
Declarative Semantics for Active Integrity Constraints

Luciano Caroprese1 and Mirosław Truszczýnski2

1 Universit̀a della Calabria, 87030 Rende, Italy
2 Department of Computer Science, University of Kentucky, Lexington,KY 40506, USA

Abstract. We studyactive integrity constraints, a formalism designed to de-
scribe integrity constraints on databasesand to specify preferred ways to enforce
them. The original semantics proposed for active integrity constraints is based
on the concept of afounded repair. We point out that groundedness underlying
founded repairs does not prevent cyclic justifications and so, may be inappropri-
ate in some applications. Thus, using a different notion of grounding, withroots
in logic programming and revision programming, we introduce two new seman-
tics: of justified weak repairs, and of justified repairs. We study properties of
these semantics, relate them to earlier semantics of active integrity constraints,
and establish the complexity of basic decision problems.

1 Introduction

Integrity constraints are conditions on databases. If a database violates integrity con-
straints, it needs to berepaired— updated so that the integrity constraints hold again.
Often there are several ways to enforce integrity constraints. The paper is concerned
with the problem to specify preferred ways to update databases.

A database can be viewed formally as a finite set of ground atoms in the language
of first-order logic determined by the database schema and aninfinite countable set of
constants. Anintegrity constraintis a formula in this language. A databasesatisfiesan
integrity constraint if it is itsHerbrand model. Since databases and sets of integrity
constraints arefinite, without loss of generality, we will limit our attention to the case
when databases are subsets of some finite setAt of propositionalatoms, and integrity
constraints are clauses in the propositional language generated byAt .

Let us consider the databaseI = {a, b} and the integrity constraint¬a ∨ ¬b. As,
I does not satisfy¬a ∨ ¬b, it needs to be “repaired” — replaced by a database that
satisfies the constraint. AssumingAt = {a, b, c, d}, the databases∅, {a}, {b}, {a, c} are
examples of databases that could be considered as replacements forI. Since the class
of replacements ofI is quite large, the question arises whether there is a principled way
to narrow it down. One of the most intuitive and commonly accepted postulates is that
the change between the initial databaseI and the revised databaseR, given byI ÷R,
be minimal (cf. [1]). In our case, the minimality of change narrows down the class of
possible revisions to{a} and{b}.

In some cases, the minimality of change is not specific enoughand may leave too
many candidate revisions. The problem can be addressed by formalisms that allow the
database designer to formulate integrity constraints and,in addition, to state preferred

ways for enforcing them. In this paper, we study a recent formalism of that type:active
integrity constraints(aic’s, for short) [2].

Aic’s explicitly encode both integrity constraints and preferred basic actions to re-
pair them, when the constraints are violated. To specify themeaning of sets of aic’s,
[2] proposed the concept offoundedness, and combined it with the requirement of the
minimality of change to get the semantics offounded repairs. Foundedness reflects a
certain groundedness condition. We show that in some cases this groundedness condi-
tion is too weak to preventcyclic justifications. To address the problem, we introduce a
new semantics for aic’s, which we call the semantics ofjustified repairs.

The semantics ofjustified repairsuses a stronger concept of groundedness than that
behind founded repairs. In general, it is also too weak to imply the minimality of change
property and so, we impose this property on justified repairsexplicitly. We show that
the class of justified repairs is a subclass of the class of founded repairs.

We also consider a broader class of ways to enforce integrityconstraints by drop-
ping the minimality of change postulate. We refer to the elements of that class asweak
repairs. Combining the concept with the appropriate groundedness condition yields the
semantics offounded weak repairsand justified weak repairs. While the minimality
of change condition is a natural requirement to impose on preferred ways to enforce
integrity constraints, including weak repairs in the considerations offers a richer per-
spective. In particular, it brings up the question of identifying classes of aic’s, for which
the groundedness condition alone is sufficient to guaranteechange-minimality. We ex-
hibit here two classes of aic’s, for which the groundedness condition behind justified
repairs ensures the minimality of change.

A fundamental property of semantics describing database updates is the invariance
undershifting [3, 4]. Informally, shifting consists of changing the membership status
of some facts in a database and the corresponding modification (systematic renaming)
of the integrity constraints. We show that all semantics of aic’s we consider here are
invariant under shifting.

Although we consider just the propositional case our results can be easily lifted
to the first-order case via grounding (like in the case of stable-model semantics for
Logic Programming). As a consequence, our framework is ableto handle numerical
expressions in the body of the constraints. Indeed, grounding eliminates them and leaves
us with the basic propositional case presented here.

A richer field of semantics of database updates gives rise to atrade-off. On the
one hand the semantics differ in how much they refine the classof (weak) repairs that
enforce integrity constraints, and on the other hand, in thecomplexity of the existence of
a repair problem. We discuss ways in which this trade-off canbe exploited in practice.

The semantics discussed in the paper are motivated by connections to the seman-
tics of answer sets for disjunctive logic programming on theone hand, and to revision
programming [3], on the other. We exploit them to develop thedefinition of grounded-
ness for justified weak repairs, and to establish the complexity of deciding the existence
of repairs of particular types. We develop a detailed discussion of these connections
in another paper [5]. Due to space limits, we omit the proofs (they can be found at
www.cs.uky.edu/ai/aic-full.pdf).

2 Integrity Constraints and Database Repairs — Basic Concepts

We consider a finite setAt of propositional atoms. We represent databases as subsets
of At . Databases areupdatedby inserting and deleting atoms. Anupdate actionis an
expression of the form+a or−a, wherea ∈ At . Update actions+a and−b state thata
andb are to be inserted and deleted, respectively. We say that a set U of update actions
is consistentif it does not contain update actions+a and−a, for anya ∈ At .

Sets of update actions determine database updates. LetD be a database andU a
consistent set of update actions. The result ofupdatingD by means ofU is the database

DB ◦ U = (DB ∪ {a | + a ∈ U}) \ {a | − a ∈ U}.

We have the following straightforward property of the operator ◦, which asserts that if
a set o update actions is consistent, the order in which they are executed is immaterial.

Proposition 1. If U1 andU2 are sets of update actions such thatU1 ∪ U2 is consistent,
then for every databaseI, I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2. 2

It is common to impose on databases conditions, calledintegrity constraints, that
must always be satisfied. In the propositional setting, anintegrity constraintis a formula

r = L1, . . . , Lm ⊃ ⊥, (1)

whereLi, 1 ≤ i ≤ m, are literals (expressions of the forma andnot a, wherea is an
atom) and ‘,’ stands for the conjunction. Any subset ofAt (and so, also any database)
can be regarded as a propositional interpretation. We say that a databaseI satisfiesan
integrity constraintr, denoted byI |= r, if I satisfies the propositional formula repre-
sented byr. In this way, an integrity constraint encodes a condition ondatabases: the
conjunction of its literals must not hold (or equivalently,the disjunction of the corre-
sponding dual literals must hold).

Any language of (propositional) logic could be used to describe integrity constraints
(in the introduction we used the language with the connectives∨ and¬). Our present
choice is reminiscent of the syntax used in logic programming. It is not coincidental. In
the context of aic’s the subject of this paper, the negation operator has some similarities
to the default negation operator in logic programming and so, as it is common in the
logic programming literature, we denote it withnot rather than¬.

Given a setη of integrity constraints and a databaseI, the problem ofdatabase
repair consists of updatingI so that integrity constraints inη hold.

Definition 1. [WEAK REPAIR AND REPAIR] Let I be a database andη a set of in-
tegrity constraints. Aweak repairfor 〈I, η〉 is a consistent setU of update actions such
that ({+a | a ∈ I} ∪ {−a | a ∈ At \ I}) ∩ U = ∅ (U consists of “essential” update
actions only), andI ◦ U |= η (constraint enforcement).

A consistent setU of update actions is arepairfor 〈I, η〉 if it is a weak repair for
〈I, η〉 and for everyU ′ ⊆ U such thatI ◦ U ′ |= η, U ′ = U (minimality of change). 2

If an original database satisfies integrity constraints (formally, if I |= η), then no
change is needed to enforce the constraints and soU = ∅ is theonly repair for〈I, η〉.

However, there may be otherweakrepairs for〈I, η〉. This points to the problem with
weak repairs. They allow for the possibility of replacingI with a weak repairI ′ for
〈I, η〉 even whenI does not violateη. Thus, the minimality of change is a natural and
useful property and, for the most part, we are interested in properties of repairs and
their refinements. However, considering weak repairs explicitly is useful as it offers a
broader perspective.

If a setη of integrity constraints is inconsistent, there is no database satisfying it
(constraints cannot be enforced). In such case, the database repair problem is trivial and
not interesting. However, assuming consistency of integrity constraints does not yield
any significant simplifications. Therefore, we do not make this assumption here.

Finally, we note that the problem of the existence of a weak repair is NP-complete
(it is just a simple reformulation of the SAT problem). Sincerepairs exist if and only if
weak repairs do, the problem of the existence of a repair is NP-complete, too.

3 Active Integrity Constraints

Given no other information but integrity constraints, we have no reason to prefer one
repair over another. If several repairs are possible, guidance on how to select a repair
to execute could be useful. The formalism ofactive integrity constraints(aic’s, for
short) [2] was designed to address this problem. We will now review it and offer a first
extension by introducing the semantics of founded weak repairs.

For a propositional literalL, we writeLD for the dual literal toL. Further, ifL = a,
we defineua(L) = +a. If L = not a, we defineua(L) = −a. Conversely, for an
update actionα = +a, we setlit(α) = a and forα = −a, lit(α) = not a. We call
+a and−a thedualsof each other, and writeαD to denote the update action dual to
an update actionα. Finally, we extend the notation introduced here to to sets of literals
and sets of update actions, as appropriate.

