Answer-set programming: themes and challenges

Mirosław Truszczyński

University of Kentucky

NMR-04

Whistler, Canada, June 6, 2004

Answer-set programming: themes and challenges – p.1/35

ASP phenomenon

- ASP emerged around 1999 and quickly became a thriving research area
 - resuscitated logic-based NMR
 - ^o new results, many papers, new people, growing recognition
- What is it exactly and what happened?

ASP paradigm

- ASP a declarative computational approach to knowledge representation
- More broadly declarative programming approach for solving search problems
- Defining features:
 - high-level modeling language
 - distinct interpretation: theories encode search problems so that models represent solutions
 - uniform control: computing models

1970	1980	1990	2000
	L		

ASP —five years later

- Exciting theoretical results
- New algorithms
- Aggregates
- New formalisms beyond logic programming
- Emerging connections to SAT and CSP
- Successful applications

Program equivalence

- How to rewrite programs?
- How to optimize programs?
- Towards programming methodology
- Program equivalence, strong equivalence, uniform equivalence (Lifschitz, Pearce, Valverde; Lin; Turner; Osorio, Navarro, Arrazola; Eiter, Fink, Tompits, Woltran)

Program equivalence

- Disjunctive programs *P* and *Q* are *equivalent* if *P* and *Q* have the same answer sets
- Fundamental question: how to simplify (rewrite) logic programs preserving equivalence
- Programs *P* and *Q* are *strongly equivalent* if for every program *R*, answer sets of $P \cup R$ coincide with answer sets of $Q \cup R$
 - Replacing a subprogram with a strongly equivalent one preserves equivalence
- Disjunctive programs P and Q are *uniformly equivalent* if for every set of atoms X, answer sets of $P \cup X$ coincide with answer sets of $Q \cup X$
 - Replacing the set of rules of the program (intentional part) with a uniformly equivalent one preserves equivalence

Strong equivalence

- A pair of sets of atoms (X, Y) is an *SE-model* of a DLP *P* if
 - $\ \ \, \stackrel{\circ}{} X \subseteq Y \\ \ \, \stackrel{\circ}{} Y \models P$
 - $\circ X \models P^Y$
- Two DLPs P and Q are strongly equivalent if and only if SE(P) = SE(Q)
- Connections to the logic "here-and-there" and to the logic S4F

Uniform equivalence

- An SE-model (X, Y) of a DLP P is a *UE-model* of P if for every $(X', Y) \in SE(P)$, where $X \subseteq X' \subseteq Y$, X' = X or X' = Y
- Two *finite* DLPs *P* and *Q* are uniformly equivalent if and only if they have the same UE models
- The general case is also resolved

Additional comments

- Most of program transformations preserve strong and uniform equivalence (TAUT, RED⁻, NONMIN, CONTRA, WGPPE); some do not (RED⁺, GPPE)
 Osorio, Navarro, Arrazola; Eiter, Fink, Tompits, Woltran)
- Further generalizations possible (Turner Iparse programs)
- Complexity is well understood (Turner; Lin; Eiter, Fink)
 - given two NLPs, deciding whether they are strongly equivalent is coNP-complete (holds, in fact, for DLPs)
 - ° given two DLPs, deciding whether they are uniformly equivalent is Π_2^P -complete
 - given two DLPs that are head-cycle free, deciding whether they are uniformly equivalent is coNP-complete
- ASP can be used to test equivalence! (Janhunen, Oikarinen)

SLP and propositional logic

• Let Π_n consist of:

 $p_{ijk} \leftarrow \mathbf{not}(q_{ijk})$ $q_{ijk} \leftarrow \mathbf{not}(p_{ijk})$ r_1 $r_k \leftarrow r_i, r_j, p_{ijk}$

- If $P \not\subseteq NC^1/poly$ (that is, not all languages in P can be recognized by polynomial size propositional formulas)
- Then it is impossible to find a sequence of propositional formulas F_1, F_2, \ldots such that
 - $^{\circ}~$ for every n, the satisfying assignments for F_n are identical to the answer sets for Π_n
 - $^{\circ}$ the sizes of the formulas F_n are bounded by a polynomial in n (Lifschitz and Razborov)
- Related to earlier work on compilability and succinctness

Semantic foundations

- Universal algebra of lattices, operators, approximation operators and fixpoints (Denecker, Marek, MT; influenced by Fitting's work on LP)
- Uniform abstract approach to nonmonotonic reasoning systems
- Full understanding of the relationship between DL and AEL

$$\frac{\alpha:\beta}{\gamma} \Rightarrow K\alpha \land \neg K \neg \beta \supset \gamma$$

