
Logic Programming for Knowledge
Representation

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

September 10, 2007

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 1 / 55

McCarthy and Hayes on AI, 1969

◮ [...] intelligence has two parts, which we shall call the
epistemological and the heuristic.
The epistemological part is the representation of the world in such
a form that the solution of problems follows from the facts
expressed in the representation. The heuristic part is the
mechanism that on the basis of the information solves the problem
and decides what to do.

◮ Epistemological part −→ modeling – knowledge representation
◮ Heuristic part −→ automated reasoning – search for models or

proofs
◮ There may be more to AI now – but KRR remains its core
◮ How to approach it? Use classical logic — it is “descriptively

universal” and reasoning can be automated
Early proposal of McCarthy

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 2 / 55

McCarthy and Hayes on AI, 1969

◮ [...] intelligence has two parts, which we shall call the
epistemological and the heuristic.
The epistemological part is the representation of the world in such
a form that the solution of problems follows from the facts
expressed in the representation. The heuristic part is the
mechanism that on the basis of the information solves the problem
and decides what to do.

◮ Epistemological part −→ modeling – knowledge representation
◮ Heuristic part −→ automated reasoning – search for models or

proofs
◮ There may be more to AI now – but KRR remains its core
◮ How to approach it? Use classical logic — it is “descriptively

universal” and reasoning can be automated
Early proposal of McCarthy

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 2 / 55

Challenges

With FOL – things are not so easy
◮ Incomplete information

(new information may invalidate earlier inferences – defeasible
reasoning)

◮ Qualification problem
(we do not check for potato in tailpipe before starting the engine)

◮ Frame problem
(moving an object does not change its color)

◮ Rules with exceptions (defaults)
◮ Definitions – most notably inductive definitions

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 3 / 55

Non-monotonic logics

Proposed in response to challenges of KRR
◮ Language of logic with non-classical semantics
◮ Model preference

- circumscription (McCarthy 1977)

◮ Fixpoint conditions defining belief sets
- default logic (Reiter 1980)
- autoepistemic logic (Moore 1984)
- logic programming with stable-model semantics (more managable

fragment of default logic) (Gelfond-Lifschitz, 1988)
- ID-logic (Denecker 1998, 2000; Denecker-Ternovska 2004)

◮ The last two stem directly from LP research
◮ Emphasize both modeling and reasoning
◮ Main focus of this tutorial

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 4 / 55

About the tutorial

Prerequisites (will not spend much time on them)
◮ Answer-set semantics (Gelfond-Lifschitz, 1988)

◮ Well-founded semantics (Van Gelder-Ross-Schlipf, 1989)

◮ Answer-set programming (ASP) – logic programs encode
problems so that answer sets encode solutions
(Niemelä, 1999; Marek, T_ 1999)

Objectives
◮ Discuss some recent advances in ASP motivated by KRR needs

- constraints
- modularity
- tools

◮ Present ID-logic as an alternative approach to KRR based in logic
programming

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 5 / 55

About the tutorial

Prerequisites (will not spend much time on them)
◮ Answer-set semantics (Gelfond-Lifschitz, 1988)

◮ Well-founded semantics (Van Gelder-Ross-Schlipf, 1989)

◮ Answer-set programming (ASP) – logic programs encode
problems so that answer sets encode solutions
(Niemelä, 1999; Marek, T_ 1999)

Objectives
◮ Discuss some recent advances in ASP motivated by KRR needs

- constraints
- modularity
- tools

◮ Present ID-logic as an alternative approach to KRR based in logic
programming

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 5 / 55

Constraints and aggregates

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 6 / 55

Constraints and aggregates

Common in problems arising in practical applications
◮ n-queens problem

- assign n queens to squares on the n × n-chessboard so that
- there is exactly one queen in each row
- there is exactly one queen in each column
- there is at most one queen in each diagonal

◮ With means to model constraints on sets, logic programs are
shorter, more direct and easier to process

- idx(0). idx(1). . . . idx(n − 1).
- 1{q(I, J) : idx(J)}1← idx(I).
- 1{q(I, J) : idx(I)}1← idx(J).
- {q(I, I + R) : idx(I), I + R ≤ n − 1}1← idx(R).
- . . .

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 7 / 55

More examples ...

Constraints
◮ Constraints

- exactly three atoms in a set are true
- the total weight of atoms true in a set is at most 7
- the average weight of atoms true in a set is at least 21

Constraint clauses or rules
◮ If the average weight of atoms true in a set is at most 4, then at

least 2 atoms in another set must be true

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 8 / 55

More examples ...

