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Context (1)

Answer Set Programming (ASP) [BET11]

Declarative programming paradigm
Non-monotonic reasoning and logic programming
Roots in Datalog and Nonmonotonic Logic
Stable model semantics [GL91]

Robust and efficient systems [GLM+18]

DLV [AAC+18], Clingo [GKK+16], ...

Effective in practical industrial-grade applications [EGL16]

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Context (2)

Expressive KR Language
Default negation, Disjunction, Aggregates, Constraints ...
Basic ASP models up to ΣP

2 [DEGV01]

→ i.e., problems not (polynomially) translatable to SAT or CSP

Well-known facts about ASP
Uniform and compact encodings
→ Fixed encoding, instances as facts, inductive definitions

Modular solutions
→ Generate-Define-Test/Guess&Check methodology [Lif02, EFLP00]

Compact and elegant modeling of problem in NP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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The usual example

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X ).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y ), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

“NP-complete problem modeled with only two rules!”

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Motivation (1)

What about modeling beyond NP with ASP?

It is possible...

→ Stable model checking in co-NP

Rarely elegant and compact
→ Unless one can find a positive encoding

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Motivation (1)

What about modeling beyond NP with ASP?

It is possible... with unrestricted disjunction [DEGV01]

→ Stable model checking in co-NP

Rarely elegant and compact
→ Unless one can find a positive encoding
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A rare example...

Example (Strategic Companies is ΣP
2 -complete)

Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal sets of
strategic companies, such that all products can still be produced? A company
also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_, _, _) and controlled_by(_, _, _, _)

% Guess strategic companies
strategic(Y ) | strategic(Z ) :-produced_by(X ,Y ,Z ).

% Ensure they are strategic
strategic(W ) :- controlled_by(W ,X ,Y ,Z ),

strategic(X ), strategic(Y ), strategic(Z ).

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Motivation (1)

What about modeling beyond NP with ASP?

It is possible... to some extent

Rarely elegant and compact
→ Unless one can find a positive encoding
→Well-known strategic companies example

Generate-define-test approach is no longer sufficient

Saturation technique [EG95]
Exploits the minimality to check “for all” conditions
Difficult to use, not intuitive
→ Introduces constraints with no direct relation with the problem

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Beyond NP (Saturation)

Example (Quantified Boolean Formulas by [EG95])
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y ), where φ is in 3-DNF form,
determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3 ) and exist(X ), forall(Y )

% Guess assignment for X
asgn(X , true) ∨ asgn(X , false)← exist(X ).

% Guess assignment for Y
asgn(Y , true) ∨ asgn(Y , false)← forall(Y ).

% Saturate Y
asgn(Y , true)← sat , forall(Y ).
asgn(Y , false)← sat , forall(Y ).

% check satisfiability Y
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Motivation and Goals

“Unlike the ease of common ASP modeling, [...]
these techniques are rather involved and hardly

usable by ASP laymen.” [GKS11]

Goals
Address the shortcomings of ASP beyond NP
Make modeling natural as for NP

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Contributions

1 Design ASP(Q): an extension of ASP with quantifiers
→ Inspired from Quantified Boolean formulas (QBFs)

→ Elegant expansion of ASP with a new form of quantifiers

2 Identify computational properties of ASP(Q)

3 Show the modeling capabilities of ASP(Q)

4 Compare ASP(Q) with alternative approaches
→ QBFs, Stable-unstable [BJT16], Meta-programming [Red17, GKS11],

→ Program transformations [EP06, Red17, FW11], etc.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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ASP with Quantifiers: Syntax and Semantics

Definition (ASP with Quantifiers)
An ASP with Quantifiers (ASP(Q)) program Π is of the form:

�1P1 �2P2 · · · �nPn : C, (1)

�i ∈ {∃st ,∀st}; Pi a program; C a stratified normal program.

