Strong Equivalence and Relatives — Logically and Algebraically

Mirosław Truszczyński

Department of Computer Science University of Kentucky

September 8, 2007

Motivation (1)

Query optimization

- Compute answers to a query Q from a knowledge base KB reason from Q ∪ KB
- ► Rewrite Q into an equivalent query Q', which can be processed more efficiently reasoning from Q' ∪ KB easier
- When are two queries equivalent?
 - If Q ∪ KB and Q' ∪ KB have the same meaning not quite what we want — knowledge-base dependent
 - If $Q \cup KB$ and $Q' \cup KB$ have the same meaning for every knowledge base KB

better — knowledge-base independent

Motivation (2)

Knowledge base rewriting

- Knowledge base a collection of interrelated modules (say, answer-set programs)
- Knowledge base rewriting: replace one module with another without changing the meaning of the knowledge base
- When are two modules equivalent for replacement?
 - The same two basic options as above

In each scenario, it is the second option that we are after

Motivation (2)

Knowledge base rewriting

- Knowledge base a collection of interrelated modules (say, answer-set programs)
- Knowledge base rewriting: replace one module with another without changing the meaning of the knowledge base
- When are two modules equivalent for replacement?
 - The same two basic options as above

In each scenario, it is the second option that we are after

Classical logic

- ► *KB* and *Q* or *KB* modules FOL theories
- The meaning specified by the standard FOL semantics
- All is simple!!
- Logical equivalence is necessary and sufficient condition for the equivalence for replacement

Equivalence for replacement (2)

Logic programming

- The meaning is given by stable models (answer sets)
- Equivalence for substitution for every program R, programs $P \cup R$ and $Q \cup R$ have the same stable models

Known as strong equivalence

Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink, Tompits, Woltran, 2005

- Different than logical equivalence
 - $\{p \leftarrow \mathsf{not}(q)\}$ and $\{q \leftarrow \mathsf{not}(p)\}$
 - The same models but different meaning
- Different than nonmonotonic equivalence
 - $P = \{p\}$ and $Q = \{p \leftarrow \mathsf{not}(q)\}$
 - The same stable models; {*p*} is the only stable model in each case
 - But, $P \cup \{q\}$ and $Q \cup \{q\}$ have different stable models! ({p, q} and {q}, respectively)

When are two programs strongly equivalent?

Se-model characterization

- A pair (X, Y) of sets of atoms is an *se-model* of a program *P* if
 - *X* ⊆ Y
 - Y |= P
 - $X \models P^{Y}$
- Logic programs P and Q are strongly equivalent iff they have the same se-models
- A similar concept characterizes strong equivalence of default theories

Turner 2003

What's behind strong equivalence?

Logics (albeit non-standard)

Logic here-and-there

Lifschitz, Pearce, Valverde, 2001; Lifschitz, Ferraris, 2005

Modal logics S4F and SW5

Cabalar 2004, MT 2007

Algebra

 Lattices, operators and fixpoints MT 2006

What's behind strong equivalence?

Logics (albeit non-standard)

Logic here-and-there

Lifschitz, Pearce, Valverde, 2001; Lifschitz, Ferraris, 2005

Modal logics S4F and SW5

Cabalar 2004, MT 2007

Algebra

 Lattices, operators and fixpoints MT 2006

Logic here-and-there, Heyting 1930

Syntax

- Connectives: \bot , \lor , \land , \rightarrow
- Formulas standard extension of atoms by means of connectives
- $\neg \varphi$ shorthand for $\varphi \rightarrow \bot$
- Language *L_{ht}*

Why important?

- Disjunctive logic programs special theories in L_{ht} change the direction of implication
- General logic programs (Ferraris, Lifschitz) = theories in L_{ht} answer-set semantics extends to general logic programs and so to theories in L_{ht}

Logic here-and-there, Heyting 1930

Syntax

- Connectives: \bot , \lor , \land , \rightarrow
- Formulas standard extension of atoms by means of connectives
- $\neg \varphi$ shorthand for $\varphi \rightarrow \bot$
- Language *L_{ht}*

Why important?

- Disjunctive logic programs special theories in *L_{ht}* change the direction of implication
- General logic programs (Ferraris, Lifschitz) = theories in L_{ht} answer-set semantics extends to general logic programs and so to theories in L_{ht}

Entailment in logic here-and-there

Ht-interpretations

- Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
 - H determines the valuation for "here"
 - T determines the valuation for "there"

Kripke-model satisfiability in the world "here"

- $\blacktriangleright \langle H, T \rangle \not\models_{ht} \bot$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ standard recursion
- $\blacktriangleright \langle H, T \rangle \models_{ht} \varphi \rightarrow \psi \text{ if }$
 - $\langle H, T \rangle \not\models_{ht} \varphi \text{ or } \langle H, T \rangle \models_{ht} \psi$
 - $T \models \varphi \rightarrow \psi$ (in standard propositional logic).
- ▶ If $\langle H, T \rangle \models_{ht} \varphi \quad \langle H, T \rangle$ an ht-model of φ
- φ and ψ are ht-equivalent if they have the same ht-models

