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Abstract

Manipulation and bribery have received much attention from
the social choice community. We consider these concepts
in the setting of preference formalisms, where the Pareto
principle is used to assign to preference theories collections
of optimal outcomes, rather than a single winning outcome
as is common in social choice. We adapt the concepts
of manipulation and bribery to this setting. We provide
characterizations of situations when manipulation and bribery
are possible. Assuming a particular logical formalism for
expressing preferences, we establish the complexity of
determining a possibility for manipulation or bribery. In
all cases that do not in principle preclude a possibility
of manipulation or bribery, our complexity results show
that deciding whether manipulation or bribery are actually
possible is computationally hard.

Introduction
In a common preference reasoning scenario, a group
of agents is presented with a collection of possible
configurations or outcomes. These outcomes come from
a combinatorial domain, that is, they are characterized
by several multivalued attributes and are represented as
tuples of attribute values. Each agent has her individual
preferences on the outcomes. The problem is to aggregate
these preferences, that is, to define a “group” preference
relation or, at the very least, to identify outcomes that
could be viewed by the entire group as good consensus
choices. This scenario has received much attention in the
AI and decision theory communities (Domshlak et al. 2011;
Kaci 2011; Lang 2004).

One of the questions it brings up is how to represent
preferences over a combinatorial domain. A large number
of elements in a typical combinatorial domain (exponential
in the number of attributes) makes explicit representations
impractical. Moreover, with the large number of outcomes
to compare and order, it is hardly possible to expect
agents to produce orderings accurately capturing their actual
preferences. Thus, one resorts to implicit representations
which, in order to support both preference elicitation and
reasoning, provide concise and intuitive “proxies” to agents’
preferences. Often these representations are in terms of
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sequences of formulas representing a preference order
on properties of outcomes, with outcomes having most
desirable properties being themselves most desirable. For
instance, in answer-set optimization (Brewka, Niemelä, and
Truszczynski 2003), an expression wine > ¬wine is
understood as stating the preference for dinners with wine
over dinners with any other type of drink (or no drink at all),
implicitly defining a preorder on all possible dinners on the
menu.1

Another key aspect of the scenario above is that of
reasoning, a fundamental aspect of which is preference
aggregation. If there is only one user with a single
preference, the problem is trivial. But more often than not,
an agent has several preferences (for instance not only on the
type of drink to take with dinner but also on the appetizer,
main dish and dessert selections), or there are several agents,
each with her own preference (or preferences). In such cases,
to support preference reasoning we aggregate preferences
into a single consensus preference relation on outcomes
or, for some applications, into a set of optimal consensus
outcomes.

The problem of preference aggregation is similar to the
standard social choice theory scenario (Arrow 1963; Arrow,
Sen, and Suzumura 2002). The central objective there is to
study methods to aggregate votes cast by a group of voters
into a single winner or, in some cases, into a single strict
ordering of the candidates. If we think of voters as agents,
of candidates as options, and of votes as preferences, the
connection between the two areas is evident and, at least
to some degree, it has been explored (Chevaleyre et al.
2008). However, the two settings also exhibit some essential
differences.

In social choice, the number of options, that is, candidates
in an election, is typically small and preferences can be
(and are) specified explicitly. Each voter provides her top
choice or enumerates all candidates in a strict order of

1Several preference representation systems using logic
languages to specify preferences have been proposed over
the years. The survey by Domshalak et al. (2011), and
the monograph by Kaci (2011) discuss several of them.
Other popular preference representation formalisms are
based on the ceteris paribus principle (Boutilier et al. 2004;
Wilson 2004) or exploit decision trees (Booth et al. 2010), and
often rely on graphical models.



preference. Therefore, the focus is not on languages to
represent preferences (votes) but on methods to aggregate
them known as voting rules. It is required that for each set
of votes a voting rule produces a single winner (sometimes a
stronger requirement is imposed that a single strict ordering
of candidates be produced which, in particular, implies a
single winner). Most common types of voting rules rely
on some form of quantitative scoring (Brams and Fishburn
2002).

In contrast, due to the nature of combinatorial domains,
the central problem of preference reasoning is the design
of languages to represent preferences. The reasoning task
of aggregating preferences is understood as that of defining
a semantics for the language — a function that assigns to
each preference theory (a collection of preferences) a set
of preferred objects from the domain. To identify preferred
domain elements, quantitative methods similar to simple
voting rules have been considered. However, much of the
focus has been on qualitative principles such as Pareto rule.
The social choice theory research on voting rules has only
recently been noted and little effort has been expanded to
adapt its research directions and results to the more general
setting of preference reasoning.

In this paper we study in the setting of preference
reasoning concepts of strategic voting developed in
social choice (Gibbard 1973; Satterthwaite 1975;
Arrow, Sen, and Suzumura 2002). The two specific
problems we consider are manipulation and bribery. The
first problem concerns strategic voting by a voter or a
group of voters to secure a better outcome (Gibbard 1973;
Satterthwaite 1975). The latter looks into a possibility
of securing better outcomes by coercing other voters to
vote against their preferences (Faliszewski, Hemaspaandra,
and Hemaspaandra 2006). The two problems are clearly
relevant to preference reasoning. When a group of agents
is to make a decision based on collectively preferred
outcomes, understanding whether agents can affect the
set of those outcomes in ways that are favorable to
them is essential. However, departures from the social
choice theory setting make theorems developed there,
including the famous Gibbard-Satterthwaite impossibility
result concerning manipulation (Gibbard 1973;
Satterthwaite 1975) and a slew of results on the
complexity of manipulation and bribery under
common voting rules (Faliszewski, Hemaspaandra,
and Hemaspaandra 2010; Bartholdi, Tovey, and Trick 1989;
Faliszewski, Hemaspaandra, and Hemaspaandra 2006;
Fitzsimmons, Hemaspaandra, and Hemaspaandra 2013),
inapplicable in the setting of preferences over combinatorial
domains.

In this work, we model agents’ preferences as total
preorders on the space D of outcomes. That is, we allow
indifference among options, not allowed by total orders
used as votes in the social choice setting. We select Pareto
efficiency as the principle of preference aggregation, since
it is a common denominator of all preference aggregation
techniques considered in preference reasoning. We define
the manipulation and bribery problems in this setting, and
establish conditions under which manipulation and bribery

are possible. In both problems, the key question is whether
misrepresenting preferences can improve for a particular
agent the quality of the collection of all preferred outcomes
resulting from preference aggregation.

To be able to decide this question, we have to settle
on a way to compare subsets of D based on that agent’s
preference preorder on elements of D. This is an interesting
and important problem in its own right and has been
thoroughly studied (Barberà, Bossert, and Pattanaik 2004).
In this paper, we study some commonly used extensions of
a total preorder on D to a total preorder on the power set
P(D).

As in the case of manipulation and bribery in social
choice, here too, when manipulation or bribery are possible
(they often are), the intractability of computing departures
from true preferences to improve the outcome for an agent
may serve as a barrier against dishonest behaviors. We use
our general characterizations to establish the complexity
of deciding whether manipulation and bribery are possible
when outcomes are subsets of a given set, and a form
of preference rules in answer-set optimization (Brewka,
Niemelä, and Truszczynski 2003) (that can also be seen as
preferences in possibilistic logic (Kaci 2011)) is used to give
compact representations of preferences in this domain.

Technical Preliminaries
A preference on D is a total preorder on D, that is, a binary
relation on D that is reflexive, transitive and total. Each such
relation, say �, determines two associated relations: strict
preference, denoted �, where x � y if and only if x � y
and y 6� x, and indifference, denoted ≈, where x ≈ y if and
only if x � y and y � x. The indifference relation ≈ is an
equivalence relation on D and partitions D into equivalence
classes, D1, . . . , Dm, which we always enumerate from the
most to the least preferred. Using this notation, we can
describe a total preorder � by the expression

�: D1 � D2 � · · · � Dm.

