Beyond NP: Quantifying over Answer Sets

Giovanni Amendola’, Francesco Ricca', Mirek Truszczynski?

' Department of Mathematics and Computer Science

2 Department of Computer Science, University of Kentucky, USA
UNIVERSITA = % College of
DELLA CALABRIA ==y Engineering

ICLP 2019
Las Cruces (New Mexico) — September 22, 2019

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Outline

o Introduction
© ASP with Quantifiers

e Related Work

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: ing over Answer Sets

Introduction

Context

Answer Set Programming (ASP) [BET11]

@ Declarative programming paradigm
Non-monotonic reasoning and logic programming
Roots in Datalog and Nonmonotonic Logic

Stable model semantics [GL91]
Robust and efficient systems [GLM*18]
e DLV [AAC*18], Clingo [GKK* 18], ...
Effective in practical industrial-grade applications [EGL16]

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Context

Expressive KR Language
@ Default negation, Disjunction, Aggregates, Constraints ...
@ Basic ASP models up to &5 [DEGV01]

— i.e., problems not (polynomially) translatable to SAT or CSP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Context

Expressive KR Language
@ Default negation, Disjunction, Aggregates, Constraints ...
@ Basic ASP models up to £ [DEGV01]

— i.e., problems not (polynomially) translatable to SAT or CSP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Context

Expressive KR Language
@ Default negation, Disjunction, Aggregates, Constraints ...
@ Basic ASP models up to £ [DEGV01]

— i.e., problems not (polynomially) translatable to SAT or CSP

Well-known facts about ASP
@ Uniform and compact encodings
— Fixed encoding, instances as facts, inductive definitions
@ Modular solutions
— Generate-Define-Test/Guess&Check methodology [Lif02, EFLP0O]
@ Compact and elegant modeling of problem in NP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

The usual example

Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such
that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,).

% guess a coloring for the nodes
(r) col(X,red) | col(X,yellow) | col(X,green) - node(X).

% discard colorings where adjacent nodes have the same color
(c) = edge(X,Y),col(X,C), col(Y,C).

% NB: answer sets are subset minimal — only one color per node

“NP-complete problem modeled with only two rules!”

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation

What about modeling beyond NP with ASP?

@ ltis possible...

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation

What about modeling beyond NP with ASP?

@ ltis possible... with unrestricted disjunction [DEGV01]

— Stable model checking in co-NP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation

What about modeling beyond NP with ASP?

@ ltis possible... with unrestricted disjunction [DEGV01]

— Stable model checking in co-NP

@ Rarely elegant and compact

— Unless one can find a positive encoding

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

A rare example...

Example (Strategic Companies is £5-complete)

Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal sets of
strategic companies, such that all products can still be produced? A company
also belong to the set, if all its controlling companies belong to it.

Input: produced_by(_,_,_) and controlled_by(_,_,_,_)

% Guess strategic companies
strategic(Y) | strategic(Z) :- produced_by(X,Y,Z).

% Ensure they are strategic
strategic(W) - controlled_by(W, X, Y, 2),
strategic(X), strategic(Y), strategic(Z).

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation

What about modeling beyond NP with ASP?
@ ltis possible... to some extent

@ Rarely elegant and compact

— Unless one can find a positive encoding
— Well-known strategic companies example

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation

What about modeling beyond NP with ASP?
@ ltis possible... to some extent

@ Rarely elegant and compact

— Unless one can find a positive encoding
— Well-known strategic companies example

@ Generate-define-test approach is no longer sufficient

@ Saturation technique [EG95]
o Exploits the minimality to check “for all” conditions
o Difficult to use, not intuitive
— Introduces constraints with no direct relation with the problem

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Beyond NP (Saturation)

Example (Quantified Boolean Formulas by [EG95])
Problem: Given a QBF formula ¢ = 3XVY¢(X, Y), where ¢ is in 3-DNF form,
determine an assignment for X that makes ¢ satisfiable.
Input: conj(Xi, Sx,, Xz, Sx,, X3, Sx,) and exist(X), forall(Y)
% Guess assignment for X

asgn(X, true) v asgn(X, false) + exist(X).

% Guess assignment for Y

asgn(Y, true) v asgn(Y, false) < forall(Y).

% Saturate Y

asgn(Y, true) « sat, forall(Y).

asgn(Y, false) < sat, forall(Y).

