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Abstract. We studyactive integrity constraintsa formalism designed to de-
scribe integrity constraints on databaseslto specify preferred ways to enforce
them. The original semantics proposed for active integrity constraintassd
on the concept of founded repair We point out that groundedness underlying
founded repairs does not prevent cyclic justifications and so, mayapgiapri-

ate in some applications. Thus, using a different notion of grounding, raitts

in logic programming and revision programming, we introduce two newasem
tics: of justified weak repairsand ofjustified repairs We study properties of
these semantics, relate them to earlier semantics of active integrity cotsstrain
and establish the complexity of basic decision problems.

1 Introduction

Integrity constraints are conditions on databases. If aliege violates integrity con-
straints, it needs to bepaired— updated so that the integrity constraints hold again.
Often there are several ways to enforce integrity condsaifhe paper is concerned
with the problem to specify preferred ways to update dathas

A database can be viewed formally as a finite set of ground @torthe language
of first-order logic determined by the database schema aintfiaite countable set of
constants. Arintegrity constraintis a formula in this language. A databassisfiesan
integrity constraint if it is itsHerbrand model. Since databases and sets of integrity
constraints ardinite, without loss of generality, we will limit our attention the case
when databases are subsets of some finitelseff propositionalatoms, and integrity
constraints are clauses in the propositional languagergeteby A¢.

Let us consider the databage= {a,b} and the integrity constrainta vV —b. As,
7 does not satisfy~a Vv —b, it needs to be “repaired” — replaced by a database that
satisfies the constraint. Assumidg = {a, , ¢, d}, the databasdk {a}, {b}, {a, c} are
examples of databases that could be considered as replatseimeZ. Since the class
of replacements df is quite large, the question arises whether there is a piadtivay
to narrow it down. One of the most intuitive and commonly gted postulates is that
the change between the initial databZsaend the revised databa®e given byZ + R,
be minimal (cf. [1]). In our case, the minimality of changenoavs down the class of
possible revisions tda} and{b}.

In some cases, the minimality of change is not specific enamghmay leave too
many candidate revisions. The problem can be addressedrhglfems that allow the
database designer to formulate integrity constraints imnacdition, to state preferred



ways for enforcing them. In this paper, we study a recent &ism of that typeactive
integrity constraintqaic’s, for short) [2].

Aic’s explicitly encode both integrity constraints and preferred basiorstio re-
pair them, when the constraints are violated. To specifyntieaning of sets of aic’s,
[2] proposed the concept ddundednessand combined it with the requirement of the
minimality of change to get the semanticsfotinded repairsFoundedness reflects a
certain groundedness condition. We show that in some chsegroundedness condi-
tion is too weak to prevertyclicjustifications. To address the problem, we introduce a
new semantics for aic’s, which we call the semanticpsfified repairs

The semantics gfistified repairsuses a stronger concept of groundedness than that
behind founded repairs. In general, it is also too weak tdyrtige minimality of change
property and so, we impose this property on justified rep@ipicitly. We show that
the class of justified repairs is a subclass of the class afded repairs.

We also consider a broader class of ways to enforce integpitgtraints by drop-
ping the minimality of change postulate. We refer to the @ets of that class ageak
repairs Combining the concept with the appropriate groundednasdition yields the
semantics ofounded weak repairandjustified weak repairsWhile the minimality
of change condition is a natural requirement to impose ofeperl ways to enforce
integrity constraints, including weak repairs in the cdesations offers a richer per-
spective. In particular, it brings up the question of idifirtig classes of aic’s, for which
the groundedness condition alone is sufficient to guarasitarge-minimality. We ex-
hibit here two classes of aic’s, for which the groundednesslition behind justified
repairs ensures the minimality of change.

A fundamental property of semantics describing databadatep is the invariance
undershifting [3, 4]. Informally, shifting consists of changing the menmd¥ep status
of some facts in a database and the corresponding modific@ystematic renaming)
of the integrity constraints. We show that all semanticsiofave consider here are
invariant under shifting.

Although we consider just the propositional case our restéin be easily lifted
to the first-order case via grounding (like in the case oflstatiodel semantics for
Logic Programming). As a consequence, our framework is eblgandle numerical
expressions in the body of the constraints. Indeed, grogreliminates them and leaves
us with the basic propositional case presented here.

A richer field of semantics of database updates gives risettade-off. On the
one hand the semantics differ in how much they refine the diéseak) repairs that
enforce integrity constraints, and on the other hand, ictéimeplexity of the existence of
a repair problem. We discuss ways in which this trade-offleauexploited in practice.

The semantics discussed in the paper are motivated by diometo the seman-
tics of answer sets for disjunctive logic programming ondhe hand, and to revision
programming [3], on the other. We exploit them to developdaénition of grounded-
ness for justified weak repairs, and to establish the coritplekdeciding the existence
of repairs of particular types. We develop a detailed disicusof these connections
in another paper [5]. Due to space limits, we omit the prottigy( can be found at
www. cs. uky. edu/ ai / ai c-ful | . pdf).



2 Integrity Constraints and Database Repairs — Basic Concept

We consider a finite set¢ of propositional atoms. We represent databases as subsets
of At. Databases ar@ipdatedby inserting and deleting atoms. Aipdate actioris an
expression of the form-a or —a, wherea € At. Update actions-a and—b state that:
andb are to be inserted and deleted, respectively. We say thatAceupdate actions
is consistentf it does not contain update actions: and—a, for anya € At.

Sets of update actions determine database update? bet a database arid a
consistent set of update actions. The resultpdatingD by means off is the database

DBold=(DB U {a|+aclU}) \ {a| —acl}.

We have the following straightforward property of the opera, which asserts that if
a set 0 update actions is consistent, the order in which tfeegyeecuted is immaterial.

Proposition 1. If ¢4; andi; are sets of update actions such thatu U, is consistent,
then for every databasg, 7 o (Uy Uls) = (Z oUy) o Us. O

It is common to impose on databases conditions, catiesjrity constraintsthat
must always be satisfied. In the propositional settingnteyrity constrainis a formula

r=1Li, ..., Ly DL, 1)

whereL;, 1 < i < m, are literals (expressions of the forrandnot a, wherea is an
atom) and ‘,’ stands for the conjunction. Any subsetdaf(and so, also any database)
can be regarded as a propositional interpretation. We sdyatbatabasg satisfiesan
integrity constraint, denoted byZ |= r, if 7 satisfies the propositional formula repre-
sented byr. In this way, an integrity constraint encodes a conditiordatabases: the
conjunction of its literals must not hold (or equivalentlye disjunction of the corre-
sponding dual literals must hold).

Any language of (propositional) logic could be used to diésdntegrity constraints
(in the introduction we used the language with the connestivand—). Our present
choice is reminiscent of the syntax used in logic prograngmiiris not coincidental. In
the context of aic’s the subject of this paper, the negatfmrator has some similarities
to the default negation operator in logic programming andasat is common in the
logic programming literature, we denote it witto¢ rather than-.

Given a set of integrity constraints and a databasgethe problem ofdatabase
repair consists of updating so that integrity constraints iphold.

Definition 1. [WEAK REPAIR AND REPAIR] LetZ be a database ang a set of in-
tegrity constraints. Aveak repaiffor (Z, n) is a consistent séf of update actions such
that({+a |a € Z} U {—a|a € At \ZI}) NU = () (U consists of “essential” update
actions only), and o U/ = n (constraint enforcement).

A consistent sd¥/ of update actions is aepairfor (Z, ) if it is a weak repair for
(Z,n) and for everyd’ C U such thatZ o U’ |= n, U’ = U (minimality of change). O

If an original database satisfies integrity constraintsngaly, if Z = 7), then no
change is needed to enforce the constraints ardd so( is theonly repair for(Z, ).



However, there may be othareakrepairs for(Z,n). This points to the problem with
weak repairs. They allow for the possibility of replacifigvith a weak repaitZ’ for
(Z,n) even wher does not violate). Thus, the minimality of change is a natural and
useful property and, for the most part, we are interestedapegrties of repairs and
their refinements. However, considering weak repairs eitigliis useful as it offers a
broader perspective.

If a setn of integrity constraints is inconsistent, there is no dasa&bsatisfying it
(constraints cannot be enforced). In such case, the datadyaair problem is trivial and
not interesting. However, assuming consistency of intggnstraints does not yield
any significant simplifications. Therefore, we do not make a#ssumption here.

Finally, we note that the problem of the existence of a wegakirds NP-complete
(it is just a simple reformulation of the SAT problem). Sirrepairs exist if and only if
weak repairs do, the problem of the existence of a repair isdiRplete, too.

3 Active Integrity Constraints

Given no other information but integrity constraints, werdan@o reason to prefer one
repair over another. If several repairs are possible, gquiel@n how to select a repair
to execute could be useful. The formalism axftive integrity constraintgaic’s, for
short) [2] was designed to address this problem. We will neview it and offer a first
extension by introducing the semantics of founded weakirepa

For a propositional literal, we write L” for the dual literal tal. Further, ifL = a,
we defineua(L) = +a. If L = nota, we defineua(L) = —a. Conversely, for an
update actiony = +a, we setlit(«) = a and fora. = —a, lit(a) = not a. We call
+a and —a the dualsof each other, and write” to denote the update action dual to
an update action. Finally, we extend the notation introduced here to to sklisavals
and sets of update actions, as appropriate.