For example, a total preorder � on D = {a, b, c, d, e, f}
such that a ≈ d, b ≈ e ≈ f and a � b � c (these identities
uniquely determine �) is specified by an expression

�: a, d � b, e, f � c.

(we omit braces from the notation specifying sets of
outcomes to keep the notation simple). For every a ∈ D,
we define the quality degree of a in �, written q�(a), as the
unique i such that a ∈ Di.

Let us consider a group A of N agents each with her
own preference on D. We denote these agents by integers
from {1, . . . , N} and their preferences by �1, . . . ,�N ,
respectively. We write Di

1, . . . , D
i
mi

for the equivalence
classes of the relation ≈i enumerated, as above, from the
most to the least preferred with respect to �i. We call the
sequence (�1, . . . ,�N ) of preferences of agents in A a
(preference) profile of A. For instance,

�1: a � b, c � d � e, f

�2: a, c � d, e, f � b

�3: f � a, c, e � b, d.



is a profile of agents 1, 2 and 3.
Let A be a set of N agents with a profile P = (�1

, . . . ,�N ). We say that a ∈ D is Pareto preferred in P to
b ∈ D (more formally, Pareto preferred by a group A of
agents with profile P ), written a �P b, if for every i ∈ A,
a �i b. Similarly, a ∈ D is strictly Pareto preferred in P
to b ∈ D, written a �P b, if a �P b and b 6�P a, that is,
precisely when for every i ∈ A, a �i b, and for at least
one i ∈ A, a �i b. Finally, a ∈ D is Pareto optimal
in P if there is no b ∈ D such that b �P a. We denote
the set of all elements in D that are Pareto optimal in P
by Opt(P ). Virtually all preference aggregation techniques
select “group optimal” elements from those that are Pareto
optimal. From now on, we omit the term “Pareto” when
speaking about the preference relation�P on D and optimal
elements of D determined by this relation, as we do not
consider any other preference aggregation principles.

Let P be the profile given above. Because of the
preferences of agents 1 and 3, no outcome can strictly
dominate a or f . On the other hand, outcomes b, c, d, e
are strictly dominated by a. Thus, Opt(P ) = {a, f}. It is
interesting to note that for each of the three agents, the set
Opt(P ) contains at least one of her “top-rated” outcomes.
This is an instance of a general fairness property of the
Pareto principle.
Theorem 1. For every profile P of a set A of agents, and
for every agent i ∈ A, the set Opt(P ) of optimal outcomes
for P contains at least one most preferred outcome for i.

Coming back to our example, it is natural to ask how
satisfied agent 1 is with the result of preference aggregation
and what means might she have to influence the result. If she
submits a different (“dishonest”) preference, say

�: b � a � c � d � e, f

then, writing P ′ for the profile (�,�2,�3), Opt(P ′) =
{a, b, f}. It may be that agent 1 would prefer {a, b, f}
to {a, f}, for instance, because the new set contains an
additional highly preferred outcome for 1. Thus, agent 1
may have an incentive to misrepresent her preference to
the group. We will refer to such behavior as manipulation.
Similarly, agent 1 might keep her preference unchanged but
convince agent 3 to replace his preference with

�′: b � f � a, c, e � d.

Denoting the resulting profile (�1,�2,�′) by P ′′,
Opt(P ′′) = {a, b, f} and, as before, that collection of
outcomes may be preferred by agent 1. Thus, agent 1 may
have an incentive to try to coerce other agents to change their
preference. We will refer to such behavior as bribery.

We now formally define manipulation and bribery. For a
profile P = (�1, . . . ,�N ) and a preference �, we write
P�i/� for the profile obtained from P by replacing the
preference �i of the agent i with the preference �. Let now
A be a group of N agents with a profile P = (�1, . . . ,�N ),
and let �′i be a preference of agent i on subsets of D.
Manipulation: An agent i can manipulate preference
aggregation if there is a preference � such that
Opt(P�i/�) �′i Opt(P ).

Bribery: An agent t is a target for bribery by an agent i, if
there is a preference � such that Opt(P�t/�) �′i Opt(P ).

The two concepts closely resemble the corresponding
concepts introduced and studied in social choice (Arrow,
Sen, and Suzumura 2002; Faliszewski, Hemaspaandra, and
Hemaspaandra 2006). The key difference is that in our
setting the result of preference aggregation is a subset of
outcomes and not a single outcome. Thus, when deciding
whether to manipulate (or bribe), agents must be able to
compare sets of outcomes and not just single outcomes. This
is why we assumed that the agent i has a preorder �′i on
P(D). However, even when D itself is not a combinatorial
domain, P(D) is. Thus, explicit representations of that
preorder may be infeasible.

The question then is whether the preorder �′i of P(D),
which parameterizes the definitions of manipulation and
bribery, can be expressed in terms of the preorder �i on
D, as the latter clearly imposes some strong constraints on
the former. This problem has received attention from the
social choice and AI communities (Barberà, Bossert, and
Pattanaik 2004; Brewka, Truszczynski, and Woltran 2010)
and it turns out to be far from trivial. The difficulty comes
from the fact that there are several ways to “lift” a preorder
from D to the power set of D, none of them fully satisfactory
(cf. impossibility theorems (Barberà, Bossert, and Pattanaik
2004)). In this paper, we sidestep this issue and simply
select and study several most direct and natural “liftings” of
preorders on sets to preorders on power sets. We introduce
them below. We write X and Y for subsets of D and� for a
total preorder on D that we seek to extend to a total preorder
on P(D).
Compare best: X �cb Y if there is x ∈ X such that for
every y ∈ Y , x � y.
Compare worst: X �cw Y if there is y ∈ Y such that for
every x ∈ X , x � y.

For the next two definitions, we assume that � partitions
D into strata D1, . . . , Dm, as discussed above.
Lexmin: X �lmin Y if for every i, 1 ≤ i ≤ m, |X ∩Di| =
|Y ∩Di|, or if for some i, 1 ≤ i ≤ m, |X ∩Di| > |Y ∩Di|
and, for every j ≤ i− 1, |X ∩Dj | = |Y ∩Dj |.
Average-rank: X �ar Y if ar�(X) ≤ ar�(Y ), where for
a set Z ⊆ D, ar�(Z) denotes the average rank of an element
in Z and is defined by ar�(Z) =

∑m
i=1 i

|Z∩Di|
|Z| .

Manipulation
In this section, we study the manipulation problem in
the context of the four extensions of total preorders on
D to P(D). In the case of the compare best extension,
manipulation is impossible.

Theorem 2. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i ∈ A and every total
preorder �, Opt(P ) �cb

i Opt(P�i/�).

This result is a consequence of the fairness property of the
Pareto principle stated in Theorem 1. That property implies
that set Opt(P ) is optimal with respect to the preorder �cb

i
on P(D) among all subsets of D. Therefore, it is optimal



among all subsets of the form Opt(P�i/�), which implies
Theorem 2.2

Manipulation is also not possible when the compare worst
method is used to compare subsets of D.

Theorem 3. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i ∈ A and every total
preorder �, Opt(P ) �cw

i Opt(P�i/�).

This time the reason is different but it is again a
consequence of the way the Pareto principle works. Let W
be the set of all outcomes in Opt(P ) that are least preferred
for an agent i. To improve the quality of optimal outcomes
with respect to her true preference, i would have to submit
a dishonest preference that would render all outcomes in
W non-optimal. Since preferences of other agents do not
change, each such dishonest preference would force into the
set of group-optimal outcomes, some that are even worse for
i than those in W .

On the other hand, manipulation is possible for every
agent using the lexmin comparison rule precisely when
not every outcome in D is optimal. The reason is
that by changing her preference an agent can cause a
Pareto-nonoptimal outcome become Pareto-optimal, while
keeping the optimality status of every other outcome
unchanged.