% check satisfiability Y

sat « conj(X1, S1, X2, Sz, X3, S3), asgn(Xi, S1), asgn(Xz, S2), asgn(Xs, Ss).
< not sat.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction
Motivation and Goals

“Unlike the ease of common ASP modeling, [...]
these techniques are rather involved and hardly
usable by ASP laymen.” [GKS11]

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Motivation and Goals

“Unlike the ease of common ASP modeling, [...]
these techniques are rather involved and hardly
usable by ASP laymen.” [GKS11]

Goals
@ Address the shortcomings of ASP beyond NP
e Make modeling natural as for NP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Introduction

Contributions

@ Design ASP(Q): an extension of ASP with quantifiers
— Inspired from Quantified Boolean formulas (QBFs)

— Elegant expansion of ASP with a new form of quantifiers
@ Identify computational properties of ASP(Q)
© Show the modeling capabilities of ASP(Q)

© Compare ASP(Q) with alternative approaches
— QBFs, Stable-unstable [BJT16], Meta-programming [Red17, GKS11],
— Program transformations [EP06, Red17, FW11], etc.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

ASP with Quantifiers: Syntax and Semantics

Definition (ASP with Quantifiers)
An ASP with Quantifiers (ASP(Q)) program I1 is of the form:

04Py 0P -+ OpPy 2 C, (1)

0O, € {35, v*'}; P; a program; C a stratified normal program.

Intuitive semantics
Program M = 38tP,vSIP, ... 351P,_vSIP, : C is coherent if:

“There is an answer set My of Py s.t. for each answer set M, of P> U fix(My) there
is an answer set M5 of Ps U fix(M>) such that . .. for each answer set M, of
Pn U fix(M,—1) there is an answer set of C U fix(M,)”

where fixp(/) = {a| ae€ I} U{+ a| ae Bp\ I}. M; quantified answer set of I

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let = E'StP1vStP2 : C
o Pr={a(1)Vval2)}
@ P, ={b(1)Vvb(2) + a(1); b(2) + a(2)}
@ C={«b(1), not b(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let = E'StP1vStP2 : C
o Pr={a(1)Vval2)}
@ P, ={b(1)Vvb(2) + a(1); b(2) + a(2)}
@ C={«b(1), not b(2)}

@ P; has two answer sets {a(1)} and {a(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let N = E'StP1vStP2 2 (O

Py ={a(1) Vv a(2)}

P> ={b(1) Vv b(2) + a(1); b(2) «+ a(2)}
C ={«+ b(1), not b(2)}

P; has two answer sets {a(1)} and {a(2)}
P, = P> U fixp,({a(1)}), and fixp,({a(1)}) = {a(1); < a(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let N = E'StP1vStP2 2 (O

Py ={a(1) Vv a(2)}

P> ={b(1) Vv b(2) + a(1); b(2) «+ a(2)}
C ={«+ b(1), not b(2)}

P; has two answer sets {a(1)} and {a(2)}
P, = {b(1) v b(2) + a(1); b(2) < a(2); a(1); < a(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let M = E|StP1VSIP2 :C

Py ={a(1) Vv a(2)}

P, ={b(1) Vv b(2) «+ a(1); b(2) + a(2)}
C = {«+ b(1), not b(2)}

P; has two answer sets {a(1)} and {a(2)}
Py ={b(1) v b(2) - a(1); b(2) < a(2); a(1); < a(2)}
P, has two answer sets {a(1), b(1)} and {a(1), b(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let N = E'srP1VStP2 O

Py ={a(1) Vv a(2)}

P, ={b(1) Vv b(2) + a(1); b(2) «+ a(2)}
C={« b(1), not b(2)}

Py has two answer sets {a(1)} and {a(2)}

P, = {b(1) v b(2) + a(1); b(2) < a(2); a(1); < a(2)}
P, has two answer sets {a(1),b(1)} and {a(1), b(2)}
But C U fixp, ({a(1), b(1)}) is not coherent!