Intuitive semantics

Program Π = ∃stP1∀stP2 · · · ∃stPn−1∀stPn : C is coherent if:
“There is an answer set M1 of P1 s.t. for each answer set M2 of P2 ∪ fix(M1) there

is an answer set M3 of P3 ∪ fix(M2) such that . . . for each answer set Mn of
Pn ∪ fix(Mn−1) there is an answer set of C ∪ fix(Mn)”

where fixP(I) = {a | a ∈ I} ∪ {← a | a ∈ BP \ I}. M1 quantified answer set of Π

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2)← a(1); b(2)← a(2)}
C = {← b(1), not b(2)}

Π is coherent, and {a(2)} is a quantified answer set of Π

P1 has two answer sets {a(1)} and {a(2)}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Basic Example
Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2)← a(1); b(2)← a(2)}
C = {← b(1), not b(2)}

Π is coherent, and {a(2)} is a quantified answer set of Π

P1 has two answer sets {a(1)} and {a(2)}
P ′2 = {b(1) ∨ b(2)← a(1); b(2)← a(2); a(1);← a(2)}
P ′2 has two answer sets {a(1),b(1)} and {a(1),b(2)}
But C ∪ fixP′2

({a(1),b(1)}) is not coherent!
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Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2)← a(1); b(2)← a(2)}
C = {← b(1), not b(2)}

Π is coherent, and {a(2)} is a quantified answer set of Π

P1 has two answer sets {a(1)} and {a(2)}
P ′2 has one answer set {a(2),b(2)}
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Beyond NP (Saturation vs ASP(Q)) (1)

Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y ), where φ is in 3-DNF form,
determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3 ) and exist(X ), forall(Y )

% Guess assignment for X
asgn(X , true) ∨ asgn(X , false)← exist(X ).

% Guess assignment for Y
asgn(Y , true) ∨ asgn(Y , false)← forall(Y ).

% Saturate Y
asgn(Y , true)← sat , forall(Y ).
asgn(Y , false)← sat , forall(Y ).

% Check satisfiability Y
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Beyond NP (Saturation vs ASP(Q)) (2)

Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y ), where φ is in 3-DNF form,
determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3 ) and exist(X ), forall(Y )

Solution: Π = ∃stP1∀stP2 : C such that:

% Guess assignment for X
P1 = { asgn(X , true) ∨ asgn(X , false)← exist(X ). }

% Guess assignment for Y
P2 = { asgn(Y , true) ∨ asgn(Y , false)← forall(Y ). }

% Check satisfiability Y
C = {
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .
}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Beyond NP (ΠP
2 -complete)

Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Ψ = ∀X∃Yψ(X ,Y ), where ψ is in 3-CNF form,
determine an assignment for X that makes Ψ satisfiable.
Input: disj(X1,SX1 ,X2,SX2 ,X3,SX3 ) and exist(X ), forall(Y )

Solution: Π = ∀stP1∃stP2 : C such that:

% Guess assignment for X
P1 = { asgn(X , true) ∨ asgn(X , false)← forall(X ). }

% Guess assignment for Y
P2 = { asgn(Y , true) ∨ asgn(Y , false)← exist(Y ). }

% Check satisfiability Y
C = {
← disj(X1,S1,X2,S2,X3,S3), iasgn(X1,S1), iasgn(X2,S2), iasgn(X3,S3).
iasgn(X , false) :- asgn(X , true).
iasgn(X , true) :- asgn(X , false).
}

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Theoretical Results

Theorem (ASP(Q) is a straightforward generalization of ASP)

Let P be an ASP program, and Π the ASP(Q) program ∃stP : C. Then,

AS(P) = QAS(Π).

COHERENCE problem: Given Π, decide whether Π is coherent.

Theorem (Complexity)

The COHERENCE problem is

(i) PSPACE-complete, even restricted to normal ASP(Q) programs;

(ii) ΣP
n -complete for n-normal existential ASP(Q) programs;

(iii) ΠP
n -complete for n-normal universal ASP(Q) programs.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Modeling Examples

Min-Max Clique [Ko95]

Example of ΠP
2 -complete problem

Key role in game theory, optimization and complexity [CDG+95]

Approach can be adapted to model other minmax problems

Pebbling Number [MC06]

Mathematical game

Example of ΠP
2 -complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

Relevant problem in machine learning

Measures the capacity of a space of functions that can be learned by a
statistical classification algorithm

Example of ΣP
3 -complete problem
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Minmax Clique: The Problem

Definition (Minmax Clique)

Given a graph G, sets of indices I and J, a partition (Ai,j)i∈I,j∈J , and
an integer k , decide whether

min
f∈J I

max{|Q| : Q is a clique of Gf} ≥ k .