Theorem 4. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exists a
total preorder � such that Opt(P�i/�) �lmin

i Opt(P ) if
and only if Opt(P ) 6= D.

For the average rank preorder for comparing sets, an
agent can manipulate the result to her advantage if there
are Pareto-nonoptimal outcomes that are highly preferred by
the agent, or when there are Pareto-optimal outcomes that
are low in the preference of that agent, as the former can
be made optimal and the latter made non-optimal without
changing the Pareto-optimality status of other outcomes.

Theorem 5. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exists a
total preorder � such that Opt(P�i/�) �ar

i Opt(P ) if and
only if:

1. For some j < ar�i
(Opt(P )), there exists a′ ∈ Di

j such
that a′ /∈ Opt(P ); or

2. For some j > ar�i(Opt(P )), there are a′ ∈ Opt(P )∩Di
j

and a′′ ∈ Opt(P ) such that a′ 6= a′′, a′′ �k a′, for every
k ∈ A, k 6= i.

The main message of this section is that when the result
of preference aggregation is a set of optimal outcomes, then
even the most fundamental and most elementary aggregation
rule, Pareto principle, may be susceptible to manipulation.
Whether it is or is not depends on how agents measure
the quality of a set. If the comparison is based on the
best or worst outcomes, manipulation is not possible (a
positive result). However, under less simplistic rules such
as lexmin or average-rank the possibility for manipulation
emerges (a negative result that we later moderate for some

2Complete proofs of all results can be found in the appendix.

specific preference representation languages by means of the
complexity barrier).

Bribery
In this section, we discuss the bribery problem. Given a
set A of N agents with a profile P = (�1, . . . ,�N ), the
question is whether an agent i can find an agent t, t 6= i, and
a total preorder� such that Opt(P�t/�) �′i Opt(P ), where
�′i is a “lifted” total preorder that agent i uses to compare
subsets of D. Our results on bribery are similar to those we
obtained for manipulation, with one notable exception, and
show that whether bribery is possible depends on how agents
measure the quality of sets of outcomes.

Theorem 6. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i, t ∈ A, t 6= i, and
every total preorder �, Opt(P ) �cb

i Opt(P�t/�).

This result states that when agent i uses best-ranked
outcomes in a set as a measure of the quality of that set, then
bribery is impossible. No matter which agent t is a target and
no matter how that agent changes her preference, the quality
of the resulting set of optimal outcomes cannot surpass the
quality of the set of outcomes in the original profile.

The situation changes if agents are interested in
maximizing the worst outcomes in a set. Unlike in the case
of manipulation, the possibility of bribery may now present
itself. Given a set X ⊆ D and a total preorder �, by
Min�(X) we denote the set of all “worst” elements in X ,
that is the set that contains every element x ∈ X such that
for every y ∈ X , y � x.

Theorem 7. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A,
t 6= i, and a total preorder � such that Opt(P�t/�) �cw

i

Opt(P ) if and only if for every a ∈ Min�i
(Opt(P )), there

is a′ ∈ D such that a′ �i a, and a′ �k a, for every k ∈ A,
k 6= t.

Bribery is also possible when lexmin or average-rank
methods are used by agents to extend a preorder on D to
a preorder on P(D). Similarly to Theorem 6, the following
two theorems are literal generalizations of the earlier results
on manipulation.

Theorem 8. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i, t ∈ A, t 6= i. There
exists a total preorder � such that Opt(P�t/�) �lmin

i

Opt(P ) if and only if Opt(P ) 6= D.

Theorem 9. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A,
t 6= i, and a total preorder � such that Opt(P�t/�) �ar

i

Opt(P ) if and only if:

1. For some j < ar�i
(Opt(P )), there exists a′ ∈ Di

j such
that a′ /∈ Opt(P ); or

2. For some j > ar�i
(Opt(P )), there are a′ ∈ Opt(P ) ∩

Di
j , and a′′ ∈ Opt(P ) such that a′ 6= a′′, a′′ �k a′, for

every k ∈ A, k 6= t.

Theorems 7, 8 and 9 show that a possibility for bribery
may arise when compare-worst, lexmin and average-rank



are used to compare sets of outcomes. There is, however, a
difference between lexmin and the other two methods. For
the former, if bribery is possible, then all agents can be
targets for bribery (can be used as t in the theorem). This
is not the case for the other two methods.

Complexity
So far we studied the problems of manipulation and bribery
ignoring the issue of how preferences (total preorders) on
D are represented. In this section, we will establish the
complexity of deciding whether manipulation or bribery
are possible. For this study, we have to fix a preference
representation schema.

First, let us assume that preference orders on elements
of D are represented explicitly as sequences D1, . . . , Dm

of the indifference strata, enumerating them from the most
preferred to the least preferred. For this representation,
the characterizations we presented in the previous section
imply that the problems of the existence of manipulation
and bribery can be solved in polynomial time. Thus, in the
“explicit representation” setting, computational complexity
cannot serve as a barrier against them.

However, for combinatorial domains explicit
representations are not feasible. We now take for D a
common combinatorial domain given by a set U of binary
attributes. We view elements of U as propositional variables
and assume that each element of U can take a value from
the domain {true, false}. In this way, we can view D as
the set of all truth assignments on U . Following a common
convention, we identify a truth assignment on U with the
subset of U consisting of elements that are true under the
assignment. Thus, we can think of D as the power set P(U)
of U .

By taking this perspective, we can use a formula ϕ over
U as a concise implicit representation of the set M(ϕ) =
{X ⊆ U : X |= ϕ} of all interpretations of U (subsets of
U ) that satisfy ϕ, and we can use sequences of formulas to
define total preorders on P(U) (= D).

A preference statement over U is an expression

ϕ1 > ϕ2 > · · · > ϕm, (1)

where all ϕis are formulas over U and ϕ1 ∨ · · · ∨ ϕm is
a tautology. A preference statement p = ϕ1 > ϕ2 >
· · · > ϕm determines a sequence (D1, . . . , Dm) of subsets
of P(U), where, for every i = 1, . . . ,m,

Di = {X ⊆ U : X |= ϕi} \ (D1 ∪ · · · ∪Di−1).

These subsets are disjoint and cover the entire domain P(U)
(the latter by the fact that ϕ1 ∨ · · · ∨ ϕm is a tautology).
It follows that if X ⊆ U , then there is a unique iX such
that X ∈ DiX . The relation �p defined so that X �p Y
precisely when iX ≤ iY is a total preorder on P(U). We
say that the preference expression p represents the preorder
�p.3

This form of modeling preferences (total preorders) is
quite common. Preference statements were considered by

3The partition of D into strata that is determined by �p is not
always (D1, . . . , Dm) as some sets Di may be empty.

Brewka, Niemelä and Truszczynski (2003) as elements of
preference modules in answer-set optimization programs.4
Furthermore, modulo slight differences in the notation,
preference statements can also be viewed as preference
theories of the possibilistic logic (Kaci 2011).

We will now study the complexity of the existence
of manipulation and bribery when preferences are given
in terms of preference statements. That is, we assume
that the input to these problems consists of N preference
statements p1, . . . , pN . We will denote the total preorders
these statements determine by �1, . . . ,�N , respectively.
We will also denote by (Di

1, . . . , D
i
mi

) the sequence of
indifference strata determined by pi, as defined above. We
refer to these two problems as the existence-of-manipulation
(EM) problem and the existence-of-bribery (EB) problem,
respectively. These problems are parameterized by the
method used to compare sets. We denote it by a superscript
indicating the method used. Thus, we speak of the EMcb

problem (existence of manipulation when compare-best
method is used), EBar problem (existence of bribery when
average-rank method is used), and so on.

Since for the compare-best and compare-worst methods
for comparing sets manipulation is impossible, the EMcb and
EMcw problems are (trivially) in P. Similarly, the EBcb is in
P, too. For the other cases, we have following results.