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let = E'StP1vStP2 : C
o Pr={a(1)Vval2)}
@ P, ={b(1)Vvb(2) + a(1); b(2) + a(2)}
@ C={«b(1), not b(2)}

@ P; has two answer sets {a(1)} and {a(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let N = E'StP1vStP2 2 (O

Py ={a(1) Vv a(2)}

P> ={b(1) Vv b(2) + a(1); b(2) «+ a(2)}
C ={«+ b(1), not b(2)}

Py has two answer sets {a(1)} and {a(2)}
Py = P2 Ufixp ({a(2)}), and fixp, ({a(2)}) = {a(2); « a(1)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let N = E'StP1vStP2 2 (O

Py ={a(1) Vv a(2)}

P> ={b(1) Vv b(2) + a(1); b(2) «+ a(2)}
C ={«+ b(1), not b(2)}

Py has two answer sets {a(1)} and {a(2)}
P, has one answer set {a(2), b(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let M = E'StP1VStP2 : C

Py ={a(1) v a(2)}

P, ={b(1) Vv b(2) «+ a(1); b(2) «+ a(2)}
C ={«+ b(1), not b(2)}

P; has two answer sets {a(1)} and {a(2)}

P, has one answer set {a(2), b(2)}
Finally, {a(2), b(2)} satisfies C!

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Basic Example

Example (Quantified ASP Program)

Let M = E'StP1VStP2 : C
o Pr={a(l)Vval2)}
@ P, ={b(1)Vvb(2)«+ a(1); b(2) + a(2)}
@ C={«b(1), not b(2)}

Iis coherent, and {a(2)} is a quantified answer set of I

@ P; has two answer sets {a(1)} and {a(2)}
@ P, has one answer set {a(2), b(2)}
e Finally, {a(2), b(2)} satisfies C!

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Beyond NP (Saturation vs ASP(Q))

Example (Quantified Boolean Formulas)
Problem: Given a QBF formula ¢ = 3XVY¢(X, Y), where ¢ is in 3-DNF form,
determine an assignment for X that makes ¢ satisfiable.
Input: conj(Xi, Sx,, Xz, Sx,, X3, Sx,) and exist(X), forall(Y)
% Guess assignment for X

asgn(X, true) v asgn(X, false) + exist(X).

% Guess assignment for Y

asgn(Y, true) v asgn(Y, false) < forall(Y).

% Saturate Y

asgn(Y, true) « sat, forall(Y).

asgn(Y, false) < sat, forall(Y).

% Check satisfiability Y

sat « conj(X1, S1, X2, Sz, X3, S3), asgn(Xi, S1), asgn(Xz, S2), asgn(Xs, Ss).
< not sat.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Beyond NP (Saturation vs ASP(Q))

Example (Quantified Boolean Formulas)

Problem: Given a QBF formula ¢ = 3XVY¢(X, Y), where ¢ is in 3-DNF form,
determine an assignment for X that makes ¢ satisfiable.

Input: conj(Xi, Sx,, Xz, Sx,, X3, Sx,) and exist(X), forall(Y)

Solution: M = 3P, V*'P; : C such that:

% Guess assignment for X
Py = { asgn(X, true) v asgn(X, false) < exist(X). }

% Guess assignment for Y
P> ={ asgn(Y,true) v asgn(Y,false) < forall(Y). }

% Check satisfiability Y

c={

sat < conj(Xi, S1, X2, Sz, Xs, S3), asgn(Xi, S1), asgn(Xz, S2), asgn(Xs, Ss).
< not sat.

}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Beyond NP (M5-complete)

Example (Quantified Boolean Formulas)

Problem: Given a QBF formula W = VX3Y (X, Y), where ¢ is in 3-CNF form,
determine an assignment for X that makes W satisfiable.

Input: disj(X1, Sx,, X2, Sx,, X3, Sx;) and exist(X), forall(Y)
Solution: M = v'P;3%P; : C such that:

% Guess assignment for X
Py = { asgn(X, true) v asgn(X, false) + forall(X). }

% Guess assignment for Y
P> = { asgn(Y, true) v asgn(Y,false) < exist(Y). }

% Check satisfiability Y

C={

<« disj(X1, St, Xz, S2, X3, S3), iasgn(Xi, S1), iasgn(Xz, S2), iasgn(Xs, Ss).
iasgn(X, false) — asgn(X, true).

iasgn(X, true) - asgn(X, false).

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Theoretical Results

Theorem (ASP(Q) is a straightforward generalization of ASP)
Let P be an ASP program, and I the ASP(Q) program 3°'P : C. Then,

AS(P) = QAS(N).

COHERENCE problem: Given IN, decide whether N is coherent.

