
A generator of hard 2QBF formulas and ASP
programs

Giovanni Amendola and Francesco Ricca
University of Calabria, Italy

Mirek Truszczynski
University of Kentucky, USA

KR 2018 A generator of hard formulas and programs October 30, 2018 1 / 19



Introduction

Models of random instances of search problems

Much attention in AI in the last twenty years
I SAT [Gent and Walsh, 1994; Mitchell et al., 1992;Selman et al., 1996]
I QBF [Gent and Walsh, 1999; Chen, Interian, 2005]
I CP [Mitchell, 2002]
I ASP [Zhao and Lin, 2003; Namasivayam and T, 2009]

Intriguing phase transition phenomenon
I Sharp transition from SAT to UNSAT
I “Easy-hard-easy” pattern [Mitchell et al., 1992]

KR 2018 A generator of hard formulas and programs October 30, 2018 2 / 19



Introduction

Applications of Random Formula/Program Generators

Solvers Performance Assessment
→ Used to improve CDCL implementations [Silva et al., 2009]

→ For testing efficacy of heuristics [Elffers et al.,2016, Järvisalo et al.,2012]

→ In solver competitions

Solver correctness testing [Brummayer et al., 2010]

→ Fuzz testing for solver implementation, and defect testing in design

KR 2018 A generator of hard formulas and programs October 30, 2018 3 / 19



Introduction

Recent models of 2QBFs and ASP programs
Amendola, Ricca, and T, 2017

Multi-component model
Controlled model
Combinations of the two

Features of the models
Non-normal form boolean formulas
Natural representations as disjunctive ASP programs
Phase transition and easy-hard-easy pattern
Instances better solved by “industrial“ SAT solvers

KR 2018 A generator of hard formulas and programs October 30, 2018 4 / 19



Introduction

Contributions:

A generator for the models of random formulas/programs
→ CNF formulas from the well-known fixed-length model [Mitchellet al., 2002]

→ QBFs from the Chen-Interian model [Chen and Interian 2005]

→ Multi-component and Controlled model formulas [Amendola et al., 2017]

→ Supports standard output formats for SAT, QBF and ASP

→ Implemented in Java: portable and easy to extend

A methodology for generating instances
→ Set the desired level of hardness

→ Set the desired level of frequency of satisfiability

KR 2018 A generator of hard formulas and programs October 30, 2018 5 / 19



The fixed-length clause model for SAT

Random k-CNF Model

C(k , n,m): The set of all k -CNF formulas with m clauses over (some fixed) set of
n propositional variables

Select one uniformly at random

Select m k-literal clauses over a set of n variables uniformly, independently and
with replacement

KR 2018 A generator of hard formulas and programs October 30, 2018 6 / 19



The fixed-length clause models for QBF
The Chen-Interian Model

Let X and Y be sets of variables s.t. X ∩ Y = ∅, and A = |X | and E = |Y |
C(a, e;A,E ;m): all (a + e)-CNF formulas with m clauses, each with a literals
over X and e literals over Y

Q(a, e;A,E ;m): all QBFs ∀X∃YF , where F ∈ C(a, e;A,E ;m)

Generate QBFs from Q(a, e;A,E ;m), by generating clauses from
C(a, e;A,E ;m) uniformly, independently and with replacement

The Controlled model
Qctd(k ,A,E)

The matrix consists of pairs of clauses x ∨ C, −x ∨ C

→ One pair for each universal variable x

→ C — a random (k − 1)-clause over existential veriables

Qctd(k ,A,E) ⊆ Q(1, k − 1;A,E ; 2A)

KR 2018 A generator of hard formulas and programs October 30, 2018 7 / 19



The multi-component models: SAT & QBF
Multi-component model of propositional formulas
Let F be a class (or random model) of formulas

t-F : the class of all disjunctions of t formulas from F
t-Q: the class of all QBFs ∀X∃YF , where F ∈ t-F

Example (SAT)
Classical. An instance of C(2, 3, 2) is

(a ∨ b) ∧ (a ∨ −c)

i.e., C(2, 3, 2) is the class of 2-CNFs of 2 clauses with 3 vars!

Multi-component. An instance 3-C(2, 3, 2) is

((a ∨ b) ∧ (a ∨ −c))︸ ︷︷ ︸
2CNF component 1

∨ ((c ∨ a) ∧ (−a ∨ −c))︸ ︷︷ ︸
2CNF component 2

∨ ((−c ∨ −a) ∧ (−b ∨ c))︸ ︷︷ ︸
2CNF component 3

i.e., 3-C(2, 3, 2) is the class of 3-component 2-CNFs of 2 clauses with 3 vars!