Theorem 10. The EBcw problem is in ∆P
3 and is both ΣP

2 -
and ΠP

2 -hard.

Theorem 11. The EMlmin and EBlmin problems are
NP-complete.

Theorem 12. The EMar and EBar problems restricted to
the case when the agent seeking manipulation or bribery,
respectively, has a two-level preference are ΣP

2 -complete.

The proof of this result follows from Theorems 5 and
9 or, more precisely from simplified characterizations they
provide for the case when an agent attempting manipulation
or bribery has a two-level preference. Theorem 12 provides
a lower bound for the complexity for the the general case.
Since both problems are clearly in PSPACE, we obtain the
following corollary.

Corollary 1. The EMar and EBar problems are ΣP
2 -hard

and in PSPACE.

Conclusions and Future Work
We studied manipulation and bribery problems in the
setting of preference representation and reasoning, where
the Pareto principle is used for preference aggregation.
In this setting, agents submit preferences on elements of
the space of outcomes but, when considering manipulation
and bribery, they need to assess the quality of sets of
such elements. In the paper, we considered several natural
ways in which a total preorder on a space of outcomes
can be lifted to a total preorder on the space of sets of

4The original definition (Brewka, Niemelä, and Truszczynski
2003) allows for more general preference statements. However,
they all can be effectively expressed in terms of preference
statements as defined here.



outcomes. For each of these “liftings”, we found conditions
characterizing situations when manipulation (bribery) are
possible. These characterizations show that for some simple
ways to lift preorders from sets to power sets it is impossible
for any agent to strategically misrepresent preferences
(compare-best and compare-worst for manipulation, and
compare-best for bribery). In those cases, the Pareto
principle is “strategy-proof”.

However, for “more informed” ways to compare sets of
outcomes, it is no longer the case. In principle, manipulation
and bribery cannot be a priori excluded (lexmin and
average-rank for both manipulation and bribery and,
interestingly, also compare-worst in the case of bribery).
To study whether computational complexity may provide
a barrier against strategic misrepresentation of preferences,
we considered a simple logical preference representation
language closely related to possibilistic logic and answer-set
optimization. For sets of preferences given in this language
and for each way of lifting preorders from sets to power
sets for which manipulation and bribery are in some
cases possible, we proved that deciding the existence of
manipulation or bribery is intractable.

Our work leaves several interesting open problems. First,
methods to lift preorders from sets to power sets can be
defined axiomatically in terms of properties for the lifted
preorders to satisfy. Are there general results characterizing
the existence of manipulation (bribery) for lifted preorders
specified only by axioms they satisfy? Second, we do
not know the exact complexity of the problems EBcw,
EMar and EBar (the latter two problems are closely
related to natural decision problems concerning average
weight of models of propositional theories over weighted
propositional alphabet and so, may be of more general
interest). Finally, there are preference aggregation principles
properly extending the Pareto one for which understanding
the manipulation and bribery is also of interest.
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Appendix
We present here proofs of the theorems reported earlier in
the paper.

Theorem 1. For every profile P of a set A of agents, and
for every agent i ∈ A, the set Opt(P ) of optimal outcomes
for P contains at least one most preferred outcome for i.

Proof. Let us pick any outcome w ∈ D that is optimal for
i (that is, w ∈ Di

1). Clearly, there is v ∈ Opt(P ) such that
v �P w. In particular, v �i w. Thus, v ∈ Di

1 and v ∈
Opt(P ).

Theorem 2. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i ∈ A and every total
preorder �, Opt(P ) �cb

i Opt(P�i/�).

Proof. Let v ∈ Opt(P ) be optimal for i (such a v exists by
Theorem 1). It follows that for every w ∈ D, v �i w. Thus,
v �i w, for every w ∈ Opt(P�i/�). By the definition of
�cb

i , Opt(P ) �cb
i Opt(P�i/�).

Theorem 3. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i ∈ A and every total
preorder �, Opt(P ) �cw

i Opt(P�i/�).

Proof. Let us assume that there is a total preorder �
such that Opt(P�i/�) �cw

i Opt(P ). It follows from the
definition of �cw

i that there is w′ ∈ Opt(P ) such that for
every w ∈ Opt(P�i/�), w �i w

′. Thus, w′ /∈ Opt(P�i/�)
and, consequently, there is v ∈ Opt(P�i/�) such that
v �P�i/�

w′. It follows that v �j w′, for every agent
j 6= i. Since by an earlier observation, v �i w

′, we obtain
v �P w′, a contradiction with w′ ∈ Opt(P ).

Theorem 4. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exists a
total preorder � such that Opt(P�i/�) �lmin

i Opt(P ) if
and only if Opt(P ) 6= D.

Proof. (⇐) Let us assume that �i is given by

�i: Di
1 �i · · · �i D

i
mi

.

Let ` be the smallest k such that Di
k \ Opt(P ) 6= ∅ and let

a ∈ Di
` \ Opt(P ). We will now construct a preference �

for agent i so that Opt(P ) ∪ {a} = Opt(P�i/�). For that
preference, we have Opt(P�i/�) �lmin

i Opt(P ), which
demonstrates that i can manipulate preference aggregation
in P .

To construct �′i, we first note that since a /∈ Opt(P ),
there is w ∈ Opt(P ) such that w �P a. Since w �i a and
a ∈ Di

`, w ∈ Di
j , for some j ≤ `. Without loss of generality,

we may assume that this w is chosen so that to minimize j.
In the remainder of the proof, we write P−i for the profile

obtained from P by removing the preference of agent i. To
simplify the notation, we also write P ′ for P�i/�.
Case 1: w ≈P−i a. Since w �P a, w �i a, that is, j < `.
Let us define � as follows:

�: D′1 � · · · � D′mi
,

where D′j = Di
j ∪ {a}, D′` = Di

` \ {a}, and D′k = Di
k,

for the remaining k ∈ [1..mi]. Thus a ≈P ′ w. We also have
that for every w′, w′′ ∈ D \ {a}, w′ �P ′ w

′′ if and only if
w′ �P w′′ (the degrees of quality of outcomes other than a
remain the same when we move from P to P ′). Finally, for
every w′ ∈ D, a �P ′ w

′ if and only if w �P ′ w
′. These

observations imply that Opt(P ′) = Opt(P ) ∪ {a}.
Case 2: w �P−i a. Let us define � as follows:

�: D′1 � · · · � D′mi+1,

where D′k = Di
k, for k < j, D′j = {a}, D′`+1 = Di

` \
{a}, and D′k = Di

k−1, for every k ∈ {j + 1, . . . ,mi + 1}
such that k 6= ` + 1. Informally, � is obtained by pulling
a from Di

`, and inserting it as a singleton cluster directly
before Di

j . Since a is the only outcome relatively moved,
for every w′, w′′ ∈ D \ {a}, w′ �P ′ w′′ if and only if
w′ �P w′′ (and similarly, for the derived relation �P ′ ).

Let us observe that a ∈ Opt(P ′). Indeed, if for some
w′ ∈ D, w′ �P ′ a, then w′ ∈ Di

k, for some k < j. It
follows that w′ �i a and, consequently, w′ �P a, contrary
to our choice of w.

Let w′ ∈ Opt(P ) and let us assume that w′′ �P ′ w
′ for

some w′′ ∈ D. Since a /∈ Opt(P ), w′ 6= a. If w′′ 6= a,
then w′′ �P w′ (indeed, a is the only outcome whose
relation to other outcomes changes when we move from P
to P ′). This is a contradiction with w′ ∈ Opt(P ). Thus,
w′′ = a. Consequently, w′′ �P ′ w′ implies a �P−i w′

and a � w′. By the construction of �, the latter property
implies that w �i w′. Since w �P−i a �P−i w′, w �P

w′, a contradiction. It follows that w′ ∈ Opt(P ′) and,
consequently, we have Opt(P ) ∪ {a} ⊆ Opt(P ′).