Constraints
◮ Constraints

- exactly three atoms in a set are true
- the total weight of atoms true in a set is at most 7
- the average weight of atoms true in a set is at least 21

Constraint clauses or rules
◮ If the average weight of atoms true in a set is at most 4, then at

least 2 atoms in another set must be true

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 8 / 55

Not surprisingly then ...

Extending normal logic programming with constraints on sets ...
◮ Received much attention

- Simons, Niemelä, and Soininen (weight atoms in smodels)
- Dell’Armi, Faber, Ielpa, Leone, Pfeifer (aggregates for dlv)
- Denecker, Pelov, and Bruynooghe (aggregates for LP -

approximation theory)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 9 / 55

Constraints and aggregates

Our goals ...
◮ A general theory of logic programs with abstract constraints

- important: constraints may also appear in the heads
- supported by smodels!

◮ A uniform foundation for extensions of logic programming with
high-level aggregates

- Marek, Niemelä, and T_ (monotone abstract constraints)
- Liu, T_ (convex abstract constraints)
- Marek, Remmel (arbitrary abstract constraints)
- Son, Pontelli, Tu (arbitrary abstract constraints)
- Liu, Son, Pontelli, T_ (arbitrary abstract constraints, later today)

◮ A clear link to normal logic programming

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 10 / 55

Basic concepts

Syntax – abstract constraints
◮ Propositional case; fixed set of propositional atoms At
◮ Abstract constraint – a pair A = (X , C)

- X ⊆ At – domain
- C ⊆ P(X) – satisfiers
- Adom and Asat

◮ B is the “negation” of A, if
- Bdom = Adom
- Bsat = {X ⊆ Bdom |X /∈ Asat}
- Comp(A)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 11 / 55

Basic concepts

Syntax – constraint rules and programs
◮ r = H ← A1, . . . , Am

H, Ai – abstract constraints

◮ hd(r), bd(r)
◮ Headset of a rule r – hset(r) = Hdom

◮ Constraint programs – sets of constraint rules
◮ Headset of a program P – hset(P) =

⋃
r∈P hset(r)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 12 / 55

Basic concepts

Satisfiability
◮ M |= A if M ∩ Adom ∈ Asat

◮ M |= (H ← A1, . . . , Am) if:
- M |= H, or
- M 6|= Ai , for some i, 1 ≤ i ≤ m

◮ M |= P
◮ r is M-applicable if M |= bd(r)
◮ P(M) – the set of all M-applicable rules in P

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 13 / 55

Constraint rules serve as “inference rules”

Intended interpretation
◮ If the body of a rule has been derived, the rule provides support

for deriving a set of atoms that satisfies its head
- 2{x , y , z} ← {a = 1, b = 2, c = 1, d = 1, e = 3}4
- provides support for {x , y}, {x , z}, {y , z} and]{x , y , z}

◮ Models of a constraint program do not correspond to sets of atoms
that can be “derived” from (“justified” on the basis of) the program

◮ Restricted classes of models needed
◮ Operator-based approach (van Emden-Kowalski, Apt, Fitting)

applies
◮ It exploits properties of operators on complete lattices (of

interpretations) and of fixpoints of these operators
◮ There are essential differences – nondeterminism

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 14 / 55

One-step provability

Operator T nd
P

◮ If an interpretation M satisfies the body of a rule r , then r supports
any set of atoms M ′ such that

- M ′ ⊆ hset(r)
r provides no support for atoms that do not appear in the head of r

- M ′ satisfies the head of r
since r “fires”, the constraint imposed by the head of r must hold

◮ A set M ′ is nondeterministically one-step provable from M by a
constraint program P, if

- M ′ ⊆ hset(P(M)) and M ′ |= hd(r), for every r ∈ P(M)

◮ The nondeterministic one-step provability operator —
T nd

P : P(At)→ P(P(At))
◮ T nd

P (M) – consists of all sets that are nondeterministically
one-step provable from M by means of P

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 15 / 55

T nd
P and models

For a normal logic program P
◮ M is a model of P iff TP(M) ⊆ M
◮ Models of P = prefixpoints of TP w.r.t. ⊆

For a constraint program P

◮ M is a model of a constraint program P iff there is M ′ ∈ T nd
P (M)

such that M ′ ⊆ M
◮ Smyth preorder

- A, B – families of sets
- A �Smyth B if for every B ∈ B there is A ∈ A such that A ⊆ B

◮ T nd
P (M) �Smyth {M}

◮ Models = prefixpoints of T nd
P w.r.t. �Smyth

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 16 / 55

T nd
P and models

For a normal logic program P
◮ M is a model of P iff TP(M) ⊆ M
◮ Models of P = prefixpoints of TP w.r.t. ⊆

