## Beyond NP: Quantifying over Answer Sets

Giovanni Amendola ${ }^{1}$, Francesco Ricca ${ }^{1}$, Mirek Truszczynski ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computer Science
${ }^{2}$ Department of Computer Science, University of Kentucky, USA
UNIERSITÀ
ACALABRIA
College of
Engineering
ICLP 2019
Las Cruces (New Mexico) - September 22, 2019

## Outline

(9) Introduction
(2) ASP with Quantifiers
(3) Related Work

## Context

## Answer Set Programming (ASP) [BET11]

- Declarative programming paradigm
- Non-monotonic reasoning and logic programming
- Roots in Datalog and Nonmonotonic Logic
- Stable model semantics [GL91]
- Robust and efficient systems [GLM ${ }^{+} 18$ ]
- DLV [AAC ${ }^{+}$18], Clingo [GKK $\left.{ }^{+} 16\right], \ldots$
- Effective in practical industrial-grade applications [EGL16]


## Context

## Expressive KR Language

- Default negation, Disjunction, Aggregates, Constraints ...
- Basic ASP models up to $\sum_{2}^{P}$ [DEGV01]
$\rightarrow$ i.e., problems not (polynomially) translatable to SAT or CSP


## Well-known facts about ASP

- Uniform and compact encodings
$\rightarrow$ Fixed encoding, instances as facts, inductive definitions
- Modular solutions
$\rightarrow$ Generate-Define-Test/Guess\&Check methodology [Lif02, EFLP00]
- Compact and elegant modeling of problem in NP


## Context

## Expressive KR Language

- Default negation, Disjunction, Aggregates, Constraints ...
- Basic ASP models up to $\Sigma_{2}^{P}$ [DEGV01]
$\rightarrow$ i.e., problems not (polynomially) translatable to SAT or CSP


## Well-known facts about ASP

- Uniform and compact encodings
$\rightarrow$ Fixed encoding, instances as facts, inductive definitions
- Modular solutions
$\rightarrow$ Generate-Define-Test/Guess\&Check methodology [Lif02, EFLP00]
- Compact and elegant modeling of problem in NP


## Context

## Expressive KR Language

- Default negation, Disjunction, Aggregates, Constraints ...
- Basic ASP models up to $\Sigma_{2}^{P}$ [DEGV01]
$\rightarrow$ i.e., problems not (polynomially) translatable to SAT or CSP


## Well-known facts about ASP

- Uniform and compact encodings
$\rightarrow$ Fixed encoding, instances as facts, inductive definitions
- Modular solutions
$\rightarrow$ Generate-Define-Test/Guess\&Check methodology [Lif02, EFLP00]
- Compact and elegant modeling of problem in NP


## The usual example

## Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).
\% guess a coloring for the nodes
(r) $\operatorname{col}(X$, red $) \mid \operatorname{col}(X$, yellow $) \mid \operatorname{col}(X$, green $):-\operatorname{node}(X)$.
\% discard colorings where adjacent nodes have the same color
(c) :- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
\% NB: answer sets are subset minimal $\rightarrow$ only one color per node
"NP-complete problem modeled with only two rules!"

## Motivation

## What about modeling beyond NP with ASP?

- It is possible...


## Motivation

## What about modeling beyond NP with ASP?

- It is possible... with unrestricted disjunction [DEGV01]
$\rightarrow$ Stable model checking in co-NP


## Motivation

## What about modeling beyond NP with ASP?

- It is possible... with unrestricted disjunction [DEGV01]
$\rightarrow$ Stable model checking in co-NP
- Rarely elegant and compact
$\rightarrow$ Unless one can find a positive encoding


## A rare example...

## Example (Strategic Companies is $\sum_{2}^{P}$-complete)

Problem: There are various products, each one is produced by several companies. We now have to sell some companies. What are the minimal sets of strategic companies, such that all products can still be produced? A company also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_,-,_) and controlled_by(_,_,_,_)
\% Guess strategic companies
strategic $(Y) \mid \operatorname{strategic}(Z)$ :- produced_by $(X, Y, Z)$.
\% Ensure they are strategic
strategic $(W)$ :- controlled_by $(W, X, Y, Z)$, strategic $(X)$, strategic $(Y)$, strategic $(Z)$.