An active integrity constrainfaic, for short) is an expression of the form

r=1Li, ..., Ly, Daq|...|ax 2

whereL; are literals; are update actions, and
{lit(a)?, ... lit(y)PY C{L1,..., Ly} (3)

The set{L4,...,L,,} is thebodyof r; we denote it bybody(r). Similarly, the set
{a1,...,ar} is theheadof r; we denote it byhead(r).

An aic with the empty head can be regarded as an integritytigns(and so, we
write the empty head as, for consistency with the notation of integrity constrajnt
An aic with a non-empty head functions as an integrity castr(its body must be
false)and it explicitly provides support for the use of update actiomés head (if its
body is true).

The role of the condition (3) is to ensure that an aic suppaonty those update
actions that can “fix” it (executing them ensures that theiltegy database satisfies
the constraint). The condition can be stated concisely bewfe: [lit(head(r))]” C
body(r). We call literals in[lit(head(r))]” updatableby r. They are precisely those
literals that can be affected by an update actiorkdnd(r). We call every literal in



body(r) \ [lit(head(r))]P non-updatabléoy r. We denote the set of literals updatable
by r asup(r) and the set of literals non-updatablebgsnup(r).

With the notation we introduced, we can discuss the intemgeahing of an aie of
the form (2) in more detail. First,functions as an integrity constraiht, ..., L,, O L.
Second, it provides support for one of the update actignassuming all non-updatable
literals in ~ hold in the repaired databasén particular, the constraint, b > —a| — b,
givenZ = {a,b}, provides the support fora or —b, independently of the repaired
database, as it has no non-updatable literal. In the santextasf Z = {a, b}, the
constrainta, b O —a provides support for-a but only if b is present in the repaired
database.

A databasel satisfies an aie, Z = r, if it satisfies the corresponding integrity
constraint. It is now straightforward to adapt the concéd@ (weak) repair to the case
of aic’s. Specifically, a sé¥ of update actions is @veak) repairfor a databas& with
respect to a set of aic’s if it is a (weak) repair fof with respect to the set atandard
integrity constraints represented hy

Let us consider the aic = a,b D —b, and letZ = {q, b} be a database. Clearly,
7 violatesr as the condition expressed in the body-a$ true. There are two possible
repairs ofZ with respect ta- or, more precisely, with respect to the integrity constrain
encoded by performing the update actiona (deletinga), and performing the update
action—b (deletingb). We select the latter as a preferred repair, singevides support
for the update action-b.

Repairs do not need to obey preferences expressed by the dfegid's. To formal-
ize the notion of “support” and translate it into a methodetest “preferred” repairs,
[2] proposed the concept offaunded repair— a repair that igroundedin (“implied”
by) a set of aic’s. The following definition, in addition touioded repairs, introduces a
new semantics of foundegleakrepairs.

Definition 2. [FOUNDED (WEAK) REPAIR] LetZ be a database; a set of aic’s, and
U a consistent set of update actions.

1. An update actiom is foundedwith respect toZ, ) and{ if there isr € 7 such
thata € head(r), ZolU = nup(r), andZ ol = B2, for everys € head(r)\ {a}.

2. The set/ is foundedwith respect to(Z, ) if every element a¥ is founded with
respect toZ, n) andi{.

3. U is afounded (weak) repaliior (Z,n) if U is a (weak) repair foKZ,n) andl/ is
foundedwith respect tdZ, n). m|

Foundedness is indeed a formalization of a certain notidigr@undedness”. Let
us assume that is founded with respect t{Z, ) andi/ by means of an aic € 7.
Let us also assume that }~ r, that is,Z = body(r). By the foundedness, all literals
in body(r), except possibly fotit (o), are satisfied itf o ¢4. Thus, ifi{ is to enforce
r, it must containe. We observe that the foundedness does not imply the comistrai
enforcement nor the minimality of change.

Example 1.LetZ = () andy consist of the following aic’s:
rr=nota D +a
ro = notb,c O +b
r3 = b, notc D +c.



The unique founded repair f¢Z, n) is {+a}. The sef+a, +b, +c} is founded, guaran-
tees constraint enforcement (and so, it is a founded wealirjeput it it isnotchange-
minimal. The sef{+b, +c} is founded but does not guarantee constraint enforcement.
Therefore, in the definition of founded (weak) repairs, trepprty of being a (weak) re-
pair must be enforced explicitly. We also note that foundsdrproperly narrows down
the class of repairs. tf = {a,b D —b}, andZ = {a,b} (an example we considered
earlier),Ud = {—a} is a repair forZ, n) but not a founded repair. a

Next, we show that there could exist foundedakrepairs even when no founded
repair exists.

Example 2.LetZ = () andn consist of the following aic’s:

nota,b,c D +a notb,a,c D +b

notc,a,b D +c nota DL
One can check that the only founded sets of update actiong,ate 0 (0 is always
vacuously founded) antl, = {+a,+b, +c}. Moreoverlls = {+a} is a repair and
U, is a weak repair. Thugs, is a founded weak repair but, as it is not minimal, not a
founded repair. In fact, there are no founded repairs ingkénple. o

Finally, we discuss the key issue arising in the context ohfied repairs that moti-
vates much of the remainder of the paper. In some cases,ddusgairs, despite com-
bining foundedness with change-minimality, are still nodbunded strongly enough.
The problem is the circularity of support.

Example 3.LetZ = {a, b} and lety; consist of the following aic’s:

rr=a,b D —a

ro =a,notb D —a

r3 = nota,b D —b.
One can check that = {—a, —b} is a repair for(Z,n;). Moreover, it is a founded
repair: —a is founded with respect t¢Z, ;) andi/, with ro providing the necessary
support, while—b is founded with respect ¥, ;) andi/ because of ;.

The problem is that, arguablyf = {—a, —b} supports itself through circular de-
pendencies. The constraint is the only one violated b§ and forcing the need for a
repair. However, according to intuitions we discussedearl, supports the founded-
ness of—a only if b remains in the database. This is not the case here. Thusipghers
for the foundedness ofa in U must come entirely fromy andrs. The same holds for
—b as itis not even mentioned in the head-of

It follows that the foundedness 6fa is supported solely by,, and itrequires
that—b be included in the repair. In the same way, the foundednes$ &f supported
solely byrs, and it depends or-a being included in the repair. Thus, the foundedness
of {—a, —b} is “circular”: —a is founded (and so included i) due to the fact that-b
has been included itr, and—b is founded (and so included i) due to the fact that
—a has been included 1, but there is no independent justification for having any of
these two actions included. As we noteddoes not “found” any of-a nor —b. O

To summarize this section, the semantics of repairs fos aitforces constraints and
satisfies the minimality of change property. It has no graedmess properties beyond



what is implied by the two requirements. The semantics afifted repairs gives prefer-
ence to some ways of repairing constraints over otherslytamsiders repairs whose
all elements are founded. However, foundedness may bdaiirand so the associated
concept of groundedness is weak. We revisit this issue ind¢kéesection.

On the computational side, the complexity of the semanficspairs is lower than
that of founded repairs. From the result stated in the ptesvgection, it follows that the
problem of the existence of a repair is NP-complete, whigeptioblem of the existence
of a founded repair i€'%-complete [2]. For the sake of completeness, we also note tha
the problem of the existence of a founded weak repair is dgaiy” NP-complete (the
proof is simple and we omit it).

4  Justified repairs

In this section, we will introduce another semantics forsaibat captures a stronger
concept of groundedness than the one behind founded reph&goal is to disallow
circular dependencies like the one we discussed in Example 3

We start by defining when a set of update actiordasedunder aic’s. Let) be a set
of aic’s and let/ be a set of update actionslfe n, and for everynon-updatablditeral
L € body(r) there is an update actien € U such thatiit(«) = L then, after applying
U or any of its consistent supersets to the initial databhsegsult of the update, s&,
satisfies all non-updatable literals bady(r). To guarantee thakR satisfiesr, R must
falsify at least one literal irbody(r). To this endl{ must contain at least one update
action fromhead(r).

Definition 3. [CLOSED SET OF UPDATE ACTION} A setl/ of update actions islosed
under an aicr if nup(r) C lit(U) implieshead(r) NU # . A setd of update actions
is closedunder a sef) of aic’s if it is closed under eveny € 7. O

If a set of update actions is not closed under ajysaftaic’s, executing its elements
may fail to enforce constraints. Therefore, closed setpdhte actions are important.
We regardminimalsuch sets as “forced” by, as all elements in a minimal set of update
actions closed underare necessary (no nonempty subset can be dropped).