For a constraint program P

◮ M is a model of a constraint program P iff there is M ′ ∈ T nd
P (M)

such that M ′ ⊆ M
◮ Smyth preorder

- A, B – families of sets
- A �Smyth B if for every B ∈ B there is A ∈ A such that A ⊆ B

◮ T nd
P (M) �Smyth {M}

◮ Models = prefixpoints of T nd
P w.r.t. �Smyth

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 16 / 55

Supported models

For a normal logic program P
◮ M is a supported model if TP(M) = M
◮ Fixpoint of TP

For a constraint logic program P

◮ We define M to be a supported model of P if M ∈ T nd
P (M)

- fixpoint of a nondeterministic operator

◮ Supported models are indeed models: M ∈ T nd
P (M) implies

T nd
P (M) �Smyth {M}

◮ 1{a} ← 1{a} {a} is supported but not “intened”
◮ Stable models?

- General case (arbitrary constraints)– far from trivial (later today)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 17 / 55

Supported models

For a normal logic program P
◮ M is a supported model if TP(M) = M
◮ Fixpoint of TP

For a constraint logic program P

◮ We define M to be a supported model of P if M ∈ T nd
P (M)

- fixpoint of a nondeterministic operator

◮ Supported models are indeed models: M ∈ T nd
P (M) implies

T nd
P (M) �Smyth {M}

◮ 1{a} ← 1{a} {a} is supported but not “intened”
◮ Stable models?

- General case (arbitrary constraints)– far from trivial (later today)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 17 / 55

Special cases
Monotone constraints

◮ A – monotone (upward closed) if for every X ∈ Asat and for every
Y such that X ⊆ Y ⊆ Adom, Y ∈ Asat

◮ ({a}, {{a}}) – written as a
- “At least k ” weight constraint, relative a weight function w from

atoms into non-negative reals: (X , {Y |Y ⊆ X ; k ≤
∑

x∈Y w(x)})

Antimonotone constraints
◮ A – antimonotone (downward closed) if for every X ∈ Asat and for

every Y such that Y ⊆ X , Y ∈ Asat

◮ ({a}, {∅}) – written as not (a)

◮ (∅, ∅) both monotone and antimnonotone, written as ⊥
◮ A monotone if and only if Comp(A) antimonotone
◮ A antimonotone if and only if Comp(A) monotone

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 18 / 55

Special cases
Monotone constraints

◮ A – monotone (upward closed) if for every X ∈ Asat and for every
Y such that X ⊆ Y ⊆ Adom, Y ∈ Asat

◮ ({a}, {{a}}) – written as a
- “At least k ” weight constraint, relative a weight function w from

atoms into non-negative reals: (X , {Y |Y ⊆ X ; k ≤
∑

x∈Y w(x)})

Antimonotone constraints
◮ A – antimonotone (downward closed) if for every X ∈ Asat and for

every Y such that Y ⊆ X , Y ∈ Asat

◮ ({a}, {∅}) – written as not (a)

◮ (∅, ∅) both monotone and antimnonotone, written as ⊥
◮ A monotone if and only if Comp(A) antimonotone
◮ A antimonotone if and only if Comp(A) monotone

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 18 / 55

Special cases
Monotone constraints

◮ A – monotone (upward closed) if for every X ∈ Asat and for every
Y such that X ⊆ Y ⊆ Adom, Y ∈ Asat

◮ ({a}, {{a}}) – written as a
- “At least k ” weight constraint, relative a weight function w from

atoms into non-negative reals: (X , {Y |Y ⊆ X ; k ≤
∑

x∈Y w(x)})

Antimonotone constraints
◮ A – antimonotone (downward closed) if for every X ∈ Asat and for

every Y such that Y ⊆ X , Y ∈ Asat

◮ ({a}, {∅}) – written as not (a)

◮ (∅, ∅) both monotone and antimnonotone, written as ⊥
◮ A monotone if and only if Comp(A) antimonotone
◮ A antimonotone if and only if Comp(A) monotone

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 18 / 55

Special cases

Convex constraints
◮ A – convex if for every X , Y , Z such that X , Y ∈ Asat and

X ⊆ Z ⊆ Y , Z ∈ Asat

Upward (monotone) and downward (antimonotone) closure
◮ A – convex
◮ Am

dom = Adom, Am
sat = {X ⊆ Am

dom |Y ⊆ X for some Y ∈ Asat}
- Am – monotone

◮ Aa
dom = Adom, Aa

sat = {X |X ⊆ Y for some Y ∈ Asat}
- Aa – antimonotone

◮ M |= A iff M |= Am and M |= Aa

◮ “A = Am ∧ Aa” or A = Am,Aa

From now on monotone and convex constraints only

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 19 / 55

Special cases

Convex constraints
◮ A – convex if for every X , Y , Z such that X , Y ∈ Asat and