An active integrity constraint(aic, for short) is an expression of the form
r = L1, . . . , Lm ⊃ α1| . . . |αk (2)

whereLi are literals,αj are update actions, and

{lit(α1)
D, . . . , lit(αk)D} ⊆ {L1, . . . , Lm} (3)

The set{L1, . . . , Lm} is the body of r; we denote it bybody(r). Similarly, the set
{α1, . . . , αk} is theheadof r; we denote it byhead(r).

An aic with the empty head can be regarded as an integrity constraint (and so, we
write the empty head as⊥, for consistency with the notation of integrity constraints).
An aic with a non-empty head functions as an integrity constraint (its body must be
false)and it explicitly provides support for the use of update actionsin its head (if its
body is true).

The role of the condition (3) is to ensure that an aic supportsonly those update
actions that can “fix” it (executing them ensures that the resulting database satisfies
the constraint). The condition can be stated concisely as follows: [lit(head(r))]D ⊆
body(r). We call literals in[lit(head(r))]D updatableby r. They are precisely those
literals that can be affected by an update action inhead(r). We call every literal in

body(r) \ [lit(head(r))]D non-updatableby r. We denote the set of literals updatable
by r asup(r) and the set of literals non-updatable byr asnup(r).

With the notation we introduced, we can discuss the intendedmeaning of an aicr of
the form (2) in more detail. First,r functions as an integrity constraintL1, . . . , Lm ⊃ ⊥.
Second, it provides support for one of the update actionsαi, assuming all non-updatable
literals in r hold in the repaired database. In particular, the constrainta, b ⊃ −a| − b,
given I = {a, b}, provides the support for−a or −b, independently of the repaired
database, as it has no non-updatable literal. In the same context of I = {a, b}, the
constrainta, b ⊃ −a provides support for−a but only if b is present in the repaired
database.

A databaseI satisfies an aicr, I |= r, if it satisfies the corresponding integrity
constraint. It is now straightforward to adapt the concept of a (weak) repair to the case
of aic’s. Specifically, a setU of update actions is a(weak) repairfor a databaseI with
respect to a setη of aic’s if it is a (weak) repair forI with respect to the set ofstandard
integrity constraints represented byη.

Let us consider the aicr = a, b ⊃ −b, and letI = {a, b} be a database. Clearly,
I violatesr as the condition expressed in the body ofr is true. There are two possible
repairs ofI with respect tor or, more precisely, with respect to the integrity constraint
encoded byr: performing the update action−a (deletinga), and performing the update
action−b (deletingb). We select the latter as a preferred repair, sincer provides support
for the update action−b.

Repairs do not need to obey preferences expressed by the heads of aic’s. To formal-
ize the notion of “support” and translate it into a method to select “preferred” repairs,
[2] proposed the concept of afounded repair— a repair that isgroundedin (“implied”
by) a set of aic’s. The following definition, in addition to founded repairs, introduces a
new semantics of foundedweakrepairs.

Definition 2. [FOUNDED (WEAK) REPAIR] Let I be a database,η a set of aic’s, and
U a consistent set of update actions.

1. An update actionα is foundedwith respect to〈I, η〉 andU if there isr ∈ η such
thatα ∈ head(r), I ◦U |= nup(r), andI ◦U |= βD, for everyβ ∈ head(r)\{α}.

2. The setU is foundedwith respect to〈I, η〉 if every element ofU is founded with
respect to〈I, η〉 andU .

3. U is a founded (weak) repairfor 〈I, η〉 if U is a (weak) repair for〈I, η〉 andU is
foundedwith respect to〈I, η〉. 2

Foundedness is indeed a formalization of a certain notion of“groundedness”. Let
us assume thatα is founded with respect to〈I, η〉 andU by means of an aicr ∈ η.
Let us also assume thatI 6|= r, that is,I |= body(r). By the foundedness, all literals
in body(r), except possibly forlit(αD), are satisfied inI ◦ U . Thus, ifU is to enforce
r, it must containα. We observe that the foundedness does not imply the constraint
enforcement nor the minimality of change.

Example 1.Let I = ∅ andη consist of the following aic’s:
r1 = not a ⊃ +a
r2 = not b, c ⊃ +b
r3 = b,not c ⊃ +c.

The unique founded repair for〈I, η〉 is{+a}. The set{+a,+b,+c} is founded, guaran-
tees constraint enforcement (and so, it is a founded weak repair), but it it isnot change-
minimal. The set{+b,+c} is founded but does not guarantee constraint enforcement.
Therefore, in the definition of founded (weak) repairs, the property of being a (weak) re-
pair must be enforced explicitly. We also note that foundedness properly narrows down
the class of repairs. Ifη = {a, b ⊃ −b}, andI = {a, b} (an example we considered
earlier),U = {−a} is a repair for〈I, η〉 but not a founded repair. 2

Next, we show that there could exist foundedweakrepairs even when no founded
repair exists.

Example 2.Let I = ∅ andη consist of the following aic’s:
not a, b, c ⊃ +a not b, a, c ⊃ +b
not c, a, b ⊃ +c not a ⊃ ⊥

One can check that the only founded sets of update actions areU1 = ∅ (∅ is always
vacuously founded) andU2 = {+a,+b,+c}. Moreover,U3 = {+a} is a repair and
U2 is a weak repair. Thus,U2 is a founded weak repair but, as it is not minimal, not a
founded repair. In fact, there are no founded repairs in thisexample. 2

Finally, we discuss the key issue arising in the context of founded repairs that moti-
vates much of the remainder of the paper. In some cases, founded repairs, despite com-
bining foundedness with change-minimality, are still not grounded strongly enough.
The problem is the circularity of support.

Example 3.Let I = {a, b} and letη1 consist of the following aic’s:

r1 = a, b ⊃ −a
r2 = a,not b ⊃ −a
r3 = not a, b ⊃ −b.

One can check thatU = {−a,−b} is a repair for〈I, η1〉. Moreover, it is a founded
repair:−a is founded with respect to〈I, η1〉 andU , with r2 providing the necessary
support, while−b is founded with respect to〈I, η1〉 andU because ofr3.

The problem is that, arguably,U = {−a,−b} supports itself through circular de-
pendencies. The constraintr1 is the only one violated byI and forcing the need for a
repair. However, according to intuitions we discussed earlier, r1 supports the founded-
ness of−a only if b remains in the database. This is not the case here. Thus, the support
for the foundedness of−a in U must come entirely fromr2 andr3. The same holds for
−b as it is not even mentioned in the head ofr1.

It follows that the foundedness of−a is supported solely byr2, and it requires
that−b be included in the repair. In the same way, the foundedness of−b is supported
solely byr3, and it depends on−a being included in the repair. Thus, the foundedness
of {−a,−b} is “circular”: −a is founded (and so included inU) due to the fact that−b
has been included inU , and−b is founded (and so included inU) due to the fact that
−a has been included inU , but there is no independent justification for having any of
these two actions included. As we noted,r1 does not “found” any of−a nor−b. 2

To summarize this section, the semantics of repairs for aic’s enforces constraints and
satisfies the minimality of change property. It has no groundedness properties beyond

what is implied by the two requirements. The semantics of founded repairs gives prefer-
ence to some ways of repairing constraints over others. It only considers repairs whose
all elements are founded. However, foundedness may be circular and so the associated
concept of groundedness is weak. We revisit this issue in thenext section.

On the computational side, the complexity of the semantics of repairs is lower than
that of founded repairs. From the result stated in the previous section, it follows that the
problem of the existence of a repair is NP-complete, while the problem of the existence
of a founded repair isΣ2

P -complete [2]. For the sake of completeness, we also note that
the problem of the existence of a founded weak repair is again“only” NP-complete (the
proof is simple and we omit it).

4 Justified repairs

In this section, we will introduce another semantics for aic’s that captures a stronger
concept of groundedness than the one behind founded repairs. The goal is to disallow
circular dependencies like the one we discussed in Example 3.

We start by defining when a set of update actions isclosedunder aic’s. Letη be a set
of aic’s and letU be a set of update actions. Ifr ∈ η, and for everynon-updatableliteral
L ∈ body(r) there is an update actionα ∈ U such thatlit(α) = L then, after applying
U or any of its consistent supersets to the initial database, the result of the update, sayR,
satisfies all non-updatable literals inbody(r). To guarantee thatR satisfiesr, R must
falsify at least one literal inbody(r). To this endU must contain at least one update
action fromhead(r).

Definition 3. [CLOSED SET OF UPDATE ACTIONS] A setU of update actions isclosed
under an aicr if nup(r) ⊆ lit(U) implieshead(r) ∩ U 6= ∅. A setU of update actions
is closedunder a setη of aic’s if it is closed under everyr ∈ η. 2

If a set of update actions is not closed under a setη of aic’s, executing its elements
may fail to enforce constraints. Therefore, closed sets of update actions are important.
We regardminimalsuch sets as “forced” byη, as all elements in a minimal set of update
actions closed underη are necessary (no nonempty subset can be dropped).

Another key notion in our considerations is that ofno-effect actions. Let I be a
database andR a result of updatingI. An update action+a (respectively,−a) is ano-
effectaction with respect to(I,R) if a ∈ I ∩R (respectively,a /∈ I ∪R). Informally,
a no-effect action does not change the status of its underlying atom. We denote by
ne(I,R) the set of all no-effect actions with respect to(I,R). We note the following
two simple properties reflecting the nature of no-effect actions — their redundancy.

Proposition 2. LetI be a database. Then

1. For every databaseR,R ◦ ne(I,R) = R

2. For every setE of update actions such thatE ∪ ne(I, I ◦ E) is consistent,I ◦ E =
I ◦ (E ∪ ne(I, I ◦ E)). 2

Our semantics of justified repairs is based on the knowledge-representation princi-
ple (a form of the frame axiom) that remaining in the previousstate requires no reason
(persistence by inertia). Thus, when justifying update actions necessary to transformI
intoR based onη we assume the setne(I,R) as given. This brings us to the notion of
a justified weak repair.