Theorem (Complexity)

The COHERENCE problem is

(i) PSPACE-complete, even restricted to normal ASP(Q) programs;
(i) XF-complete for n-normal existential ASP(Q) programs;
(i) Nf-complete for n-normal universal ASP(Q) programs.

G. Amendola, F. Ricca, M. Truszczynski

Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Modeling Examples

Min-Max Clique [Ko95]
@ Example of M5-complete problem
@ Key role in game theory, optimization and complexity [CDG*95]
@ Approach can be adapted to model other minmax problems

Pebbling Number [MCO06]
@ Mathematical game
@ Example of M5-complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

@ Relevant problem in machine learning

@ Measures the capacity of a space of functions that can be learned by a
statistical classification algorithm

@ Example of ¥£-complete problem

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Modeling Examples

Min-Max Clique [Ko95]
@ Example of M5-complete problem
@ Key role in game theory, optimization and complexity [CDG*95]
@ Approach can be adapted to model other minmax problems

Pebbling Number [MCO06]
@ Mathematical game
@ Example of M5-complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

@ Relevant problem in machine learning

@ Measures the capacity of a space of functions that can be learned by a
statistical classification algorithm

@ Example of ¥£-complete problem

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Minmax Clique: The Problem

Definition (Minmax Clique)
Given a graph G, sets of indices / and J, a partition (A, ;);c/ jcs, and
an integer k, decide whether

;mj} max{|Q| : Qs a clique of G¢} > k.
S

J' is the set of all total functions from /to J, and Gy is the subgraph
of G induced by UielAi,f(/)'

In simpler words:

“For each total function f € J', there exists a clique c in Gy, such
that the size of c is larger than k”

Solution: An ASP(Q) program M = v$'P;35!P, : C.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Minmax Clique: The Solution

“For each total function f € J"”

edge(a, b) Y(a,b) € E
node(a) vae N
v(i,j, a) Viel jed, ac Ay

Py setl(X) « v(X,)
setd(X) «+ v(,X,.)

1{f(X,Y):setd(Y)}1 <+ setl(X)
“There exists a clique cin Gf”

inlnduced(Z) <« v(X,Y,2), f(X,Y)
edgeP(X,Y) <+« edge(X,Y), ininduced(X),
ininduced(Y)

Pe =1 {inClique(X) : ininduced(X)}

4

inClique(X), inClique(Y),
not edgeP(X,Y)

“Such that the size of cis larger than k”
C={ « #count{X : inClique(X)} < k }

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Pebbling Number: The Problem

Definition (Pebbling Number)
Given a digraph G = (N, E) with pebbles placed on (some of) its nodes.
@ A pebbling move along (a, b) removes 2 pebbles from a and adds 1 to b

@ The Pebbling number 7(G) is the smallest number of pebbles s.t. for each
assignment of k pebbles and for each node w (the target), some sequence
of pebbling moves results in a pebble on w

Problem: Is 7(G) < k?

In simpler words:

“For each assignment of k pebbles to the nodes of G, and for each
target node t € N, there exists a sequence of pebble moves (at
most k — 1 moves), such that some pebble is on w”

Solution: An ASP(Q) program N = v$!P;35!P, : C.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Pebbling Number: The Solution

“For each assignment of k pebbles to the nodes of G, and for each
target node w € N’

Py =
(edge(a, b) V(a,b) € E
node(a) Vvae N
pebble(i Vi=0,1,...,k

1{onNode(X, N) : pebble(N)}1 <+ node(X)
«— #sum{N, X : onNode(X,N)} # k
1{target(X) : node(X)}1)

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Pebbling Number: The Solution

“There exists a sequence of pebble moves”

P, =
step(f) Vi=0,1,...,k—1
1{endstep(S) : step(S)}1
onNode(X,N,0) <+ onNode(X,N)
1{move(X,Y,S) : edge(X,Y)}1 <« step(S),endstep(T),1<S, S<T
+~ move(X,Y,S), onNode(X,N,S),N < 2
affected(X,S) «+ move(X,Y,S)
affected(Y,S) <+ move(X,Y,S)
onNode(X,N —2,S) <+ onNode(X,N,S— 1), move(X,Y,S)
onNode(Y,M+1,S) <« onNode(Y,M,S— 1), move(X,Y,S)
onNode(X,N,S) <« onNode(X,N,S —1), not affected(X, S)

“Such that some pebble is on w”

C={ « target(W),onNode(W,0, T), endstep(T) }

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Vapnik-Chervonenkis Dimension: The Problem

Definition (VC Dimension)

Let k be an integer, U a finite set, C = {S;,..., Sy} €2V a
collection of subsets of U represented by a program Pe.