X ⊆ Z ⊆ Y , Z ∈ Asat

Upward (monotone) and downward (antimonotone) closure
◮ A – convex
◮ Am

dom = Adom, Am
sat = {X ⊆ Am

dom |Y ⊆ X for some Y ∈ Asat}
- Am – monotone

◮ Aa
dom = Adom, Aa

sat = {X |X ⊆ Y for some Y ∈ Asat}
- Aa – antimonotone

◮ M |= A iff M |= Am and M |= Aa

◮ “A = Am ∧ Aa” or A = Am,Aa

From now on monotone and convex constraints only

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 19 / 55

Special cases

Convex constraints
◮ A – convex if for every X , Y , Z such that X , Y ∈ Asat and

X ⊆ Z ⊆ Y , Z ∈ Asat

Upward (monotone) and downward (antimonotone) closure
◮ A – convex
◮ Am

dom = Adom, Am
sat = {X ⊆ Am

dom |Y ⊆ X for some Y ∈ Asat}
- Am – monotone

◮ Aa
dom = Adom, Aa

sat = {X |X ⊆ Y for some Y ∈ Asat}
- Aa – antimonotone

◮ M |= A iff M |= Am and M |= Aa

◮ “A = Am ∧ Aa” or A = Am,Aa

From now on monotone and convex constraints only

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 19 / 55

Computations

Monotone (“Horn”) constraint programs
◮ All constraints monotone

- if heads of all rules in P have satisfiers, P has models
- otherwise, it is not guaranteed – inconsistent monotone constraint

programs:
⋆ 2{a} ← 1{a, b, c}
⋆ 1{b, c}

◮ Once a rule is applicable w.r.t M, it remains applicable w.r.t every
superset of M

- key property of normal Horn logic programs behind the bottom-up
computation

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 20 / 55

Computations

◮ Assume finite domains for constraints (can be dropped)
◮ A P-computation is a sequence (Xn)n=0,1,...

such that X0 = ∅ and,
for every non-negative integer n:

- Xn ⊆ Xn+1, and
- Xn+1 ∈ T nd

P (Xn)

◮

⋃∞
n=0 Xn — the result of the computation t = (Xn)n=0,1,...

(notation
— Rt)

◮ Results of computations are models (in fact, supported models)
◮ Converse does not hold — not all supported models are results of

computations: 1{a} ← 1{a}
◮ Only consistent monotone programs have computations

2{a} ← 1{a, b, c}
1{b, c}

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 21 / 55

Computations

Stable models of monotone constraint programs
◮ Results of P-computations — derivable models of P
◮ Generalization of stable models of Horn programs
◮ However for

- 2{a, b, d} ← 1{a, b, c}
- 1{b, c}

{b, a, d}, {b, c, d}, {b, c, a, d}, ... all stable

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 22 / 55

Derivable models

Properties
◮ Every model of a monotone constraint program contains the

greatest derivable model
◮ Every consistent monotone constraint program has a largest

derivable model
◮ Every consistent monotone constraint program has a minimal

derivable model
◮ Every minimal model of a monotone constraint program is

derivable
◮ (These properties generalize properties of the least model of a

normal Horn program)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 23 / 55

Convex constraint programs

Key property of monotone constraint programs fails
◮ As interpretations grow, bodies of rules may cease to hold!
◮ However, if they do cease to hold, they will not hold again, as long

as interpretations grow
◮ This is exactly the case with bodies of normal logic programs

Convex constraint programs – separating positive and negative
◮ View

- H ← A1, . . . , Ak

as
- Hm, Ha ← Am

1 , . . . , Am
k , Aa

1, . . . , Aa
k

and then as
- Hm ← Am

1 , . . . , Am
k , Aa

1, . . . , Aa
k

- ⊥ ← Comp(Ha), Am
1 , . . . , Am

k , Aa
1, . . . , Aa

k

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 24 / 55

Convex constraint programs

Key property of monotone constraint programs fails
◮ As interpretations grow, bodies of rules may cease to hold!
◮ However, if they do cease to hold, they will not hold again, as long

as interpretations grow
◮ This is exactly the case with bodies of normal logic programs