Definition 4. [JUSTIFIED WEAK REPAIR] Let I be a database andη a set of aic’s. A
consistent setU of update actions is a justified action set for〈I, η〉 if U is a minimal set
of update actions containingne(I, I ◦ U) and closed underη. If U is a justified action
set for〈I, η〉, thenE = U \ ne(I, I ◦ U) is a justified weak repair for〈I, η〉. 2

Intuitively, a setU of update actions is a justified action set, if it is preciselythe
set of update actions forced orjustifiedby η and the no-effect actions with respect toI
andI ◦ U . This “fixpoint” aspect of the definition is reminiscent of the definitions of
semantics of several non-monotonic logics, including (disjunctive) logic programming
with the answer-set semantics. The connection can be made more formal and we take
advantage of it in the section on the complexity and computation.

We will now study justified action sets and justified weak repairs. We start with an
alternative characterization of justified weak repairs.

Theorem 1. Let I be a database,η a set of aic’s andE a consistent set of update
actions. ThenE is a a justified weak repair for〈I, η〉 if and only ifE ∩ne(I, I ◦E) = ∅
andE ∪ ne(I, I ◦ E) is a justified action set for〈I, η〉. 2

Justified weak repairs have two key properties for the problem of database update:
constraint enforcement (hence the term “weak repair”) and foundedness.

Theorem 2. Let I be a database,η a set of aic’s, andE a justified weak repair for
〈I, η〉. Then

1. For every atoma, exactly one of+a or −a is in E ∪ ne(I, I ◦ E)
2. I ◦ E |= η
3. E is founded for〈I, η〉. 2

Theorem 2 directly implies that justified weak repairs are founded weak repairs.

Corollary 1. Let I be a database,η a set of aic’s, andE a justified weak repair for
〈I, η〉. Then,E is a founded weak repair for〈I, η〉. 2

The converse to Corollary 1 does not hold. That is, there are founded weak repairs
that are not justified weak repairs.

Example 4.The database and aic’s from Example 3 illustrate the point. As we noted
there,U = {−a,−b} is a founded repair. Thus, it is also a founded weak repair.

As pointed out, the support for the foundedness ofU is circular. The semantics of
justified weak repairs resolves the problem. Indeed,U is not a justified weak repair for
〈I, η1〉. One can check thatU ∪ ne(I, I ◦ U) (= {−a,−b}) containsne(I, I ◦ U)
(= ∅), and is closed underη. But it is not a minimal set of update actions containing

ne(I, I ◦ U) and closed underη. Indeed,∅ has these two properties, too. Thus, the
notion of groundedness employed by justified weak repairs isstronger.

In Example 3, the problem is caused byr1. Let us consider a situation, wherer1 is
replaced withr′1 = a, b ⊃ −a| − b. The constraintr′1 provides support for−a or −b
independently of the repaired database (as there are no non-updatable literals inr′1). If
−a is selected (with support fromr′1), r3 supports−b. If −b is selected (with support
from r′1), r2 supports−a, Thus the cyclic support given byr2 andr3 in the presence of
r1 is broken. Indeed, one can check that{−a,−b} is a justified weak repair. 2

While stronger property than foundedness, being a justified weak repair still does
not guarantee change-minimality (and so, the termweakcannot be dropped).

Example 5.Let I ′ = ∅, andη3 be a set of aic’s consisting of

r1 = not a, b ⊃ +a| − b
r2 = a,not b ⊃ −a|+ b

Let us consider the set of update actionsE = {+a,+b}. It is easy to verify thatE is a
justified weak repair for〈I ′, η3〉. Therefore, it ensures constraint enforcement and it is
founded. However,E is not minimal asI ′ is consistent withη3, and the empty set of
update actions is its only repair. 2

Thus, to have change-minimality, it needs to be enforced directly as in the case of
founded repairs. By doing so, we obtain the notion ofjustified repairs.

Definition 5. [JUSTIFIED REPAIR] LetI be a database andη a set of aic’s. A setE of
update actions is ajustified repairfor 〈I, η〉 if E is a justified weak repair for〈I, η〉,
and for everyE ′ ⊆ E such thatI ◦ E ′ |= η, E ′ = E . 2

Theorem 2 has yet another corollary, this time concerning justified and founded
repairs.

Corollary 2. Let I be a database,η a set of aic’s, andE a justified repair for〈I, η〉.
Then,E is a founded repair for〈I, η〉. 2

Example 4 shows that the inclusion asserted by Corollary 2 isproper. Indeed, we
argued there that{−a,−b} is a founded repair but not a justified weak repair. Thus,
{−a,−b} is not a justified repair, either.

As illustrated by Example 5, in general, justified weak repairs form a proper sub-
class of justified repairs. However, in some cases the two concepts coincide — the
minimality is a consequence of the groundedness underlyingthe notion of a justified
weak repair. One such case is identified in the next theorem. The other important case
is discussed in the next section.

Theorem 3. Let I be a database andη a set of aic’s such that for each update action
α ∈

⋃

r∈η head(r), I |= lit(αD). If E is a justified weak repair for〈I, η〉, thenE is a
justified repair for〈I, η〉. 2

This theorem concerns the case when each update action in thehead of an aic, if
executed, would change the status of the underlying atom in the database. For instance,
if the initial database is empty and all update actions prescribed by aic’s are insert
actions, then justified weak repairs are guaranteed to be minimal and so, are justified
repairs.

5 Normal Active Integrity Constraints and Normalization

An aicr is normal if |head(r)| = 1. We will now study properties of normal aic’s. The
next result shows that for that class of constraints, updating by justified weak repairs
guarantees the minimality of change property and so, the explicit reference to the latter
can be omitted from the definition of justified repairs.

Theorem 4. Let I be a database andη a set of normal aic’s. IfE is a justified weak
repair for 〈I, η〉 thenE is a justified repair for〈I, η〉. 2

Next, we introduce the operation ofnormalizationof aic’s, which consists of elim-
inating disjunctions from the heads of rules. For an aicr = φ ⊃ α1| . . . |αn, by rn

we denote the set ofnormal aic’s {φ ⊃ α1, . . . , φ ⊃ αn}. For a setη of aic’s, we
setηn =

⋃

r∈η r
n. It is shown in [6] thatE is founded for〈I, η〉 if and only if E is

a founded for〈I, ηn〉. Thus,E is a founded (weak) repair for〈I, η〉 if and only if E
is a founded (weak) repair for〈I, ηn〉. For justified repairs, we have a weaker result.
Normalization may eliminate some justified (weak) repairs.

Theorem 5. LetI be a database andη a set of aic’s.

1. If a setE of update actions is a justified repair for〈I, ηn〉, thenE is a justified
repair for 〈I, η〉;

2. If a setE of update action is a justified weak repair for〈I, ηn〉, thenE is a justified
weak repair for〈I, η〉. 2

The following example shows that the inclusion in the previous theorem is, in gen-
eral, proper.

Example 6.Let us consider an empty databaseI ′ = ∅, the setη4 of aic’s

r1 = not a,not b ⊃ +a|+ b
r2 = a,not b ⊃ +b
r3 = not a, b ⊃ +a

its normalized versionηn
4

r1,1 = not a,not b ⊃ +a r2,1 = a,not b ⊃ +b
r1,2 = not a,not b ⊃ +b r3,1 = not a, b ⊃ +a

and the set of update actionsE = {+a,+b}. It is easy to verify thatE is a justified repair
for 〈I ′, η4〉. However,E is not a justified weak repair for〈I ′, ηn

4 〉 (and so, not a justified
repair for〈I ′, ηn

4 〉). Indeed, it is not a minimal set containingne(I ′, I ′ ◦ E) = ∅ and
closed underηn

4 , as∅ is also closed underηn
4 . 2

6 Shifting Theorem

We will now study the concept of shifting [3]. Shifting consists of transforming an
instance〈I, η〉 of the database repair problem to a syntactically isomorphic instance
〈I ′, η′〉 by changing integrity constraints to reflect the “shift” ofI into I ′. A semantics

for database repair problem has theshifting propertyif the repairs of the “shifted” in-
stance of the database update problem are precisely the results of modifying the repairs
of the original instance according to the shift fromI to I ′. The shifting property is
important. If a semantics of database updates has it, the study of that semantics can be
reduced to the case when the input database is empty. In many cases it allows us to relate
a semantics of database repairs to some semantics of logic programs with negation.

Example 7.Let I = {a, b} and letη5 = {a, b ⊃ −a| − b}. There are two founded
repairs for〈I, η5〉: E1 = {−a} andE2 = {−b}. LetW = {a}. We will now “shift”
the instance〈I, η5〉 with respect toW. To this end, we will first modifyI by changing
the status inI of elements inW, in our case, ofa. Sincea ∈ I, we will remove
it. Thus,I “shifted” with respect toW becomesJ = {b}. Next, we will modify η5
correspondingly, replacing literals and update actions involving a by their duals. That
results inη′5 = {not a, b ⊃ +a| − b}. One can check that the resulting instance〈J , η′5〉
of the update problem has two founded repairs:{+a} and{−b}. Moreover, they can
be obtained from the founded repairs for〈I, η5〉 by consistently replacing−a with +a
and+a with −a (the latter does not apply in this example). In other words, the original
update problem and its shifted version are isomorphic. 2

The situation presented in Example 7 is not coincidental. Inthis section we present
results showing that the semantics of (weak) repairs, founded (weak) repairs and jus-
tified (weak) repairs satisfy the shifting property. We start by observing thatshiftinga
databaseI to a databaseI ′ can be modeled by means of the symmetric difference op-
erator. Namely, we haveI ′ = I ÷W, whereW = I ÷I ′. This identity shows that one
can shift any databaseI into any databaseI ′ by forming a symmetric difference ofI
with some set of atomW (specifically,W = I ÷I ′). We will now extend the operation
of shifting a database with respect toW to the case of literals, update actions and aic’s.
To this end, we introduce ashiftingoperatorTW .

