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Modeling and search — two sides of the same coin

McCarthy and Hayes on AI, 1969

◮ [...] intelligence has two parts, which we shall call the
epistemological and the heuristic.
The epistemological part is the representation of the world in such
a form that the solution of problems follows from the facts
expressed in the representation.
The heuristic part is the mechanism that on the basis of the
information solves the problem and decides what to do.

◮ Epistemological part −→ modeling (knowledge representation)
◮ Heuristic −→ search
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More examples ...

Declarative programming

◮ Problem specification language −→ modeling
◮ Automated reasoning −→ search (for proofs)

Databases

◮ Query specification language −→ modeling
◮ Query execution −→ search (for records/answers)
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Point missed by SAT (in my view)

SAT focused on search

◮ Many hard problems reduce to finding models of CNF theories
◮ Can be solved by SAT solvers — programs that search for models

of CNF theories
◮ Search for models — the main focus SAT solver developers
◮ But how to build reductions? How to generate inputs to SAT

solvers?
◮ It is fundamental to provide support for these tasks
◮ KR can help

LaSH 2006 (University of Kentucky)KR — an interface to SAT September 6, 2006 4 / 42



KR

The goal

◮ To design and study languages to capture knowledge about
environments, their entities and their behaviors

Early proposal (McCarthy)

◮ Use classical logic — it is “descriptively universal”
◮ Challenges

◮ Qualification problem
◮ Frame problem
◮ Defaults, rules with exceptions, normative statements, conditionals
◮ Definitions and, especially, inductive definitions
◮ Negative information
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Non-monotonic logics

Proposed in response to challenges of KR

◮ Language of logic with non-classical semantics
◮ Model preference

◮ circumscription
McCarthy 1977

◮ Fixpoint conditions defining belief sets
◮ default logic

Reiter 1980
◮ autoepistemic logic

Moore 1984
◮ logic programming with stable-model semantics (more managabe

fragment of default logic)
Gelfond-Lifschitz, 1988

◮ ID-logic
Denecker 1998, 2000; Denecker-Ternovska 2004
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Logic programming with stable-model semantics

Syntax — that of standard logic programming

◮ Programs — collections of clauses (in full language of logic)
◮ A← B1, . . . , Bk , not(C1), . . . , not(Cm)

◮ “if all Ai are computed and none of Bi can be computed, then
compute A”

Semantics — stable models

◮ Certain Herbrand models of a program P
◮ Alternatively — certain models of ground(P)

◮ A program is viewed as a definition of the collection of its stable
models

◮ departure from traditional logic-programming perspective
◮ Answer-set programming (ASP)
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Graph-coloring example

Description of input: vertices, edges, colors

vtx(1). vtx(2). . . .
edge(1, 4). edge(3, 2). . . .
color(r). color(g). color(b). . . .

Problem specification: assignment of colors

clrd(X , C)← vtx(X), color(C), not(othercolor(X , C)).

othercolor(X , C)← clrd(X , D), D 6= C.

Problem specification: imposing colorabilty condition

← edge(X , Y ), color(C), clrd(X , C), clrd(Y , C).
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Graph-coloring example

Correctness

◮ A set M of ground atoms is a stable model of the 3-coloring
program iff

◮ M contains all facts of the program
◮ for every vertex v , there is exactly one color c such that

clrd(v , c) is in M, and
for every d 6= c, othercolor(v , c) ∈ M

◮ for every edge (u, v), if clrd(u, c) ∈ M, then clrd(v , c) /∈ M

◮ 1-to-1 correspondence with proper 3-colorings of G
◮ Given a stable model, the corresponding coloring can be

reconstructed easily and quickly
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Generalizing ...