- Ultimate well-founded semantics and ultimate stable-model semantics
- Generalizations to handle programs with constraints?
- Formalization of the notion of non-monotone induction (Denecker)

Computing

- Native solvers
 - smodels (Niemelä, Simons, Syrjänen, Soininen)
 - *dlv* (Eiter, Leone, Mateis, Pfeifer, Scarcello, Faber, Dell'Armi, Ielpa)
 - NoMoRe (Linke, Schaub, Anger, Konczak, Bösel)
 - adapting advances in SAT learning (Schlipf, Ward)
- Direct use of SAT solvers
 - compiling LPs into SAT (Ben-Eliyahu; Janhunen)
 - bringing together program completion, Fages Lemma, loop formulas and SAT (Lifschitz, McCain, Turner, Erdem, Lierler, Lee; Lin, Zhao; Lierler, Maratea, Giunchiglia)

SAT —take one

- Exploit concepts of program completion and tightness
- For tight logic programs supported and stable models coincide (Fages)
- Supported models of a logic program are models of this program completion
- Thus, computing stable models of a tight logic program can be accomplished by computing models of the completion
 - cmodels (earlier used in ccalc)
 - Some additional propositional variables may be necessary when converting the completion formula into a CNF (typically, not a big problem)
 - May fail for non-tight programs (a slightly more general version of the approach possible but it still does not cover all cases)

SAT —take two: loop formulas

- Dependency graph for a program P G(P)
 - atoms are vertices
 - $^{\circ}$ arc from p to q if there is a rule with the head p and with q in the positive body
- Loop any strongly connected subgraph of G(P)
- Loop formula for a loop L
 - $\circ R^{-}(L)$ all rules about atoms in L whose edges point outside L
 - $\circ B_p$ disjunction of bodies of all rules in $R^-(L)$ that define p
 - $\circ \ \Phi_L = \bigvee_{p \in L} p \supset \bigvee_p B_p$
 - ^o Informally, if at least one atom *L* is in a stable model, there must be an atom *p* in *L* such that at least one rule defining *p* must have all atoms of its positive body outside of *L* (is in $R^{-}(L)$)
- Loop theorem: *M* is a stable model of *P* if and only if it is a model of $Comp(P) \cup \{\Phi_L : L \in L(P)\}$

How to implement it?

- There may be exponentially many loops
- But one can proceed incrementally!
 - 1. T := comp(P)
 - 2. Find model M of T; terminate with failure, otherwise
 - 3. If M is an answer set, output M; terminate
 - 4. Otherwise, compute a loop L such that $M \not\models \Phi_L$
 - 5. $T := T \cup \{\Phi_L\}$; go back to step 2.
- Loops needed in (4) can be computed quickly
- In the worst case, exponentially many steps needed
- Typically, if stable models exist much better performance
- If not a potential problem

A way around the problem

- Do not use loop formulas at all
 - $^{\circ}$ Apply a DPLL procedure for comp(P)
 - $^{\circ}$ Test each computed model *M* for stability
 - Continue accordingly (continue search or output the model and stop)
- Can be improved if DPLL with learning is used
 - $^{\circ}$ each time *M* is not a stable model, learn a conflict clause
 - a conflict clause can be computed with the help of loop formulas
 - implement a scheme to forget (delete) some conflict clauses as the search goes on

The idea extends!!

- Disjunctive logic programming
 - $^{\circ}$ completion
 - ° dependency graph, loop
 - loop formula
- Circumscription

What's behind the success of *smodels*?

- Performance of *smodels* (including *lparse*)
- Modeling capabilities
- Both aspects strongly depend on the use of cardinality and weight constraints
- Which brings us to the next theme ... aggregates (Niemelä, Soininen, Simons; Pelov, Denecker, Bruynooghe; Dell'Armi, Faber, Ielpa, Leone, Pfeifer)

Abstract constraints

- At a fixed set of propositional atoms
- Abstract constraint a collection of subsets of At

 $\circ even = \{ X \subseteq At \colon |X| \text{ is even} \}$

- ° "At least *k*" constraint: {*X* : *X* ⊆ *At*; *k* ≤ |*X*|}
- An abstract constraint atom an expression C(X), where
 - $^{\circ}$ C is an abstract constraint
 - $^{\circ}$ X is a finite subset of At the scope of C(X)
- A rule with abstract constraint atoms:

$$H \leftarrow A_1, \ldots, A_m, \mathbf{not}(B_1), \ldots, \mathbf{not}(B_n)$$

When it makes sense and what we get

- Under restriction to monotone and consistent atoms
 C(X) is monotone if C is closed under superset
 C(X) is consistent if for some Y ⊆ X, Y ∈ C
 we get direct generalization of normal logic programs (uniform with
 respect to models, supported models and stable models)
- Under simple transformations generalization of logic programs with weight constraints
 - basis for the theory of such programs
- The theory is developed in terms of *non-deterministic* operators on the lattice of interpretations
- Can be further generalized to the language of nondeterministic operators on complete lattices and their fixpoints
- Does the approximation theory generalize?