Entailment in logic here-and-there

Ht-interpretations

- ▶ Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
 - H determines the valuation for "here"
 - T determines the valuation for "there"

Kripke-model satisfiability in the world "here" \models_{ht}

- $\blacktriangleright \langle H, T \rangle \not\models_{ht} \bot$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ standard recursion
- $\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$ if
 - $\langle H, T \rangle \not\models_{ht} \varphi \text{ or } \langle H, T \rangle \models_{ht} \psi$
 - $\mathcal{T} \models \varphi \rightarrow \psi$ (in standard propositional logic).
- If $\langle H, T \rangle \models_{ht} \varphi \quad \langle H, T \rangle$ an ht-model of φ
- φ and ψ are ht-equivalent if they have the same ht-models

Proof theory

Natural deduction — sequents and rules

- Sequents $\Gamma \Rightarrow \varphi$ "*F* under the assumptions Γ "
- Introduction rules for \land , \lor , \rightarrow

$$\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi}$$

• Elimination rules for \land , \lor , \rightarrow

$$\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \to \psi}{\Gamma, \Delta \Rightarrow \psi}$$

Contradiction

$$\frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi}$$

Weakening

$$\frac{\Gamma \Rightarrow \varphi}{\Gamma' \Rightarrow \varphi} \qquad \text{for all } \Gamma', \Gamma \text{ s.t. } \Gamma' \subseteq \Gamma$$

Proof theory (2)

Axiom schemas

 $\begin{array}{ll} (\mathsf{AS1}) & \varphi \Rightarrow \varphi \\ (\mathsf{AS2}) & \Rightarrow \varphi \lor \neg \varphi \\ (\mathsf{AS2'}) & \Rightarrow \neg \varphi \lor \neg \neg \varphi \\ (\mathsf{AS2''}) & \Rightarrow \varphi \land (\varphi \to \psi) \land \neg \psi \end{array}$

(Excluded Middle) (Weak EM) (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic Logic here-and-there (AS1), (AS2) (AS1) (AS1),(AS2'')

In particular

φ and ψ are ht-equivalent iff ⇒ φ ↔ ψ has a proof from (AS1) and
(AS2")

Proof theory (2)

Axiom schemas

 $\begin{array}{ll} (\mathsf{AS1}) & \varphi \Rightarrow \varphi \\ (\mathsf{AS2}) & \Rightarrow \varphi \lor \neg \varphi \\ (\mathsf{AS2'}) & \Rightarrow \neg \varphi \lor \neg \neg \varphi \\ (\mathsf{AS2''}) & \Rightarrow \varphi \land (\varphi \to \psi) \land \neg \psi \end{array}$

(Excluded Middle) (Weak EM) (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic Logic here-and-there

In particular

φ and ψ are ht-equivalent iff ⇒ φ ↔ ψ has a proof from (AS1) and
(AS2")

Proof theory (2)

Axiom schemas

 $\begin{array}{ll} (\mathsf{AS1}) & \varphi \Rightarrow \varphi \\ (\mathsf{AS2}) & \Rightarrow \varphi \lor \neg \varphi \\ (\mathsf{AS2'}) & \Rightarrow \neg \varphi \lor \neg \neg \varphi \\ (\mathsf{AS2''}) & \Rightarrow \varphi \land (\varphi \to \psi) \land \neg \psi \end{array}$

(Excluded Middle) (Weak EM) (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic Logic here-and-there

In particular

φ and ψ are ht-equivalent iff ⇒ φ ↔ ψ has a proof from (AS1) and
(AS2")

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an *equilibrium model* of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A, H = T$

Key connection

► A set *M* of atoms is an answer set of a disjunctive logic program *P* (general logic program *P*) if and only if (*M*, *M*) is an equilibrium model for *P*

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
 - P and Q are strongly equivalent
 - P and Q are ht-equivalent
 - P and Q have the same ht-models
 - \Rightarrow *P* \leftrightarrow Q has a proof from (AS1) and (AS2'')

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an *equilibrium model* of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A, H = T$

Key connection

► A set *M* of atoms is an answer set of a disjunctive logic program *P* (general logic program *P*) if and only if (*M*, *M*) is an equilibrium model for *P*

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
 - P and Q are strongly equivalent
 - P and Q are ht-equivalent
 - P and Q have the same ht-models
 - \Rightarrow *P* \leftrightarrow Q has a proof from (AS1) and (AS2'')

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an *equilibrium model* of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A, H = T$

Key connection

A set *M* of atoms is an answer set of a disjunctive logic program *P* (general logic program *P*) if and only if (*M*, *M*) is an equilibrium model for *P*

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
 - P and Q are strongly equivalent
 - P and Q are ht-equivalent
 - P and Q have the same ht-models
 - \Rightarrow *P* \leftrightarrow Q has a proof from (AS1) and (AS2'')

Modal logics

The language $\mathcal{L}_{\mathcal{K}}$

 $\varphi ::= \bot | p | K\varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \to \varphi \quad \text{(where } p \quad \text{- an atom)}$ e.g.: $a \to K(\neg b \land K(a \lor \neg b))$