## Motivation

## What about modeling beyond NP with ASP?

- It is possible... to some extent
- Rarely elegant and compact
$\rightarrow$ Unless one can find a positive encoding
$\rightarrow$ Well-known strategic companies example
- Generate-define-test approach is no longer sufficient
- Saturation technique [EG95]
- Exploits the minimality to check "for all" conditions
- Difficult to use, not intuitive
$\rightarrow$ Introduces constraints with no direct relation with the problem


## Motivation

## What about modeling beyond NP with ASP?

- It is possible... to some extent
- Rarely elegant and compact
$\rightarrow$ Unless one can find a positive encoding
$\rightarrow$ Well-known strategic companies example
- Generate-define-test approach is no longer sufficient
- Saturation technique [EG95]
- Exploits the minimality to check "for all" conditions
- Difficult to use, not intuitive
$\rightarrow$ Introduces constraints with no direct relation with the problem


## Beyond NP (Saturation)

## Example (Quantified Boolean Formulas by [EG95])

Problem: Given a QBF formula $\Phi=\exists X \forall Y \phi(X, Y)$, where $\phi$ is in 3-DNF form, determine an assignment for $X$ that makes $\Phi$ satisfiable.
Input: $\operatorname{conj}\left(X_{1}, S_{X_{1}}, X_{2}, S_{X_{2}}, X_{3}, S_{X_{3}}\right)$ and exist $(X)$, forall $(Y)$
\% Guess assignment for $X$
$\operatorname{asgn}(X$, true $) \vee \operatorname{asgn}(X$, false $) \leftarrow \operatorname{exist}(X)$.
\% Guess assignment for $Y$
$\operatorname{asgn}(Y$, true $) \vee \operatorname{asgn}(Y$, false $) \leftarrow$ forall $(Y)$.
\% Saturate $Y$
$\operatorname{asgn}(Y$, true $) \leftarrow$ sat, forall $(Y)$.
$\operatorname{asgn}(Y$, false $) \leftarrow$ sat, forall $(Y)$.
\% check satisfiability $Y$
sat $\leftarrow \operatorname{conj}\left(X_{1}, S_{1}, X_{2}, S_{2}, X_{3}, S_{3}\right), \operatorname{asgn}\left(X_{1}, S_{1}\right), \operatorname{asgn}\left(X_{2}, S_{2}\right), \operatorname{asgn}\left(X_{3}, S_{3}\right)$.
$\leftarrow$ not sat.

## Motivation and Goals

"Unlike the ease of common ASP modeling, [...] these techniques are rather involved and hardly usable by ASP laymen." [GKS11]

Goals

- Address the shortcomings of ASP beyond NP
- Make modeling natural as for NP


## Motivation and Goals

"Unlike the ease of common ASP modeling, [...] these techniques are rather involved and hardly usable by ASP laymen." [GKS11]

## Goals

- Address the shortcomings of ASP beyond NP
- Make modeling natural as for NP


## Contributions

(1) Design $\operatorname{ASP}(\mathrm{Q})$ : an extension of ASP with quantifiers
$\rightarrow$ Inspired from Quantified Boolean formulas (QBFs)
$\rightarrow$ Elegant expansion of ASP with a new form of quantifiers
(2) Identify computational properties of ASP(Q)
(3) Show the modeling capabilities of $\operatorname{ASP}(Q)$
(4) Compare $\operatorname{ASP}(\mathrm{Q})$ with alternative approaches
$\rightarrow$ QBFs, Stable-unstable [BJT16], Meta-programming [Red17, GKS11],
$\rightarrow$ Program transformations [EP06, Red17, FW11], etc.