Problem: Is there X C U of size at least k, s.t. for each S C X,
thereis S;s.t. S= 5, N X?
(VC dimension of C, VC(C) is the maximum size of such a set X.)

Solution: An ASP(Q) program M = 38tP,vs!P,1381P; : C.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

ASP with Quantifiers

Vapnik-Chervonenkis Dimension: The Solution

“There is X C U of size at least k”

inU(x) VxeU
Pr = { K{inX(X) : inU(X)} }

“Such that for each S C X”
Py = { {inS(X) : inX(X)} }

“There is S;”
Ps = Pc
“Such that S = S;n X”
inintersection(Z) <« true(Z), inX(Z)
C= <« Inintersection(Z), not inS(Z)
< not inintersection(Z), inS(Z)

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

ASP(Q) vs Stable-Unstable

Stable-Unstable Models [BJT16]
@ Extends ASP up to the second level of PH
Based on the concept of parametrized stable model
Combined logic program: N = (Py, Pt)
“A stable unstable model is a parameterized stable model of

Py, say |, s.t. no parameterized stable model of P; exists that
coincides with | in the intersection of the two signatures”

@ Inspired by an internal working principle of ASP solvers

— Py guess candidate, P; performs a co-NP check
@ Generalized to capture PH

— Recursive oracle calls

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

ASP(Q) vs Stable-Unstable: Summary

ASP(Q) vs Stable-Unstable

@ Parameters are implicit in ASP(Q)
@ Stable-unstable coincides with existential ASP(Q)
— Property holding in all models vs existence of counterexample
@ Stable-unstable cannot model N¥
— Unless the PH collapses
@ ASP(Q) modeling often closer to the problem description

— Complex interplay of recursion, negation and recursive oracles

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

Conclusion

Contributions
@ A natural solution for modeling beyond NP with ASP
o ASP(Q) extends ASP via quantifiers over stable models
@ A study of the computational properties of the language
© Examples to show the modeling capabilities
© A comparison with alternative approaches

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

Conclusion

Contributions
@ A natural solution for modeling beyond NP with ASP
o ASP(Q) extends ASP via quantifiers over stable models
@ A study of the computational properties of the language
© Examples to show the modeling capabilities
© A comparison with alternative approaches

“ASP(Q) models problems in the Polynomial Hierarchy in the same
compact and elegant way as ASP models problems in NP”

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

Conclusion

Contributions
@ A natural solution for modeling beyond NP with ASP
o ASP(Q) extends ASP via quantifiers over stable models
@ A study of the computational properties of the language
© Examples to show the modeling capabilities
© A comparison with alternative approaches

“ASP(Q) models problems in the Polynomial Hierarchy in the same
compact and elegant way as ASP models problems in NP”

Future Work
@ Implementation: (i) by rewriting in QBF (ii) dedicated solvers

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

Acknowledgments

Thanks for your attention!

Questions?

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

Bonus slides

Bonus Slides

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: ifying over Answer Sets

Related Work

ASP(Q) vs ASP vs QBF

ASP vs ASP(Q)
@ ASP(Q) is a natural extension of ASP
@ Natural in Zf with disjunctive positive encodings
@ Normal program sufficient to model PH

QBF vs ASP(Q)
@ Both extend base language with some form of quantifier
— variable assignments vs answer sets
@ Same computational properties
@ ASP(Q) supports variables and inductive definitions

@ ASP(Q) inherits aggregates, choice rules, strong negation,
and disjunction

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

ASP(Q) vs Stable-Unstable

Stable-Unstable Models [BJT16]
@ Extends ASP up to the second level of PH
Based on the concept of parametrized stable model
Combined logic program: N = (Py, Pt)
Inspired by an internal working principle of ASP solvers

— Py guess candidate, P; performs a co-NP check

@ “A stable unstable model is a parameterized stable model of
Py, say I, s.t. no parameterized stable model of P; exists that
coincides with | in the intersection of the two signatures”