Definition 6. LetW be a database andℓ a literal or an update action. We define

TW(ℓ) =

{

ℓD if the atom ofℓ is inW
ℓ if the atom ofℓ is not inW

and we extend this definition to sets of literals or update actions, respectively. Further-
more, ifop is an operator on sets of literals or update actions (such as conjunction or
disjunction), for every setX of literals or update actions, we defineTW(op(X)) =
op(TW(X)). Finally, for an aicr = φ ⊃ ψ, we setTW(r) = TW(φ) ⊃ TW(ψ) and we
extend the notation to sets aic’s in the standard way. 2

To illustrate the last two parts of the definition, we note that whenop stands for
the conjunction of a set of literals andX = {L1, . . . , Ln}, where everyLi is a literal,
TW(op(X)) = op(TW(X)) specializes toTW(L1, . . . , Ln) = TW(L1), . . . , TW(Ln).
Similarly, for an aicr = L1, . . . , Ln ⊃ α1| . . . |αm we obtain

TW(r) = TW(L1), . . . , TW(Ln) ⊃ TW(α1)| . . . |TW(αm).

Clearly, we overload the notationTW and interpret it based on the type of the argument.
We have the following two results.

Theorem 6. [SHIFTING THEOREM FOR (WEAK) REPAIRS AND FOUNDED(WEAK)
REPAIRS] Let I andW be databases. For every setη of aic’s and for every consistent
setE of update actions, we have

1. E is a weak repair for〈I, η〉 if and only if TW(E) is a weak repair for〈I ÷
W, TW(η)〉

2. E is a repair for〈I, η〉 if and only ifTW(E) is a repair for〈I ÷W, TW(η)〉
3. E is founded for〈I, η〉 if and only ifTW(E) is founded for〈I ÷W, TW(η)〉.
4. E is a founded (weak) repair for〈I, η〉 if and only ifTW(E) is a founded (weak)

repair for 〈I ÷W, TW(η)〉. 2

Theorem 7. [SHIFTING THEOREM FOR JUSTIFIED(WEAK) REPAIRS] Let I andW
be databases. For every setη of aic’s and for every setE of update actions,E is an
justified (weak) repair for〈I, η〉 if and only ifTW(E) is a justified (weak) repair for
〈I, TW(η)〉. 2

Theorems 6 and 7 imply that in the context of (weak) repairs, founded (weak) re-
pairs or justified (weak) repairs, an instance〈I, η〉 of the database update problem can
be shifted to the instance the empty initial database. That property simplifies studies of
these semantics as it allows us to eliminate one parameter (the initial database) from
considerations.

Corollary 3. Let I be a database andη a set of aic’s. ThenE is a weak repair (re-
pair, weak repair, founded weak repair, founded repair, justified weak repair, justified
repair, respectively) for〈I, η〉 if and only ifTI(E) is a weak repair (repair, weak repair,
founded weak repair, founded repair, justified weak repair,justified repair, respectively)
for 〈∅, TI(η)〉. 2

Example 8.Let us look at one of the instances of the database repair problem consid-
ered in Example 4, specifically, at〈I, η2〉. We recall thatI = {a, b} andη2 consists of
the constraints:

a, b ⊃ −a| − b
a,not b ⊃ −a
not a, b ⊃ −b.

The set{−a,−b} is the only weak repair for〈I, η2〉 and, as we noted earlier, it is a
(weak) founded repair and a (weak) justified repair for〈I, η2〉, as well. Let us “shift”
this instance toI ′ = ∅, To this end, we shift with respect toW = I ÷ I ′ = {a, b}.
One can check that∅ = T{a,b}({a, b}), that is,I ′ = TW (I). Moreover,TW (η2) = η4,
whereη4 is the set of aic’s considered in Example 6 above. Thus, indeed, by shifting
〈I, η2〉 with respect toW , we obtain the database repair problem〈I ′, η4〉. It is easy to
verify thatT{a,b}({−a,−b}) = {+a,+b} and that{+a,+b} is the only (weak) repair
for 〈I ′, η4〉, which happens also to be a (weak) founded repair and a (weak)justified
repair for〈I ′, η4〉, in agreement with the results of this section. 2

7 Complexity and Computation

We noted earlier that the problem of the existence of a (weak)repair is NP-complete,
and the same is true for the problem of the existence of founded weak repairs. On the

other hand, the problem of the existence of a founded repair isΣ2
P -complete [2]. In this

section, we study the problem of the existence of justified (weak) repairs.
For our hardness results, we will use problems in logic programming. We will con-

sider disjunctive and normal logic programs that satisfy some additional syntactic con-
straints. Namely, we will consider only programs without rules which contain multiple
occurrences of the same atom (that is, in the head and in the body, negated or not; or
in the body — both positively and negatively). We call such programssimple. It is well
known that the problem of the existence of a stable model of a normal logic program is
NP-complete [7], and of the disjunctive logic program —ΣP

2 -complete [8]. The proofs
in [7, 8] imply that the results hold also under the restriction to simple normal and
simple disjunctive programs, respectively (in the case of disjunctive logic programs, a
minor modification of the construction is required). Letρ be a logic programming rule,
say

ρ = a1| . . . |ak ← β.

We define
aic(ρ) = not a1, . . . ,not ak, β ⊃ +a1| . . . |+ ak.

We extend the operatoraic(·) to logic programs in a standard way. We note that if a
ruleρ is simple thenbody(aic(ρ)) is consistent andnup(aic(ρ)) = body(ρ).

We recall that a setM of atoms is an answer set of a disjunctive logic programP
if M is a minimal set closed under the reductPM , wherePM consists of the rules
obtained by dropping all negative literals from those rulesin P that do not contain a
literal not a in the body, for anya ∈ M (we refer to [9] for details). The following
result states a property of the translation needed for hardness arguments.

Theorem 8. Let P be a simple disjunctive logic program. A setM of atoms is an
answer set ofP if and only ifua(M) is a justified weak repair for〈∅, aic(P)〉. 2

Example 9.Let us consider Example 6. We observe thatη4 is equal toaic(P) whereP
is the simple disjunctive logic program consisting of the rules:ρ1 = a | b, ρ2 = b← a
andρ3 = a← b.We know thatE = {+a,+b} is the unique justified repair for〈I ′, η4〉,
whereI ′ = ∅. Moreover, one can check thatM = {a, b}, for which E = ua(M),
is the unique answer set ofP . Furthermore, since the instance〈I ′, η4〉 is the result of
shifting 〈I, η2〉, also the repairs of〈I, η2〉 can be expressed in terms of answer sets of
the disjunctive logic programaic(P). This points to a general translation of instances
of the database repair problem into disjunctive logic programs by combining shifting
with the mappingaic. A detailed study of this relationship is a subject of a separate
paper. 2

We now state main results of the section.

Theorem 9. Let I be a database andη a set of normal aic’s. Then checking if there
exists a justified repair (justified weak repair, respectively) for 〈I, η〉 is an NP-complete
problem. 2

Theorem 10. LetI be a database andη a set of aic’s. The problem of the existence of
a justified weak repair for〈I, η〉 is aΣP

2 -complete problem. 2

Theorem 11. LetI be a database andη a set of aic’s. The problem of the existence of
a justified repair for〈I, η〉 is aΣP

2 -complete problem. 2

8 Discussion

We recall that given a databaseI and a setη of aic’s, the goal is to replaceI with I ′ so
thatI ′ satisfiesη. The set of update actions needed to transformI into I ′ must at least
be a repair for〈I, η〉 (assuming we insist on change-minimality, which normally is the
case). However, it should also obey preferences captured bythe heads of constraints
in η. Let us denote byR(I, η), WR(I, η), FR(I, η), FWR(I, η), JR(I, η), and
JWR(I, η) the classes of repairs, weak repairs, founded repairs, founded weak repairs,
justified repairs and justified weak repairs for〈I, η〉, respectively. Figure 1 shows the
relationships among these classes, with all inclusions being in general proper.

FR(I, η
n)

=

JR(I, η
n) ⊆ JR(I, η) ⊆ FR(I, η) ⊆ R(I, η) = R(I, η

n)

=

⊆ ⊆ ⊆ ⊆

JWR(I, η
n) ⊆ JWR(I, η) ⊆ FWR(I, η) ⊆ WR(I, η) = WR(I, η

n)
=

FWR(I, η
n)

Fig. 1.Relationships among classes of repairs

Thus, given an instance〈I, η〉 of the database repair problem, one might first at-
tempt to select a repair for〈I, η〉 from the most restricted set of repairs,JR(I, ηn).
Not only these repairs are strongly tied to preferences expressed byη — the related
computational problems are relatively easy. The problem todecide whether this set
is empty is NP-complete. However, the classJR(I, ηn) is narrow and it may be that
JR(I, ηn) = ∅. If it is so, the next step might be to try to repairI by selecting a re-
pair from JR(I, η). This class of repairs for〈I, η〉 reflects the preferences captured
by η. Since it is broader than the previous one, there is a better possibility it will be
non-empty. However, the computational complexity grows — the existence problem
for JR(I, η) isΣ2

P -complete. If alsoJR(I, η) = ∅, it still may be that founded repairs
exist. Moreover, deciding whether a founded repair exists is not harder than the pre-
vious step. Finally, if there are no founded repairs, one still may consider just a repair.
This is not quite satisfactory as it ignores the preferencesencoded byη and concentrates
only on the constraint enforcement. However, deciding whether a repair exists is “only”
NP-complete. Moreover, this class subsumes all other classes of repairs and offers the
best chance of success.