## ASP with Quantifiers: Syntax and Semantics

## Definition (ASP with Quantifiers)

An ASP with Quantifiers (ASP(Q)) program $\Pi$ is of the form:

$$
\square_{1} P_{1} \square_{2} P_{2} \cdots \square_{n} P_{n}: C,
$$

$\square_{i} \in\left\{\exists^{s t}, \forall^{s t}\right\} ; P_{i}$ a program; $C$ a stratified normal program.

## Intuitive semantics

Program $\Pi=\exists \exists^{s t} P_{1} \forall^{s t} P_{2} \ldots \exists \exists^{s t} P_{n-1} \forall^{s t} P_{n}: C$ is coherent if:
"There is an answer set $M_{1}$ of $P_{1}$ s.t. for each answer set $M_{2}$ of $P_{2} \cup$ fix $\left(M_{1}\right)$ there is an answer set $M_{3}$ of $P_{3} \cup$ fix $\left(M_{2}\right)$ such that . . . for each answer set $M_{n}$ of

$$
P_{n} \cup f i x\left(M_{n-1}\right) \text { there is an answer set of } C \cup f i x\left(M_{n}\right) \text { " }
$$

where fix $_{P}(I)=\{a \mid a \in I\} \cup\left\{\leftarrow a \mid a \in B_{P} \backslash I\right\} . M_{1}$ quantified answer set of $\Pi$

## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}=P_{2} \cup$ fix $_{P_{1}}(\{a(1)\})$, and fix $_{P_{1}}(\{a(1)\})=\{a(1) ; \leftarrow a(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2) ; a(1) ; \leftarrow a(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2) ; a(1) ; \leftarrow a(2)\}$
- $P_{2}^{\prime}$ has two answer sets $\{a(1), b(1)\}$ and $\{a(1), b(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2) ; a(1) ; \leftarrow a(2)\}$
- $P_{2}^{\prime}$ has two answer sets $\{a(1), b(1)\}$ and $\{a(1), b(2)\}$
- But $C \cup$ fix $_{P_{2}^{\prime}}(\{a(1), b(1)\})$ is not coherent!


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}=P_{2} \cup f i x_{P_{1}}(\{a(2)\})$, and fix $_{P_{1}}(\{a(2)\})=\{a(2) ; \leftarrow a(1)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}$ has one answer set $\{a(2), b(2)\}$


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}$ has one answer set $\{a(2), b(2)\}$
- Finally, $\{a(2), b(2)\}$ satisfies $C$ !


## Basic Example

## Example (Quantified ASP Program)

Let $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$

- $P_{1}=\{a(1) \vee a(2)\}$
- $P_{2}=\{b(1) \vee b(2) \leftarrow a(1) ; b(2) \leftarrow a(2)\}$
- $C=\{\leftarrow b(1)$, not $b(2)\}$
$\Pi$ is coherent, and $\{a(2)\}$ is a quantified answer set of $\Pi$
- $P_{1}$ has two answer sets $\{a(1)\}$ and $\{a(2)\}$
- $P_{2}^{\prime}$ has one answer set $\{a(2), b(2)\}$
- Finally, $\{a(2), b(2)\}$ satisfies $C$ !