Answer-Set Programming (ASP)

◮ Code computational problems as logic programs so that stable
models correspond to solutions

◮ disallowing function symbols in the language guarantees finiteness
of ground programs and their stable models

◮ Ground the program — bridge from modeling to search
◮ Search — find stable models of the ground program

◮ search problem similar to SAT and with the same complexity
◮ place for SAT solvers and SAT techniques

◮ Output — recover solutions from stable models
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Expressive power of ASP

Uniform encoding of a search problem Π

◮ Problem specification
clrd(X , C)← vtx(X ), color(C), not(othercolor(X ,C)).
othercolor(X ,C)← clrd(X , D), D 6= C.

← edge(X ,Y ), color(C), clrd(X , C), clrd(Y , C).

◮ Description of input
vtx(1). vtx(2). . . .

edge(1,4). edge(3,2). . . .

color(r). color(g). color(b). . . .

Expressive power

◮ the class of problems that can be represented in this way by finite
programs
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Expressive power of ASP

Finite programs w/out function symbols capture precisely the
class NPMV

◮ NPMV — the class of all search problems computed by
polynomial-time non-deterministic transducers

transducers: non-deterministic Turing Machine-like devices that compute
partial multivalued functions from strings to strings, that is, search problems
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Great approach ...

Advatages

◮ Stable-model semantics addresses several of KR challenges
◮ Gives rise to an effective KR system

reasoning about action, planning, ... ; Gelfond-Leone 2001, Baral 2002

◮ Comes with modeling language
◮ Comes with computational support

lparse/smodels; Niemelä-Simons-Syrjänen

dlv; Leone-Eiter-Faber-Pfeifer, ...

◮ Can it be used as an interface to SAT solvers?
not directly but essentially yes; more on this later ...
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But ...

Stable-model semantics also a problem

◮ Coding — stable models not a household name
◮ Computing — methods to compute stable models recieved

relatively little attention

Alternatives?

◮ Stay closer to classical logic
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Logic of propositional schemata, PS; East-MT, 2000

Language of predicate logic, essentially

◮ Sets of constant, variable and predicate symbols (no function
symbols)

◮ Equality symbol “=”
◮ Boolean connectives:

◮ ∧ we will write: ,
◮ ∨ we will write: |
◮ →

◮ square brackets “[” and “]” for existential quantification
◮ Terms: constant and variable symbols
◮ Atoms and ground atoms
◮ Eq-atom: p(t)[X , Y , . . .] (stands for: ∃X∃Y . . . p(t))
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Logic PS

Formulas and theories

◮ PS-clauses
◮ A1, . . . , Am → B1 | . . . | Bn.
◮ Ai — atoms
◮ Bi — atoms or eq-atoms
◮ implicitly universally quantified
◮ implication notation better aligned with typical natural language

specs of constraints
◮ PS-theories

◮ finite sets of PS-clauses with at least one constant
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Example — graph-coloring problem

Every vertex gets at least one color

◮ vtx(X )→ clrd(X , C)[C].

For every edge, its vertices are colored differently

◮ edge(X , Y ), clrd(X , C), clrd(Y , C)→ .
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Logic PS — semantics

Models of a PS-theory T

◮ Herbrand models with HU(T ) as the domain
◮ Equivalently, subsets of HB(T )

◮ Or, truth assignments to atoms from HB(T )
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Logic PS — semantics

ground(T )

◮ a, b, . . . — all constants in a PS-theory T
◮ R — a PS-clause in T
◮ ground(R) — set of propositional clauses obtained by:

◮ replacing R by all its ground instances (substitute free variables
with constants)

◮ eliminating existential quantification — replacing eq-atoms with
disjunctions
p(t)[X ] −→ p(tX/a) | p(tX/b) | . . .

◮ ground(T ) = {ground(R) : R ∈ T}
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Example

vtx(X )→ clrd(X , C)[C].