Proof theory

- Modus ponens and necesitation $\frac{\varphi}{Ka}$
- Modal axioms such as:
 - K: $K(\varphi
 ightarrow \psi)
 ightarrow (K\varphi
 ightarrow K\psi)$
 - **T**: $K\varphi \rightarrow \varphi$
 - 4: $K\varphi \rightarrow KK\varphi$
 - F: $(\varphi \land \neg K \neg K \psi) \to K(\neg \varphi \lor \psi)$
 - **5**: $\neg K \neg K \varphi \rightarrow K \varphi$
- Logics determined by modal axioms
 - Modal logic S4F: K, T, 4, F
 - Modal logic S5: K, T, 4, 5

Modal logics

The language $\mathcal{L}_{\mathcal{K}}$

•
$$\varphi ::= \perp |\mathbf{p}| \mathbf{K} \varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \rightarrow \varphi$$
 (where \mathbf{p} - an atom)
e.g.: $\mathbf{a} \rightarrow \mathbf{K} (\neg \mathbf{b} \land \mathbf{K} (\mathbf{a} \lor \neg \mathbf{b}))$

Proof theory

- Modus ponens and necesitation $\frac{\varphi}{K\omega}$
- Modal axioms such as:
 - K: $K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$
 - **T**: $K\varphi \rightarrow \varphi$
 - 4: $K\varphi \rightarrow KK\varphi$
 - F: $(\varphi \land \neg K \neg K \psi) \to K(\neg \varphi \lor \psi)$
 - **5**: $\neg K \neg K \varphi \rightarrow K \varphi$
- Logics determined by modal axioms
 - Modal logic S4F: K, T, 4, F
 - Modal logic S5: K, T, 4, 5

Modal logics

The language $\mathcal{L}_{\mathcal{K}}$

•
$$\varphi ::= \perp |\mathbf{p}| \mathbf{K} \varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \rightarrow \varphi$$
 (where \mathbf{p} - an atom)
e.g.: $\mathbf{a} \rightarrow \mathbf{K} (\neg \mathbf{b} \land \mathbf{K} (\mathbf{a} \lor \neg \mathbf{b}))$

Proof theory

- Modus ponens and necesitation $\frac{\varphi}{K\varphi}$
- Modal axioms such as:
 - K: $K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$
 - T: $K\varphi \rightarrow \varphi$
 - 4: $K\varphi \rightarrow KK\varphi$

- F:
$$(\varphi \land \neg K \neg K \psi) \to K(\neg \varphi \lor \psi)$$

- **5**: $\neg K \neg K \varphi \rightarrow K \varphi$
- Logics determined by modal axioms
 - Modal logic S4F: K, T, 4, F
 - Modal logic S5: K, T, 4, 5

Modal logics (2)

Kripke semantics

• $\langle \boldsymbol{W}, \boldsymbol{A}, \pi \rangle$

Classes of Kripke models characterize modal logics

- Logic S5
 - models with universal accessibility relation $\langle W,\pi
 angle$
- Logic S4F
 - S4F-interpretations: $\langle V, W, \pi \rangle$
 - $\psi \mid \mathcal{M}, w \models \dot{\varphi} \mid (w \in V \cup W \text{ and } \dot{\varphi} \in \mathcal{L}_{K})$
 - $\star \mathcal{M}, w \not\models \bot$
 - ★ \mathcal{M} , $w \models p$ if $p \in \pi(w)$ (for $p \in At$)
 - ★ If $w \in V$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in V \cup W$
 - ★ If $w \in W$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in W$
 - The induction over boolean connectives is standard

- $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models \varphi$, for every $w \in V \cup W$; S4F-models

Modal logics (2)

Kripke semantics

- $\langle \boldsymbol{W}, \boldsymbol{A}, \pi \rangle$
- Classes of Kripke models characterize modal logics
- Logic S5
 - models with universal accessibility relation $\langle \textit{W}, \pi \rangle$
- Logic S4F
 - S4F-interpretations: $\langle V, W, \pi \rangle$
 - $\star \mathcal{M}, w \not\models \bot$
 - ★ \mathcal{M} , $w \models p$ if $p \in \pi(w)$ (for $p \in At$)
 - ★ If $w \in V$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in V \cup W$
 - ★ If $w \in W$, then $\mathcal{M}, w \models K\varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in W$
 - The induction over boolean connectives is standard

- $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models \varphi$, for every $w \in V \cup W$; S4F-models

Modal logics (2)

Kripke semantics

- \blacktriangleright $\langle \boldsymbol{W}, \boldsymbol{A}, \pi \rangle$
- Classes of Kripke models characterize modal logics
- Logic S5
 - models with universal accessibility relation $\langle W, \pi \rangle$
- Logic S4F
 - S4F-interpretations: $\langle V, W, \pi \rangle$