## Beyond NP (Saturation vs ASP(Q))

## Example (Quantified Boolean Formulas)

Problem: Given a QBF formula $\Phi=\exists X \forall Y \phi(X, Y)$, where $\phi$ is in 3-DNF form, determine an assignment for $X$ that makes $\Phi$ satisfiable.
Input: $\operatorname{conj}\left(X_{1}, S_{X_{1}}, X_{2}, S_{X_{2}}, X_{3}, S_{X_{3}}\right)$ and exist $(X)$, forall $(Y)$
\% Guess assignment for $X$
$\operatorname{asgn}(X$, true $) \vee \operatorname{asgn}(X$, false $) \leftarrow \operatorname{exist}(X)$.
\% Guess assignment for $Y$
$\operatorname{asgn}(Y$, true $) \vee \operatorname{asgn}(Y$, false $) \leftarrow$ forall $(Y)$.
\% Saturate $Y$
$\operatorname{asgn}(Y$, true $) \leftarrow$ sat, forall $(Y)$.
$\operatorname{asgn}(Y$, false $) \leftarrow$ sat, forall $(Y)$.
\% Check satisfiability $Y$
sat $\leftarrow \operatorname{conj}\left(X_{1}, S_{1}, X_{2}, S_{2}, X_{3}, S_{3}\right), \operatorname{asgn}\left(X_{1}, S_{1}\right), \operatorname{asgn}\left(X_{2}, S_{2}\right), \operatorname{asgn}\left(X_{3}, S_{3}\right)$.
$\leftarrow$ not sat.

## Beyond NP (Saturation vs ASP(Q))

## Example (Quantified Boolean Formulas)

Problem: Given a QBF formula $\Phi=\exists X \forall Y \phi(X, Y)$, where $\phi$ is in 3-DNF form, determine an assignment for $X$ that makes $\Phi$ satisfiable.
Input: $\operatorname{conj}\left(X_{1}, S_{X_{1}}, X_{2}, S_{X_{2}}, X_{3}, S_{X_{3}}\right)$ and exist $(X)$, forall $(Y)$
Solution: $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2}: C$ such that:
\% Guess assignment for $X$
$P_{1}=\{\operatorname{asgn}(X$, true $) \vee \operatorname{asgn}(X$, false $) \leftarrow \operatorname{exist}(X)$.
\% Guess assignment for $Y$
$P_{2}=\{\operatorname{asgn}(Y$, true $) \vee \operatorname{asgn}(Y$, false $) \leftarrow$ forall $(Y)$.
\% Check satisfiability $Y$
C = \{
$\operatorname{sat} \leftarrow \operatorname{conj}\left(X_{1}, S_{1}, X_{2}, S_{2}, X_{3}, S_{3}\right), \operatorname{asgn}\left(X_{1}, S_{1}\right), \operatorname{asgn}\left(X_{2}, S_{2}\right), \operatorname{asgn}\left(X_{3}, S_{3}\right)$.
$\leftarrow$ not sat.
\}

## Beyond NP ( $\Pi_{2}^{P}$-complete)

## Example (Quantified Boolean Formulas)

Problem: Given a QBF formula $\psi=\forall X \exists Y \psi(X, Y)$, where $\psi$ is in 3-CNF form, determine an assignment for $X$ that makes $\psi$ satisfiable.
Input: $\operatorname{disj}\left(X_{1}, S_{X_{1}}, X_{2}, S_{X_{2}}, X_{3}, S_{X_{3}}\right)$ and exist $(X)$, forall $(Y)$
Solution: $\Pi=\forall^{s t} P_{1} \exists^{s t} P_{2}: C$ such that:
\% Guess assignment for $X$
$P_{1}=\{\operatorname{asgn}(X$, true $) \vee \operatorname{asgn}(X$, false $) \leftarrow$ forall $(X)$.
\% Guess assignment for $Y$
$P_{2}=\{\operatorname{asgn}(Y$, true $) \vee \operatorname{asgn}(Y$, false $) \leftarrow \operatorname{exist}(Y)$.
\% Check satisfiability $Y$
C = \{
$\leftarrow \operatorname{disj}\left(X_{1}, S_{1}, X_{2}, S_{2}, X_{3}, S_{3}\right), \operatorname{iasgn}\left(X_{1}, S_{1}\right), \operatorname{iasgn}\left(X_{2}, S_{2}\right), \operatorname{iasgn}\left(X_{3}, S_{3}\right)$. $\operatorname{iasgn}(X$, false $):-\operatorname{asgn}(X$, true $)$.
iasgn $(X$, true $):-\operatorname{asgn}(X$, false $)$.
\}

## Theoretical Results

## Theorem (ASP(Q) is a straightforward generalization of ASP)

Let $P$ be an $A S P$ program, and $\Pi$ the $A S P(Q)$ program $\exists^{s t} P: C$. Then,

$$
A S(P)=\operatorname{QAS}(\Pi)
$$

Сoherence problem: Given $\Pi$, decide whether $\Pi$ is coherent.