Languages for ASP —beyond logic programming

- Predicate logic extended with (limited) CWA aspps (East, MT)
- Logic ESO existential fragment of second order logic (Cadoli, Mancini, Schaerf)

aspps system

Program

 $\begin{array}{l} pred \ invc(vtx).\\ var \ X. \end{array}$

 $\{ invc(X)[X] \colon vtx(X) \} k. \\ edge(X,Y) \to invc(X) \lor invc(Y).$

- Grounding psgrnd
- Solving aspps
- Easy to use off-the-shelf SAT and PB-SAT solvers
- Effective local-search methods wsat(cc)
- The same expressive power as that of SLP (class NPMV)
- But, can predicate logic approaches be competitive on KR applications?
 - o negation-as-failure?
 - transitive closure

Applications

- Knowledge representation
 - reasoning about action, planning and diagnosis ASP particularly appropriate (Giunchiglia, Lee, Lifschitz, McCain, Turner; Baral; Gelfond; Faber, Leone, Pfeifer, Polleres)
 - qualitative decision theory elicitation of and reasoning about preferences (Brewka; Eiter, Brewka; Delgrande, Schaub, Tompits; Gelfond, Son; Inoue, Sakama; Brewka, Niemelä, MT)
 - representing preferences, specifying orders on answer sets
 - ASP as a uniform computational tool
 - relation to CP-network approach
- Product configuration (Soininen, Sulonen, Tiihonen, Niemelä)
 - smodels as a computational engine
 - Variantum a recent spin-off

Applications

- Bounded model checking
 - linear-time logic compiled into a linear-size logic program Heljanko, Niemelä
 - built-in transitive closure is crucial!
- Combinatorics computing van der Waerden numbers (Dransfield, Marek, Liu, MT)
 - $^{\circ} W(2,6) \ge 342$

Challenges

Random logic programs

- Propose models of random logic programs with constraints
 - must lead to a "hard" region
- Possibly already solved in the case of normal logic programs (Lin and Zhao)
 - \circ k-LP(n,m) rules of length k, n atoms, m rules
 - $^{\circ}$ randomly select an atom for the head
 - $^{\circ}$ randomly select k-1 different atoms for the body
 - negate each with probability 0.5
 - $^{\circ}$ if the rule is new include it
 - $^{\circ}$ repeat to get m rules
- Establish bounds on the location of the hard region

Program-rewriting techniques

- Develop principles under which replacing programs with strongly (uniformly) equivalent ones leads to programs with better computational properties
- Develop program-rewriting techniques at the predicate level

Non-deterministic operators on lattices

 Establish a formal theory of non-deterministic operators on lattices; generalize approximation theory to that setting (towards an abstract treatment of programs with aggregates)

Importance of transitive closure

- What is really behind the effectiveness of LP-based ASP?
- Is it default negation or transitive closure? Or both?
- My guess: it is transitive closure!

Algorithms

- Design native local-search methods to compute stable models (seems difficult; work by Dimopoulos and Sideris not conclusive)
- Develop new generation of complete algorithms for computing stable models with aggregates
 - better implementation of unit propagation (wfs in liear time?)
 - stronger propagation methods (ultimate wfs?)
 - dynamic backtracking, backjumping
 - branching heuristics (which heuristics, when they work and why)
 - conflict-clause learning
- Exploit program structure to enhance processing
 - one of features of ASP that SAT does not have

Computational benchmarks

- S(5) and W(5,3)
 - ° $S(5) \ge 160; W(5,3) \ge 125$
 - are they equalities?
- Wire-routing on 50×50 grids with obstacles and with 30 terminal pairs
- 15-puzzle problem with plans of length 40 and more
- Random logic programs with 500 atoms selected from the hard region
- All SAT benchmarks

Programming support

- Build programming interfaces
 - support for modeling, debugging and optimizing programs
 - integration with other programming environments

Community

- Bringing togather SAT and ASP
 - ° SAT
 - fine-tuned data structures (watched literals)
 - learning
 - Iocal-search methods, ...
 - ° ASP
 - modeling languages
 - default negation, transitive closure
 - stronger propagation techniques
 - More cross-fertilization needed
- ASPARAGUS towards objective experimentation and benchmarking

Thank you!