Another key notion in our considerations is thatraf-effect actionsLet Z be a
database an® a result of updating@. An update action-a (respectively—a) is ano-
effectaction with respect t6Z, R) if « € Z N R (respectivelya ¢ Z UR). Informally,

a no-effect action does not change the status of its underlgtom. We denote by
ne(Z,R) the set of all no-effect actions with respect(fa R). We note the following
two simple properties reflecting the nature of no-effecioast— their redundancy.

Proposition 2. LetZ be a database. Then

1. Forevery databas®, Rone(Z,R) =R
2. For every se€ of update actions such th&tU ne(Z,Z o £) is consistent7 o £ =
Zo(EUne(Z,I0E)). |



Our semantics of justified repairs is based on the knowledgeesentation princi-
ple (a form of the frame axiom) that remaining in the previstate requires no reason
(persistence by inertia). Thus, when justifying updatéoastnecessary to transform
into R based om we assume the sek(Z, R) as given. This brings us to the notion of
a justified weak repair.

Definition 4. [JUSTIFIED WEAK REPAIR] LetZ be a database ang a set of aic’s. A
consistent sét of update actions is a justified action set {@r, ) if U/ is a minimal set
of update actions containinge(Z,Z o i) and closed undey. If I/ is a justified action
setfor(Z,n), then€ = U \ ne(Z,Z o U) is a justified weak repair fotZ, n). O

Intuitively, a setl{ of update actions is a justified action set, if it is precistly
set of update actions forced juistifiedby n and the no-effect actions with respectfto
andZ o U. This “fixpoint” aspect of the definition is reminiscent oktlefinitions of
semantics of several non-monotonic logics, includingj(distive) logic programming
with the answer-set semantics. The connection can be madeformal and we take
advantage of it in the section on the complexity and compmrtat

We will now study justified action sets and justified weak repalNe start with an
alternative characterization of justified weak repairs.

Theorem 1. Let 7 be a databasey a set of aic’s and€ a consistent set of update
actions. Thert is a a justified weak repair fofZ, ) if and only ifE Nne(Z,Zo &) = ()
and& U ne(Z,7 o &) is ajustified action set fofZ, n). O

Justified weak repairs have two key properties for the proldédatabase update:
constraint enforcement (hence the term “weak repair”) anddedness.

Theorem 2. Let Z be a databasey a set of aic’'s, and a justified weak repair for
(Z,n). Then

1. For every atom, exactly one ofta or —aisinE U ne(Z,Z o &)
2.T08En
3. £ is founded forZ, ). |

Theorem 2 directly implies that justified weak repairs aranfbed weak repairs.

Corollary 1. LetZ be a databasey a set of aic’s, andE a justified weak repair for
(Z,n). Then¢ is a founded weak repair foZ, ). O

The converse to Corollary 1 does not hold. That is, there@raded weak repairs
that are not justified weak repairs.

Example 4.The database and aic’s from Example 3 illustrate the poiatw& noted
therel/ = {—a, —b} is a founded repair. Thus, it is also a founded weak repair.

As pointed out, the support for the foundednesé/a$ circular. The semantics of
justified weak repairs resolves the problem. Indééd; not a justified weak repair for
(Z,n1). One can check tha{ U ne(Z,Z o U) (= {—a,—b}) containsne(Z,Z o U)

(= 0), and is closed undey. But it is not a minimal set of update actions containing



ne(Z,Z o U) and closed unden. Indeed,d has these two properties, too. Thus, the
notion of groundedness employed by justified weak repasgdmger.

In Example 3, the problem is causedfy Let us consider a situation, whergis
replaced withr] = a,b D —a| — b. The constraint provides support for-a or —b
independently of the repaired database (as there are napaatable literals in}). If
—a is selected (with support fromy), r3 supports—b. If —b is selected (with support
from ), ro supports—a, Thus the cyclic support given by andr; in the presence of
r1 is broken. Indeed, one can check thata, —b} is a justified weak repair. ad

While stronger property than foundedness, being a justifiedkwepair still does
not guarantee change-minimality (and so, the temakcannot be dropped).

Example 5.LetZ’ = (3, andns be a set of aic’s consisting of

r1=mnota,b D +a| —b

ro =a,notb D —al+0b
Let us consider the set of update actiéhs- {+a, +b}. It is easy to verify thaf is a
justified weak repair fofZ’, 3). Therefore, it ensures constraint enforcement and it is
founded. However is not minimal asZ’ is consistent withys, and the empty set of
update actions is its only repair. ]

Thus, to have change-minimality, it needs to be enforcegctir as in the case of
founded repairs. By doing so, we obtain the notiofjustified repairs

Definition 5. [JUSTIFIED REPAIR LetZ be a database ang a set of aic’s. A sef of
update actions is gustified repairfor (Z,n) if £ is a justified weak repair fotZ, n),
and foreveng’ C EsuchthatZ o &' =0, &' = €. O

Theorem 2 has yet another corollary, this time concernisgfiad and founded
repairs.

Corollary 2. LetZ be a databasey a set of aic’s, and a justified repair for(Z, n).
Then,¢ is a founded repair foKZ, n). ]

Example 4 shows that the inclusion asserted by Corollary@adper. Indeed, we
argued there thaf—a, —b} is a founded repair but not a justified weak repair. Thus,
{—a, —b} is not a justified repair, either.

As illustrated by Example 5, in general, justified weak rep&rm a proper sub-
class of justified repairs. However, in some cases the tweems coincide — the
minimality is a consequence of the groundedness underlyiegotion of a justified
weak repair. One such case is identified in the next theordm®.other important case
is discussed in the next section.

Theorem 3. LetZ be a database ang a set of aic’s such that for each update action
o € U,¢, head(r), T = lit(aP). If £ is a justified weak repair fo(Z, n), then& is a
justified repair for(Z, n). |

This theorem concerns the case when each update action fredlteof an aic, if
executed, would change the status of the underlying atoheidatabase. For instance,
if the initial database is empty and all update actions pifesd by aic’s are insert
actions, then justified weak repairs are guaranteed to bemairand so, are justified
repairs.



5 Normal Active Integrity Constraints and Normalization

An aicr is normalif |head(r)| = 1. We will now study properties of normal aic’s. The
next result shows that for that class of constraints, updably justified weak repairs
guarantees the minimality of change property and so, thikc@ieference to the latter
can be omitted from the definition of justified repairs.

Theorem 4. LetZ be a database ang a set of normal aic’s. I£ is a justified weak
repair for (Z, n) then€ is a justified repair foZ, n). |

Next, we introduce the operation nbrmalizationof aic’s, which consists of elim-
inating disjunctions from the heads of rules. For anaie ¢ O a1|...|a,, by r™
we denote the set aformalaic's {¢ D ai,...,¢ D «,}. For a setp of aic’s, we
setn” = UJ,, 7" It is shown in [6] that€ is founded for(Z,n) if and only if £ is
a founded forZI, n™). Thus,€ is a founded (weak) repair fdiZ, n) if and only if £
is a founded (weak) repair fdfZ,n™). For justified repairs, we have a weaker result.
Normalization may eliminate some justified (weak) repairs.

Theorem 5. LetZ be a database angl a set of aic’s.

1. If a set€ of update actions is a justified repair fdZ,n™), then& is a justified
repair for (Z,n);

2. If a set& of update action is a justified weak repair f&F, ™), then€ is a justified
weak repair for(Z, n). O

The following example shows that the inclusion in the pragitheorem is, in gen-
eral, propetr.

Example 6.Let us consider an empty datab&8e= (), the sety, of aic’s
r1 = nota,notb D +a| +b
ro = a,notb D +b
r3 = nota,b D +a

its normalized version}

r11 = nota,notb D +a ro1 =a,notb D +b
r12 =nota,notb D +b r31 =nota,b D +a

and the set of update actiofis= {+a, +b}. Itis easy to verify thaf is a justified repair
for (Z/,n4). However£ is not a justified weak repair fdfZ’, n}') (and so, not a justified
repair for(Z’, n1)). Indeed, it is not a minimal set containimg(Z’,Z’ o £) = () and
closed undeny, asl is also closed undey;. O

6 Shifting Theorem

We will now study the concept of shifting [3]. Shifting coets of transforming an
instance(Z, n) of the database repair problem to a syntactically isomaerpistance
(Z',n') by changing integrity constraints to reflect the “shift"®fnto Z’. A semantics



for database repair problem has 8téfting propertyif the repairs of the “shifted” in-
stance of the database update problem are precisely tHesresmodifying the repairs
of the original instance according to the shift frafnto Z’. The shifting property is
important. If a semantics of database updates has it, thg sfithat semantics can be
reduced to the case when the input database is empty. In raaey it allows us to relate
a semantics of database repairs to some semantics of lagjcgons with negation.