## Theorem (Complexity)

The Coherence problem is
(i) PSPACE-complete, even restricted to normal ASP(Q) programs;
(ii) $\Sigma_{n}^{P}$-complete for n-normal existential $A S P(Q)$ programs;
(iii) $\Pi_{n}^{P}$-complete for n-normal universal $A S P(Q)$ programs.

## Modeling Examples

## Min-Max Clique [Ko95]

- Example of $\Pi_{2}^{P}$-complete problem
- Key role in game theory, optimization and complexity [CDG $\left.{ }^{+} 95\right]$
- Approach can be adapted to model other minmax problems


## Pebbling Number [MC06]

- Mathematical game
- Example of $\Pi_{2}^{P}$-complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

- Relevant problem in machine learning
- Measures the capacity of a space of functions that can be learned by a statistical classification algorithm
- Example of $\Sigma_{3}^{P}$-complete problem


## Modeling Examples

## Min-Max Clique [Ko95]

- Example of $\Pi_{2}^{P}$-complete problem
- Key role in game theory, optimization and complexity [CDG ${ }^{+} 95$ ]
- Approach can be adapted to model other minmax problems


## Pebbling Number [MC06]

- Mathematical game
- Example of $\Pi_{2}^{P}$-complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

- Relevant problem in machine learning
- Measures the capacity of a space of functions that can be learned by a statistical classification algorithm
- Example of $\Sigma_{3}^{P}$-complete problem


## Minmax Clique: The Problem

## Definition (Minmax Clique)

Given a graph $G$, sets of indices $I$ and $J$, a partition $\left(A_{i, j}\right)_{i \in I, j \in J}$, and an integer $k$, decide whether

$$
\min _{f \in J^{\prime}} \max \left\{|Q|: Q \text { is a clique of } G_{f}\right\} \geq k
$$

$J^{\prime}$ is the set of all total functions from $I$ to $J$, and $G_{f}$ is the subgraph of $G$ induced by $\bigcup_{i \in I} A_{i, f(i)}$.

## In simpler words:

"For each total function $f \in J^{\prime}$, there exists a clique $c$ in $G_{f}$, such that the size of $c$ is larger than $k$ "

Solution: An ASP(Q) program $\Pi=\forall^{s t} P_{1} \exists^{s t} P_{2}: C$.

## Minmax Clique: The Solution

"For each total function $f \in J^{\prime \prime}$ "

$$
P_{1}=\left\{\begin{array}{rll}
\text { edge }(a, b) & & \\
\operatorname{node}(a) & & \\
v(i, j, a) & & \\
\operatorname{setl}(X) & \leftarrow & \left.v(X, b),{ }_{-}\right) \\
\operatorname{set}(X) & \leftarrow & \forall i \in I, j \in J, a \in A_{i, j} \\
1\{f(X, Y): \operatorname{set}(Y)\} 1 & \leftarrow & \operatorname{setl}(X)
\end{array}\right.
$$

"There exists a clique $c$ in $G_{f}$ "

$$
P_{2}=\left\{\begin{array}{rll}
\begin{array}{rl}
\text { inInduced }(Z) & \leftarrow \\
\text { edgeP }(X, Y) & \\
& \leftarrow \\
& \text { edge }(X, Y, Y), f(X, Y) \\
\text { inInduced }(Y)
\end{array} \\
\{\operatorname{inClique}(X): \text { inInduced }(X)\} & & \\
& \leftarrow & \begin{array}{l}
\text { inCliqued }(X), \text { inClique }(Y) \\
\\
\text { not } \operatorname{edge} P(X, Y)
\end{array}
\end{array}\right\}
$$

"Such that the size of $c$ is larger than $k$ "

$$
C=\{\leftarrow \quad \# \operatorname{count}\{X: \text { inClique }(X)\}<k\}
$$

## Pebbling Number: The Problem

## Definition (Pebbling Number)

Given a digraph $G=\langle N, E\rangle$ with pebbles placed on (some of) its nodes.