Conversely, let us consider w′ ∈ Opt(P ′) such that w′ 6=
a. Let us assume that for some w′′ ∈ Opt(P ), w′′ �P w′. If
w′′ 6= a, we can get w′′ �P ′ w

′, a contradiction. If w′′ = a,
we can get a �k w′ for every k ∈ A and k 6= i from a �P

w′ and a � w′. Thus a �P ′ w
′ which contradicts to w′ ∈

Opt(P ′). It follows that w′ ∈ Opt(P ). Thus, Opt(P ′) ⊆
Opt(P ) ∪ {a}. Consequently, Opt(P ) ∪ {a} = Opt(P ′).
(⇒) Obviously, if Opt(P ) = D, then there is no set S such
that S �lmin

i Opt(P ).

Theorem 5. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exists a
total preorder � such that Opt(P�i/�) �ar

i Opt(P ) if and
only if:

1. For some j < ar�i
(Opt(P )), there exists a′ ∈ Di

j such
that a′ /∈ Opt(P ); or

2. For some j > ar�i
(Opt(P )), there are a′ ∈ Opt(P ) ∩

Di
j , and a′′ ∈ Opt(P ) such that a′ 6= a′′, a′′ �k a′, for

every k ∈ A, k 6= i.

Proof. (⇐) Let us assume that the first condition holds.
Let ` be the smallest k such that Di

k \ Opt(P ) 6= ∅,
and let a′ ∈ Di

` \ Opt(P ). Reasoning as in the proof of
the previous theorem, we can construct a total preorder �
such that Opt(P ′) = Opt(P ) ∪ {a′} (where P ′ denotes
P�i/�). Clearly, ar�i(Opt(P ′)) < ar�i(Opt(P )) and so,
Opt(P ′) �ar

i Opt(P ) (i can manipulate).



If the second condition is satisfied then, let us assume that
a′′ ∈ Di

j′ . Then, we have j′ ≥ j (otherwise, a′′ �P a′,
contradicting optimality of a′ in P ). Let us construct � as
in the previous argument, but substituting a′′ for a′ (and, as
before, write P ′ for P�i/�). Without loss of generality, we
may select a′′ so that j′ be minimized.

We know that a′′ ∈ Opt(P ′). Moreover, by the definition,
a′′ � a′. Thus, a′′ �P ′ a

′ and so, a′ /∈ Opt(P ′).
Next, if w ∈ Opt(P ) and w �i a′, then w ∈ Opt(P ′).

To show this, let us assume that there is w′ ∈ Opt(P ′) such
that w′ �P ′ w. Since w �i a′, w 6= a′′ and w � a′′. The
latter implies that w′ 6= a′. Thus, w′ �P w, a contradiction.

Finally, if w /∈ Opt(P ) and a′ �i w, w /∈ Opt(P ′).
Indeed, it is clear that if w′ �P w then w′ �P ′ w.

Since j > ar�i
(Opt(P )), these observations imply that

ar�i
(Opt(P ′)) < ar�i

(Opt(P )).
(⇒) We set x = ar�i

(Opt(P )). By the assumption, there is
a total preorder � on D such that ar�i

(Opt(P�i/�)) < x.
Let us set O = Opt(P�i/�) and let D1 be the set of all
elements w ∈ D such that q�i

(w) < x. If D1\Opt(P ) 6= ∅,
then the condition (1) holds. Thus, let us assume that D1 ⊆
Opt(P ). We denote by O′ the set obtained by

1. removing from Opt(P ) every element w ∈ D1 \O
2. removing from Opt(P ) every element w /∈ O such that

q�i(w) = x

3. including every element w ∈ O \ Opt(P ) such that
q�i

(w) = x.

We can get ar�i(O
′) ≥ x. Moreover, O′ differs from O

(if at all) only on elements w such that q�i(w) > x. If O
contains every element w ∈ Opt(P ) such that q�i

(w) >
x, then ar�i

(O) ≥ ar�i
(O′) and so, ar�i

(O) ≥ x, a
contradiction. Thus, there is an element w ∈ Opt(P ) such
that q�i

(w) > x and w /∈ O. Since O = Opt(P�i/�), it is
only possible if the condition (2) holds.

Corollary 1. Let A be a set of N agents 1, . . . , N with
a profile P = (�1, . . . ,�N ), and let i ∈ A where �i:
Di

1 �i Di
2. There exists a total preorder � such that

Opt(P�i/�) �ar
i Opt(P ) if and only if there are outcomes

a′, a′′ ∈ D such that

1. a′ ∈ Di
1 \Opt(P ), and a′′ ∈ Di

2 ∩Opt(P ); or
2. a′, a′′ ∈ Opt(P ), a′ 6= a′′, a′ ≈P a′′, and a′ ∈ Di

2.

Proof. (⇒) By Theorem 5, one of its conditions (1) and
(2) holds. Let us assume that the condition (1) of Theorem
5 holds. It follows that j = 1, and that Di

1 contains
an non-optimal outcome for P , say a′. Moreover, Di

2
must also contain an optimal outcome, say a′′ (otherwise,
ar�i(Opt(P )) = 1). Thus, the condition (1) holds. Next,
let us assume that the condition (2) of Theorem 5 holds. It
follows that j = 2, and that there are outcomes a′, a′′ ∈
Opt(P ) such that a′ 6= a′′, a′ ∈ Di

2, and a′′ �k a′, for
every k ∈ A, k 6= i. Since a′ ∈ Di

2, a′′ �i a′ (�i has
only two clusters, Di

1 and Di
2, and a′ ∈ Di

2). It follows that
a′′ �P a′. By the optimality of a′ for P , a′ ≈P a′′ follows.
Thus, the condition (2) holds.

(⇐) Let us assume that the condition (1) holds. Since a′ ∈
Di

1 \ Opt(P ), 1 < ar�i
(Opt(P )) and the condition (1)

of Theorem 5 holds (with j = 1). Next, let us assume that
the condition (1) does not hold but the condition (2) does.
It follows that every element in Di

1 is optimal for P . Since
Di

1 6= ∅ and a′ ∈ Opt(P ) ∩Di
2, 2 > ar�i

(Opt(P )). Thus,
the condition (2) of Theorem 5 holds (with j = 2).

Theorem 6. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ). For every i, t ∈ A, t 6= i, and
every total preorder �, Opt(P ) �cb

i Opt(P�t/�).

Proof. Let v ∈ Opt(P ) be optimal for i (such a v exists by
Theorem 1). It follows that for every w ∈ D, v �i w. Thus,
v �i w, for every w ∈ Opt(P�t/�). By the definition of
�cb

i , Opt(P ) �cb
i Opt(P�t/�).

Theorem 7. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A,
t 6= i, and a total preorder � such that Opt(P�t/�) �cw

i

Opt(P ) if and only if for every a ∈ Min�i(Opt(P )), there
is a′ ∈ D such that a′ �i a, and a′ �k a, for every k ∈ A,
k 6= t.

Proof. (⇐) We modify the total preorder �t as follows.
For every a ∈ Min�i

(Opt(P )), we move a′ (the element
satisfying a′ �i a, and a′ �k a, for every k ∈ A, k 6= t,
whose existence is given by the assumption) from its cluster
in �t to the cluster of �t containing a. We denote the
resulting total preorder by �.

First, we note that for every a ∈ Min�i(Opt(P )),
a′ �P�t/�

a. Second, the only change when moving from
P to P�t/� is in the profile of agent t, and that profile
changes by promoting elements a′ (indeed, for every a ∈
Min�i

(Opt(P )), a �t a
′; otherwise, we would have a′ �P

a, contrary to a ∈ Opt(P )). Thus, some of these elements
might become optimal but their degrees of quality in �i are
better than those of their corresponding elements a. Finally,
other elements than a′s cannot become optimal. These three
observations imply that Opt(P�t/�) �cw

i Opt(P ).
(⇒) Let an agent t 6= i and a total preorder � satisfy
Opt(P�t/�) �cw

i Opt(P ). To simplify notation, we set
Q = P�t/�.