KR 2018 A generator of hard formulas and programs October 30, 2018 8 / 19



The multi-component models: SAT & QBF

Phase transition shows up again

With the same values for its low and high boundaries as in the single-component
model

KR 2018 A generator of hard formulas and programs October 30, 2018 9 / 19



The multi-component models: ASP

From formulas to programs

Our results on QBFs naturally imply a model of random disjunctive
logic programs
Adapting the Eiter-Gottlob reduction of disjunctive logic
programming in QBF [Eiter and Gottlob, 1995]

Based on conjunctions of t DNF formulas
→ D(e, a;E ,A;m) that are dual to C(e, a;E ,A;m)

The encoding is natural and simple
→ Much more compact than Tseitin transformation needed for formulas!

KR 2018 A generator of hard formulas and programs October 30, 2018 10 / 19



Command line and example
$ java -jar RandomGenerator.jar -h

SYNOPSIS: MainGenerator [-option]
-generator=[BasicGenerator,CIGenerator,SATGenerator,

ControlledCIGenerator] Select generator type
-out=[PrintProgram,PrintQBF,PrintQCIR,MultiOutput,

PrintSAT] Select output format
-o =<filename> Specify filename, mandatory with

MultiOutput Generator, default STDOUT
-formats=<OutputFormat1, ..., OutputFormatn>

Specify a comma-separated list of output formats for
MultiOutput, e.g., PrintProgram,PrintQBF

-E=<n> Number of existential variables, default 1
-A=<n> Number of universal variables, default 1
-c=<n> Number of clauses/rules,

ignored by ControlledCIGenerator, default 1
-k=<n> Clause/rule size, only for BasicGenerator, default 1
-e=<n> Number of existentials in each clause/rule

only for CI, default 1
-a=<n> Number of universals in each clause/rule

only for CI, default 1
-w=<n> Number of components, default 1

KR 2018 A generator of hard formulas and programs October 30, 2018 11 / 19



Command line and example

$ java -jar RandomGenerator.jar -generator=CIGenerator
-out=PrintQBF -o=10-CI-2-3-20-40-80 -w=10 -a=2 -e=3
-A=20 -E=40 -c=80

$ java -jar RandomGenerator.jar
-generator=ControlledCIGenerator
-out=MultiOutputGenerator
-format=PrintProgram,PrintQBF,PrintQCIR
-o=4-Qctd-4-20-10 -w=10 -a=1 -e=3 -A=20 -E=10

KR 2018 A generator of hard formulas and programs October 30, 2018 12 / 19



Generating formulas

Observation
Different goals → different parameters
Not an obvious choice

Key underlying property
The location of the phase transition
→ To select instances of the desired "satisfiability"

Solver-independent

KR 2018 A generator of hard formulas and programs October 30, 2018 13 / 19



Phase transition and hardness

KR 2018 A generator of hard formulas and programs October 30, 2018 14 / 19



Phase transition and hardness

KR 2018 A generator of hard formulas and programs October 30, 2018 14 / 19



Guidelines

Multi-component Chen-Interian

Fix a and e to define the structure of a clause
Run the tool for each pair of values of A and E with different
numbers m of clauses/rules
Identify phase transition
Select the value of m that yields the desired difficulty
Eventually increase t to get super-hard instances

...and similarly for the other models

KR 2018 A generator of hard formulas and programs October 30, 2018 15 / 19



Guidelines

KR 2018 A generator of hard formulas and programs October 30, 2018 16 / 19



Usecases

ASP Competition 2017
The smallest in size but among the hardest to solve
No solver could solve all these instances (of <100 vars!)

KR 2018 A generator of hard formulas and programs October 30, 2018 17 / 19



Usecases

ASP Competition 2017
The smallest in size but among the hardest to solve
No solver could solve all these instances (of <100 vars!)

QBF EVal 2016-2017-2018
Among the hardest instances of 2QBF
→ less than 100 vars, max 9 components, >76% tagged as hard!!

Used in the Hard Instances Track in 2018
Helped identify buggy participants

KR 2018 A generator of hard formulas and programs October 30, 2018 17 / 19



Conclusion

A new generator for hard 2QBF and ASP programs

Based on Multi-component and Controlled models [Amendola, Ricca
and T, 2017]

→ The first models for disjunctive ASP programs

Useful for development and testing of practical solvers
→ Supports standard formats (ASPCore 2, QCIR, (Q)DIMACS)

→ Used in ASP and QBF competitions

Implemented in Java and available on the Web:

www.mat.unical.it/ricca/RandomLogicProgramGenerator

KR 2018 A generator of hard formulas and programs October 30, 2018 18 / 19

www.mat. unical.it/ricca/RandomLogicProgramGenerator


Thanks for your attention!

KR 2018 A generator of hard formulas and programs October 30, 2018 19 / 19