Convex constraint programs – separating positive and negative
◮ View

- H ← A1, . . . , Ak

as
- Hm, Ha ← Am

1 , . . . , Am
k , Aa

1, . . . , Aa
k

and then as
- Hm ← Am

1 , . . . , Am
k , Aa

1, . . . , Aa
k

- ⊥ ← Comp(Ha), Am
1 , . . . , Am

k , Aa
1, . . . , Aa

k

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 24 / 55

Stable models

Reduct of P w.r.t M
◮ Remove r from P if for some A ∈ bd(r), M 6|= Aa

◮ Replace each other rule
- H ← A1, . . . , Ak

with
- Hm ← Am

1 , . . . , Am
k

- ⊥ ← Comp(Ha), Am
1 , . . . , Am

k

◮ A set of atoms M is a stable model of P if M is a derivable model
of the reduct PM

◮ The definition mirrors that in normal logic programming
◮ Monotone programs are convex programs: both concepts of

stability coincide
◮ Stable models of an program P are supported models of P

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 25 / 55

Connection to normal logic programming

Recall the notation a for ({a}, {{a}}) and not (a) for ({a}, {∅})
◮ A logic program rule

a← b1, . . . , bm, not (c1), . . . , not (cn)

can be viewed as the convex constraint rule
◮ That mapping preserves all semantics (models, supported

models, stable models)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 26 / 55

More results, some applications

Theory extends
◮ Strong equivalence
◮ Uniform equivalence
◮ Program completion
◮ Tightness and Fages lemma
◮ Loop formulas

Applications
◮ If we restrtict to weight atoms with non-negative weights:
◮ pb-models – a fast program for computing stable models

exploiting off-the-shelf PB(SAT) solvers

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 27 / 55

More results, some applications

Theory extends
◮ Strong equivalence
◮ Uniform equivalence
◮ Program completion
◮ Tightness and Fages lemma
◮ Loop formulas

Applications
◮ If we restrtict to weight atoms with non-negative weights:
◮ pb-models – a fast program for computing stable models

exploiting off-the-shelf PB(SAT) solvers

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 27 / 55

Discussion

This theory generalizes earlier proposals
◮ Logic programs with cardinality atoms (Marek, Niemalä, T_, LPNMR-04)

◮ The formalism of logic programs with weight constraints as
defined by Niemelä, Soininen and Simons (under a
straightforward modular embedding)

◮ The formalism of disjunctive logic programs with the semantics of
possible models of Inoue and Sakama

◮ possibility for further generalizations
- Abstract algebraic theory of non-deterministic operators on

complete lattices
(along the lines of the approximation theory which, in particular,
unifies default and autoepistemic logics and provides a
comprehensive account of normal logic programming)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 28 / 55

Modularity

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 29 / 55

Strong and uniform equivalence

Overview
◮ Strong equivalence (Lifschitz, Pearce, Valverde, 2001)

- Two programs P and Q are strongly equivalent if for every program
R, P ∪ R and Q ∪ R have the same stable models

◮ Uniform equivalence – equivalence for replacement w.r.t.
extensions by sets of atoms (Eiter and Fink, 2003)

Optimizing database queries expressed as logic programs

◮ Rich theory based on:
- logic here-and-there (Lifschitz, Pearce, Valverde, 2001)
- modal logic S4F (Cabalar, 2004; T_, 2007)
- se-models (Turner, 2003)
- approxmation theory (T_, 2006)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 30 / 55

Strong and uniform equivalence — extensions

(H,B)-equivalence, Woltran 2007

◮ Consider (disjunctive) programs over a fixed alphabet At
◮ For H,B ⊆ At : CH,B – all programs P such that hd(P) ⊆ H and

bd(P) ⊆ B

◮ Programs P and Q are (H,B)-equivalent if for every program
R ∈ CH,B, P ∪ R and Q ∪ R have the same answer sets

◮ Characterization of (H,B)-equivalence in terms of (H,B)-models
◮ (At , At)-equivalence = strong equivalence
◮ (At , ∅)-equivalence = uniform equivalence

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 31 / 55

Stratification

◮ A program P is stratified if its atoms can be labeled with integers
so that for every rule r ∈ P, the label of the head of r is:

- greater than or equal to the labels of non-negated atoms in the
body, and

- strictly greater than the label of atoms negated in the body of r

◮ Every stratified logic program has a unique stable model, which
can be computed in a bottom-up fashion
Apt, et al 1986

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 32 / 55

Splitting Theorem

◮ For sets A and B of atoms

Lit(A, B) = A ∪ {not (b) : b ∈ B \ A}

◮ P←L – a simplification of a program P with respect to a set of
literals L (“input”)