Let us consider a ∈ Min�i(Opt(P )). Since
Opt(Q) �cw

i Opt(P ), a /∈ Opt(Q). It follows that there is
a′ ∈ Opt(Q) such that a′ �Q a. Thus a′ �i a (otherwise,
we would have Opt(P ) �i Opt(Q), a contradiction).
Moreover, for every k ∈ A, k 6= t, a′ �k a.

Theorem 8. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i, t ∈ A, t 6= i. There
exists a total preorder � such that Opt(P�t/�) �lmin

i

Opt(P ) if and only if Opt(P ) 6= D.

Proof. (⇐) Let us assume that �i is given by

�i: Di
1 �i · · · �i D

i
mi

,

and �t is given by

�t: Dt
1 �t · · · �t D

t
mt

.



Let ` be the smallest k such that Di
k \ Opt(P ) 6= ∅ and

let a ∈ Di
` \ Opt(P ). We will now construct a preference

� for agent i so that Opt(P ) ∪ {a} = Opt(P�t/�) in the
way introduced in Theorem 4. For that preference, we have
Opt(P�t/�) �lmin

i Opt(P ), which demonstrates that i can
manipulate preference aggregation in P .
(⇒) Obviously, if Opt(P ) = D, there is no set S such that
S �lmin

i Opt(P ).

Theorem 9. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A,
t 6= i, and a total preorder � such that Opt(P�t/�) �ar

i

Opt(P ) if and only if:

1. For some j < ar�i(Opt(P )), there exists a′ ∈ Di
j such

that a′ /∈ Opt(P ); or
2. For some j > ar�i(Opt(P )), there are a′ ∈ Opt(P ) ∩

Di
j , and a′′ ∈ Opt(P ) such that a′ 6= a′′, a′′ �k a′, for

every k ∈ A, k 6= t.

Proof. (⇐) Let us assume that the first condition holds.
Let ` be the smallest k such that Di

k \ Opt(P ) 6= ∅,
and let a′ ∈ Di

` \ Opt(P ). Reasoning as in the proof of
the previous theorem, we can construct a total preorder �
such that Opt(P ′) = Opt(P ) ∪ {a′} (where P ′ denotes
P�t/�). Clearly, ar�i

(Opt(P ′)) < ar�i
(Opt(P )) and so,

Opt(P ′) �ar
i Opt(P ).

If the second condition is satisfied, we have a′ �t a′′

(otherwise, a′′ �P a′, contradicting optimality of a′ in P ).
Let us assume that a′′ ∈ Di

j′ . Without loss of generality, we
may select a′′ so that j′ be maximized.

If j′ > ar�i
(Opt(P )), Let us construct � as in the

theorem 5 argument, but replace �t with � (and, as before,
write P ′ for P�t/�).

We know that a′′ ∈ Opt(P ′). Moreover, by the definition,
a′′ � a′. Thus, a′′ �P ′ a

′ and so, a′ /∈ Opt(P ′).
Next, if w ∈ Opt(P ) and w �i a

′′, then w ∈ Opt(P ′).
To show this, let us assume that there is w′ ∈ Opt(P ′) such
that w′ �P ′ w. Since w �i a

′′ �i a
′, w′ 6= a′ and w′ 6= a′′.

Thus, w′ �P w, a contradiction.
Finally, if w /∈ Opt(P ), w /∈ Opt(P ′). Since w /∈

Opt(P ), w 6= a′ and w 6= a′′. Indeed, it is clear that if
w′ �P w then w′ �P ′ w.

Since j′ > ar�i
(Opt(P )), these observations imply that

ar�i
(Opt(P ′)) < ar�i

(Opt(P )).
If j′ < ar�i

(Opt(P )), let X be a set of outcomes a such
that a ∈ Opt(P ), q�i

(a) < ar�i
(Opt(P )), a′ �t a �t a

′′

and a′′ �k a for every k ∈ A, k 6= t. We construct a total
preorder � by moving every a ∈ X and a′′ before a′ and
keeping the relative order among all a ∈ X and a′′.

By the definition, a′′ � a′. Thus, a′′ �P ′ a
′ and so, a′ /∈

Opt(P ′).
Next, we want to prove that if w ∈ Opt(P ) and q�i

(w) <
ar�i(Opt(P )), then w ∈ Opt(P ′). If w �i a′′, similar to
the previous argument, w ∈ Opt(P ′). If a′′ �i w, let us
assume that there is w′ ∈ Opt(P ′) such that w′ �P ′ w. If
w′ /∈ X and w′ 6= a′′, we can get w′ �P w contradicting
w ∈ Opt(P ). Thus w′ ∈ X or w′ = a′′. If a′′ �t w,
we can get a �t w for every a ∈ X . Thus w′ �t w and

w′ �P w, a contradiction. If w �t a′, we can get w � a′′

and w � a for every a ∈ X . Thus w � w′ contradicting
w′ �P ′ w. Thus a′ �t w �t a

′′. Since w′ �P ′ w, w′ �k w
for every k ∈ A, k 6= t. We already know that w′ ∈ X or
w′ = a′′, and for every a ∈ X , a′′ �k a for every k ∈ A,
k 6= t. Thus a′′ �k w for every k ∈ A, k 6= t. According
to all these, we can get that w ∈ X . If w ∈ X , according
to the definition of �, w′ �P ′ w if and only if w′ �P w
contradicting to w ∈ Opt(P ). Thus for every w ∈ Opt(P )
and q�i

(w) < ar�i
(Opt(P )), w ∈ Opt(P ′).

Finally, if w /∈ Opt(P ), w /∈ Opt(P ′). Since w /∈
Opt(P ), w 6= a′, w 6= a′′ and w /∈ X . Indeed, it is clear
that if w′ �P w then w′ �P ′ w.

These observations imply that ar�i
(Opt(P ′)) <

ar�i(Opt(P )).
(⇒) We set x = ar�i(Opt(P )). By the assumption, there is
a total preorder � on D such that ar�i(Opt(P�t/�)) < x.
Let us set O = Opt(P�t/�) and let D1 be the set of all
elements w ∈ D such that q�i(w) < x. If D1\Opt(P ) 6= ∅,
then the condition (1) holds. Thus, let us assume that D1 ⊆
Opt(P ).

Similar to the proof for theorem 5, we can construct the
set O′ and show that if O contains every element w ∈
Opt(P ) such that q�i

(w) > x, we can get a contradiction.
Thus, there is an element w ∈ Opt(P ) such that q�i

(w) >
x and w /∈ O. Since O = Opt(P�t/�), it is only possible if
the condition (2) holds.

Corollary 2. Let A be a set of N agents 1, . . . , N with a
profile P = (�1, . . . ,�N ) and let i ∈ A where �i: Di

1 �i

Di
2. There exist t ∈ A and a total preorder � such that

Opt(P�t/�) �ar
i Opt(P ) if and only if there are outcomes

a′, a′′ ∈ D such that:
1. a′ ∈ Di

1 \Opt(P ) and a′′ ∈ Di
2 ∩Opt(P ); or

2. a′, a′′ ∈ Opt(P ), a′ ∈ Di
2, and a′′ �k a′, for every

k ∈ A, k 6= t.

Proof. Similar to Corollary 1, agent i can improve
the quality of the optimal outcomes if and only if
ar�i

(Opt(P )) > 1 (there is a′′ ∈ Di
2 ∩Opt(P )), and there

is a′ ∈ Di
1 \ Opt(P ) which can become optimal for P�t/�

or there is a′ ∈ Di
2∩Opt(P ) which can become non-optimal

for P�t/�.