Example 7.LetZ = {a,b} and letns = {a,b D —a| — b}. There are two founded
repairs for(Z,ns): & = {—a} and& = {-b}. Let W = {a}. We will now “shift”
the instanc€Z, n5) with respect to/V. To this end, we will first modifyZ by changing
the status inZ of elements inW, in our case, ok. Sincea € Z, we will remove
it. Thus,Z “shifted” with respect to/V becomes7 = {b}. Next, we will modify s
correspondingly, replacing literals and update actiomsluing a by their duals. That
results i}, = {not a,b O +a| — b}. One can check that the resulting instafgen})
of the update problem has two founded repafrsa} and{—b}. Moreover, they can
be obtained from the founded repairs {@r, 15) by consistently replacinga with +a
and+a with —a (the latter does not apply in this example). In other words driginal
update problem and its shifted version are isomorphic. |

The situation presented in Example 7 is not coincidentahimsection we present
results showing that the semantics of (weak) repairs, fedr{@eak) repairs and jus-
tified (weak) repairs satisfy the shifting property. We star observing thashifting a
databasé to a databasg’ can be modeled by means of the symmetric difference op-
erator. Namely, we hav€ = 7 + W, whereWW = 7 +T'. This identity shows that one
can shift any databasginto any databas&’ by forming a symmetric difference &f
with some set of atoV (specifically, WV = 7 +Z'). We will now extend the operation
of shifting a database with respectty to the case of literals, update actions and aic’s.
To this end, we introduce shiftingoperator7yy, .

Definition 6. Let)V be a database anfla literal or an update action. We define

Ty(0) = (P if the atom off is in W
W=\ ¢ if the atom of? is not inW

and we extend this definition to sets of literals or updatéoast respectively. Further-
more, ifop is an operator on sets of literals or update actions (such@gunction or
disjunction), for every seX of literals or update actions, we defir® (op(X)) =
op(Tw(X)). Finally, for an aicr = ¢ D ¢, we setlyy(r) = Tw(¢) D Tw(y) and we
extend the notation to sets aic’s in the standard way. |

To illustrate the last two parts of the definition, we notet taien op stands for
the conjunction of a set of literals add = {L4,..., L, }, where evend, is a literal,
Tw(op(X)) = op(Tw (X)) specializes tdyw (L1, ..., Ly) = Tw(L1), ..., Tw(Ly).
Similarly, for an aicr = Ly,..., L, D a1]...|a,, we obtain

Tw(’r) = Tw(Ll), .. ,Tw(Ln) D) Tw(a1)| e |Tw(04m)

Clearly, we overload the notatidfy and interpret it based on the type of the argument.
We have the following two results.



Theorem 6. [SHIFTING THEOREM FOR (WEAK) REPAIRS AND FOUNDED (WEAK)
REPAIRY LetZ and W be databases. For every sebf aic’s and for every consistent
set& of update actions, we have

1. £ is a weak repair for(Z,n) if and only if T\, (€) is a weak repair for(Z +
W, Tw(n))

2. Eis arepair for(Z, n) if and only if )y (€) is a repair for (Z +~ W, T\, (1))

3. £ is founded foKZ, n) if and only if Ty, (€) is founded forZ + W, Ty (n)).

4. £ is a founded (weak) repair fofZ, ) if and only if T\, (£) is a founded (weak)
repair for (Z ~ W, T\ (n)). O

Theorem 7. [SHIFTING THEOREM FOR JUSTIFIED(WEAK) REPAIRY LetZ and W
be databases. For every setof aic’s and for every sef of update actions is an
justified (weak) repair fofZ,») if and only if T3y, (€) is a justified (weak) repair for
(T, Tw(n)). D

Theorems 6 and 7 imply that in the context of (weak) repagsgnfled (weak) re-
pairs or justified (weak) repairs, an instarigen) of the database update problem can
be shifted to the instance the empty initial database. Titwgdquty simplifies studies of
these semantics as it allows us to eliminate one paraméiir(itial database) from
considerations.

Corollary 3. LetZ be a database and a set of aic's. Therf is a weak repair (re-
pair, weak repair, founded weak repair, founded repairtifiesd weak repair, justified
repair, respectively) fofZ, n) if and only if 7z (£) is a weak repair (repair, weak repai,
founded weak repair, founded repair, justified weak repastified repair, respectively)
for (0, Tz (n)). O

Example 8.Let us look at one of the instances of the database repaitgmotonsid-
ered in Example 4, specifically, &L, 7,). We recall thatZ = {a, b} andn, consists of
the constraints:

a,b D —a|l—b

a,notb D —a

nota,b O —b.

The set{—a, —b} is the only weak repair fofZ,n,) and, as we noted earlier, it is a
(weak) founded repair and a (weak) justified repair{fbyn.), as well. Let us “shift”
this instance t&’ = (), To this end, we shift with respect " = 7 ~ 7' = {a,b}.
One can check thdt = Ty, ;) ({a,b}), thatis, 7’ = Ty (). Moreover,Tyy (1) = 14,
wheren, is the set of aic’s considered in Example 6 above. Thus, ohdee shifting
(Z,n2) with respect tdV/, we obtain the database repair probl&éf, n,). It is easy to
verify thatTy, 4y ({—a, —b}) = {+a, +b} and that{+a, +b} is the only (weak) repair
for (Z’,n4), which happens also to be a (weak) founded repair and a (vestifjed
repair for(Z’, n4), in agreement with the results of this section. |

7 Complexity and Computation

We noted earlier that the problem of the existence of a (wegtdir is NP-complete,
and the same is true for the problem of the existence of falimgeak repairs. On the



other hand, the problem of the existence of a founded repaificomplete [2]. In this
section, we study the problem of the existence of justifieglafgy repairs.

For our hardness results, we will use problems in logic @ogning. We will con-
sider disjunctive and normal logic programs that satisfpe@dditional syntactic con-
straints. Namely, we will consider only programs withouesuwhich contain multiple
occurrences of the same atom (that is, in the head and in the begated or not; or
in the body — both positively and negatively). We call sucbgsamssimple It is well
known that the problem of the existence of a stable model afranal logic program is
NP-complete [7], and of the disjunctive logic programX£’-complete [8]. The proofs
in [7,8] imply that the results hold also under the restoistto simple normal and
simple disjunctive programs, respectively (in the caseigjfidctive logic programs, a
minor modification of the construction is required). lodbe a logic programming rule,
say

p=ai|...lag — .
We define
aic(p) = notay,...,notag, B D +a1|...|+ ag.

We extend the operataric(-) to logic programs in a standard way. We note that if a
rule p is simple therbody(aic(p)) is consistent andup(aic(p)) = body(p).

We recall that a set/ of atoms is an answer set of a disjunctive logic progiam
if M is a minimal set closed under the reduet , where P consists of the rules
obtained by dropping all negative literals from those rute$ that do not contain a
literal not a in the body, for anya € M (we refer to [9] for details). The following
result states a property of the translation needed for easiarguments.

Theorem 8. Let P be a simple disjunctive logic program. A skf of atoms is an
answer set of if and only ifua(M) is a justified weak repair fot(), aic(P)). 0

Example 9.Let us consider Example 6. We observe thais equal toaic(P) whereP

is the simple disjunctive logic program consisting of thiesup; = a | b, po = b «— a
andps = a — b.We know thatf = {+a, +b} is the unique justified repair fqZ’, 4),
whereZ’ = (). Moreover, one can check thA&f = {a, b}, for which& = wua(M),

is the unique answer set &f. Furthermore, since the instan¢E, n4) is the result of
shifting (Z, 72, also the repairs ofZ, n.) can be expressed in terms of answer sets of
the disjunctive logic programic(P). This points to a general translation of instances
of the database repair problem into disjunctive logic paogg by combining shifting
with the mappingaic. A detailed study of this relationship is a subject of a safsr
paper. O

We now state main results of the section.

Theorem 9. LetZ be a database ang a set of normal aic’s. Then checking if there
exists a justified repair (justified weak repair, respedsiyéor (Z, n) is an NP-complete
problem. |

Theorem 10. LetZ be a database ang a set of aic’s. The problem of the existence of
a justified weak repair fotZ, n) is a X1’ -complete problem. |

Theorem 11. LetZ be a database ang a set of aic’s. The problem of the existence of
ajustified repair for(Z, n) is a ¥1’-complete problem. O



8 Discussion

We recall that given a databa®end a sef) of aic’s, the goal is to replacg with Z’ so
thatZ’ satisfies;. The set of update actions needed to transférimto Z’ must at least
be a repair fofZ, n) (assuming we insist on change-minimality, which normadlytie
case). However, it should also obey preferences capturdtiebfieads of constraints
in 7. Let us denote b\R(Z,n), WR(Z,n), FR(Z,n), FWR(Z,n), JR(Z,n), and
JWR(Z,n) the classes of repairs, weak repairs, founded repairsgtalweak repairs,
justified repairs and justified weak repairs {@r, n), respectively. Figure 1 shows the
relationships among these classes, with all inclusionsgoei general proper.