- $\mathcal{M}, w \models \varphi$ ($w \in V \cup W$ and $\varphi \in \mathcal{L}_{\mathcal{K}}$)
 - $\star \mathcal{M}, w \not\models \bot$
 - ★ \mathcal{M} , $w \models p$ if $p \in \pi(w)$ (for $p \in At$)
 - ★ If $w \in V$, then $\mathcal{M}, w \models K \varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in V \cup W$
 - ★ If $w \in W$, then $\mathcal{M}, w \models K \varphi$ if $\mathcal{M}, v \models \varphi$ for every $v \in W$
 - The induction over boolean connectives is standard
- $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models \varphi$, for every $w \in V \cup W$; S4F-models

Modal nonmonotonic logics

Expansions

- S modal (monotone) logic; \models_S
- S-expansion of a modal theory $I \subseteq \mathcal{L}_{\mathcal{K}}$:

$$T = \{ \varphi \in \mathcal{L}_{\mathcal{K}} | I \cup \{ \neg \mathcal{K} \varphi | \varphi \in \mathcal{L}_{\mathcal{K}} \setminus T \} \models_{\mathcal{S}} \varphi \},\$$

Nonmonotonic S4F captures (T_, 1991; Schwarz and T_, 1994)

- (Disjunctive) logic programming with the answer set semantics
- (Disjunctive) default logic
- General default logic (Cabalar, 2004; extended by T_, 2007)
- Logic of grounded knowledge
- Logic of minimal belief and negation as failure
- Logic of minimal knowledge and belief
- Is S4F the logic underlying nonmon reasonig?

Modal nonmonotonic logics

Expansions

- S modal (monotone) logic; \models_S
- S-expansion of a modal theory $I \subseteq \mathcal{L}_{\mathcal{K}}$:

$$T = \{ \varphi \in \mathcal{L}_{\mathcal{K}} | I \cup \{ \neg \mathcal{K} \varphi | \varphi \in \mathcal{L}_{\mathcal{K}} \setminus T \} \models_{\mathcal{S}} \varphi \},\$$

Nonmonotonic S4F captures (T_, 1991; Schwarz and T_, 1994)

- (Disjunctive) logic programming with the answer set semantics
- (Disjunctive) default logic
- ► General default logic (Cabalar, 2004; extended by T_, 2007)
- Logic of grounded knowledge
- Logic of minimal belief and negation as failure
- Logic of minimal knowledge and belief
- Is S4F the logic underlying nonmon reasonig?

Is S4F the logic underlying nonmon reasoning?

I claim: yes!

- But some restrictions on the language are needed
- ▶ If $I, J \subseteq \mathcal{L}_K$ have the same S4F-models then for every $K \subseteq \mathcal{L}_K$, $I \cup T$ and $J \cup T$ have the same S4F-expansions
- The converse does not hold!

Modal defaults and modal default theories

- $\varphi ::= K\psi | K\varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \to \varphi$ where ψ — a propositional formula
- For modal default theories (sets of modal defaults) S4F characterizes strong equivalence!

Is S4F the logic underlying nonmon reasoning?

I claim: yes!

- But some restrictions on the language are needed
- ▶ If $I, J \subseteq \mathcal{L}_K$ have the same S4F-models then for every $K \subseteq \mathcal{L}_K$, $I \cup T$ and $J \cup T$ have the same S4F-expansions
- The converse does not hold!

Modal defaults and modal default theories

- $\varphi ::= K\psi | K\varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \rightarrow \varphi$ where ψ — a propositional formula
- For modal default theories (sets of modal defaults) S4F characterizes strong equivalence!

First, the semantics simplifies!

Se-pairs

- ► (L, U) L, U are propositional theories closed under propositional entailment
- Entailment relations \models_u and \models_l for modal defaults
- $\blacktriangleright \langle L, U \rangle \models_{u} \varphi$
 - $\varphi = K\psi$, where ψ is propositional
 - $\langle L, U \rangle \models_{u} \varphi \text{ if } \psi \in U$
 - Boolean connectives standard
 - $\varphi = \mathbf{K}\psi$, where ψ is a modal default $\langle L, \mathbf{U} \rangle \models_{u} \varphi$ if $\langle L, \mathbf{U} \rangle \models_{u} \psi$
- We write $\langle L, U \rangle \models \varphi$ if $\langle L, U \rangle \models_I \varphi$ and $\langle L, U \rangle \models_I \varphi$
- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F

First, the semantics simplifies!

Se-pairs

- ► (L, U) L, U are propositional theories closed under propositional entailment
- Entailment relations \models_u and \models_l for modal defaults
- $\blacktriangleright \langle L, U \rangle \models_I \varphi$
 - $\varphi = K\psi$, where ψ is propositional $\langle L, U \rangle \models_{I} \varphi$ if $\psi \in L \cap U$
 - Boolean connectives standard
 - $\varphi = K\psi$, where ψ is a modal default $\langle L, U \rangle \models_I \varphi$ if $\langle L, U \rangle \models_I \psi$ and $\langle L, U \rangle \models_u \psi$
- We write $\langle L, U \rangle \models \varphi$ if $\langle L, U \rangle \models_I \varphi$ and $\langle L, U \rangle \models_I \varphi$
- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F

First, the semantics simplifies!