◮ Splitting Theorem: Let P and Q be logic programs such that no
atom in the head of a rule in Q appears in P. Then M is a stable
model of P ∪Q if and only if M = MP ∪MQ, where MP is a stable
model of P and MQ is a stable model of Q←Lit(MP ,At(P))

Lifschitz, Turner, 1994

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 33 / 55

General Splitting Theorem

◮ Restriction: P and Q are logic programs such that no cycle in
DG+(P ∪Q) contains atoms from both hd(P) and hd(Q)

◮ Under this restriction: M is a stable model of P ∪Q if and only if
M = MP ∪MQ, where MP is a stable model of P←Lit(MQ ,At(Q)) and
MQ is a stable model of Q←Lit(MP ,At(P))

Janhunen et al, 2007

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 34 / 55

Tools for Answer-Set Programming

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 35 / 55

Tools for Answer-Set Programming

Brief overview
◮ ASP system

- Grounder
- Solver

◮ Basic approach
- ground a program (problem encoding) w/r to an input instance

(specific data)
- compute answer sets of the resulting ground program

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 36 / 55

Tools for Answer-Set Programming

Some history
◮ Lparse+smodels

Niemelä, Syrjänen, Simmons, 1996-2001

◮ Dlv (integrated grounded and solver for disjuntive logic programs)
Leone, Eiter, Faber, Pfeifer et al, 1997-present

◮ Cmodels – exploit program completion and SAT techniques
Lierler, Lifschitz, 2000-present

◮ Assat – program completion + loops formulas
Lin, Zhao, 2002

◮ Much more now ...

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 37 / 55

Tools – 1st Answer-Set Programming Contest

Goals
◮ Establish methodology
◮ Collect benchmarks
◮ Assess available tools (grounders and solvers)
◮ Establish input/output formats

Acknowledgements
◮ Broad Community effort
◮ Run of the Asparagus Platform (University of Potsdam)

- http://asparagus.cs.uni-potsdam.de/contest

◮ Associated with LPNMR 2007
◮ Reported in LPNMR Proceedings and on Asparagus site

Gebser, Liu, Namasivayam, Neumann, Schaub, T_, LPNMR 2007

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 38 / 55

http://asparagus.cs.uni-potsdam.de/contest

Tools – 1st Answer-Set Programming Contest

Goals
◮ Establish methodology
◮ Collect benchmarks
◮ Assess available tools (grounders and solvers)
◮ Establish input/output formats

Acknowledgements
◮ Broad Community effort
◮ Run of the Asparagus Platform (University of Potsdam)

- http://asparagus.cs.uni-potsdam.de/contest

◮ Associated with LPNMR 2007
◮ Reported in LPNMR Proceedings and on Asparagus site

Gebser, Liu, Namasivayam, Neumann, Schaub, T_, LPNMR 2007

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 38 / 55

http://asparagus.cs.uni-potsdam.de/contest

ASP Contest – competition classes

Modeling, Grounding, Solving
◮ Benchmarks consist of:

- a problem statement
- a set of instances (given as sets of ground facts),
- the names of the predicates and their arguments to to encode

solutions

◮ Performance measured by total time for grounding and solving
◮ Success depends on

- the quality of the problem encoding
- the efficiency of a grounder
- the speed of a solver.

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 39 / 55

ASP Contest – competition classes

Model computation – core language
◮ Benchmarks are ground logic programs

- aggregates are not allowed
- programs are classified into normal and disjunctive

◮ Performance measured by time to compute answer sets (or
determine inconsistency)

Model computation – programs with weight atoms
◮ Benchmarks are ground programs with weight atoms (lparse

format)
◮ Performance measured by time to compute answer sets (or

determine inconsistency)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 40 / 55

ASP Contest – competition classes

Model computation – core language
◮ Benchmarks are ground logic programs

- aggregates are not allowed
- programs are classified into normal and disjunctive

◮ Performance measured by time to compute answer sets (or
determine inconsistency)

Model computation – programs with weight atoms
◮ Benchmarks are ground programs with weight atoms (lparse

format)
◮ Performance measured by time to compute answer sets (or

determine inconsistency)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 40 / 55

ASP Contest – Benchmarks

Broad participation of the communty
◮ About 40 benchmark families, each with tens, even hundereds of

instances
◮ Diversity in type and hardness

Selection process
◮ Random subject to some constraints
◮ Significant number of benchmarks for each competition class

(around 100)
◮ Benchmarks not too hard (at least one competitior able to solve it)
◮ But also not too easy (no more than three competitors solve it in

< 1 sec)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 41 / 55

ASP Contest – Benchmarks

Broad participation of the communty
◮ About 40 benchmark families, each with tens, even hundereds of

instances
◮ Diversity in type and hardness

Selection process
◮ Random subject to some constraints
◮ Significant number of benchmarks for each competition class