We note that if we fail to find a justified or founded repair in the process described
above, we may decide that respecting preferences encoded inaic’s is more important
than the minimality of change postulate. In such case, rather to proceed to seek a repair,
as discussed above, we also have an option to consider justified weak repairs of〈I, η〉,
where the existence problem isΣP

2 -complete and, then founded weak repairs for〈I, η〉,
where the existence problem is NP-complete.

9 Conclusion

We studied the formalism of aic’s [2], designed for enforcing integrity constraints on
databases in the presence of preferences on alternative ways to do so. The original se-
mantics proposed for aic’s is based on the concept of afounded repair. Founded repairs
are sets of update actions to be performed over the database in order to make it con-
sistent. They are minimal w.r.t. change and supported by aic’s. In some cases, elements
of founded repairs cyclically support each other, which often is undesirable. Therefore,
we introduced several new semantics for aic’s. Two most important of them are the se-
mantics of justified weak repairs and justified repairs. Theyare based on the concept
of groundedness similar to that underlying the answer-set semantics of logic programs.
We established the relationship of the two new semantics to that of founded repairs. For
each semantics we determined the complexity of the basic existence of repair problem.
Furthermore, we proved that each semantics satisfies theshifting property. Shifting con-
sists of transforming an instance of a database repair problem to another syntactically
isomorphic one by changing aic’s to reflect the “shift” from the original database to the
new one. These latter results are essential for relating repair formalism we studied with
the formalism of Lifschitz-Woo programs [10], a subject of our future work.

Acknowledgments

This work was partially supported by the NSF grant IIS-0325063 and the KSEF grant
KSEF-1036-RDE-008.

References

1. Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)
2. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative semantics of production

rules for integrity maintenance. In Etalle, S., Truszczynski, M., eds.:Logic Programming,
22nd International Conference, ICLP 2006, Proceedings. Volume 4079 of LNCS., Springer
(2006) 26–40

3. Marek, W., Truszczýnski, M.: Revision programming. Theoretical Computer Science190
(1998) 241–277

4. Pivkina, I.: Revision programming: a knowledge representation formalism.
PhD thesis, Department of Computer Science, University of Kentucky (2001)
http://lib.uky.edu/ETD/ukycosc2001d00022/pivkina.pdf.

5. Caroprese, L., Truszczyński, M.: Declarative Semantics for Revision Programming and Con-
nections to Active Integrity Constraints (2008) In: Proceedings of JELIA 2008, Vol. 5293 of
LNCS, Springer 2008.

6. Caroprese, L., Greco, S., Zumpano, E.: Active integrity constraints for database consistency
maintenance (2008) Manuscript, submitted to IEEE TKDE.

7. Marek, W., Truszczýnski, M.: Autoepistemic logic. Journal of the ACM38 (1991) 588–619
8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: proposi-

tional case. Annals of Mathematics and Artificial Intelligence15 (1995) 289–323
9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing9 (1991) 365–385

10. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonic reasoning. In: Proceedings of
the 3rd international conference on principles of knowledge representation and reasoning,
KR ’92, San Mateo, CA, Morgan Kaufmann (1992) 603–614

Appendix

Proposition 1 If U1 andU2 are sets of update actions such thatU1 ∪ U2 is consistent,
then for every databaseI, I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2.

Proof:

1. First we show thatI ◦ (U1 ∪ U2) ⊆ (I ◦ U1) ◦ U2. Let a ∈ I ◦ (U1 ∪ U2). We have
two cases: eithera ∈ I ∧ −a 6∈ (U1 ∪ U2) or a 6∈ I ∧ +a ∈ (U1 ∪ U2). In the
first case as−a 6∈ U1 and−a 6∈ U2, it follows thata ∈ (I ◦ U1) ◦ U2. In the second
case we have that+a ∈ U1 or +a ∈ U2 and thusa ∈ (I ◦ U1) ◦ U2.

2. Then we show thatI ◦ (U1 ∪ U2) ⊇ (I ◦ U1) ◦ U2. Let a ∈ (I ◦ U1) ◦ U2. We have
two cases: eithera ∈ I ∧ −a 6∈ U1 ∧ −a 6∈ U2 or a 6∈ I ∧ (+a ∈ U1∨+a ∈ U1).
In the first case as−a 6∈ U1 ∪ U2, it follows thata ∈ I ◦ (U1 ∪ U2). In the second
case we have that+a ∈ U1 ∪ U2 and thusa ∈ I ◦ (U1 ∪ U2). 2

Proposition 2Let I be a database. Then

1. For every databaseR,R ◦ ne(I,R) = R
2. For every setE of update actions such thatE ∪ ne(I, I ◦ E) is consistent,I ◦ E =
I ◦ (E ∪ ne(I, I ◦ E)).

Proof:

1. Sincene(I,R) = {+a | a ∈ I ∩ R} ∪ {−a | a /∈ I ∪ R}, R ◦ ne(I,R) =
(R∪ (I ∩ R)) ∩ (I ∪ R) = R.

2. SinceE ∪ ne(I, I ◦ E) is consistent, Propositions 1 and 2 imply thatI ◦ (E ∪
ne(I, I ◦ E)) = (I ◦ E) ◦ ne(I, I ◦ E) = I ◦ E . 2

Theorem 1Let I be a database,η a set of active integrity constraints andE a consistent
set of update actions. ThenE is a a justified weak repair for〈I, η〉 if and only if E ∩
ne(I, I ◦ E) = ∅ andE ∪ ne(I, I ◦ E) is a justified action set for〈I, η〉.

Proof: (⇒) SinceE is a justified weak repair for〈I, η〉, E = U \ne(I, I ◦U) for some
consistent setU of update actions such thatU is minimal containingne(I, I ◦ U) and
closed underη. By Proposition 2(2),I ◦ U = I ◦ E . Thus,E ∩ ne(I, I ◦ E) = ∅.
Moreover, sincene(I, I ◦ U) ⊆ U , U = E ∪ ne(I, I ◦ E). Hence,E ∪ ne(I, I ◦ E) is
a justified action set for〈I, η〉.

(⇐) LetU = E ∪ ne(I, I ◦ E). We will show thatne(I, I ◦U) = ne(I, I ◦ E). To this
end, let+a ∈ ne(I, I ◦ U). Then,a ∈ I and−a /∈ U (the latter property follows by
the consistency ofU). It follows that−a /∈ E and, consequently,+a ∈ ne(I, I ◦ E).
Similarly, we show that if−a ∈ ne(I, I ◦U), then−a ∈ ne(I, I ◦E). Thus, we obtain
thatne(I, I ◦ U) ⊆ ne(I, I ◦ E).

Conversely, let+a ∈ ne(I, I ◦ E). Thena ∈ I and+a ∈ U . SinceU is consistent
(it is a justified action set for〈I, η〉), I ◦ U is well defined and+a ∈ ne(I, I ◦ U). The
case−a ∈ ne(I, I ◦ E) is similar. Thus,ne(I, I ◦ E) ⊆ ne(I, I ◦ U) and the claim
follows.

SinceE ∩ ne(I, I ◦ E) = ∅, we obtain thatE = U \ ne(I, I ◦ U). SinceU is a
justified action set for〈I, η〉, E is a justified weak repair for〈I, η〉. 2

Theorem 2Let I be a database,η a set of active integrity constraints, andE a justified
weak repair for〈I, η〉. Then

1. For every atoma, exactly one of+a or−a is in E ∪ ne(I, I ◦ E)
2. I ◦ E |= η
3. E is founded for〈I, η〉.

Proof: Throughout the proof, use the notationU = E ∪ ne(I, I ◦ E).

1. SinceU is consistent (cf. Theorem 1), for every atoma, at most one of+a,−a is in
U . If +a ∈ ne(I, I ◦ E) or−a ∈ ne(I, I ◦ E) then the claim follows. Otherwise,
the status ofa changes as we move fromI toI◦E . That is, either+a or−a belongs
to E and, consequently, toU , as well.

2. Let us considerr ∈ η. SinceU is closed underη (cf. Theorem 1), we havenup(r) 6⊆
lit(E ∪ ne(I, I ◦ E)) or head(r) ∩ (E ∪ ne(I, I ◦ E)) 6= ∅. Let us assume the first
possibility, and letL be a literal such thatL ∈ nup(r) andua(L) /∈ U . By (1),
ua(LD) ∈ U . Consequently,I ◦ U 6|= L. By Proposition 2(2),I ◦ E 6|= L. Since
L ∈ body(r), I ◦ E |= r.
Thus, let us assume thathead(r) ∩ U 6= ∅ and letα ∈ head(r) ∩ U . Thenα ∈
head(r) and so,lit(α)D ∈ body(r). Furthermore,α ∈ U and so,I ◦ U |= lit(α).
By Proposition 2(2),I ◦ E |= lit(α). Thus,I ◦ E |= r in this case, too.

3. Let α ∈ E . By Theorem 1,α /∈ ne(I, I ◦ E). Thus,ne(I, I ◦ E) ⊆ U \ {α}.
SinceU is a minimal set closed underη and containingne(I, I ◦ E), U \ {α} is
not closed underη. That is, there isr ∈ η such thatnup(r) ⊆ lit(U \ {α}) and
head(r) ∩ (U \ {α}) = ∅. We have

I ◦ (U \ {α}) = I ◦ (ne(I, I ◦ E)∪ (E \ {α})) = (I ◦ ne(I, I ◦ E)) ◦ (E \ {α}).