Se-pairs

- ► (L, U) L, U are propositional theories closed under propositional entailment
- Entailment relations \models_u and \models_l for modal defaults

$\blacktriangleright \langle L, U \rangle \models_I \varphi$

- $\varphi = K\psi$, where ψ is propositional $\langle L, U \rangle \models_{I} \varphi$ if $\psi \in L \cap U$
- Boolean connectives standard
- $\varphi = K\psi$, where ψ is a modal default $\langle L, U \rangle \models_I \varphi$ if $\langle L, U \rangle \models_I \psi$ and $\langle L, U \rangle \models_u \psi$
- We write $\langle L, U \rangle \models \varphi$ if $\langle L, U \rangle \models_I \varphi$ and $\langle L, U \rangle \models_I \varphi$
- Under the restriction to modal defaults and modal default theories, se-pairs characterize the entailment relation in S4F

Se-interpretations and se-models

- ► An se-interpretation an se-pair (L, U) such that $L \subseteq U$
- Under the restriction to modal defaults and modal default theories, se-interpretations characterize the entailment relation in S4F
- Se-model of a modal default theory *I* an se-interpretation ⟨*L*, *U*⟩ such that ⟨*L*, *U*⟩ ⊨_{*I*} *I* and ⟨*L*, *U*⟩ ⊨_{*u*} *I*

Properties

Strong equivalence

- Let I', I'' ⊆ L_K be modal DTs. The following conditions are equivalent:
 - *I*' and *I*'' are strongly equivalent $(I' \cup I \text{ and } I'' \cup I \text{ have the same S4F-expansions for every modal DT$ *I*)
 - I and I' are equivalent in the logic S4F
 - I and I' have the same se-models.

Uniform equivalence

- Modal DTs I', I'' are uniformly equivalent if for every J ⊆ L, I' ∪ KJ and I'' ∪ KJ have the same S4F-expansions.
- Se-models yield a characterization of uniformly equivalent modal DTs

Properties

Strong equivalence

- Let I', I'' ⊆ L_K be modal DTs. The following conditions are equivalent:
 - *I*' and *I*'' are strongly equivalent $(I' \cup I \text{ and } I'' \cup I \text{ have the same S4F-expansions for every modal DT$ *I*)
 - I and I' are equivalent in the logic S4F
 - I and I' have the same se-models.

Uniform equivalence

- Modal DTs I', I'' are uniformly equivalent if for every J ⊆ L, I' ∪ KJ and I'' ∪ KJ have the same S4F-expansions.
- Se-models yield a characterization of uniformly equivalent modal DTs

Properties (2)

Modal rules, modal programs

- Modal rule: $\varphi ::= Kp | K\varphi | \neg \varphi | \varphi \lor \varphi | \varphi \land \varphi | \varphi \rightarrow \varphi$ where *p* is a propositional atom
- A special class of modal DTs
- A simpler modal logic, SW5, can be used instead of S4F
- Simple se-interpretations: pairs ⟨L, U⟩, where L and U are sets of atoms, L ⊆ U
- SW5 an alternative to logic here-and-there
 - logic here-and-there discovered for nonmon reasoning by Pearce 1997
 - underlies disjunctive logic programming with the answer-set semantics (Pearce 1997)
 - forms the basis for general logic programming with the answer-set semantics (Ferraris and Lifschitz 2005)

To sum up

Logic here-and-there

- Is the logic of strong equivalence in general logic programming
- Characterizes uniform equivalence in general logic programming
- Non-mon here-and-there = general LP (Ferraris and Lifschitz)

SW5 when restricted to modal programs

- Extends logic here-and-there (and so does all what the other one)
- Connectives "classical" (but modality in the language)

S4F when restricted to modal defaults

- Extends SW5 (modal defaults properly extend modal programs)
- Captures several additional nonmonotonic logics
- Is the logic of strong equivalence in these formalisms
- Characterizes uniform equivalence
- As before, connectives "classical" (but modality in the language)

To sum up

Logic here-and-there

- Is the logic of strong equivalence in general logic programming
- Characterizes uniform equivalence in general logic programming
- Non-mon here-and-there = general LP (Ferraris and Lifschitz)

SW5 when restricted to modal programs

- Extends logic here-and-there (and so does all what the other one)
- Connectives "classical" (but modality in the language)

S4F when restricted to modal defaults

- Extends SW5 (modal defaults properly extend modal programs)
- Captures several additional nonmonotonic logics
- ► Is the logic of strong equivalence in these formalisms
- Characterizes uniform equivalence
- As before, connectives "classical" (but modality in the language)

To sum up

Logic here-and-there

- Is the logic of strong equivalence in general logic programming
- Characterizes uniform equivalence in general logic programming
- Non-mon here-and-there = general LP (Ferraris and Lifschitz)

SW5 when restricted to modal programs

- Extends logic here-and-there (and so does all what the other one)
- Connectives "classical" (but modality in the language)

S4F when restricted to modal defaults

- Extends SW5 (modal defaults properly extend modal programs)
- Captures several additional nonmonotonic logics
- Is the logic of strong equivalence in these formalisms
- Characterizes uniform equivalence
- As before, connectives "classical" (but modality in the language)