(around 100)
◮ Benchmarks not too hard (at least one competitior able to solve it)
◮ But also not too easy (no more than three competitors solve it in

< 1 sec)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 41 / 55

ASP Contest

Particpants
Solver Affiliation MGS SCore SLparse

asper Angers ×
assat Hongkong × ×
clasp Potsdam × × ×
cmodels Texas × × ×
dlv Vienna/Calabria × ×
gnt Helsinki × × ×
lp2sat Helsinki ×
nomore Potsdam × × ×
pbmodels Kentucky × × ×
smodels Helsinki × × ×

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 42 / 55

ASP Contest – Results

MGS
1 dlv
2 pbmodels
3 clasp

LP(weight atoms)
1 clasp
2 pbmodels
3 smodels

Core – normal LPs
1 clasp
2 smodels
3 cmodels

Core – disjunctive
1 dlv
2 cmodels
3 gnt

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 43 / 55

ASP Contest

Some lessons
◮ Old solvers getting faster
◮ New solvers springing up: clasp, pbmodels
◮ Need standards for input, output and intermediate formats
◮ Modeling crucial – modeling methodology and good practices
◮ Grounding – a critical bottleneck

- Just one new grounder: gringo from UP

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 44 / 55

ID-logic

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 45 / 55

Moving outside LP domain

Model-expansion formalism
East and T_ 2000; Mitchell and Ternovska, 2005

◮ Given a FO formula ϕ and a finite structure AI for vocabulary
σ ⊆ vocab(ϕ)

◮ Is there a structure A — an expansion of AI to vocab(ϕ) — such
that A |= ϕ?

◮ NEXPTIME-complete

Model-extension problem parametrized
◮ Fix ϕ and σ

◮ Input: finite structure AI for the vocabulary σ

◮ Decision problem – NP-complete
◮ Its search form captures class NP-search (NPMV)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 46 / 55

Moving outside LP domain

Model-expansion formalism
East and T_ 2000; Mitchell and Ternovska, 2005

◮ Given a FO formula ϕ and a finite structure AI for vocabulary
σ ⊆ vocab(ϕ)

◮ Is there a structure A — an expansion of AI to vocab(ϕ) — such
that A |= ϕ?

◮ NEXPTIME-complete

Model-extension problem parametrized
◮ Fix ϕ and σ

◮ Input: finite structure AI for the vocabulary σ

◮ Decision problem – NP-complete
◮ Its search form captures class NP-search (NPMV)

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 46 / 55

Example — graph-coloring problem

Formula ϕcol

◮ Every vertex gets at least one color
- vtx(X)→ clrd(X , C)[C]. vtx(X)→ ∃C clrd(X , C)

◮ Every edge has vertices colored differently
- edge(X , Y), clrd(X , C), clrd(Y , C)→ .

edge(X ,Y) ∧ clrd(X , C) ∧ clrd(Y , C)→ ⊥

◮ Typing
- clrd(X , C)→ vtx(X)
- clrd(X , C)→ col(C)

Signatures
◮ vocab(ϕ) = {col , vtx , edge, clrd}
◮ Signature of an input interpretation: σ = {col , vtx , edge}

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 47 / 55

Example — graph-coloring problem

Formula ϕcol

◮ Every vertex gets at least one color
- vtx(X)→ clrd(X , C)[C]. vtx(X)→ ∃C clrd(X , C)

◮ Every edge has vertices colored differently
- edge(X , Y), clrd(X , C), clrd(Y , C)→ .

edge(X ,Y) ∧ clrd(X , C) ∧ clrd(Y , C)→ ⊥

◮ Typing
- clrd(X , C)→ vtx(X)
- clrd(X , C)→ col(C)

Signatures
◮ vocab(ϕ) = {col , vtx , edge, clrd}
◮ Signature of an input interpretation: σ = {col , vtx , edge}