By Proposition 2 (and the fact thatne(I,R) = ne(R, I), for every databasesI
andR),

I ◦ (U \ {α}) = I ◦ (E \ {α}). (4)

From nup(r) ⊆ lit(U \ {α}), it follows thatI ◦ (U \ {α}) |= nup(r). By (4),
I ◦ (E \ {α}) |= nup(r). Sinceα ∈ head(r), lit(αD) /∈ nup(r). Thus,I ◦ E |=
nup(r).
The inclusionnup(r) ⊆ lit(U \ {α}) also impliesnup(r) ⊆ lit(U). SinceU is
closed underη, head(r) ∩ U 6= ∅ and so,head(r) ∩ U = {α}.
Let us considerβ ∈ head(r) such thatβ 6= α. It follows thatβ /∈ U . By (1),
βD ∈ U and, consequently,I ◦ U |= βD. SinceI ◦ U = I ◦ E (Proposition 2), it
follows thatα is founded with respect to〈I, η〉 andE . 2

Corollary 1 Let I be a database,η a set of active integrity constraints, andE a justified
weak repair for〈I, η〉. Then,E is a founded weak repair for〈I, η〉.

Proof: Let E be a justified repair for〈I, η〉. It follows by Theorem 2 thatI ◦ E |= η.
Again by Theorem 2,E is founded. Thus,E is a founded weak repair for〈I, η〉. 2

Corollary 2 Let I be a database,η a set of active integrity constraints, andE a justified
repair for〈I, η〉. Then,E is a founded repair for〈I, η〉.

Proof: Let E be a justified repair for〈I, η〉. As it is a justified weak repair for〈I, η〉,
it follows by Corollary 1 that it is a founded weak repair for〈I, η〉. Moreover, by the

definition of justified repairs,E is change minimal. Thus,E is a founded repair for
〈I, η〉. 2

Theorem 3Let I be a database andη a set of active integrity constraints such that for
each update actionα ∈

⋃

r∈η head(r), I |= lit(αD). If E is a justified weak repair for
〈I, η〉, thenE is a justified repair for〈I, η〉.

Proof: Let E be a justified weak repair for〈I, η〉 and letE ′ ⊆ E be such thatI ◦E ′ |= η.
We defineU = E ∪ ne(I, I ◦ E). By Theorem 1 and Proposition 2(2),U is a

minimal set of update actions containingne(I, I ◦ E) and closed underη. Let U ′ =
E ′ ∪ ne(I, I ◦ E) and letr ∈ η be such thatua(nup(r)) ⊆ U ′. SinceI ◦ E ′ |= η,
I ◦ E ′ 6|= body(r). Thus, it follows that there isL ∈ up(r) such thatI ◦ E ′ 6|= L.
SinceL ∈ up(r), there isα ∈ head(r) such thatL = lit(αD). By the assumption,
I |= L, that is,I |= lit(αD). SinceI ◦ E ′ 6|= L, I ◦ E ′ |= lit(α). Thus,α ∈ E ′ and,
consequently,α ∈ U ′. It follows thatU ′ is closed underr and, sincer was an arbitrary
element ofη, underη. too. Thus,U ′ = U , that is,E ′ ∪ne(I, I ◦E) = E ∪ne(I, I ◦E).
SinceE′ ⊆ E andE ∩ ne(I, I ◦ E) = ∅, E ′ = E . It follows thatE is a minimal set of
update actions such thatI ◦ E |= η. 2

Theorem 4Let I be a database andη a set of normal active integrity constraints. IfE
is a justified weak repair for〈I, η〉 thenE is a justified repair for〈I, η〉.

Proof: Let E be a justified weak repair for〈I, η〉. We have to prove thatE is minimal
with respect to constraint enforcement. To this end, let us considerE ′ ⊆ E such that
I ◦ E ′ |= η.

We defineU = E ∪ ne(I, I ◦ E) andU ′ = E ′ ∪ ne(I, I ◦ E). We will show thatU ′

is closed underη. Let r ∈ η be such thatua(nup(r)) ⊆ U ′. Letα be an update action
such thathead(r) = {α}. Thenbody(r) = {lit(αD)} ∪ nup(r).

SinceI ◦ E ′ |= r, I ◦ E ′ 6|= body(r). By our assumption,ua(nup(r)) ⊆ U ′. Thus,
I ◦ U ′ |= nup(r). SinceU ′ is consistent, Proposition 2(2) implies thatI ◦ E ′ = I ◦ U ′.
Thus,I ◦ E ′ 6|= lit(αD) and, consequently,I ◦ E ′ |= lit(α).

SinceU ′ ⊆ U , ua(nup(r)) ⊆ U . By Theorem 1,U is closed underη. Thus,α ∈ U .
SinceI ◦ U = I ◦ E (Proposition 2(2)),I ◦ E |= lit(α).

If I |= lit(α) then, asI◦E |= lit(α), we haveα ∈ ne(I, I◦E) ⊆ U ′. If I 6|= lit(α)
then, asI ◦ E ′ |= lit(α), we have thatα ∈ E ′ ⊆ U ′. Thus,U ′ is closed underr and
so, also underη. Consequently,U ′ = U . SinceE ∩ ne(I, I ◦ E) = ∅, it follows that
E ′ = E . Thus,E is a minimal set of update actions such thatI ◦ E |= η. 2

Theorem ??Let I be a database andη a set of active integrity constraints.

1. If a setE of update actions is a justified repair for〈I, ηn〉, thenE is a justified repair
for 〈I, η〉

2. If a setE of update action is a justified weak repair for〈I, ηn〉, thenE is a justified
weak repair for〈I, η〉.

Proof: Let E be a justified repair for〈I, ηn〉. We defineU = E ∪ ne(I, I ◦ E). By
Corollary 2,E is a founded repair for〈I, ηn〉. By a result from [2],E is a founded
repair for〈I, η〉 and, consequently, a repair for〈I, η〉.

SinceE is, in particular, a justified weak repair for〈I, ηn〉, U is a justified action
set for 〈I, ηn〉 (Theorem 1). Thus,U is a minimal set of update actions containing

ne(I, I ◦ E) and closed underηn. To prove thatE is a justified repair for〈I, η〉, it
suffices to show thatU is a minimal set of update actions containingne(I, I ◦ E) and
closed underη.

Let us consider an active integrity constraint

r = lit(αD
1), . . . , lit(αD

n), φ ⊃ α1| . . . |αn

in η such thatua(nup(r)) ⊆ U (we note thatnup(r) consists precisely of the literals
that appear inφ). It follows thatI ◦ U |= nup(r). SinceE is a repair,I ◦ E 6|= body(r).
By Proposition 2(2),I ◦ E = I ◦ U . Thus,I ◦ U 6|= body(r). It follows that there is
i, 1 ≤ i ≤ n, such thatI ◦ U 6|= lit(αD

i). Thus,αD
i /∈ U . By Theorem 2(1),αi ∈ U .

Thus,U is closed underr and, consequently, underη, as well.
We will now show thatU is minimal in the class of sets of update actions containing

ne(I, I ◦ E) and closed underη. Let U ′ be a set of update actions such thatne(I, I ◦
E) ⊆ U ′ ⊆ U andU ′ is closed underη. Let us consider an active integrity constraint in
s ∈ ηn such thatua(nup(s)) ⊆ U ′.

By the definition ofηn, there is an active integrity constraintr ∈ η such that

r = lit(αD
1), . . . , lit(αD

i), . . . , lit(αD
n), φ ⊃ α1| . . . |αi| . . . |αn

and
s = lit(αD

1), . . . , lit(αD
i), . . . , lit(αD

n), φ ⊃ αi.

Sinceua(nup(s) ⊆ U ′, ua(nup(r) ⊆ U ′. As U ′ is closed underη, there isj, 1 ≤
j ≤ n, such thatαj ∈ U

′. For everyk such that1 ≤ k ≤ n andk 6= i, αD
k ∈ U

′.
By the consistency ofU ′, we conclude thatαi ∈ U

′. Thus,U ′ is closed unders and,
consequently, underηn. SinceU ′ ⊆ U andU is minimal containingne(I, I ◦ E) and
closed underηn it follows thatU ′ = U . Thus,U is minimal containingne(I, I ◦E) and
closed underη. Consequently,E is a justified repair for〈I, η〉.

(2) If E is a justified weak repair for〈I, ηn〉 then, by Theorem 4,E is a justified repair
for 〈I, ηn〉. By (1), E is a justified repair for〈I, η〉 and so, a justified weak repair for
〈I, η〉. 2

Proposition LetW be a database.

1. For every update actionα, TW(lit(α)) = lit(TW(α))
2. For every setA of literals (update actions, active integrity constraints, respectively)
TW(TW(A)) = A

3. For every consistent setA of literals (update actions, respectively),TW(A) is con-
sistent

4. For every databasesI andR, TW(ne(I,R)) = ne(I ÷W,R÷W)
5. For every active integrity constraintr, nup(TW(r)) = TW(nup(r)).

Proof: (1) - (3) follow directly from the definitions. We omit the details.

4. Letα ∈ ne(I÷W,R÷W). If α = +a, then it follows thata ∈ (I÷W)∩(R÷W).
Let us assume thata ∈ W. Thena /∈ I ∪ R and, consequently,−a ∈ ne(I,R).
Sincea ∈ W, +a = TW(−a). Thus,α ∈ TW(ne(I,R)). The case whenα =

−a can be dealt with in a similar way. It follows thatne(I ÷ W,R ÷ W) ⊆
TW(ne(I,R)).
Let I ′ = I ÷ W andR′ = R ÷W. ThenI = I ′ ÷W, R = R′ ÷W and, by
applying the inclusion we just proved toI ′ andR′, we obtain

ne(I,R) = ne(I ′ ÷W,R′ ÷W) ⊆ TW(ne(I ′,R′)).