Algebra and nonmonotonic reasoning

Brief overview

- Fitting's work on logic programming
 - Semantics fixpoints of operators on lattices and bilattices of interpretations
- Abstract algebraic theory of fixpoints of operators and approximation mappings (Marek, Denecker, T_, 2000)
- Algebraic counterparts to models, supported models and stable models, their "partial" versions and approximation semantics: Kripke-Kleene and well-founded
- Provides new semantics (ultimate semantics)
- Provides a unified view of DL and AEL
- Explains common themes in NMR research (cf. algebraic characterizations of stratification and splitting)
- Formalizes the notion of a nonmonotone inductive definition (Denecker)

Algebra and nonmonotonic reasoning

Brief overview

- Fitting's work on logic programming
 - Semantics fixpoints of operators on lattices and bilattices of interpretations
- Abstract algebraic theory of fixpoints of operators and approximation mappings (Marek, Denecker, T_, 2000)
- Algebraic counterparts to models, supported models and stable models, their "partial" versions and approximation semantics: Kripke-Kleene and well-founded
- Provides new semantics (ultimate semantics)
- Provides a unified view of DL and AEL
- Explains common themes in NMR research (cf. algebraic characterizations of stratification and splitting)
- Formalizes the notion of a nonmonotone inductive definition (Denecker)

What's what or how to abstract?

Logic programming algebraically (Apt, Fitting)

interpretations	\leftrightarrow	elements of a complete lattice
program P	\leftrightarrow	one-step provability operator T_P
models of <i>P</i>	\leftrightarrow	prefixpoints of T_P
supported models of P	\leftrightarrow	fixpoints of T_P
stable models of P	\leftrightarrow	(certain) fixpoints of T_P

Which fixpoints correspond to stable models?

- 2-input one-step provability mapping Ψ_P (Fitting)
- $\Psi_P(I, I) = T_P(I)$ an *approximating* mapping to T_P
- Gelfond-Lifschitz operator: $GL_P(I) = Ifp(\Psi_P(\cdot, I))$
- Well defined since $\Psi_P(\cdot, I)$ monotone
- Stable models fixpoints of GL_P

What's what or how to abstract?

Logic programming algebraically (Apt, Fitting)

interpretations	\leftrightarrow	elements of a complete lattice
program P	\leftrightarrow	one-step provability operator T_P
models of <i>P</i>	\leftrightarrow	prefixpoints of T_P
supported models of P	\leftrightarrow	fixpoints of T_P
stable models of P	\leftrightarrow	(certain) fixpoints of T_P

Which fixpoints correspond to stable models?

- 2-input one-step provability mapping Ψ_P (Fitting)
- $\Psi_P(I, I) = T_P(I)$ an *approximating* mapping to T_P
- Gelfond-Lifschitz operator: $GL_P(I) = Ifp(\Psi_P(\cdot, I))$
- Well defined since $\Psi_P(\cdot, I)$ monotone
- Stable models fixpoints of GL_P

Definition

- L a complete lattice
- An approximating mapping a mapping A: L² → L such that for every x ∈ L:
 - the operator $A(\cdot, x)$ is monotone, and
 - the operator $A(x, \cdot)$ is antimonotone

► If O is an operator on L such that O(x) = A(x, x), then A is an approximating mapping for O.

Approximating mappings (2)

Intuitions

- ▶ If $x, y, z \in L$ and $x \le z \le y$, then (x, y) is an *approximation* of z
- If A is an approximating mapping for O and (x, y) is an approximation to z then

$$A(x,z) \leq A(z,z) \leq A(y,z)$$
 and $A(z,y) \leq A(z,z) \leq A(z,x).$

Consequently

 $A(x,z) \leq O(z) \leq A(y,z) \ \ \text{and} \ \ A(z,y) \leq O(z) \leq A(z,x),$

► That is, pairs (A(x, z), A(y, z)) and (A(z, y), A(z, x)) approximate O(z).

Approximating mappings (3)

Basic properties

Every operator O has an approximating mapping:

$$A(x,y) = \left\{ egin{array}{ll} ot & ext{if } x < y \ O(x) & ext{if } x = y \ ot & ext{otherwise.} \end{array}
ight.$$

- Approximating mappings are not unique (in general)
- ► If O is monotone, let $C_O(x, y) = O(x)$, for $x, y \in L$
- ▶ If O is antimonotone, let $C_O(x, y) = O(y)$, for $x, y \in L$
- In each case, C₀ is an approximating mapping for O canonical approximating mapping

Stable operator, stable fixpoints

- O an operator on L
- A an approximating mapping for O
- An A-stable operator for O on L is an operator S_A on L such that for every y ∈ L:

$$S_A(y) = lfp(A(\cdot, y))$$

- An element $x \in L$ is an *A*-stable fixpoint of O if $x = S_A(x)$
- St(O, A_O) the set of A-stable fixpoints of O

Back to LP for a moment

$$\begin{array}{rcl}
O & \leftrightarrow & T_P \\
A & \leftrightarrow & \Psi_P \\
S_A & \leftrightarrow & GL_P
\end{array}$$