◮ Assume: vertices 1, 2, 3; colors a, b
◮ Step 1:

vtx(2)→ clrd(2, C)[C] (one of the instantiations)
◮ Step 2:

vtx(2)→ clrd(2, a) | clrd(2, b) | clrd(2, 1) | clrd(2, 2) | clrd(2, 3)
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Logic PS — semantics

Propositional characterization of models of PS-theories

◮ Models of ground(T ) = models of T
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Logic PS in specyfing problems and their instances

Program-data pairs

◮ Problem specifications should be independent of instances
◮ Program-data pair: (P, D)

◮ P — program: PS-theory to specify a problem
◮ D — data: set of ground atoms to describe a problem instance

◮ Data predicates — those that appear in D
◮ Program predicates — all other predicates in P
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Graph-coloring problem

Program P

◮ vtx(X )→ clrd(X , C)[C].

◮ clrd(X , C), clrd(X , D)→ C = D.

◮ edge(X , Y ), clrd(X , C), clrd(Y , C)→ .

◮ clrd(X , C)→ vtx(X ). (typing)
◮ clrd(X , C)→ color(C). (typing)

Data (instance) D

◮ vtx(1), vtx(2), vtx(3), vtx(4).
◮ edge(1, 2), edge(1, 3), edge(2, 4), edge(4, 3).
◮ color(r), color(b), color(g)
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Semantics of program-data pairs

CWA(D)

◮ Intended meaning of D — a complete specification of a data
instance

◮ For every data-predicate ground atom not listed explicitly in D,
assume its negation

◮ no vtx(b) in D
◮ b is not a vertex
◮ ¬vtx(b) holds

◮ CWA(D) = D ∪ {¬p(t) : p – data predicate, t – ground, p(t) /∈ D}
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Semantics of program-data pairs

Models of (P, D)

◮ Meaning of a program-data pair (P, D) — PS-theory P ∪ CWA(D)

◮ Models of a program-data pair (P, D) — models of P ∪ CWA(D)
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Graph-coloring example

Correctness of the encoding

◮ G — a graph
◮ P — coloring program as described above (with typing)
◮ D — a set of ground atoms specifying G and the colors
◮ Colorings of G are in one-to-one correspondence to models of

(P, D)
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Expressive power of logic PS

Uniform encodings

◮ Program-data pairs — separation of problem specification from
instance description

◮ Problem specification — a finite PS program
◮ Expressive power — the class of problems that can be

represented by finite PS programs

◮ Finite PS programs capture precisely the class NPMV
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Computing with logic PS

Coding a search problem

◮ Select the language:
◮ a schema to represent problem instances
◮ appropriate program predicates

◮ Specify the problem as a PS-theory (program) P

Solving for an instance D

◮ Compute models of (P, D), that is, models of CWA(D) ∪ P
◮ Ground CWA(D) ∪ P
◮ Simplify: use CWA(D) and typing
◮ Search for a model
◮ Can use SAT solvers directly!
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Computing with logic PS

Tools

◮ Grounder psgrnd — outputs CNF theories (DIMACS)
◮ Your favorite SAT solver — computes solutions
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A more general view, Mitchell-Ternovska, 2005

Model-extension problem

◮ Given a FO formula ϕ and a finite structure AI for vocabulary
σ ⊆ vocab(ϕ)

◮ Is there a structure A — an extension of AI to vocab(ϕ) — such
that A |= ϕ?

◮ NEXPTIME-complete

Model-extension problem parametrized

◮ Fix ϕ and σ

◮ Input: finite structure AI for the vocabulary σ

◮ More general version of logic PS (no restriction to conjunctions of
clauses)

◮ Captures class NPMV
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What’s missing from logic PS?

Inductive definitions

◮ Expressing some concepts neither straightforward nor concise
◮ Case in point: inductive definitions (IDs)

for instance, transitive closure of a graph
◮ ID-logic addresses the problem!