J I is the set of all total functions from I to J, and Gf is the subgraph
of G induced by

⋃
i∈I Ai,f (i).

In simpler words:
“For each total function f ∈ J I , there exists a clique c in Gf , such

that the size of c is larger than k”

Solution: An ASP(Q) program Π = ∀stP1∃stP2 : C.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Minmax Clique: The Solution
“For each total function f ∈ J I”

P1 =



edge(a, b) ∀(a, b) ∈ E
node(a) ∀a ∈ N
v(i, j, a) ∀i ∈ I, j ∈ J, a ∈ Ai,j

setI(X ) ← v(X , _, _)
setJ(X ) ← v(_,X , _)

1{f (X ,Y ) : setJ(Y )}1 ← setI(X )


“There exists a clique c in Gf ”

P2 =



inInduced(Z ) ← v(X ,Y ,Z ), f (X ,Y )
edgeP(X ,Y ) ← edge(X ,Y ), inInduced(X ),

inInduced(Y )
{inClique(X ) : inInduced(X )}

← inClique(X ), inClique(Y ),
not edgeP(X ,Y )


“Such that the size of c is larger than k ”

C =
{
← #count{X : inClique(X )} < k

}
G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets



Introduction
ASP with Quantifiers

Related Work

Pebbling Number: The Problem

Definition (Pebbling Number)
Given a digraph G = 〈N,E〉 with pebbles placed on (some of) its nodes.

A pebbling move along (a, b) removes 2 pebbles from a and adds 1 to b

The Pebbling number π(G) is the smallest number of pebbles s.t. for each
assignment of k pebbles and for each node w (the target), some sequence
of pebbling moves results in a pebble on w

Problem: Is π(G) ≤ k?

In simpler words:
“For each assignment of k pebbles to the nodes of G, and for each

target node t ∈ N, there exists a sequence of pebble moves (at
most k − 1 moves), such that some pebble is on w”

Solution: An ASP(Q) program Π = ∀stP1∃stP2 : C.

G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Pebbling Number: The Solution (1)

“For each assignment of k pebbles to the nodes of G, and for each
target node w ∈ N”

P1 =

edge(a,b) ∀(a,b) ∈ E
node(a) ∀a ∈ N

pebble(i) ∀i = 0,1, . . . , k
1{onNode(X ,N) : pebble(N)}1 ← node(X )

← #sum{N,X : onNode(X ,N)} 6= k
1{target(X ) : node(X )}1



G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Pebbling Number: The Solution (2)
“There exists a sequence of pebble moves”

P2 =

step(i) ∀i = 0, 1, . . . , k − 1
1{endstep(S) : step(S)}1

onNode(X ,N, 0) ← onNode(X ,N)
1{move(X ,Y ,S) : edge(X ,Y )}1 ← step(S), endstep(T ), 1 ≤ S, S ≤ T

← move(X ,Y ,S), onNode(X ,N,S),N < 2
affected(X ,S) ← move(X ,Y ,S)
affected(Y ,S) ← move(X ,Y ,S)

onNode(X ,N − 2,S) ← onNode(X ,N,S − 1),move(X ,Y ,S)
onNode(Y ,M + 1,S) ← onNode(Y ,M,S − 1),move(X ,Y ,S)

onNode(X ,N,S) ← onNode(X ,N,S − 1), not affected(X ,S)


“Such that some pebble is on w”

C =
{
← target(W ), onNode(W , 0,T ), endstep(T )

}
G. Amendola, F. Ricca, M. Truszczynski Beyond NP: Quantifying over Answer Sets
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Vapnik-Chervonenkis Dimension: The Problem

Definition (VC Dimension)

Let k be an integer, U a finite set, C = {S1, . . . ,Sn} ⊆ 2U a
collection of subsets of U represented by a program PC .

Problem: Is there X ⊆ U of size at least k , s.t. for each S ⊆ X ,
there is Si s.t. S = Si ∩ X?
(VC dimension of C, VC(C) is the maximum size of such a set X .)