@ Generalized to capture PH

— Recursive oracle calls

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

ASP(Q) vs Stable-Unstable

Problems in =5
@ Testing in ASP(Q): “for all stable models of some program, a
certain property holds.”
@ Testing in Stable-Unstable: “there is no stable model of some
program s.t. a certain property holds.”
@ Switching between ASP(Q) and Stable-Unstable is trivial
@ Hence, they are on par for modeling problems in 5.
Problems in N5
@ Naturally represented in ASP(Q)
@ Stable-unstable requires

@ An exponential encoding (quantifier expansion in QBF)
e Pushing the computation in the oracle (one more quantifier)

@ Combined programs model complements of n'; problems and
not the problems themselves

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

ASP(Q) vs Stable-Unstable

Modeling problems beyond the second level

@ Combined programs resort to a recursive definition
— Force the programmer to think in terms of nested oracles
— Recursion and negation make it harder to connect between problem
description and oracles

@ The interface between natural language problem description
and ASP(Q) programs is transparent (as for QBF)
— Explicitly supported by the quantifiers

@ The difficulty of modeling problems in N5, noted above,
appears in the general setting of problems in I'I,’f, fork > 2

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

References

[AACT18] Weronika T. Adrian, Mario Alviano, Francesco Calimeri, Bernardo
Cuteri, Carmine Dodaro, Wolfgang Faber, Davide Fusca, Nicola
Leone, Marco Manna, Simona Perri, Francesco Ricca, Pierfrancesco
Veltri, and Jessica Zangari. The ASP system DLV: advancements
and applications. Kl, 32(2-3):177-179, 2018.
[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and
Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. J. ACM, 36(4):929-965, 1989.
[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer
set programming at a glance. Commun. ACM, 54(12):92—-103, 2011.
[BJT16] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi.
Stable-unstable semantics: Beyond NP with normal logic programs.
TPLP, 16(5-6):570-586, 2016.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

References (cont.)

[CDG*95]

[DEGVO1]

[EFLPOO]

[EG95]

[EGL16]

Feng Cao, Ding-Zhu Du, Biao Gao, Peng-Jun Wan, and Panos M.
Pardalos. Minimax Problems in Combinatorial Optimization, pages
269-292. Springer US, Boston, MA, 1995.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM
Comput. Surv., 33(3):374—425, 2001.

Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative problem-solving using the dlv system. In Logic-based
Artificial Intelligence, pages 79—-103. 2000.

Thomas Eiter and Georg Gottlob. On the computational cost of
disjunctive logic programming: Propositional case. Ann. Math. Artif.
Intell., 15(3-4):289-323, 1995.

Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of
answer set programming. Al Magazine, 37(3):53-68, 2016.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

References (cont.)

[EPO6] Thomas Eiter and Axel Polleres. Towards automated integration of
guess and check programs in answer set programming: a
meta-interpreter and applications. TPLP, 6(1-2):23—60, 2006.

[FW11] Wolfgang Faber and Stefan Woltran. Manifold answer-set programs
and their applications. In Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning, volume 6565 of
LNCS, pages 44-63, 2011.

[GKKT16] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Philipp Wanko. Theory solving made
easy with clingo 5. In ICLP (Technical Communications), volume 52
of OASICS, pages 2:1-2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[GKS11] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex
optimization in answer set programming. TPLP, 11(4-5):821-839,
2011.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

References (cont.)

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Compuit.,
9(3/4):365-386, 1991.

[GLM*18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri,
Francesco Ricca, and Torsten Schaub. Evaluation techniques and
systems for answer set programming: a survey. In IJCAI, pages
5450-5456. ijcai.org, 2018.

[Ko95] Chih-Long Ko, Ker-land Lin. On the Complexity of Min-Max
Optimization Problems and their Approximation, pages 219-239.
Springer US, Boston, MA, 1995.

[Lifo2] Vladimir Lifschitz. Answer set programming and plan generation.
Artif. Intell., 138(1-2):39-54, 2002.

[MCO06] Kevin Milans and Bryan Clark. The complexity of graph pebbling.
SIAM J. Discret. Math., 20(3):769-798, March 2006.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

Related Work

References (cont.)

[Red17] Christoph Redl. Explaining inconsistency in answer set programs and
extensions. In LPNMR, volume 10377 of LNCS, pages 176—190.
Springer, 2017.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets

	Introduction
	ASP with Quantifiers
	Related Work