Consequently,

TW(ne(I,R)) ⊆ TW(TW(ne(I ′,R′))) = ne(I ÷W,R÷W).

Thus, the claim follows.
5. LetL ∈ nup(TW(r)). It follows thatL ∈ body(TW(r)) andLD /∈ lit(head(TW(r)).

Clearly,head(TW(r)) = TW(head(r)) andbody(TW(r)) = TW(body(r)). Thus,
L ∈ TW(body(r)) andLD /∈ TW(head(r)). Consequently,TW(L) ∈ body(r).
Moreover, sinceTW(LD) = (TW(L))D, (TW(L))D /∈ head(r). It follows that
TW(L) ∈ nup(r) and so,L ∈ TW(nup(r)). Hence,nup(TW(r)) ⊆ TW(nup(r)).
Applying this inclusion to an active integrity constraints = TW(r), we obtain
nup(r) ⊆ TW(nup(TW(r))), which impliesTW(nup(r)) ⊆ TW(TW(nup(TW(r)))) =
nup(TW(r)). Thus, the equalitynup(TW(r)) = TW(nup(r)) follows. 2

Proposition 3. Let I andW be databases and letL be a literal or an update action.
ThenI |= L if and only ifI ÷W |= TW(L).

Proof: (⇒) Let us assume thatI |= L. If L = a, wherea is an atom, thena ∈ I. There
are two cases:a ∈ W anda /∈ W. In the first case,a /∈ I ÷W andTW(a) = not a. In
the second case,a ∈ I ÷W andTW(a) = a. In each case,I ÷W |= TW(a), that is,
I ÷W |= TW(L).

The caseL = not a, wherea is an atom, is similar. First, we have thata /∈ I.
If a ∈ W thena ∈ I ÷ W andTW(not a) = a. If a 6∈ W thena /∈ I ÷ W and
TW(not a) = not a. In each case,I ÷W |= TW(not a), that is,I ÷W |= TW(L).

(⇐) Let us assume thatI÷W |= TW(L). Then,(I÷W)÷W = I andTW(TW(L)) =
L. Thus,I |= L follows by the implication (⇒). 2

Proposition 4. Let I andW be databases, and letU be a consistent set of update
actions. Then(I ◦ U)÷W = (I ÷W) ◦ TW(U).

Proof: We note that sinceU is consistent,TW(U) is consistent, too. Thus,bothsides of
the identity are well defined.

Let a ∈ (I ◦ U) ÷W. If +a ∈ TW(U), thena ∈ (I ÷W) ◦ TW(U). Thus, let us
assume that+a /∈ TW(U). We have two cases.
Case 1:a /∈ W. From the definition ofTW , +a /∈ U . Sincea ∈ (I ◦U)÷W, a ∈ I ◦U
and, consequently,a ∈ I and−a /∈ U . Thus,a ∈ (I ÷ W) and−a /∈ TW(U)
(otherwise, asTW(−a) = −a, we would have−a ∈ U). Consequently,a ∈ (I ÷W) ◦
TW(U).
Case 2:a ∈ W. From the definition ofTW ,−a /∈ U . Sincea ∈ (I ◦U)÷W, a /∈ I ◦U .
Thus,a /∈ I and+a /∈ U . It follows thata ∈ I ÷W and−a /∈ TW(U) (otherwise we
would have+a ∈ U , asTW(−a) = +a, in this case). Hence,a ∈ (I ÷W) ◦ TW(U).

If a /∈ (I◦U)÷W, we reason similarly. If−a ∈ TW(U), thena /∈ (I÷W)◦TW(U).
Therefore, let us assume that−a /∈ TW(U). As before, there are two cases.
Case 1:a /∈ W and thus−a /∈ U . Sincea /∈ (I ◦U)÷W, a /∈ I ◦U and, consequently,
a /∈ I and +a /∈ U . Thus,a /∈ (I ÷ W) and +a /∈ TW(U). Consequently,a /∈
(I ÷W) ◦ TW(U).
Case 2:a ∈ W and thus+a /∈ U . In this case,a ∈ I ◦ U . Thus,a ∈ I and−a /∈ U . It
follows thata /∈ I ÷W and+a /∈ TW(U). Hence,a /∈ (I ÷W) ◦ TW(U). 2

Lemma 1. Let I andW be databases,U a consistent set of update actions, andL a
literal or an action update. ThenI◦U |= L if and only if(I÷W)◦TW(U) |= TW(L). 2

Proof: By Proposition 3,I◦U |= L if and only if (I◦U)÷W |= TW(L). By Proposition
4, the latter condition is equivalent to the condition(I ÷W) ◦ TW(U) |= TW(L). 2

Theorem 6 [SHIFTING THEOREM FOR (WEAK) REPAIRS AND FOUNDED (WEAK)
REPAIRS] Let I andW be databases. For every setη of active integrity constraints and
for every consistent setE of update actions, we have

1. E is a weak repair for〈I, η〉 if and only if TW(E) is a weak repair for〈I ÷
W, TW(η)〉

2. E is a repair for〈I, η〉 if and only if TW(E) is a repair for〈I ÷W, TW(η)〉
3. E is founded for〈I, η〉 if and only if TW(E) is founded for〈I ÷W, TW(η)〉.
4. E is a founded (weak) repair for〈I, η〉 if and only if TW(E) is a founded (weak)

repair for〈I ÷W, TW(η)〉.

Proof.

1. Let us assume thatE is a weak repair for〈I, η〉. It follows thatE is consistent. Since
I ◦ E |= η, by Lemma 1,(I ÷W) ◦ TW(E) |= TW(η). The converse implication
follows from the one we just proved by Proposition 9(2).

2. As before, it suffices to show only one implication. LetE be a repair for〈I, η〉.
Then,E is a weak repair for〈I, η〉. By (1),E is a weak repair for〈I ÷W, TW(η)〉.
Let E ′ ⊆ TW(E) be such that(I ÷ W) ◦ E ′ |= TW(η). It follows thatTW(E ′) ⊆
TW(TW(E)) = E . SinceE is consistent,TW(E ′) is consistent, too. By Lemma 1
and Proposition 9(2), since(I ÷W) ◦ E ′ |= TW(η), thenI ◦ TW(E ′) |= η. Since
E is a repair andTW(E ′) ⊆ E , TW(E ′) = E . Thus,E ′ = TW(E) and so,TW(E) is
a repair for〈I ÷W, TW(η)〉.

3. As in two previous cases, we show only one implication. Thus, let us assume that
E is founded for〈I, η〉. Let α ∈ TW(E). It follows that there isβ ∈ E such
that α = TW(β). SinceE is founded with respect to〈I, η〉, there is an active
integrity constraintr such thatβ ∈ head(r), I ◦ E |= nup(r), and for every
γ ∈ head(r) \ {β}, I ◦ E |= γD.
Clearly, the active integrity constraintTW(r) belongs toTW(η) andα = TW(β) is
an element ofhead(TW(r)). By Proposition 9(5),nup(r) = nup(TW(r)). Thus,
by Lemma 1,(I÷W)◦TW(E) |= nup(TW(r)). Next, letγ ∈ head(TW(r))\{α}.
Then, there isδ ∈ head(r)\{β} such thatγ = TW(δ). SinceI◦E |= γD, it follows
that(I ÷W) ◦ TW(E) |= TW(δD), that is,(I ÷W) ◦ TW(E) |= γD. Thus,α is
founded with respect to〈I ÷W, TW(η)〉 andTW(E) andTW(E) is founded with
respect to〈I ÷W, TW(η)〉.

4. This property is a direct consequence of (1), (2), and (3). 2

We will now turn our attention to justified repairs. We need one more auxiliary
result.

Lemma 2. Let I andW be databases. For every setη of active integrity constraints
and for every setU of update actions,U is a justified action set for〈I, η〉 if and only if
TW(U) is a justified action set for〈I ÷W, TW(η)〉.

Proof: (⇒) We have to prove thatTW(U) is consistent, and minimal among all super-
sets ofne(I ÷W, (I ÷W) ◦ TW(U)) that are closed underTW(η).

SinceU is a justified action set for〈I, η〉, U is consistent andne(I, I ◦ U) ⊆ U .
The former implies thatTW(U) is consistent (cf. Proposition 9(1)). The latter implies
thatne(I ÷W, (I ÷W) ◦ TW(U)) ⊆ TW(U) (cf. Propositions 9(2) and 4).

Next, we prove thatTW(U) is closed underTW(η). Let r be an active integrity con-
straint inTW(η) such thatbody(r) is consistent,nup(r) ⊆ lit(TW(U)). Then, there
existss ∈ η such thatr = TW(s). By Proposition 9(5),nup(r) = TW(nup(s)). As
TW(nup(s)) ⊆ lit(TW(U)), we have thatnup(s) ⊆ lit(U). SinceU is closed un-
der s, there existsα ∈ head(s) such thatα ∈ U . Thus, we obtain thatTW(α) ∈
TW(head(s)) = head(r), and thatTW(α) ∈ TW(U). Consequently,head(r)∩TW(U) 6=
∅. It follows thatTW(U) is closed underr and so, also underTW(η).

Finally, let us consider a setV of update actions such thatne(I ÷ W, (I ÷ W) ◦
TW(U)) ⊆ V ⊆ TW(U) and closed underTW(η). By Propositions 9(2) and 4,ne(I ÷
W, (I÷W)◦TW(U)) = TW(ne(I, I ◦U)). Thus,ne(I, I ◦U) ⊆ TW(V) ⊆ U . From
the fact thatV is closed underTW(η) it follows thatTW(V) is closed underη (one can
show it reasoning similarly as in the previous paragraph). AsU is minimal in the class
of supersets ofne(I, I ◦ U) closed underη, TW(V) = U and so,V = TW(U). This
completes the proof of the implication (⇒).