FR(Z,n")
I
JR(Z,n") € JR(Z,n) € FR(Z,n) < R(Z,n) R(Z,n")
Il N N N N
JWR(Z,n") CIJWR(Z,n) € FWR(Z,n) € WR(Z,n) = WR(Z,n")
I

FWR(Z,n")

Fig. 1. Relationships among classes of repairs

Thus, given an instancg, n) of the database repair problem, one might first at-
tempt to select a repair foZ, ) from the most restricted set of repaidR(Z,n™).
Not only these repairs are strongly tied to preferencesesgad byy — the related
computational problems are relatively easy. The problerdeicide whether this set
is empty is NP-complete. However, the cla®(Z, ™) is narrow and it may be that
JR(Z,n™) = 0. Ifit is so, the next step might be to try to repditby selecting a re-
pair from JR(Z,n). This class of repairs fo(Z,n) reflects the preferences captured
by 7. Since it is broader than the previous one, there is a betissilplity it will be
non-empty. However, the computational complexity grows ke éxistence problem
for JR(Z,n) is X%-complete. If alsdR(Z,n) = 0, it still may be that founded repairs
exist. Moreover, deciding whether a founded repair existsat harder than the pre-
vious step. Finally, if there are no founded repairs, orleraily consider just a repair.
This is not quite satisfactory as itignores the prefereeoesded by) and concentrates
only on the constraint enforcement. However, deciding viea repair exists is “only”
NP-complete. Moreover, this class subsumes all otheredasrepairs and offers the
best chance of success.

We note that if we fail to find a justified or founded repair i fbrocess described
above, we may decide that respecting preferences encodgdsris more important
than the minimality of change postulate. In such case, réthgroceed to seek a repair,
as discussed above, we also have an option to considergdstifak repairs ofZ, ),
where the existence problemXy’-complete and, then founded weak repairs(far),
where the existence problem is NP-complete.



9 Conclusion

We studied the formalism of aic’s [2], designed for enfogcintegrity constraints on
databases in the presence of preferences on alternatiwetwap so. The original se-
mantics proposed for aic’s is based on the concepfofiaded repairFounded repairs
are sets of update actions to be performed over the databasder to make it con-
sistent. They are minimal w.r.t. change and supported by. dicsome cases, elements
of founded repairs cyclically support each other, whiclenfs undesirable. Therefore,
we introduced several new semantics for aic’s. Two most mapd of them are the se-
mantics of justified weak repairs and justified repairs. Taeybased on the concept
of groundedness similar to that underlying the answeresatstics of logic programs.
We established the relationship of the two new semantidsatioof founded repairs. For
each semantics we determined the complexity of the basitemde of repair problem.
Furthermore, we proved that each semantics satisfieshifieng property Shifting con-
sists of transforming an instance of a database repair gmobd another syntactically
isomorphic one by changing aic’s to reflect the “shift” fronetoriginal database to the
new one. These latter results are essential for relatirgjrégrmalism we studied with
the formalism of Lifschitz-Woo programs [10], a subject of duture work.

Acknowledgments

This work was partially supported by the NSF grant 11S-0325@nd the KSEF grant
KSEF-1036-RDE-008.

References

1. Winslett, M.: Updating Logical Databases. Cambridge UniversitysR(E390)

2. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Caitlarsemantics of production
rules for integrity maintenance. In Etalle, S., Truszczynski, M., ddsgic Programming,
22nd International Conference, ICLP 2006, Proceedings. Voludi® 4f LNCS., Springer
(2006) 26-40

3. Marek, W., Truszczyski, M.: Revision programming. Theoretical Computer Sciet@@
(1998) 241-277

4. Pivkina, . Revision programming: a knowledge representatiommdtsm.
PhD thesis, Department of Computer Science, University of KentucR9OIL)
http://lib.uky.edu/ETD/ukycosc2001d00022/pivkina.pdf.

5. Caroprese, L., Truszcagki, M.: Declarative Semantics for Revision Programming and Con-
nections to Active Integrity Constraints (2008) In: Proceedings of BE1008, Vol. 5293 of
LNCS, Springer 2008.

6. Caroprese, L., Greco, S., Zumpano, E.: Active integrity comgsréor database consistency
maintenance (2008) Manuscript, submitted to IEEE TKDE.

7. Marek, W., Truszczyski, M.: Autoepistemic logic. Journal of the ACBB(1991) 588-619

8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logigpmmming: proposi-
tional case. Annals of Mathematics and Artificial Intelliged&g1995) 289-323

9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs aigjudctive databases.
New Generation Computing(1991) 365-385



10. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonicaoeasy. In: Proceedings of
the 3rd international conference on principles of knowledge reptasem and reasoning,
KR '92, San Mateo, CA, Morgan Kaufmann (1992) 603-614



Appendix

Proposition 1 If I/, andi/, are sets of update actions such tatJ U is consistent,
then for every database Z o (U Uls) = (Z o Uy) o Us.

Proof:

1. Firstwe show thaf o (U; Uls) C (Zolhy) olUs. Leta € T o (U UlUs). We have
two cases: eithet € Z A —a & (U1 UUz)0ra €I A +a € (Uy UlUs). Inthe
first case as-a ¢ Uy and—a ¢ Us, it follows thata € (Z olUy) o Us. In the second
case we have thata € U; or +a € Us and thuse € (Z o Uy) o Us.

2. Then we show thaf o (U Uly) 2 (Zoly) olUs. Leta € (Z oUy) olUs. We have
twocases:eithet € T A —a €Uy N —adUsOra €T A (+a € Uy V+a € Uy).
In the first case as-a & U UUs, it follows thata € Z o (U UlUs). In the second
case we have thata € U; UlUs and thusy € 7 o (U UUsz). o

Proposition 2LetZ be a database. Then

1. For every database, Rone(Z,R) =R
2. For every sef of update actions such thétu ne(Z,Z o £) is consistent o £ =
Zo(EUne(Z,Z0E)).

Proof:

1. Sincene(Z,R) = {+a la e INR}U{-a |a ¢ ZUR}, Rone(Z,R) =
(RUZNR))N(ZUR)=R.

2. Since€ U ne(Z,Z o &) is consistent, Propositions 1 and 2 imply thab (£ U
ne(Z,Zo&))=Zo&)one(Z,Zo&)=TIoc&. O

Theorem 1LetZ be a database,a set of active integrity constraints afich consistent
set of update actions. Thehis a a justified weak repair foZ, n) if and only if £ N
ne(Z,Zo&)=0andf Une(Z,Z o &) is ajustified action set fofZ, n).

Proof: (=) Since€ is a justified weak repair fo{Z, n), £ = U \ ne(Z,Z oU) for some
consistent sd¥ of update actions such thétis minimal containingrne(Z,Z o U) and
closed under). By Proposition 2(2)Z ol = Z o £. Thus,E N ne(Z,Z 0 &) = 0.
Moreover, sincene(Z,ZolUd) CU,U=EUne(Z,Zo&). HenceE Une(Z,Zo€&)is
a justified action set fo{Z, n).

(<) Letd = EUne(Z,Z0&). We will show thatne(Z,Z old) = ne(Z,Z o). To this
end, let+a € ne(Z,Z oU). Then,a € 7 and—a ¢ U (the latter property follows by
the consistency df). It follows that—a ¢ £ and, consequentlya € ne(Z,Z o £).
Similarly, we show that if-a € ne(Z,ZoU), then—a € ne(Z,Zo&). Thus, we obtain
thatne(Z,ZoU) C ne(Z,Z0E).

Conversely, letr-a € ne(Z,Z o £). Thena € Z and+a € U. Sincel{ is consistent
(itis a justified action set fo{Z, 7)), Z o U is well defined anéta € ne(Z,Z oU). The
case—a € ne(Z,Z o &) is similar. Thus,ne(Z,Z o ) C ne(Z,Z o U) and the claim
follows.

Since& N ne(Z,Z o £) = (), we obtain that = U \ ne(Z,Z o U). Sinceld is a
justified action set fo(Z, n), £ is a justified weak repair fo{Z, ). |
Theorem 2LetZ be a database,a set of active integrity constraints, afich justified
weak repair fofZ, n). Then



1. For every atona, exactly one ofta or —aisinE U ne(Z,Zo )
2.To0&kEn
3. & is founded for(Z, n).

Proof: Throughout the proof, use the notatidn= £ U ne(Z,Z o £).

1. Sincel is consistent (cf. Theorem 1), for every atagrat most one of-a, —a is in
U.If +a € ne(ZT,To &) or—a € ne(Z,T o &) then the claim follows. Otherwise,
the status ofi changes as we move frafto Zo£. That is, either-a or —a belongs
to £ and, consequently, @, as well.

2. Letus consider € 7. Sincel{ is closed undey (cf. Theorem 1), we haveup(r) €
lit(EUne(Z,Zo&))orhead(r)N(EUne(Z,Z0&)) # 0. Let us assume the first
possibility, and letL be a literal such that € nup(r) andua(L) ¢ U. By (1),
ua(LP) € U. ConsequentlyZ o I/ % L. By Proposition 2(2)Z o € ~ L. Since
L € body(r),Zo& k.

Thus, let us assume thatad(r) NU # (§ and leta € head(r) NU. Thena €
head(r) and solit(a)P € body(r). Furthermoreq € U and soZ oU k= lit(«).
By Proposition 2(2)Z o £ = lit(«). Thus,Z o € = r in this case, too.