Theorem 10. The EBcw problem is in ∆P
3 and is both ΣP

2 -
and ΠP

2 -hard.

Proof. Theorem 7 states that if P is a profile, i is an agent,
there is another agent t such that Opt(P�t/�) �cw

i Opt(P )
if and only if for every a ∈ Min�i

(Opt(P )), there is a′ ∈ D
such that a′ �i a, and a′ �k a, for every agent k, k 6= t. Let
us assume

�i: ϕ1 �i · · · �i ϕm,

and Min�i
(Opt(P )) = {X : X ∈ Opt(P ), X |= ¬ϕ1 ∧

· · ·∧¬ϕj−1∧ϕj}. To find out j, we can first check whether
there exists M ∈ Opt(P ) such that M |= ¬ϕ1 ∧ · · · ∧
¬ϕm−1 ∧ ϕm using a ΣP

2 oracle (Brewka, Niemelä, and
Truszczynski 2003). If there exists such outcome, j = m.



Otherwise, we check whether there exists M ∈ Opt(P )
such that M |= ¬ϕ1 ∧ · · · ∧ ¬ϕm−2 ∧ ϕm−1 also using a
ΣP

2 oracle. We will iteratively check the existence of optimal
outcome until we find M ∈ Opt(P ) such that for every
M ′ ∈ Opt(P ), M ′ �i M . This can be achieved by an
algorithm using a ΣP

2 oracle polynomial times. Then we
need to check whether for every a ∈ Min�i

(Opt(P )), there
is a′ ∈ D such that a′ �i a, and a′ �k a, for every agent
k, k 6= t. To do that, we can check whether there exists
a ∈ Opt(P ) and a |= ¬ϕ1 ∧ · · · ∧ ¬ϕj−1 ∧ ϕj such that
for every a′ ∈ D, a �i a′ or a �k a′ for some agent k,
k 6= t with a ΣP

2 oracle. Thus our problem can be solved by
an algorithm using a ΣP

2 oracle polynomial times, and it is
in ∆P

3 .
For the ΣP

2 -hardness, we reduce to our problem the
problem to decide for a profile P , over a set U , and an atom
a ∈ U whether there is an outcome M ∈ Opt(P ) such that
a ∈ M . This problem is ΣP

2 -complete (Brewka, Niemelä,
and Truszczynski 2003).

Let us consider a profile P = (� 1, . . . ,� N ) over U
where

�1: ϕ1 �1 · · · �1 ϕm.

We define the profile P ′ = (�′1, . . . ,�′N ) as follows. We set

�′1 ϕ1 ∧ a �′1 · · · �′1 ϕm ∧ a �′1 ¬a.

For i = 2, . . . , N , we set�′i=�i. Clearly, for every M ⊆ U
such that a ∈M , M ∈ Opt(P ) if and only if M ∈ Opt(P ′).

We introduce agents 0 and N+1, a new atom b and define
U ′ = U ∪{b}. We define a profile P ′′ of the extended set of
agents by setting �′′i =�′i, for i = 1, . . . , N and by defining
preferences of the new agents as follows:
�′′0 : ¬a �′0 a ∧ ¬b �′0 a ∧ b
�′′N+1: b �′N+1 ¬b.

Let M ∈ Opt(P ) and a ∈M . We will show that M,M ∪
{b} ∈ Opt(P ′′). To simplify, we write M ′ for M ∪ {b}. Let
us consider M ′′ ⊆ U ′ and M ′′ �P ′′ M . This implies that
M ′′ �′′1 M , and so a ∈M ′′. Since M ′′ �′′0 M , M ′′ ≈′′0 M .
Since M ∈ Opt(P ), we can get that M ∈ Opt(P ′), and
M ′′ ≈P ′ M . If M ′′ �′′N+1 M , we can get that b ∈M ′′, and
M �′′0 M ′′ contradicts to M ′′ �P ′′ M . Thus M ′′ ≈′′N+1 M
and M ′′ ≈P ′′ M . This implies M ∈ Opt(P ′′). Similarly,
let us consider M ′′ ⊆ U ′ and M ′′ �P ′′ M

′. This implies
that M ′′ �′′N+1 M ′, and so b ∈ M ′′. Since M ≈P M ′, we
can get M ′ ∈ Opt(P ), M ′ ∈ Opt(P ′) and M ′′ ≈P ′ M

′.
If M ′′ �′′0 M ′, we can get that a /∈ M ′′, and M ′ �′′1 M ′′

contradicts to M ′′ �P ′′ M
′. Thus M ′′ ≈P ′′ M

′ and M ′ ∈
Opt(P ′′).

Since M,M ′ ∈ Opt(P ′′), Min�′′0 (Opt(P ′′)) = {X :
X ∈ Opt(P ′′), a ∈ X, b ∈ X}. We want to show that there
exist t ∈ [0, . . . , N + 1], for every X ∈ Min�′′0 (Opt(P ′′)),
there is a X ′ ⊆ U ′ such that X ′ �′′0 X , and X ′ �′′k X
for every k ∈ [0, . . . , N + 1], k 6= t. Let t be N + 1. For
every X ∈ Min�′′0 (Opt(P ′′)), let X ′ be X\{b}. Obviously,
X ′ �′′0 X , and X ′ ≈P ′ X . Thus if agent N + 1 change her
preference to�: ¬b � b, for every X ∈ Min�′′0 (Opt(P ′′)),
X /∈ Opt(P ′′�′′N+1/�

).

Conversely, let us assume that agent 0 can find another
agent to misrepresent her preference. If for every M ∈
Opt(P ′′), a /∈ M , agent 0 cannot improve the quality of
optimal outcomes. Thus there exist some M ∈ Opt(P ′′)
and a ∈ M . Without loss of generality, we can assume
that b /∈ M . We want to show that M ∈ Opt(P ). Let
us consider M ′ ⊆ U and M ′ �P M . Thus a ∈ M ′,
M ′ ≈′′0 M and M ′ ≈′′N+1 M . Since M ′ �P M and a ∈M ,
M ′ �P ′ M . If M ′ �P ′ M , then M ′ �P ′′ M contradicts
to M ∈ Opt(P ′′). Thus M ′ ≈P ′ M , and M ′ ≈P M . That
means M ∈ Opt(P ).

We have proved that our problem is ΣP
2 -hard. It is easy to

see that the complement of our problem is ΠP
2 -hard. Since

our problem is in ∆P
3 , the complement problem is as hard as

the original one. Thus our problem is ΠP
2 -hard.

Theorem 11. The EMlmin and EBlmin problems are
NP-complete.

Proof. We recall that both problems concern profiles of
preference statements over a set of atoms U , with subsets
of U (viewed as truth assignments) as the set of outcomes.
According to Theorems 4 and 8, manipulation (bribery) for
a profile P is possible if and only if Opt(P ) 6= P(U).

Clearly, we can decide whether Opt(P ) 6= P(U) by the
following non-deterministic algorithm: guess two outcomes
M,M ′ ⊆ U , and check that M ′ �P M . That latter task can
be executed in polynomial time. Indeed, for a given set M ⊆
U and a propositional formula ϕ over U , checking M |= ϕ
takes polynomial time. This allows us to compute the quality
degrees of M and M ′ for all preference statements in P
and, consequently, to compare them wrt the profile P , in
polynomial time. It follows that the manipulation (bribery)
problem is in NP.

For the NP-hardness, we show that the SAT problem can
be reduced to the problem to decide whether Opt(P ) 6=
P(U). To this end, let us consider a SAT instance ϕ over
a set U of atoms. We introduce a new atom a and define
U ′ = U ∪ {a}. We define a profile P = (�) over U ′ (a
one-agent profile) as follows:

�: a ∨ ¬ϕ � ϕ ∧ ¬a.