Only now we do not have a single fixed approximating mapping

Stable operator, stable fixpoints

- O an operator on L
- A an approximating mapping for O
- An A-stable operator for O on L is an operator S_A on L such that for every y ∈ L:

$$S_A(y) = lfp(A(\cdot, y))$$

- An element $x \in L$ is an *A*-stable fixpoint of O if $x = S_A(x)$
- St(O, A_O) the set of A-stable fixpoints of O

Back to LP for a moment

$$egin{array}{ccc} 0 & \leftrightarrow & T_P \ A & \leftrightarrow & \Psi_P \ S_A & \leftrightarrow & GL_P \end{array}$$

Only now we do not have a single fixed approximating mapping

Extending lattice operators

- P and R operators on L
- An extension of P with R an operator $P \lor R$

$$(P \lor R)(x) = P(x) \lor R(x),$$

for every $x \in L$

- R an extending operator
- ▶ Back to LP: if *P* and *R* are programs, then $T_{P\cup R} = T_P \lor T_R$

Key question: which stable fixpoints to consider?

- Operators P and Q must come with approximating mappings
- Extending operators R, too!
- Which approximating mappings to use for $P \lor R$ and $Q \lor R$?
- $A_P \lor A_R$ and $A_Q \lor A_R$, respectively!

Extending lattice operators

- P and R operators on L
- An extension of P with R an operator $P \lor R$

$$(P \lor R)(x) = P(x) \lor R(x),$$

for every $x \in L$

- R an extending operator
- ▶ Back to LP: if *P* and *R* are programs, then $T_{P\cup R} = T_P \lor T_R$

Key question: which stable fixpoints to consider?

- Operators P and Q must come with approximating mappings
- Extending operators R, too!
- Which approximating mappings to use for P \vee R and Q \vee R?
- $A_P \lor A_R$ and $A_Q \lor A_R$, respectively!

Definition

- P and Q operators on L
- A_P and A_Q their approximating mappings, respectively
- P and Q are strongly equivalent with respect to (A_P, A_Q) if for every operator R and every approximating mapping A_R of R,

$$St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R).$$

•
$$P \equiv_s Q$$
 w/r to (A_P, A_Q)

Problem

 When are two operators, P and Q, strongly equivalent with respect to (A_P, A_Q)?
 (where A_P and A_Q are approximating mappings for P and Q)

Definition

- P and Q operators on L
- A_P and A_Q their approximating mappings, respectively
- P and Q are strongly equivalent with respect to (A_P, A_Q) if for every operator R and every approximating mapping A_R of R,

$$St(P \lor R, A_P \lor A_R) = St(Q \lor R, A_Q \lor A_R).$$

•
$$P \equiv_s Q$$
 w/r to (A_P, A_Q)

Problem

When are two operators, P and Q, strongly equivalent with respect to (A_P, A_Q)? (where A_P and A_Q are approximating mappings for P and Q)

Se-pairs

Definition

- P an operator on L
- A_P an approximating mapping for P
- A pair $(x, y) \in L^2$ is an *se-pair* for *P* w/r to A_P if:
 - SE1: *x* ≤ *y*
 - **SE2:** $P(y) \le y$
 - SE3: $A_P(x,y) \leq x$
- $SE(P, A_P)$ the set of all se-pairs for P w/r to A_P

Generalize se-models by Turner

- Lattice of interpretations (sets of atoms)
- Operator T_P with an approximating mapping Ψ_P
 - **SE1:** *X* ⊆ Y
 - **SE1:** $T_P(Y) \subseteq Y \rightarrow Y$ is a model of *P*
 - SE1: $\Psi_P(X, Y) \subseteq X \rightarrow X$ is a prefixpoint of $\Psi_P(\cdot, Y) \rightarrow X$ is a model of P^Y

Se-pairs

Definition

- P an operator on L
- A_P an approximating mapping for P
- A pair $(x, y) \in L^2$ is an *se-pair* for *P* w/r to A_P if:
 - SE1: *x* ≤ *y*
 - **SE2:** $P(y) \le y$
 - SE3: $A_P(x,y) \leq x$
- ► SE(P, A_P) the set of all se-pairs for P w/r to A_P

Generalize se-models by Turner

- Lattice of interpretations (sets of atoms)
- Operator T_P with an approximating mapping Ψ_P
 - SE1: *X* ⊆ Y
 - SE1: $T_P(Y) \subseteq Y \rightarrow Y$ is a model of P
 - SE1: $\Psi_P(X, Y) \subseteq X \rightarrow X$ is a prefixpoint of $\Psi_P(\cdot, Y) \rightarrow X$ is a model of P^Y

Theorem

- P and Q operators on a complete lattice L
- A_P and A_Q approximating mappings for P and Q, respectively
- If $SE(P, A_P) = SE(Q, A_Q)$ then $P \equiv_s Q$ w/r to (A_P, A_Q)
- ► That is, for every operator R and every approximating mapping A_R for R, St(P ∨ R, A_P ∨ A_R) = St(Q ∨ R, A_Q ∨ A_R)

Converse result

It holds. But a stronger result holds, too!