3. Leta € £. By Theorem 1 ¢ ne(Z,Z o £). Thus,ne(Z,Zo &) C U \ {a}.
Sincel{ is a minimal set closed underand containingie(Z,Z o £), U \ {a} is
not closed under. That is, there i3 € 7 such thathup(r) C lit(U \ {«}) and
head(r) N (U \ {a}) = 0. We have

ToU\{a})=To(ne(Z,Zo&)U(E\{a})) =(ZTone(Z,Z0&))o(E\{a}).

By Proposition 2 (and the fact that(Z, R) = ne(R,Z), for every databases
andR),

ToU\{a})=To(E\{a}). (4)

From nup(r) C Lit(U \ {a}), it follows thatZ o (U \ {a}) E nup(r). By (4),

To (E\{a}) = nup(r). Sincea € head(r), lit(aP) ¢ nup(r). Thus,I o £ |=

nup(r).

The inclusionnup(r) C lit(U \ {«}) also impliesnup(r) C lit(U). Sinceld is

closed undern, head(r) NU # B and sohead(r) NU = {a}.

Let us consider3 € head(r) such that3 # «. It follows that3 ¢ U. By (1),

BP € U and, consequently, o i/ = BP. SinceZ oU = T o £ (Proposition 2), it
follows thata is founded with respect t(Z, ) and€. O

Corollary 1 LetZ be a database,a set of active integrity constraints, afia justified
weak repair fofZ, n). Then,£ is a founded weak repair fdZ, ).

Proof: Let £ be a justified repair fotZ, n). It follows by Theorem 2 thaf o £ = 7.
Again by Theorem 2¢ is founded. ThusS is a founded weak repair fdf, 7). a
Corollary 2 LetZ be a database,a set of active integrity constraints, afia justified
repair for(Z,n). Then,& is a founded repair fo{Z, n).

Proof: Let £ be a justified repair fofZ, ). As it is a justified weak repair fo{Z, n),
it follows by Corollary 1 that it is a founded weak repair fF, n). Moreover, by the



definition of justified repairsg is change minimal. Thus; is a founded repair for
(Z.m). O

Theorem 3LetZ be a database angda set of active integrity constraints such that for
each update action € |, ., head(r), T = lit(a?). If £ is a justified weak repair for
(Z,n), thenf is a justified repair fofZ, ).

Proof: Let & be a justified weak repair fdZ, ) and let€’ C £ be suchthal o &’ = 1.
We defineld = £ U ne(Z,Z o £). By Theorem 1 and Proposition 2(2), is a
minimal set of update actions containing(Z,Z o £) and closed undey. Let/’ =
E" Une(Z,To€&) and letr € n be such thaua(nup(r)) C U'. SinceZ o &' = n,
T o & B~ body(r). Thus, it follows that there i€ € up(r) such thatZ o &’ (= L.
SinceL € up(r), there isa € head(r) such thatl, = lit(a?). By the assumption,
T = L, thatis,Z |= lit(aP). SinceZ o &' = L, T o &' = lit(a). Thus,a € £ and,
consequentlyy € /. It follows thati/’ is closed under and, since- was an arbitrary
element ofy, undery. too. Thus{/’ = U, thatis,&' Une(Z,Zo&) =EUne(Z,Z0E).
SinceE’ C £andé Nne(Z,Z0&) =0, & = E. It follows that€ is a minimal set of
update actions such thato £ = 7. O

Theorem 4Let Z be a database anga set of normal active integrity constraints £If
is a justified weak repair fo{Z, ) then¢ is a justified repair fo(Z, n).

Proof: Let £ be a justified weak repair fdfZ, ). We have to prove thaf is minimal
with respect to constraint enforcement. To this end, letarsider’ C £ such that
Ioé& En.

We defind/ = EUne(Z,Zo&)andld’ =& Une(Z,Z o). We will show thats’
is closed undern. Letr € n be such thata(nup(r)) C U’. Let o be an update action
such thatiead(r) = {a}. Thenbody(r) = {lit(aP)} U nup(r).

SinceZ o &' =1, T o &' |~ body(r). By our assumptionya(nup(r)) C U’. Thus,
T ol = nup(r). Sinceld’ is consistent, Proposition 2(2) implies tiab £’ = Z o U/,
Thus,Z o & = lit(a?) and, consequently, o £’ = lit(a).

Sinceld’ C U, ua(nup(r)) C U. By Theorem 1{/ is closed unden. Thus,a € U.
SinceZ oU = T o & (Proposition 2(2))Z o € = lit(«).

If 7 |= lit(«) then, asL o€ = lit(a), we havex € ne(Z,Zo&) CU'. If T |~ lit(«)
then, asZ o &' = lit(«), we have thaty € £ C U’. Thus, U’ is closed under and
so, also under. Consequenthi{’ = U. SinceE N ne(Z,Z o £) = (), it follows that
&' = €. Thus,€ is a minimal set of update actions such that £ = 7. 0

Theorem ??Let 7 be a database amgda set of active integrity constraints.

1. Ifaset€ of update actions is a justified repair f@r, ™), then¢ is a justified repair
for (Z,n)

2. If a set€ of update action is a justified weak repair f@r, ™), then€ is a justified
weak repair forZ, n).

Proof: Let £ be a justified repair fokZ,n™). We defineld = £ U ne(Z,Z o £). By
Corollary 2,& is a founded repair fofZ,n™). By a result from [2],£ is a founded
repair for(Z,n) and, consequently, a repair f(£, ).

Sincef is, in particular, a justified weak repair féZ, n™), U is a justified action
set for (Z,n™) (Theorem 1). Thusl/ is a minimal set of update actions containing



ne(Z,Z o £) and closed unden™. To prove that€ is a justified repair forZ,n), it
suffices to show thdt is a minimal set of update actions containing(Z,Z o £) and
closed under.

Let us consider an active integrity constraint

r=lit(aP), ... lit(a?), ¢ D aq]...|an

in n such thatua(nup(r)) C U (we note thatwup(r) consists precisely of the literals
that appear i). It follows that7 o U = nup(r). Since€ is arepair,Z o £ = body(r).
By Proposition 2(2)Z o £ = Z oU. Thus,Z o U [~ body(r). It follows that there is
i,1 < i < n,suchthatl o [~ lit(aP). Thus,a? ¢ U. By Theorem 2(1)q; € U.
Thus,! is closed under and, consequently, undegr as well.

We will now show that/ is minimal in the class of sets of update actions containing
ne(Z,Z o £) and closed undey. Letl/’ be a set of update actions such thatZ,Z o
&) CU' C U andlt’ is closed undern. Let us consider an active integrity constraint in
s € n™ such thatua(nup(s)) CU'.

By the definition ofy™, there is an active integrity constraine n such that

r=1lit(al), .. lit(aP), .. lit(a?), ¢ D aq]...|ay] ... |an

and
s=lit(a?),... lit(aP),... lit(a?), 6 D a;.

Sinceua(nup(s) C U', va(nup(r) C U'. AsU’ is closed under, there isj, 1 <

j < n, such thate; € U'. For everyk such thatl < k < n andk # i, af € U'.
By the consistency di’, we conclude thaty; € U’. Thus,i’ is closed undes and,
consequently, undey™. Sinceld’ C U andl{ is minimal containingue(Z,Z o £) and
closed unden™ it follows thatl/’ = /. Thus/ is minimal containingue(Z,Z o £) and
closed under. Consequently¢ is a justified repair fofZ, ).

(2) If € is ajustified weak repair fofZ, n™) then, by Theorem 4 is a justified repair
for (Z,n™). By (1), £ is a justified repair fokZ,n) and so, a justified weak repair for
<Iv 77)' O

Proposition Let )V be a database.

1. For every update actiom, Ty (lit(«)) = lit(Tw(a))

2. For every sefl of literals (update actions, active integrity constraingspectively)
Ty (Tw(A)) = A

3. For every consistent sgt of literals (update actions, respectivel§),, (.A) is con-
sistent

4. For every databasé€sandR, T\y(ne(Z,R)) = ne(Z + W, R + W)

5. For every active integrity constraint nup (T (1)) = Ty (nup(r)).

Proof: (1) - (3) follow directly from the definitions. We omit the ddis.

4. Leta € ne(Z=W, R=+W). If a = +a, thenitfollows thats € (Z+-W)N(R=W).
Let us assume that € W. Thena ¢ 7 U R and, consequently-a € ne(Z, R).
Sincea € W, +a = T\ (—a). Thus,a € Ty (ne(Z,R)). The case when =



—a can be dealt with in a similar way. It follows thate(Z +~+ W, R + W) C
Tw(ne(Z,R)).

LetZ =Z+WandR' = R +W.ThenZ =7' -+ W, R = R’ + W and, by
applying the inclusion we just proved 6 andR’, we obtain

ne(Z,R) = ne(Z' + W, R' = W) C Ty (ne(Z',R")).
Consequently,
Tw(ne(Z,R)) C Tiy(Tw(ne(Z',R))) = ne(T ~ W, R +W).