- A pebbling move along $(a, b)$ removes 2 pebbles from $a$ and adds 1 to $b$
- The Pebbling number $\pi(G)$ is the smallest number of pebbles s.t. for each assignment of $k$ pebbles and for each node $w$ (the target), some sequence of pebbling moves results in a pebble on $w$
Problem: Is $\pi(G) \leq k$ ?


## In simpler words:

"For each assignment of $k$ pebbles to the nodes of G, and for each target node $t \in N$, there exists a sequence of pebble moves (at most $k-1$ moves), such that some pebble is on $w$ "

Solution: An ASP(Q) program $\Pi=\forall^{s t} P_{1} \exists^{s t} P_{2}: C$.

## Pebbling Number: The Solution

"For each assignment of $k$ pebbles to the nodes of $G$, and for each target node $w \in N$ "

$$
P_{1}=
$$

$$
\left\{\begin{aligned}
\operatorname{edge}(a, b) & \forall(a, b) \in E \\
\operatorname{node}(a) & \forall a \in N \\
\operatorname{pebble}(i) & \forall i=0,1, \ldots, k \\
1\{\operatorname{onNode}(X, N): \operatorname{pebble}(N)\} 1 & \leftarrow \operatorname{node}(X) \\
\leftarrow \# \operatorname{sum}\{N, X: \operatorname{onNode}(X, N)\} \neq k & \\
1\{\operatorname{target}(X): \operatorname{node}(X)\} 1 &
\end{aligned}\right\}
$$

## Pebbling Number: The Solution

"There exists a sequence of pebble moves"


## Vapnik-Chervonenkis Dimension: The Problem

## Definition (VC Dimension)

Let $k$ be an integer, $U$ a finite set, $\mathcal{C}=\left\{S_{1}, \ldots, S_{n}\right\} \subseteq 2^{U}$ a collection of subsets of $U$ represented by a program $P_{\mathcal{C}}$.

Problem: Is there $X \subseteq U$ of size at least $k$, s.t. for each $S \subseteq X$, there is $S_{i}$ s.t. $S=S_{i} \cap X$ ?
(VC dimension of $\mathcal{C}, \operatorname{VC}(\mathcal{C})$ is the maximum size of such a set $X$.)

Solution: An ASP(Q) program $\Pi=\exists^{s t} P_{1} \forall^{s t} P_{2} 1 \exists^{s t} P_{3}: C$.

## Vapnik-Chervonenkis Dimension: The Solution

"There is $X \subseteq U$ of size at least $k$ "

$$
P_{1}=\left\{\begin{aligned}
& \operatorname{in} U(x) \forall x \in U \\
& k\{\operatorname{in} X(X): \operatorname{in} U(X)\}
\end{aligned}\right.
$$

"Such that for each $S \subseteq X$ "

$$
P_{2}=\{\{\operatorname{inS}(X): \operatorname{in} X(X)\}\}
$$

"There is $S_{i}$ "

$$
P_{3}=P_{\mathcal{C}}
$$

"Such that $S=S_{i} \cap X$ "

$$
C=\left\{\begin{aligned}
\text { inIntersection }(Z) & \leftarrow \operatorname{true}(Z), \operatorname{in} X(Z) \\
& \leftarrow \text { inIntersection }(Z), \text { not inS }(Z) \\
& \leftarrow \text { not inIntersection }(Z), \operatorname{inS}(Z)
\end{aligned}\right\}
$$

## ASP(Q) vs Stable-Unstable

Stable-Unstable Models [BJT16]