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 47 / 55

Example — graph-coloring problem

Input: an interpretation I of σ

◮ A finite domain DI of I
◮ Interpretation of col : relation col I(·) over DI

◮ Interpretation of vtx : relation vtx I(·) over DI

◮ Interpretation of edge: relation edgeI(·, ·) over DI

Goal
◮ Find an extension for clrd that completes an input interpretation to

a model of ϕcol

Key property
◮ One-to-one correspondence between such extensions and graph

colorings to a model of ϕcol

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 48 / 55

Example — graph-coloring problem

Input: an interpretation I of σ

◮ A finite domain DI of I
◮ Interpretation of col : relation col I(·) over DI

◮ Interpretation of vtx : relation vtx I(·) over DI

◮ Interpretation of edge: relation edgeI(·, ·) over DI

Goal
◮ Find an extension for clrd that completes an input interpretation to

a model of ϕcol

Key property
◮ One-to-one correspondence between such extensions and graph

colorings to a model of ϕcol

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 48 / 55

Example — graph-coloring problem

Input: an interpretation I of σ

◮ A finite domain DI of I
◮ Interpretation of col : relation col I(·) over DI

◮ Interpretation of vtx : relation vtx I(·) over DI

◮ Interpretation of edge: relation edgeI(·, ·) over DI

Goal
◮ Find an extension for clrd that completes an input interpretation to

a model of ϕcol

Key property
◮ One-to-one correspondence between such extensions and graph

colorings to a model of ϕcol

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 48 / 55

Problem solving with MX

Coding a search problem Π

◮ Select the language – signature of the formula
◮ Select the input signature
◮ Construct a formula ϕΠ that encodes Π

Solving for an interpretation I
◮ Ground ϕ with respect to I

- replace universal quantification by conjunctions
- replace existential quantification by disjunctioin

◮ What results is a propositional theory
- Its models correspond to expansions of I to models of ϕ

◮ Search for a model
◮ Can use SAT solvers directly!

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 49 / 55

Problem solving with MX

Coding a search problem Π

◮ Select the language – signature of the formula
◮ Select the input signature
◮ Construct a formula ϕΠ that encodes Π

Solving for an interpretation I
◮ Ground ϕ with respect to I

- replace universal quantification by conjunctions
- replace existential quantification by disjunctioin

◮ What results is a propositional theory
- Its models correspond to expansions of I to models of ϕ

◮ Search for a model
◮ Can use SAT solvers directly!

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 49 / 55

What’s missing from MX?

Inductive definitions
◮ Motivation: KRR applications
◮ Expressing some concepts neither straightforward nor concise
◮ Closed World Assumption
◮ More generaly, inductive definitions (IDs) for instance, transitive

closure of a graph
◮ ID-logic addresses the problem!

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 50 / 55

ID-Logic, Denecker 1998

Integrates inductive definitions with FOL
◮ Inductive definitions

- logic programs with the complete well-founded model

◮ Intuitive semantics
◮ Semantics grounded in algebra of operators on lattices and their

fixpoints
◮ Directly extends MX logic
◮ Simple and concise encoding of logic programs with stable model

semantics
◮ Addresses major KR problems

Denecker-Ternovska on ID-logic and situation calculus, 2004

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 51 / 55

Example

Hamiltonian-path problem
◮ Constraints

- hp_edge(X , Y)→ edge(X , Y).
- hp_edge(Y , X), start(X) →.
- hp_edge(X , Y), hp_edge(X , Z)→ Y = Z .
- hp_edge(Y , X), hp_edge(Z , X)→ Y = Z .
- visit(X).

◮ Definitions
- visit(Y)← visit(X), hp_edge(X , Y).
- visit(X)← start(X).

◮ Typing

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 52 / 55

Tools

◮ psgrnd/aspps – www.cs.uky.edu/ai/aspps/

◮ GidL/MidL –
www.cs.kuleuven.be/~dtai/krr/software/idp.html

◮ MXG – www.cs.sfu.cs/research/groups/mxp/mxg/

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 53 / 55

www.cs.uky.edu/ai/aspps/
www.cs.kuleuven.be/~dtai/krr/software/idp.html
www.cs.sfu.cs/research/groups/mxp/mxg/

Conclusions

Logic programming has much to offer KRR
◮ Robust solutions for KRR challenges (cf. frame axiom)
◮ Answer-set semantics and answer-set programming
◮ Well-founded semantics and the ID-logic

Recent research advances
◮ Effective modeling support (cf. aggregates/constraints on sets)
◮ Emerging understanding of modular structure of programs
◮ More and more powerful tools
◮ And much more outsie of the main themes covered here ...

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 54 / 55

Conclusions

Logic programming has much to offer KRR
◮ Robust solutions for KRR challenges (cf. frame axiom)
◮ Answer-set semantics and answer-set programming
◮ Well-founded semantics and the ID-logic

Recent research advances
◮ Effective modeling support (cf. aggregates/constraints on sets)
◮ Emerging understanding of modular structure of programs
◮ More and more powerful tools
◮ And much more outsie of the main themes covered here ...

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 54 / 55

Thank you!

ICLP 2007, Porto (University of Kentucky)Logic Programming for KR 9/10/2007 55 / 55