Thus, the claim follows.

5. LetL € nup(Tyy(r)). Itfollows thatL € body(Tyy(r)) andL? ¢ lit(head(Tw(r)).
Clearly, head(T\w(r)) = Tw(head(r)) andbody(Tw (r)) = Tw(body(r)). Thus,
L € Tyy(body(r)) and LY ¢ Tyy(head(r)). Consequentlyliy (L) € body(r).
Moreover, sincelyy (L) = (Tyw(L))P, (Tw(L))P ¢ head(r). It follows that
Tw(L) € nup(r) and so,L € Tyy(nup(r)). Hencenup(Tw(r)) C Ty (nup(r)).
Applying this inclusion to an active integrity constraint= Tyy(r), we obtain
nup(r) C Ty (nup(Top (1)), which impliesTyy (nup(r)) Ty (T (nup(Tow(r))) =
nup(Tw(r)). Thus, the equalityup (T (1)) = Ty (nup(r)) follows. O

Proposition 3. LetZ and W be databases and Idt be a literal or an update action.
ThenZ = Lifand only ifZ ~ W = Tw(L).

Proof: (=) Let us assume th&t |= L. If L = a, wherea is an atom, them € Z. There
are two casest € Wanda ¢ W. In the first caseg ¢ Z + W andTyy(a) = not a. In
the second case, € Z +~ W andTyy(a) = a. In each casel =+ W = Tyy(a), that is,
T+WETwy(L).

The casel = not a, wherea is an atom, is similar. First, we have that¢ 7.
If a € Wthena € T+ W andTy(nota) = a. If a ¢ W thena ¢ 7T + W and
Tw(nota) = not a. In each case +~ W = Tyy(not a), thatis,Z =~ W = Ty (L).
(<) Letus assume th@t+-W = Ty (L). Then,(I=W)+W = T andTyy (T (L)) =
L. Thus,Z = L follows by the implication £). |

Proposition 4. Let Z and VW be databases, and Iét be a consistent set of update
actions. ThefZ od) + W = (Z = W) o T (U).

Proof: We note that sinc# is consistent]}y (i/) is consistent, too. Thubpthsides of
the identity are well defined.

Leta € (ZolU) =W.If +a € T)w(U), thena € (Z =~ W) o T)y(U). Thus, let us
assume that-a ¢ Ty (U). We have two cases.
Case 1u ¢ W. From the definition of)y, +a ¢ U. Sincea € (ZolU) +W,a € Told
and, consequently; € 7 and—a ¢ U. Thus,a € (Z + W) and—a ¢ Tw(U)
(otherwise, a§yy(—a) = —a, we would have-a € U). Consequently; € (Z +W)o
Tw(U).
Case 2u € W. From the definition of}y, —a ¢ U. Sincea € (Zold) =W, a ¢ Told.
Thus,a ¢ 7 and+a ¢ U. It follows thata € 7 + W and—a ¢ Ty, () (otherwise we
would haveta € U, asTyy(—a) = +a, in this case). Hence, € (Z +~ W) o Ty (U).



If a ¢ (Zold)+W, we reason similarly. lf-a € Ty (U), thena ¢ (Z+W)oTyw (U).
Therefore, let us assume that. ¢ Ty, (U/). As before, there are two cases.
Case 1lu ¢ W and thus—a ¢ U. Sincea ¢ (ZoU)+W, a ¢ T ol and, consequently,
a ¢ Tand+a ¢ U. Thus,a ¢ (Z =~ W) and+a ¢ Ty (U). Consequentlyg ¢
(I+ W) o Tw<U)
Case 2u € W and thusta ¢ U. In this caseq € Z oU. Thus,a € T and—a ¢ U. It
follows thata ¢ 7 =~ W and+a ¢ Ty, (U). Hencea ¢ (Z ~ W) o Ty (U). a

Lemma 1. LetZ and W be databased/ a consistent set of update actions, ahd
literal or an action update. Thefiol/ = L if and only if(Z+W)oTw (U) = Tw(L). O

Proof: By Proposition 3Zol{ |= Lifandonly if (Zold)+W |= Ty (L). By Proposition
4, the latter condition is equivalent to the conditi@h+ W) o )y (U) = Tw(L). O
Theorem 6 [SHIFTING THEOREM FOR (WEAK) REPAIRS AND FOUNDED (WEAK)
REPAIRY Let Z andW be databases. For every saif active integrity constraints and
for every consistent sét of update actions, we have

1. £ is a weak repair forZ,n) if and only if Ty, (€) is a weak repair foZ =+
W, Ty (1))

2. Eisarepair foZ, n) if and only if T\, (€) is a repair foKZ +~ W, Ty (n))

3. & is founded for(Z,n) if and only if T}, (€) is founded forZ +~ W, Ty (n)).

4. £ is a founded (weak) repair fdZ,n) if and only if Ty, (€) is a founded (weak)
repair for(Z +~ W, Ty (n)).

Proof.

1. Letus assume thé&tis a weak repair fo{Z, ). It follows that& is consistent. Since
Zo& E=mn, bylLemmal(Z +W)oTw(€) E Tw(n). The converse implication
follows from the one we just proved by Proposition 9(2).

2. As before, it suffices to show only one implication. l&be a repair forKZ, n).
Then,€ is a weak repair fotZ, ). By (1), £ is a weak repair fotZ ~ W, Tyy(n)).
Let& C Tw (&) be such thatZ ~ W) o &' = Ty (n). It follows thatTy, (£7) C
Tw(Tw(€)) = £. Sincef is consistentT}y (E’) is consistent, too. By Lemma 1
and Proposition 9(2), sindg€ +~ W) o &' = Tw(n), thenZ o T)y (E’) = n. Since
Eisarepairandyy (&) C &, Ty(E') = £. Thus,E" = Tw(€) and so Ty (€) is
arepair foZ +~ W, Ty (n)).

3. As in two previous cases, we show only one implication.sT et us assume that

£ is founded for(Z,n). Let « € Ty (E). It follows that there is8 € & such
thata = Ty (B). Since& is founded with respect tdZ, n), there is an active
integrity constraint- such thats € head(r), Z o £ = nup(r), and for every
v € head(r) \ {8}, Lo & = ~P.
Clearly, the active integrity constraiffily, () belongs tdl\y (n) anda = Ty (5) is
an element ofiead (T\y (r)). By Proposition 9(5)nup(r) = nup(Tw(r)). Thus,
by Lemma 1(Z+W)oTw(E) = nup(Tw(r)). Next, lety € head(Tw(r))\ {a}.
Then, there i$ € head(r)\ {3} such thaty = T\, (d). SinceZo& = P, it follows
that(Z +~ W) o Tw(€) E Tw(dP), thatis,(Z + W) o Tw(€) &= vP. Thus,«a is
founded with respect t¢ ~ W, Ty (n)) andTyy (£) andTyy, () is founded with
respecttoZ +~ W, Tw(n)).



4. This property is a direct consequence of (1), (2), and (3). a

We will now turn our attention to justified repairs. We needanore auxiliary
result.

Lemma 2. LetZ and WV be databases. For every sgbof active integrity constraints
and for every sel/ of update actiond( is a justified action set fo{Z, ) if and only if
Tw(U) is a justified action set fofZ =~ W, Ty (n)).

Proof: (=) We have to prove thdky, (i) is consistent, and minimal among all super-
sets ofne(Z + W, (T + W) o Ty (U)) that are closed undéhy (n).

Sincel/ is a justified action set fo{Z, ), U is consistent ande(Z,Z o U) C U.
The former implies thaly, (i) is consistent (cf. Proposition 9(1 )). The latter implies
thatne(Z ~ W, (Z = W) o Tw(U)) C Tw(U) (cf. Propositions 9(2) and 4).

Next, we prove thalyy, (/) is closed undefyy (n). Letr be an active integrity con-
straint inTyy,(n) such thatbody(r) is consistentpup(r) C lit(Tw(U)). Then, there
existss € n such thatr = Tyy(s). By Proposition 9(5)pup(r) = Ty (nup(s)). As
Tw(nup(s)) C lit(Tw(U)), we have thatwup(s) C lit(U). Sinceld is closed un-
der s, there existsx € head(s) such thata € U. Thus, we obtain thalyy(a) €
Tw(head(s)) = head(r), and thatlyy () € Ty (U). Consequentlyyead (r)NTw (U) #
(. It follows thatTyy (i) is closed under and so, also undéhy, (n).

Finally, let us consider a sét of update actions such that(Z - W, (Z + W) o
Tw(U)) €V C Ty (U) and closed undeRyy (n). By Propositions 9(2) and 4e(Z +
W, (Z+W)oTw(U)) = Tw(ne(Z,Zol)). Thus,ne(Z,Zold) C Tiy(V) C U. From
the fact tha®)’ is closed undef)y (n) it follows thatTyy (V) is closed under (one can
show it reasoning similarly as in the previous paragrapk)/As minimal in the class
of supersets ofie(Z,Z o U) closed under), T\, (V) = U and so,V = Ty, (U). This
completes the proof of the implicatios().