An operator R is simple if for some x, y ∈ L such that x ≤ y, we have

$$\mathsf{R}(z) = \left\{egin{array}{cc} y & ext{if } x < z \ x & ext{otherwise} \end{array}
ight.$$

for every $z \in L$.

- Constant operators are simple (take x = y = the single value of the operator)
- Simple operators are monotone
- ▶ If for every simple operator R, $St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$ then $SE(P, A_P) = SE(Q, A_Q).$

Theorem

- ▶ $P \equiv_{s} Q$ w/r to (A_{P}, A_{Q}) if and only if $SE(P, A_{P}) = SE(Q, A_{Q})$
- Perhaps more interestingly ...
- For every operator R and for every approximating mapping A_R for R, St(P∨R, A_P ∨ A_R) = St(Q ∨ R, A_Q ∨ A_R) (P ≡_s Q) iff

 $St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$

Theorem

- ▶ $P \equiv_{s} Q$ w/r to (A_{P}, A_{Q}) if and only if $SE(P, A_{P}) = SE(Q, A_{Q})$
- Perhaps more interestingly ...
- For every operator R and for every approximating mapping A_R for R, St(P ∨ R, A_P ∨ A_R) = St(Q ∨ R, A_Q ∨ A_R) (P ≡_s Q) iff

for every simple operator R,

 $St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$

Definition (not much choice left, really)

▶ *P* and *Q* are *uniformly equivalent* with respect to (A_P, A_Q) , $P \equiv_u Q$ w/r to (A_P, A_Q) , if for every *constant* operator *R*

 $St(P \lor R, A_P \lor C_R) = St(Q \lor R, A_Q \lor C_R)$

- In the LP setting: extensions by arbitrary sets of facts
- Relevant to query optimization in databases

Characterizing uniform equivalence

Theorem

- P and Q operators on a complete lattice L
- A_P and A_Q approximating mappings for P and Q, respectively
- $P \equiv_u Q$ w/r to (A_P, A_Q) if and only if
 - for every $y \in L$, $P(y) \leq y$ if and only if $Q(y) \leq y$
 - for every $x, y \in L$ such that x < y and $(x, y) \in SE(P, A_P)$, there is $u \in L$ such that $x \leq u < y$ and $(u, y) \in SE(Q, A_Q)$
 - for every $x, y \in L$ such that x < y and $(x, y) \in SE(Q, A_Q)$, there is $u \in L$ such that $x \leq u < y$ and $(u, y) \in SE(P, A_P)$

Another characterization

Ue-pairs

- An se-pair (x, y) ∈ SE(P, A_P) is a ue-pair for P with respect to A_P if for every (x', y) ∈ SE(P, A_P) such that x < x', x' = y</p>
- ► UE(P, A_P)

Theorem

- L a complete lattice such that its every subset has a maximal element
- ▶ $P \equiv_u Q$ w/r to (A_P, A_Q) iff $UE(P, A_P) = UE(Q, A_Q)$

Another characterization

Ue-pairs

An se-pair $(x, y) \in SE(P, A_P)$ is a *ue-pair* for *P* with respect to A_P if for every $(x', y) \in SE(P, A_P)$ such that $x \in x' \in y' = y'$

for every $(x', y) \in SE(P, A_P)$ such that x < x', x' = y

► UE(P, A_P)

Theorem

L — a complete lattice such that its every subset has a maximal element

•
$$P \equiv_u Q$$
 w/r to (A_P, A_Q) iff $UE(P, A_P) = UE(Q, A_Q)$

- ► Let *P* and *Q* be monotone operators on a complete lattice *L*. Then $P \equiv_s Q$ w/r to (C_P, C_Q) iff *P* and *Q* have the same prefixpoints.
- ► Let *P* and *Q* be monotone operators on a complete lattice *L*. Then $P \equiv_u Q$ w/r to (C_P, C_Q) iff $P \equiv_s Q$ w/r to (C_P, C_Q) .
- Let P and Q be antimonotone operators on a complete lattice L. Then P ≡_s Q w/r to (C_P, C_Q) iff P and Q have the same prefixpoints and for every prefixpoint y of both P and Q, P(y) = Q(y)

- Our results generalize results from logic programming
- Also: imply results on equivalence for default logic and a version of autoepistemic logic (with strong expansions of Denecker, Marek and T_)
- The same characterizations as those obtained through logic S4F
- Any direct connection between S4F and approximation theory?
- Is there an algebraic generalization of the logic S4F?

Comments and further questions (2)

- Other classes of extending operators
 - should contain constant operators but not simple operators
 - one possibility (not too many come to mind): antimonotone operators
- Relativized equivalence
 - An operator *R* on *L* is a *y*-operator if it is determined by an operator on the complete lattice

$$\{x \in L \colon x \leq y\}$$

- By allowing only *y*-operators as extending operators, we obtain strong and uniform *y*-equivalence
- These concepts generalize corresponding notions proposed for logic programs by Eiter, Fink and Woltran
- Work on characterization theorems in progress