- Extends ASP up to the second level of PH
- Based on the concept of parametrized stable model
- Combined logic program: $\Pi=\left(P_{g}, P_{t}\right)$
- "A stable unstable model is a parameterized stable model of $P_{g}$, say I, s.t. no parameterized stable model of $P_{t}$ exists that coincides with I in the intersection of the two signatures"
- Inspired by an internal working principle of ASP solvers
$\rightarrow P_{g}$ guess candidate, $P_{t}$ performs a co-NP check
- Generalized to capture PH
$\rightarrow$ Recursive oracle calls


## ASP(Q) vs Stable-Unstable: Summary

## ASP(Q) vs Stable-Unstable

- Parameters are implicit in ASP(Q)
- Stable-unstable coincides with existential ASP(Q)
$\rightarrow$ Property holding in all models vs existence of counterexample
- Stable-unstable cannot model $\Pi_{k}^{P}$
$\rightarrow$ Unless the PH collapses
- $\operatorname{ASP}(\mathrm{Q})$ modeling often closer to the problem description
$\rightarrow$ Complex interplay of recursion, negation and recursive oracles


## Conclusion

## Contributions

(1) A natural solution for modeling beyond NP with ASP

- ASP(Q) extends ASP via quantifiers over stable models
(2) A study of the computational properties of the language
(3) Examples to show the modeling capabilities

4. A comparison with alternative approaches
"ASP(Q) models problems in the Polynomial Hierarchy in the same compact and elegant way as ASP models problems in NP"

Future Work

- Implementation: (i) by rewriting in QBF (ii) dedicated solvers


## Conclusion

## Contributions

(1) A natural solution for modeling beyond NP with ASP

- ASP(Q) extends ASP via quantifiers over stable models
(2) A study of the computational properties of the language
(3) Examples to show the modeling capabilities

4. A comparison with alternative approaches
"ASP(Q) models problems in the Polynomial Hierarchy in the same compact and elegant way as ASP models problems in NP"

Future Work

- Implementation: (i) by rewriting in QBF (ii) dedicated solvers


## Conclusion

## Contributions

(1) A natural solution for modeling beyond NP with ASP

- ASP(Q) extends ASP via quantifiers over stable models
(2) A study of the computational properties of the language
(3) Examples to show the modeling capabilities

4. A comparison with alternative approaches
"ASP(Q) models problems in the Polynomial Hierarchy in the same compact and elegant way as ASP models problems in NP"

## Future Work

- Implementation: (i) by rewriting in QBF (ii) dedicated solvers


## Acknowledgments

## Thanks for your attention!

## Questions?

## Bonus slides

## Bonus Slides

## ASP(Q) vs ASP vs QBF

## ASP vs ASP(Q)

- $\operatorname{ASP}(\mathrm{Q})$ is a natural extension of ASP
- Natural in $\Sigma_{2}^{P}$ with disjunctive positive encodings
- Normal program sufficient to model PH


## QBF vs ASP(Q)

- Both extend base language with some form of quantifier
$\rightarrow$ variable assignments vs answer sets
- Same computational properties
- $A S P(Q)$ supports variables and inductive definitions
- ASP(Q) inherits aggregates, choice rules, strong negation, and disjunction


## ASP(Q) vs Stable-Unstable

Stable-Unstable Models [BJT16]

- Extends ASP up to the second level of PH
- Based on the concept of parametrized stable model
- Combined logic program: $\Pi=\left(P_{g}, P_{t}\right)$
- Inspired by an internal working principle of ASP solvers
$\rightarrow P_{g}$ guess candidate, $P_{t}$ performs a co-NP check
- "A stable unstable model is a parameterized stable model of $P_{g}$, say I, s.t. no parameterized stable model of $P_{t}$ exists that coincides with I in the intersection of the two signatures"
- Generalized to capture PH
$\rightarrow$ Recursive oracle calls


## ASP(Q) vs Stable-Unstable

Problems in $\Sigma_{2}^{P}$

- Testing in $\operatorname{ASP}(\mathrm{Q})$ : "for all stable models of some program, a certain property holds."
- Testing in Stable-Unstable: "there is no stable model of some program s.t. a certain property holds."
- Switching between $\operatorname{ASP}(Q)$ and Stable-Unstable is trivial
- Hence, they are on par for modeling problems in $\Sigma_{2}^{P}$.