(<) If Ty (U) is ajustified action set fofZ ~ W, Tyy(n)), the implication(=-) yields
thatTyy (T (U)) = U is a justified action set fof(Z ~ W) -~ W =7, 7). a

Theorem 7[SHIFTING THEOREM FOR(WEAK) JUSTIFIED REPAIR$ Let Z andWV be
databases. For every sgbf active integrity constraints and for every gebf update
actions,€ is an justified (weak) repair fofZ,n) if and only if T3, (€) is a justified
(weak) repair fokZ, Ty (n)).

Proof: (=) If £ is a justified weak repair fofZ, n), then€ N ne(Z,Z o ) = § and
EUne(Z,Z0¢&)is ajustified action set fo{Z, ) (Theorem 1). It follows thalyy () N

Tw(ne(Z,Z o £)) = (). Moreover, by Lemma 2[, (€ U ne(Z,Z o £)) is a justified
action set for< 7 + W, Ty (n)).

We haveTyy(ne(Z,Z o £)) = ne(Z + W, (Z + W) o Tiy(€)). Thus, again by
Theorem 1) (€) is ajustified weak repair fofZ =+~ W, Tw (n)).

If £ is ajustified repair fofZ, ), then our argument shows th&, () is a justified
weak repair folZ ~ W, Ty, (n)). Moreover, since is a repair forZ, by Theorem 6(2)
we have thaf}y (€) is a repair forZ —W. It follows thatTyy (€) is a justified repair for
(T =+ W, Tyw(n)).

(«=) This implication follows from the other one in the same wayim several other
similar cases in the paper. a



Corollary 3 Let 7 be a database anga set of active integrity constraints. Théris
a weak repair (repair, weak repair, founded weak repainded repair, justified weak
repair, justified repair, respectively) faZ,») if and only if 77 (€) is a weak repair
(repair, weak repair, founded weak repair, founded repestified weak repair, justified
repair, respectively) fotl), Tz (n)).

Proof: Directly follows from Theorems 6 and 7. |

Lemma 3. Let P be a simple disjunctive logic program add’, M sets of atoms such
thatM’ C M. ThemM'is amodel o™ ifand only if{ +a |a € M'}U{—a |a ¢ M}
is closed undetic(P).

Proof:
Letus definé/ = {+a|a € M'} U{—a |a ¢ M}. We note thal{ is consistent.

(=) Letr € aic(P), p € P be arule such that = aic(p), andp’ be the rule obtained
by eliminating fromp all negative literals.

SinceP is simple,nup(r) = body(p). Let us assume thatup(r) C U. It follows
thatp’ € PM and thatM’ |= body(p’). Thus,head(p’) N M’ # (). Sincehead(p) =
head(p') andhead(r) = head(aic(p)) = ua(head(p)), head(r) NU # (). That is,U
is closed under and, since: was chosen arbitrarily, undegc(P), too.

(<) Let us considep’ € PM. There isp € P such that for every negative literal
nota € body(p), a ¢ M, and dropping all negative literals from results inp’.
If body(p’) € M’, thenbody(p) C lLit(U). Thus,nup(aic(p)) C U. It follows that
head(aic(p)) NU # 0. Thus,head(p) N lit(U) # O. Sincehead(p) consists of atoms
andhead(p') = head(p), head(p') N M’ # 0. That is,M’ |= p’ and, consequently,
M' | PM. O
Theorem 8Let P be a simple disjunctive logic program. A set of atoms is an answer
set of P if and only if ua(M) is a justified weak repair foff), aic(P)).

Proof: (=) Let M be an answer set d?. That is,M is a minimal set closed under the
rules in the reducP. By Lemma 3{+a |a € M} U {—a |a ¢ M} is closed under
aic(P). LetU’ be a set of update actions such thatu |a ¢ M} CU' C {+a |a €
M}U{-a|a ¢ M}. We defineM’ = {a | +a € U'}. ThenM’ C M. By Lemma
3, M’ = PM. SinceM is an answer set aP, M’ = M andi/’ = U. It follows that
{+a |a € M}U{—a|a ¢ M} is a minimal set closed undeic(P) and containing
{—a |a ¢ M}. Sinceua(M) = {+a |a € M} andne(®,0 o ua(M)) = {—a |a ¢
M}, Theorem 1 implies thata (M) is justified weak repair fot(), aic(P)).

(<) By Theorem 1,{+a |a € M} U {—a |a ¢ M} is a minimal set containing
{—a |a ¢ M} and closed undetic(P). By Lemma 3,M is a model ofPM. Let
M' C M be a model ofPM. Again by Lemma 3{+a |a € M'} U{—a |a ¢ M}
is closed undetic(P). It follows that{+a |a € M'}U{—a |a ¢ M} = {+a |a €
M}yU{—a |a ¢ M}. Thus,M’ = M and so,M is a minimal model of”, that is,
an answer set aP. a

Lemma 4. Let n be a finite set of normal active integrity constraints andifebe a
finite set of update actions. There is a least set of updafere}V such that/ C W
and W is closed under). Moreover, this least saty can be computed in polynomial
time in the size ofy andiA.



Proof: We prove the result by demonstrating a bottom-up procespuatng V. The
process is similar to that applied when computing a leasteihofia Horn program.
We start withWy = U, Assuming thatV; has been computed, we identifyjqnevery
active integrity constraint such thatwup(r) C lit(W;), and add the head of each such
ruler to W;. We call the resulW, 1. If W1 = W;, we stop. It is straightforward to
prove that the last set constructed in the process is claséery, containd/, and is
contained in every set that is closed ungand containg/. Moreover, the construction
can be implemented to run in polynomial time. |

Lemma 5. Letn be a finite set of normal active integrity constraints and4éand/”
be sets of update actions. The problem whether there isid séupdate actions such
thati/ is closed undery andi/’ C U C U" is in NP.

Proof: Once we nondeterministically gudgschecking all the required conditions can
be implemented in polynomial time. |

Lemma 6. Letn be a finite set of normal active integrity constrainfsa database,
and& be a set of update actions. The problem whether there is & set€ of update
actions such thaf o £’ |= 7 is in NP.

Proof: Once we nondeterministically gueSschecking all the required conditions can
be implemented in polynomial time. O

Theorem 9Let 7 be a database amga set of normal active integrity constraints. Then
checking if there exists a justified repair (justified weafaie, respectively) fo(Z, n)
is an NP-complete problem.

Proof: By Theorem 4, it is enough to prove the result for justified kvesgpairs.

(MemBERSHIP) The following algorithm decides the problem: (1) Nondetanisti-
cally guess a consistent set of update actiéng2) Computene(Z,Z o £). (3) If
ENne(Z,To&) # D return NO. Otherwise, compute the least Bg¢tof update ac-
tions that is closed underand containgie(Z,Z o &). (4) f W = E U ne(Z,Z0 &),
then return YES. Otherwise, return NO. From an earlier olzgiem, it follows that the
algorithm runs in polynomial time. From Theorem 1, it follewhat the algorithm is
correct.

(HARDNESS) The problem of the existence of an answer set of a simple aldogic
programP is NP-complete. By Theorem 4 and TheoremiBhas an answer set if
and only if there exists a justified weak repair @y aic(P)). Sinceaic(P) can be
constructed in polynomial time in the size Bf the result follows. |
Theorem 10LetZ be a database amda set of active integrity constraints. The problem
of the existence of a justified weak repair {@r, ) is a ¥4’ -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynlemia
time Turing Machine with an NP-oracle. Indeed, in the firgipstone needs to guess
(nondeterministically) a consistent gebf update actions. Settidg = EUne(Z,Zo¢&),
one needs to verify that

1L.ENne(Z,Zo&)=10
2. U is closed unden



3. for each/’ such thatne(Z,Z o &) C U’ C U andU’ closed under, U’ = U (by
Lemma 5, one call to an NP-oracle suffices)

(HARDNESS) The problem of the existence of an answer set of a simplertisye
logic programP is XX’ -complete. By Theorem & has an answer set if and only if
there exists a justified weak repair (i}, aic(P)). Thus, the result follows. |

Theorem 11Let7 be a database amda set of active integrity constraints. The problem
of the existence of a justified repair f¢£, 1) is a X2’ -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynlbmia
time Turing Machine with an NP-oracle. Indeed, in the firgfpstone needs to guess
(nondeterministically) a consistent gedf update actions. Settidg = EUne(Z,Zo¢E),
one needs to verify that

1.£ENne(Z,Z0&)=10

2. U is closed unden

3. for each/’ such thatne(Z,Z o &) C U’ C U andlU’ closed under, U’ = U (by
Lemma 5, one call to an NP-oracle suffices)

4. for eachg’ such thatt’ C &,7 o &' [~ n (By Lemma 6, one call to an NP-oracle
suffices).

(HARDNESS) Since for the class of instanc@ aic( P)) justified weak repairs coincide
with justified repairs (Theorem 3), the result follows. |