LaSH 2006 (University of Kentucky)KR — an interface to SAT September 6, 2006 31 / 42



ID-Logic, Denecker 1998

Integrates inductive definitions with FOL

◮ Inductive definitions
◮ logic programs with the well-founded semantics

◮ Intuitive semantics
◮ Semantics grounded in algebra of operators on lattices and their

fixpoints
◮ Directly extends logic PS
◮ Simple and concise encoding of logic programs with stable model

semantics
◮ Addresses major KR problems

Denecker-Ternovska on ID-logic and situation calculus, 2004

◮ Computational support — in progress
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Looking back

A common pattern

◮ Coding (modeling) — place for KR
◮ Grounding — bridge
◮ Search (model finding) — place for SAT
◮ Output (recovering solutions from models)
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Coding

Languages

◮ Logic programming with stable model semantics (roots in KR)
◮ Logic PS (close to classical logic)
◮ ID-logic (a common extension)

work on specific modeling syntax in progress
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Language extensions

Support for “high-level” constraints

◮ Substantial theoretical work — emerging consensus on the
semantics
Denecker-Bruynooghe-Pelov 2005; Pontelli-Son 2003-05; Faber-Leone-Pfeifer
2004; Marek-Niemelä-MT 2004; Liu-MT 2005

◮ Currently mostly pseudo-boolean (weight) constraints
For every vertex y the sum of weights of vertices in U reachable from y is at
least k
k{selected_to_U(X) = w(X)[X ] : edge(Y , X)}
L{p(t) = w(t)[X ] : cond(s)}U

◮ Need for standardized high-level syntax
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Program development

Modeling methodology

◮ KR focused on representing knowledge needed to create
intelligent reasoning agents
Modeling search problems poses different challenges

◮ When to use LP, PS or ID logic?
Does it make a difference as they have the same expressive
power (assuming no function symbols)?

Program optimization

◮ Program equivalence
◮ Optimization by replacing parts of programs with other equivalent

ones

Much theoretical work: Lifschitz-Pearce-Valverde 2001; Turner 2003; Lin 2002;
Eiter-Fink-Woltran 2003-05; MT 2006
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Program development

Debugging support

◮ Detecting syntactic errors easy — still needs to be done
◮ Support for verifying semantic correctness — a major problem

mostly untouched
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Grounding

A bridge to search

◮ Logic programming (with extensions): lparse, dlv
◮ Logic PS with pseudo-boolean atoms and monotone IDs: psgrnd
◮ Logic ID — grounders under development
◮ For many problems grounding is a bottleneck

◮ astronomical sizes of ground theories
◮ time needed to produce them
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Long-term opportunities for enhancing search

Interleave grounding and search — tighter integration

◮ Non-ground program (theory) as data structure for the ground
counterpart

◮ Search w/out grounding
proposed by Ginsberg and Parkes, 2002

◮ Search with partial grounding only
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Search (model finding) — a place for SAT

Native solvers

◮ smodels and dlv for logic programming
◮ aspps and wsat(plpb) for logic PS (with extensions)
◮ SAT and PB(SAT) can provide ideas and techniques

◮ clause learning, restarts, data structures

◮ Not much of it incorporated so far

Direct use of SAT and PB(SAT)

◮ Translations of grounder output to DIMACS and OPT
◮ Straightforward for logic PS (and implemented)
◮ Less straightforward for logic programming and ID-logic

program completion and loop formulas; Lin-Zhao 2002,
Giunchiglia-Lierler-Maratea 2004
Denecker; Mitchell-Ternovska in progress
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Closing words

Main points

◮ Knowledge representation languages (LP with stable-model
semantics, logic PS, logic ID) offer an interface to satisfiability

◮ KR and SAT together open a way to general-purpose, flexible and
fast programming environments for solving search problems

◮ However, major research challenges still unresolved and must be
tackled for this method of solving search problems to gain broader
acceptance
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Links and References

Links to software

◮ psgrnd/aspps — www.cs.uky.edu/ai/

◮ lparse/smodels — www.tcs.hut.fi/Software/smodels/

◮ dlv — www.tuwien.ac.at/proj/dlv/
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