those relying on expligitesentations ofPL”?
clauses as sets @B constraints and resorting to off-the-shelf local-seandiess for
PB constraints such assat(oip).

Clearly, CNF representations ¢fB constraints other than the one we used exist
and could be used within a general approach we developedngsk one can derive
formulas (or procedures) to compute values,of andg. In fact, we can push this idea
even further. For an arbitrary constraint (not necessariBB constraint), if we can
evaluate:, f andg in some translation that converts it into a set of proposilelauses,
our general framework yields solvers accepting theoriegaining such constraints.

Finally, we point out that the formulas we derived use valakshe form (2)
which will overflow already for relatively small values of if & is close ton/2. In
our experiments, even though in some cases overflows odoguite often (which we
replaced with a certain fixed large integer), for the atomssalvers selected to flip
the computation of virtual counts only rarely involved di@ws. Still, in our future
research we will study how to approxima(t’g) to avoid overflows. Since we only care
about the relative order of the break- and make-counts ahst@ny approximation
that maintains this ordering will be appropriate.
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