Solution: An ASP(Q) program Π = ∃stP1∀stP21∃stP3 : C.
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Vapnik-Chervonenkis Dimension: The Solution

“There is X ⊆ U of size at least k ”

P1 =

{
inU(x) ∀x ∈ U

k{inX (X ) : inU(X )}

}
“Such that for each S ⊆ X ”

P2 =
{
{inS(X ) : inX (X )}

}
“There is Si ”

P3 = PC

“Such that S = Si ∩ X ”

C =


inIntersection(Z ) ← true(Z ), inX (Z )

← inIntersection(Z ), not inS(Z )
← not inIntersection(Z ), inS(Z )
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ASP(Q) vs Stable-Unstable (1)

Stable-Unstable Models [BJT16]
Extends ASP up to the second level of PH
Based on the concept of parametrized stable model
Combined logic program: Π = (Pg ,Pt )

“A stable unstable model is a parameterized stable model of
Pg , say I, s.t. no parameterized stable model of Pt exists that
coincides with I in the intersection of the two signatures”
Inspired by an internal working principle of ASP solvers
→ Pg guess candidate, Pt performs a co-NP check

Generalized to capture PH
→ Recursive oracle calls
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ASP(Q) vs Stable-Unstable: Summary

ASP(Q) vs Stable-Unstable

Parameters are implicit in ASP(Q)
Stable-unstable coincides with existential ASP(Q)
→ Property holding in all models vs existence of counterexample

Stable-unstable cannot model ΠP
k

→ Unless the PH collapses

ASP(Q) modeling often closer to the problem description
→ Complex interplay of recursion, negation and recursive oracles
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Conclusion

Contributions

1 A natural solution for modeling beyond NP with ASP
ASP(Q) extends ASP via quantifiers over stable models

2 A study of the computational properties of the language
3 Examples to show the modeling capabilities
4 A comparison with alternative approaches

“ASP(Q) models problems in the Polynomial Hierarchy in the same
compact and elegant way as ASP models problems in NP”

Future Work
Implementation: (i) by rewriting in QBF (ii) dedicated solvers
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ASP(Q) vs ASP vs QBF

ASP vs ASP(Q)
ASP(Q) is a natural extension of ASP
Natural in ΣP

2 with disjunctive positive encodings
Normal program sufficient to model PH

QBF vs ASP(Q)
Both extend base language with some form of quantifier
→ variable assignments vs answer sets

Same computational properties
ASP(Q) supports variables and inductive definitions
ASP(Q) inherits aggregates, choice rules, strong negation,
and disjunction
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ASP(Q) vs Stable-Unstable (1)

Stable-Unstable Models [BJT16]
Extends ASP up to the second level of PH
Based on the concept of parametrized stable model
Combined logic program: Π = (Pg ,Pt )

Inspired by an internal working principle of ASP solvers
→ Pg guess candidate, Pt performs a co-NP check

“A stable unstable model is a parameterized stable model of
Pg , say I, s.t. no parameterized stable model of Pt exists that
coincides with I in the intersection of the two signatures”
Generalized to capture PH
→ Recursive oracle calls
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ASP(Q) vs Stable-Unstable (2)

Problems in ΣP
2

Testing in ASP(Q): “for all stable models of some program, a
certain property holds.”
Testing in Stable-Unstable: “there is no stable model of some
program s.t. a certain property holds.”
Switching between ASP(Q) and Stable-Unstable is trivial
Hence, they are on par for modeling problems in ΣP

2 .
Problems in ΠP

2
Naturally represented in ASP(Q)
Stable-unstable requires

An exponential encoding (quantifier expansion in QBF)
Pushing the computation in the oracle (one more quantifier)

Combined programs model complements of ΠP
2 problems and

not the problems themselves
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ASP(Q) vs Stable-Unstable (3)

Modeling problems beyond the second level

Combined programs resort to a recursive definition
→ Force the programmer to think in terms of nested oracles

→ Recursion and negation make it harder to connect between problem
description and oracles

The interface between natural language problem description
and ASP(Q) programs is transparent (as for QBF)
→ Explicitly supported by the quantifiers

The difficulty of modeling problems in ΠP
2 , noted above,

appears in the general setting of problems in ΠP
k , for k ≥ 2
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