(⇐) If TW(U) is a justified action set for〈I ÷W, TW(η)〉, the implication(⇒) yields
thatTW(TW(U)) = U is a justified action set for〈(I ÷W)÷W = I, η〉. 2

Theorem 7 [SHIFTING THEOREM FOR(WEAK) JUSTIFIED REPAIRS] Let I andW be
databases. For every setη of active integrity constraints and for every setE of update
actions,E is an justified (weak) repair for〈I, η〉 if and only if TW(E) is a justified
(weak) repair for〈I, TW(η)〉.

Proof: (⇒) If E is a justified weak repair for〈I, η〉, thenE ∩ ne(I, I ◦ E) = ∅ and
E ∪ne(I, I ◦E) is a justified action set for〈I, η〉 (Theorem 1). It follows thatTW(E)∩
TW(ne(I, I ◦ E)) = ∅. Moreover, by Lemma 2,TW(E ∪ ne(I, I ◦ E)) is a justified
action set for< I ÷W, TW(η)〉.

We haveTW(ne(I, I ◦ E)) = ne(I ÷ W, (I ÷ W) ◦ TW(E)). Thus, again by
Theorem 1,TW(E) is a justified weak repair for〈I ÷W, TW(η)〉.

If E is a justified repair for〈I, η〉, then our argument shows thatTW(E) is a justified
weak repair for〈I ÷W, TW(η)〉. Moreover, sinceE is a repair forI, by Theorem 6(2)
we have thatTW(E) is a repair forI ÷W. It follows thatTW(E) is a justified repair for
〈I ÷W, TW(η)〉.

(⇐) This implication follows from the other one in the same way as in several other
similar cases in the paper. 2

Corollary 3 Let I be a database andη a set of active integrity constraints. ThenE is
a weak repair (repair, weak repair, founded weak repair, founded repair, justified weak
repair, justified repair, respectively) for〈I, η〉 if and only if TI(E) is a weak repair
(repair, weak repair, founded weak repair, founded repair,justified weak repair, justified
repair, respectively) for〈∅, TI(η)〉.

Proof: Directly follows from Theorems 6 and 7. 2

Lemma 3. LetP be a simple disjunctive logic program andM ′,M sets of atoms such
thatM ′ ⊆M . ThemM ′ is a model ofPM if and only if{+a | a ∈M ′}∪{−a | a /∈M}
is closed underaic(P).

Proof:
Let us defineU = {+a | a ∈M ′} ∪ {−a | a /∈M}. We note thatU is consistent.

(⇒) Let r ∈ aic(P), ρ ∈ P be a rule such thatr = aic(ρ), andρ′ be the rule obtained
by eliminating fromρ all negative literals.

SinceP is simple,nup(r) = body(ρ). Let us assume thatnup(r) ⊆ U . It follows
thatρ′ ∈ PM and thatM ′ |= body(ρ′). Thus,head(ρ′) ∩M ′ 6= ∅. Sincehead(ρ) =
head(ρ′) andhead(r) = head(aic(ρ)) = ua(head(ρ)), head(r) ∩ U 6= ∅. That is,U
is closed underr and, sincer was chosen arbitrarily, underaic(P), too.

(⇐) Let us considerρ′ ∈ PM . There isρ ∈ P such that for every negative literal
not a ∈ body(ρ), a /∈ M , and dropping all negative literals fromρ results inρ′.
If body(ρ′) ⊆ M ′, thenbody(ρ) ⊆ lit(U). Thus,nup(aic(ρ)) ⊆ U . It follows that
head(aic(ρ)) ∩ U 6= ∅. Thus,head(ρ) ∩ lit(U) 6= ∅. Sincehead(ρ) consists of atoms
andhead(ρ′) = head(ρ), head(ρ′) ∩M ′ 6= ∅. That is,M ′ |= ρ′ and, consequently,
M ′ |= PM . 2

Theorem 8LetP be a simple disjunctive logic program. A setM of atoms is an answer
set ofP if and only if ua(M) is a justified weak repair for〈∅, aic(P)〉.

Proof: (⇒) LetM be an answer set ofP . That is,M is a minimal set closed under the
rules in the reductPM . By Lemma 3,{+a | a ∈ M} ∪ {−a | a /∈ M} is closed under
aic(P). Let U ′ be a set of update actions such that{−a | a /∈ M} ⊆ U ′ ⊆ {+a | a ∈
M} ∪ {−a | a /∈ M}. We defineM ′ = {a | + a ∈ U ′}. ThenM ′ ⊆ M . By Lemma
3,M ′ |= PM . SinceM is an answer set ofP , M ′ = M andU ′ = U . It follows that
{+a | a ∈ M} ∪ {−a | a /∈ M} is a minimal set closed underaic(P) and containing
{−a | a /∈ M}. Sinceua(M) = {+a | a ∈ M} andne(∅, ∅ ◦ ua(M)) = {−a | a /∈
M}, Theorem 1 implies thatua(M) is justified weak repair for〈∅, aic(P)〉.

(⇐) By Theorem 1,{+a | a ∈ M} ∪ {−a | a /∈ M} is a minimal set containing
{−a | a /∈ M} and closed underaic(P). By Lemma 3,M is a model ofPM . Let
M ′ ⊆ M be a model ofPM . Again by Lemma 3,{+a | a ∈ M ′} ∪ {−a | a /∈ M}
is closed underaic(P). It follows that{+a | a ∈ M ′} ∪ {−a | a /∈ M} = {+a | a ∈
M} ∪ {−a | a /∈ M}. Thus,M ′ = M and so,M is a minimal model ofPM , that is,
an answer set ofP . 2

Lemma 4. Let η be a finite set of normal active integrity constraints and letU be a
finite set of update actions. There is a least set of update actionsW such thatU ⊆ W
andW is closed underη. Moreover, this least setW can be computed in polynomial
time in the size ofη andU .

Proof: We prove the result by demonstrating a bottom-up process computingW. The
process is similar to that applied when computing a least model of a Horn program.
We start withW0 = U , Assuming thatWi has been computed, we identify inη every
active integrity constraintr such thatnup(r) ⊆ lit(Wi), and add the head of each such
rule r toWi. We call the resultWi+1. If Wi+1 = Wi, we stop. It is straightforward to
prove that the last set constructed in the process is closed underη, containsU , and is
contained in every set that is closed underη and containsU . Moreover, the construction
can be implemented to run in polynomial time. 2

Lemma 5. Letη be a finite set of normal active integrity constraints and letU ′ andU ′′

be sets of update actions. The problem whether there is a setU of update actions such
thatU is closed underη andU ′ ⊆ U ⊂ U ′′ is in NP.

Proof: Once we nondeterministically guessU , checking all the required conditions can
be implemented in polynomial time. 2

Lemma 6. Let η be a finite set of normal active integrity constraints,I a database,
andE be a set of update actions. The problem whether there is a setE ′ ⊂ E of update
actions such thatI ◦ E ′ |= η is in NP.

Proof: Once we nondeterministically guessE , checking all the required conditions can
be implemented in polynomial time. 2

Theorem 9Let I be a database andη a set of normal active integrity constraints. Then
checking if there exists a justified repair (justified weak repair, respectively) for〈I, η〉
is an NP-complete problem.

Proof: By Theorem 4, it is enough to prove the result for justified weak repairs.

(MEMBERSHIP) The following algorithm decides the problem: (1) Nondeterministi-
cally guess a consistent set of update actionsE . (2) Computene(I, I ◦ E). (3) If
E ∩ ne(I, I ◦ E) 6= ∅ return NO. Otherwise, compute the least setW of update ac-
tions that is closed underη and containsne(I, I ◦ E). (4) If W = E ∪ ne(I, I ◦ E),
then return YES. Otherwise, return NO. From an earlier observation, it follows that the
algorithm runs in polynomial time. From Theorem 1, it follows that the algorithm is
correct.

(HARDNESS) The problem of the existence of an answer set of a simple normal logic
programP is NP-complete. By Theorem 4 and Theorem 8,P has an answer set if
and only if there exists a justified weak repair for〈∅, aic(P)〉. Sinceaic(P) can be
constructed in polynomial time in the size ofP , the result follows. 2

Theorem 10LetI be a database andη a set of active integrity constraints. The problem
of the existence of a justified weak repair for〈I, η〉 is aΣP

2 -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to guess
(nondeterministically) a consistent setE of update actions. SettingU = E∪ne(I, I◦E),
one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed underη

3. for eachU ′ such thatne(I, I ◦ E) ⊆ U ′ ⊆ U andU ′ closed underη, U ′ = U (by
Lemma 5, one call to an NP-oracle suffices)

(HARDNESS) The problem of the existence of an answer set of a simple disjunctive
logic programP is ΣP

2 -complete. By Theorem 8,P has an answer set if and only if
there exists a justified weak repair for〈∅, aic(P)〉. Thus, the result follows. 2

Theorem 11LetI be a database andη a set of active integrity constraints. The problem
of the existence of a justified repair for〈I, η〉 is aΣP

2 -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to guess
(nondeterministically) a consistent setE of update actions. SettingU = E∪ne(I, I◦E),
one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed underη
3. for eachU ′ such thatne(I, I ◦ E) ⊆ U ′ ⊆ U andU ′ closed underη, U ′ = U (by

Lemma 5, one call to an NP-oracle suffices)
4. for eachE ′ such thatE ′ ⊂ E , I ◦ E ′ 6|= η (By Lemma 6, one call to an NP-oracle

suffices).

(HARDNESS) Since for the class of instances〈∅, aic(P)〉 justified weak repairs coincide
with justified repairs (Theorem 3), the result follows. 2