Problems in $\Pi_{2}^{P}$

- Naturally represented in ASP(Q)
- Stable-unstable requires
- An exponential encoding (quantifier expansion in QBF)
- Pushing the computation in the oracle (one more quantifier)
- Combined programs model complements of $\Pi_{2}^{P}$ problems and not the problems themselves


## ASP(Q) vs Stable-Unstable

Modeling problems beyond the second level

- Combined programs resort to a recursive definition
$\rightarrow$ Force the programmer to think in terms of nested oracles
$\rightarrow$ Recursion and negation make it harder to connect between problem description and oracles
- The interface between natural language problem description and ASP(Q) programs is transparent (as for QBF)
$\rightarrow$ Explicitly supported by the quantifiers
- The difficulty of modeling problems in $\Pi_{2}^{P}$, noted above, appears in the general setting of problems in $\Pi_{k}^{P}$, for $k \geq 2$


## References

[AAC ${ }^{+}$18] Weronika T. Adrian, Mario Alviano, Francesco Calimeri, Bernardo Cuteri, Carmine Dodaro, Wolfgang Faber, Davide Fuscà, Nicola Leone, Marco Manna, Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari. The ASP system DLV: advancements and applications. KI, 32(2-3):177-179, 2018.
[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929-965, 1989.
[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a glance. Commun. ACM, 54(12):92-103, 2011.
[BJT16] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Stable-unstable semantics: Beyond NP with normal logic programs. TPLP, 16(5-6):570-586, 2016.

## References (cont.)

[CDG ${ }^{+} 95$ ] Feng Cao, Ding-Zhu Du, Biao Gao, Peng-Jun Wan, and Panos M. Pardalos. Minimax Problems in Combinatorial Optimization, pages 269-292. Springer US, Boston, MA, 1995.
[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of logic programming. ACM Comput. Surv., 33(3):374-425, 2001.
[EFLPO0] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative problem-solving using the dlv system. In Logic-based Artificial Intelligence, pages 79-103. 2000.
[EG95] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289-323, 1995.
[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set programming. Al Magazine, 37(3):53-68, 2016.

## References (cont.)

[EP06] Thomas Eiter and Axel Polleres. Towards automated integration of guess and check programs in answer set programming: a meta-interpreter and applications. TPLP, 6(1-2):23-60, 2006.
[FW11] Wolfgang Faber and Stefan Woltran. Manifold answer-set programs and their applications. In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning, volume 6565 of LNCS, pages 44-63, 2011.
[GKK ${ }^{+}$16] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Philipp Wanko. Theory solving made easy with clingo 5. In ICLP (Technical Communications), volume 52 of OASICS, pages 2:1-2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
[GKS11] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer set programming. TPLP, 11(4-5):821-839, 2011.

## References (cont.)

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Comput., 9(3/4):365-386, 1991.
[GLM ${ }^{+}$18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri, Francesco Ricca, and Torsten Schaub. Evaluation techniques and systems for answer set programming: a survey. In IJCAI, pages 5450-5456. ijcai.org, 2018.
[Ko95] Chih-Long Ko, Ker-land Lin. On the Complexity of Min-Max Optimization Problems and their Approximation, pages 219-239. Springer US, Boston, MA, 1995.
[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artif. Intell., 138(1-2):39-54, 2002.
[MC06] Kevin Milans and Bryan Clark. The complexity of graph pebbling. SIAM J. Discret. Math., 20(3):769-798, March 2006.

## References (cont.)

[Red17] Christoph Redl. Explaining inconsistency in answer set programs and extensions. In LPNMR, volume 10377 of LNCS, pages 176-190. Springer, 2017.