To complete the argument, we show that Opt(P ) 6= P(U)
if and only if ϕ is satisfiable. Let us assume that M is a
model of ϕ and let M ′ = {a}. Clearly, M ′ �P M , that is
M /∈ Opt(P ). Conversely, if there is an outcome M ⊆ U ′

that is not optimal in P ′, then q�(M ′) = 2, that is M is a
model of ϕ ∧ ¬a. It follows that ϕ is satisfiable.

Theorem 12. The EMar and EBar problems restricted to
the case when the agent seeking manipulation or bribery,
respectively, has a two-level preference are ΣP

2 -complete.

Proof. For the problem EMar, Corollary 1 states that if P is
a profile in which agent i has a two-cluster preference

�i: ϕ1 �i ϕ2

then agent i can manipulate preference aggregation if an
only if there are outcomes M ′,M ′′ ⊆ U such that



1. M ′ /∈ Opt(P ), M ′′ ∈ Opt(P ), q�i(M
′) = 1, and

q�i(M
′′) = 2; or

2. M ′,M ′′ ∈ Opt(P ), M ′ 6= M ′′, M ′ ≈P M ′′, and
q�i

(M ′) = 2.

Let us consider an algorithm that non-deterministically
selects two outcomes M ′,M ′′ ⊆ U and then, with the
help of an oracle for the problem to decide whether an
outcome is optimal for a profile, verifies that M ′ /∈ Opt(P ),
M ′′ ∈ Opt(P ), M ′ |= ϕ1, and M ′′ |= ϕ2; or M ′ ∈
Opt(P ), M ′′ ∈ Opt(P ), M ′ 6= M ′′, M ′ ≈P M ′′, and
q�i

(M ′) = 2. From the comment above it follows that this
non-deterministic algorithm correctly decides whether i can
manipulate. Moreover, it runs in polynomial time (assuming
that we count each call to the oracle as taking constant time).
Thus, the membership follows.

For the hardness, we reduce to our problem the problem
to decide for a profile P over a set U and an atom a ∈ U
whether there is an outcome M ∈ Opt(P ) such that a ∈
M . That problem is ΣP

2 -complete (Brewka, Niemelä, and
Truszczynski 2003).

Thus, let us consider a profile P over U . We define the
profile P ′ = (�′1, . . . ,�′N ) as follows. Assuming that �1 is
of the form

�1: ϕ1 �1 · · · �1 ϕm,

we set

�′1: ϕ1 ∧ a �′1 · · · �′1 ϕm ∧ a �′1 ¬a.

For i = 2, . . . , N , we set �′i=�i. Clearly, for every
M ⊆ U such that a ∈ M , M ∈ Opt(P ) if and only if
M ∈ Opt(P ′). Moreover, P ′ has the following property: if
M ≈P ′ M

′ and a ∈M , then a ∈M ′.
Let us assume that U = {a, x1, . . . , xn−1}. We

introduce agents 0, N + 1, . . . N + 2(n − 1). We
define a profile P ′′ of the extended set of agents
by setting �′′i =�′i, for i = 1, . . . , N and by
defining preferences of the new agents as follows:
�′′0 : ¬a � a
�′′N+2i−1: ¬a ∧ xi � a ∨ ¬xi, i = 1, . . . , n− 1
�′′N+2i: ¬a ∧ ¬xi � a ∨ xi, i = 1, . . . , n− 1.

We will now show that every set Y ⊆ U such that a /∈
Y is optimal in P ′′. Indeed, let us consider Y ′ ⊆ U such
that Y ′ �P ′′ Y . This implies that Y ′ �′′0 Y , and so a /∈
Y ′. Since for every j = 1, . . . , n − 1, Y ′ �′′N+2j−1 Y and
Y ′ �′′N+2j Y , xj ∈ Y if and only if xj ∈ Y ′. Thus, Y = Y ′,
which proves optimality of Y in P ′′.

We now introduce a fresh element (atom) b and define
U ′ = U ∪ {b}. We view P ′′ as a profile over U ′ = U ∪ {b}.
Clearly, for every M ⊆ U , M ≈P ′′ M ∪ {b}.

Let us assume that M ⊆ U , a ∈ M and M ∈ Opt(P ).
We will show that M ∈ Opt(P ′′). To this end, let us
consider M ′ ⊆ U ′ such that M ′ �P ′′ M and let us
assume first that b /∈ M ′. Thus, M ′ ⊆ U . Clearly, M ′ �P ′

M . Since M ∈ Opt(P ′), M ′ ≈P ′ M . Consequently,
a ∈ M ′ (otherwise, the degrees of quality of M and M ′

on preference �′1 would be different) and it follows that
M ′ ≈P ′′ M . Next, let us assume that b ∈ M ′ and set

M ′′ = M ′\{b}. Then M ′′ �P ′′ M (the absence or presence
of b does not affect the degrees of quality). Consequently,
M ′′ ≈P ′′ M and so, also M ′ ≈P ′′ M . It follows that M
is optimal in P ′′. Moreover, M ∪ {b} is optimal in P ′′, too.
Since M ≈P ′′ M ∪ {b}, agent 0 can manipulate preference
aggregation in P ′′.

Conversely, let us assume that agent 0 can manipulate
preference aggregation in profile P ′′. Since all outcomes that
do not contain a are optimal in P ′′, it follows that there is an
outcome M ⊆ U ′ such that a ∈ M and M ∈ Opt(P ′′).
Without loss of generality, we can assume that b /∈ M .
Therefore, M ⊆ U . We will prove that M ∈ Opt(P ′).
Since a ∈M , that will imply that P has an optimal outcome
containing a.

To show that M ∈ Opt(P ′), let us consider any M ′ ⊆ U
such that M ′ �P ′ M . If a /∈ M ′, then M ′ �′′0 M and
M ′ �′′j M , for j = N + 1, . . . , N + 2(n − 1). Thus,
M ′ �P ′′ M , a contradiction. Thus, a ∈ M ′. Since M ′

and M have the same degrees of quality on all preferences
�′′j , j = 0, N + 1, . . . , N + 2(n − 1), M ′ �P ′′ M . Since
M ∈ Opt(P ′′), M ′ ≈P ′′ M and so, M ′ ≈P ′ M . Thus,
M ∈ Opt(P ′), as claimed.

The problem EBar is similar to EMar. Corollary 2 states
that if P is a profile in which agent i has a two-cluster
preference

�i: ϕ1 �i ϕ2

then agent i can manipulate preference aggregation if an
only if there are outcomes M ′,M ′′ ⊆ U such that

1. M ′ /∈ Opt(P ), M ′′ ∈ Opt(P ), q�i
(M ′) = 1, and

q�i
(M ′′) = 2; or

2. M ′,M ′′ ∈ Opt(P ), q�i
(M ′) = 2, and M ′′ �k M ′, for

every k ∈ A, k 6= t.

Thus we can guess two outcomes M ′,M ′′ ⊆ U like what
we did for the problem EMar. The only difference is in EBar

we checked whether M ′ ≈P M ′′ and here we guess t and
check whether M ′′ �k M ′, for every k ∈ A, k 6= t. We
can also do this in polynomial time assuming each call to
the oracle taking constant time.

For the hardness, we can reduce the problem EMar to
EBar. Consider a profile P = (�1, . . . ,�m) over U where

�i: ϕ1 �i ϕ2.

We introduce a new agent 0 and construct a profile P ′ =
(�′0,�′i) as follows. We set

�′0: ϕ1 �′0 ϕ2

and �′i=�i. Since agent 0 and agent i have the same
preference, agent 0 can bribe some other agent (in our case,
it can only be agent i) to misrepresent her preference if and
only if agent i in profile P can manipulate. Thus problem
EBar is also ΣP

2 -complete.

Corollary 3. The EMar and EBar problems are ΣP
2 -hard

and in PSPACE.

Proof. Theorem 12 provides a lower bound for the
complexity for the the general case. Since both problems are
clearly in PSPACE, we obtain the result.


